
On approximating shortest paths in weighted

triangular tessellations?

Prosenjit Bose1, Guillermo Esteban1,2, David Orden2, and Rodrigo I. Silveira3

1 School of Computer Science, Carleton University, Canada
jit@scs.carleton.ca
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Abstract. We study the quality of weighted shortest paths when a continuous 2-dimensional space
is discretized by a weighted triangular tessellation. In order to evaluate how well the tessellation
approximates the 2-dimensional space, we study three types of shortest paths: a weighted shortest
path SPw (s, t), which is a shortest path from s to t in the space; a weighted shortest vertex path
SVPw (s, t), which is a shortest path where the vertices of the path are vertices of the tessellation;
and a weighted shortest grid path SGPw (s, t), which is a shortest path whose edges are edges of the

tessellation. The ratios ‖SGPw (s,t)‖
‖SPw (s,t)‖ , ‖SVPw (s,t)‖

‖SPw (s,t)‖ , ‖SGPw (s,t)‖
‖SVPw (s,t)‖ provide estimates on the quality of the

approximation.
Given any arbitrary weight assignment to the faces of a triangular tessellation, we prove upper and
lower bounds on the estimates that are independent of the weight assignment. Our main result is
that ‖SGPw (s,t)‖

‖SPw (s,t)‖ = 2√
3
≈ 1.15 in the worst case, and this is tight.
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1 Introduction

Geometric shortest path problems, where the goal is to find an optimal path in a geometric
setting, are fundamental problems in computational geometry. In contrast to the classical
shortest path problem in graphs, where the space of possible paths is discrete, in geometric
settings the space is continuous: the source and target points can be anywhere within a
certain geometric domain (e.g., a polygon, the plane, a surface), and the set of possible
paths to consider has infinite size. Many variations of geometric shortest path problems
exist, depending on the geometric domain, the objective function (e.g., Euclidean metric,
link-distance, geodesic distance), or specific domain constraints (e.g., obstacles in the plane,
or holes in polygons). Applications of geometric shortest path problems are ubiquitous,
appearing in diverse areas such as robotics, video game design, or geographic information
science. We refer to Mitchell [?] for a complete survey on geometric shortest path problems.

One of the most general settings for geometric shortest path problems arises when
the cost of traversing the domain varies depending on the region. That is, the domain
consists of a planar subdivision, that without loss of generality can be assumed to be
triangulated. Each region i of the subdivision has a weight wi, that represents the cost per
unit of distance of traveling in that region. Thus, the cost of traversing a region is typically
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Spanish Ministry of Science and Innovation, and H2020-MSCA-RISE project 734922 - CONNECT.
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given by the Euclidean distance traversed in the region, multiplied by the corresponding
weight. The resulting metric is often called the weighted region metric, and the problem of
computing a shortest path between two points under this metric is known as the weighted
region problem (WRP) [12, 13]. The WRP is very general, since it allows to model many
well-known variants of geometric shortest path problems. Indeed, having that all weights
are equal makes the metric equivalent to the Euclidean metric (up to scaling), while using
two different weight values, such as 1 and ∞, allows to model paths amidst obstacles.

Perhaps not surprisingly, the WRP turns out to be a challenging problem. The first al-
gorithm for WRP was a (1+ε)-approximation proposed by Mitchell and Papadimitriou [13],
which runs in time O(n8 log

(
nNW
wε

)
), where N is the maximum integer coordinate of any

vertex of the subdivision, W and w are, respectively, the maximum finite and the minimum
nonzero integer weight assigned to the regions. Substantial research has been devoted to
studying faster approximation algorithms and different variants of the problem [1–3] . Ap-
proximation schemes for WRP are sophisticated methods that usually are based on variants
of continuous Dijkstra, subdividing triangle edges in parts for which crossing shortest paths
have the same combinatorial structure (e.g., [13]), or work by computing a discretization of
the domain by carefully placing Steiner points (e.g., see [8] for the currently best method of
this type). The lack of exact algorithms for WRP is probably justified by algebraic reasons:
WRP was recently shown to be impossible to solve in the Algebraic Computation Model
over the Rational Numbers [9]. This is a model of computation where one can compute
exactly any number that can be obtained from rational numbers by a finite number of basic
operations. Efficient algorithms for WRP only exist for a few special cases, e.g., rectilinear
subdivisions with L1 metric [7], or weights restricted to {0, 1,∞} [10].

In applications where the WRP arises, like robotics, gaming or simulation, which usually
require efficient and practical algorithms, the problem is simplified in two ways. First, the
domain is approximated by using a (weighted) plane subdivision with a simpler structure.
Secondly, optimal shortest paths in that simpler subdivision are approximated. The typical
way to represent a 2D (or 3D) environment where shortest paths need to be computed is by
using navigation meshes [16]. These are polygonal subdivisions together with a graph that
models the adjacency between the regions. Path planning is then done first on the graph
to obtain a sequence of regions to be traversed, and then within each region, for which
a shortest geometric path is extracted. Triangles, convex polygons, disks or squares—
of different sizes—are among the most frequently used region shapes [16]. Navigational
meshes allow efficient path planning in large environments as long as the region weights are
limited to {1,∞} (i.e., obstacles only). In case general weights are needed, the complexity
of computing the shortest path inside each region requires the use of the simplest possible
navigational mesh: regular grids. In 2D, the only three types of regular polygons that
can be used to tessellate continuous environments are triangles, squares and hexagons.
The drawback with a grid is that it imposes a fixed resolution, requiring in general a large
number of cells or regions. Still, grids are often used as navigation meshes (even for weights
{1,∞}), since they are easy to implement, are a natural choice for environments that are
grid-based by design (e.g., many game designs), and popular shortest path algorithms such
as A∗ can be optimized for grids [14].
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v

(a) Some neighbors of a vertex v in the corner-
vertex graph.

v

(b) All neighbors of a vertex v in the 6-corner
grid graph.

Fig. 1: Vertex v is connected to its neighbors in a triangular tessellation.

Even when a regular grid is used as a navigation mesh, in practice exact weighted
shortest paths are not computed: instead, an approximation is obtained by computing a
shortest path on a weighted graph associated to the grid. To this end, two different graphs
have been considered in the literature [?], corner-vertex graph and k-corner grid graph,
defined next. The baseline to analyze the quality of any approximate path is the weighted
shortest path that takes into account the full geometry of each region, as in the WRP. A
weighted shortest path will be denoted SPw(s, t). As already mentioned, exact weighted
shortest paths for regions with weights in {0, 1,∞} were studied in [12, 13].

In a corner-vertex graph Gcorner, the vertex set is the set of corners of the tessellation
and every pair of vertices is connected by an edge. These graphs can be seen as the complete
graphs over the set of vertices. Figure 1a depicts some of the neighbors of a vertex v in
the corner-vertex graph. Note that in this graph some edges overlap. A path in this graph
is called a vertex path; a shortest vertex path between s and t will be denoted SVPw(s, t),
where w makes explicit that this path depends also on a particular weight assignment w.

In a k-corner grid graph Gkcorner, which is a subgraph of a corner-vertex graph, the
vertex set is the set of corners of the tessellation, and each vertex is connected by an edge
to a predefined set of k neighboring vertices, depending on the tessellation and other design
decisions. See Figure 1b for the 6-corner grid graph in a triangular tessellation. (Analogous
k-corner grid graphs can be defined for square and hexagonal tessellations.) A path in this
graph is called a grid path; a shortest grid path between s and t will be denoted SGPw(s, t).

Shortest vertex paths and shortest grid paths for the case of weights of the cells being
1 or ∞ have been previously studied in [15] and [4], respectively. In all cases, the weight
of each graph edge is defined based on the cost of the associated line segment, depending
on the weights of the regions that it goes through. More formally, let Ti be a region in a
subdivision with weight ωi ∈ R>0. The cost of a segment πi in the interior of a cell Ti is
given by ωi‖πi‖, where ‖ · ‖ is the Euclidean norm. In the case where a segment π lies in
the boundary of two cells Tj and Tk, the cost is min{ωj, ωk}‖π‖.

Figure 2 shows an example, illustrating the three paths considered: the shortest path
SPw(s, t) (blue), the shortest vertex path SVPw(s, t) (green), and the shortest grid path
SGPw(s, t) (red) in a 6-corner grid graph. Note that in all figures in this work, cells that
are not depicted are considered to have infinite weight.

1.1 Quality bounds for approximation paths
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Fig. 2: SPw(s, t) (blue), SVPw(s, t) (green),
and a SGPw(s, t) (red) between two corners
s and t in G6corner. The cost of each path
is 16.75, 17.32 and 18, respectively.

The goal of this work is to understand the
relation between SGPw(s, t), SVPw(s, t),
and the baseline SPw(s, t). Since SVPw(s, t)
and SGPw(s, t) are approximations of
SPw(s, t), a fundamental question is: what
is the worst-case approximation factor that
they can give?

In this paper we focus on weighted tes-
sellations where every face is an equilat-
eral triangle (analog ideas can be used for
square and hexagonal grids). In particular,
we are interested in upper-bounding the ra-
tios ‖SGPw (s,t)‖

‖SPw (s,t)‖ and ‖SVPw (s,t)‖
‖SPw (s,t)‖ , since they indicate the approximation factor of the shortest

grid and vertex path, respectively. The ratio ‖SGPw (s,t)‖
‖SVPw (s,t)‖ is also studied, to see which ap-

proximation is better.
Almost all previous bounds on the ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ consider a limited set of weights for

the cells. Nash [15] considered only weights in the set {1,∞} and proved that the weight
of SGPw(s, t) in hexagonal G6corner, and G12corner, square G4corner, and G8corner, triangle
G6corner, and G3corner can be, respectively, up to ≈ 1.15, ≈ 1.04, ≈ 1.41, ≈ 1.08, ≈ 1.15,
and 2 times the weight of SPw(s, t). When the weights of the cells are allowed to be in
R>0, the only result that we are aware of is for square tessellations and another type of
shortest path, with vertices at the center of the cells, for which Jaklin [11] showed that
‖SGPw (s,t)‖
‖SPw (s,t)‖ ≤ 2

√
2.

The main contribution of this paper is the analysis of the quality of the three types of
shortest paths for a triangular grid for G6corner, which is the most natural graph defined
on a triangular grid. In contrast to previous work, we allow the weights ωi to take any
value in R>0, so the main challenge here is to obtain tight upper bounds that hold for
any assignment of region weights. Surprisingly, we show that this is possible: the ratios are
upper bounded by constants that are independent of the weights assigned to the regions in
the tessellation. Our main result is that ‖SGPw (s,t)‖

‖SPw (s,t)‖ = 2√
3

in the worst case, for any (positive)
weight assignment. This implies bounds for the other two ratios considered. Moreover, our
upper bound for ‖SGPw (s,t)‖

‖SPw (s,t)‖ is tight, since it matches the lower bound claimed by Nash [15].
Table 1 summarizes our results, together with the previously known lower bounds.

2 ‖SGPw(s,t)‖
‖SPw(s,t)‖

ratio in G6corner for triangular cells

This section is devoted to obtaining, for two vertices s and t, an upper bound on the
ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ in G6corner in a triangular tessellation T . We suppose, without loss of
generality, that the length of each edge of the triangular cells is 2, in order to have a
non-fractional length for the cell height.

Let (s = u1, u2, . . . , un = t) be the ordered sequence of consecutive points where
GPw(s, t) and SPw(s, t) coincide; in case GPw(s, t) and SPw(s, t) share one or more seg-
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‖SGPw (s,t)‖
‖SVPw (s,t)‖

‖SGPw (s,t)‖
‖SPw (s,t)‖

‖SVPw (s,t)‖
‖SPw (s,t)‖

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

2√
3
≈ 1.15 [15] 2√

3
≈ 1.15 [5] 2√

3
≈ 1.15 [15] 2√

3
≈ 1.15 (Thm. 1)

2
√

7
√

3−12

(7−4
√

3)(6
√
2+
√

7
√
3−12)

≈ 1.11 [5] 2√
3
≈ 1.15 [5]

Table 1: Bounds on the quality of approximations of shortest paths in weighted triangular
tessellations for G6corner. The upper bound for the ratio ‖SGPw (s,t)‖

‖SVPw (s,t)‖ , and the bounds for the

ratio ‖SVPw (s,t)‖
‖SPw (s,t)‖ are shown in the full version [5].

ments, we define the corresponding points as the endpoints of each of these segments, see
Figure 3 for an illustration. Observation 1 below is a special case of the mediant inequality.

Observation 1 Let GPw(s, t) and SPw(s, t) be, respectively, a weighted grid path, and
a weighted shortest path, from s to t. Let ui and ui+1 be two consecutive points where
GPw(s, t) and SPw(s, t) coincide. Then, the ratio ‖GPw (s,t)‖

‖SPw (s,t)‖ is at most the maximum of all

ratios ‖GPw (ui,ui+1)‖
‖SPw (ui,ui+1)‖ .

2.1 Crossing paths and weakly simple polygons

In the weighted version of the problem, conversely to the unweighted version, we need
to take into account all the different weights of the regions intersected by SPw(s, t). In
addition, we do not know the shape of the shortest paths SPw(s, t) and SGPw(s, t). To
solve all these inconveniences, for each SPw(s, t) we will define a particular grid path called
crossing path X(s, t), whose behavior will be easier to control. See orange path in Figure 3.

Then, the key idea to prove the upper bound on the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ will be to upper-

bound it by the ratio ‖X (s,t)‖
‖SPw (s,t)‖ . To do so, we will analyze the components resulting from

the intersection between SPw(s, t) and X(s, t). Each component will be a weakly simple
polygon, which will be the basic unit that we will analyze to obtain our main result. Also,
a relation between the weights of some cells intersected by SPw(s, t) and X(s, t) will be
obtained.

Let (T1, . . . , Tn) be the ordered sequence of consecutive cells intersected by SPw(s, t) in
the tessellation T . Let vi1, v

i
2, v

i
3 be the three consecutive corners of the boundary of Ti, 1 ≤

i ≤ n. Let (s = a1, a2, . . . , an+1 = t) be the sequence of consecutive points where SPw(s, t)
changes cell in T . In particular, let ai and ai+1 be, respectively, the points where SPw(s, t)
enters and leaves Ti. In a triangular tessellation, the crossing path X(s, t) from a vertex s
to a vertex t is defined as follows:

Definition 1. The crossing path X(s, t) between two vertices s and t in a triangular tes-
sellation T is defined by the sequence (X1, . . . , Xn), where Xi is a sequence of vertices
determined by the pair (ai, ai+1), 1 ≤ i ≤ n, as follows. Let ei1 ∈ Ti be an edge contain-
ing ai, then:

– If ai+1 ∈ ei1, let [v, w] be the endpoints of ei1, where ai is encountered before ai+1 when
traversing ei1 from v to w. Then Xi = (v, w), see Figure 4a.
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s=u1 =a1

t=u7 =a13
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T1
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Fig. 3: Weighted shortest path SPw(s, t) (blue) and the crossing path X(s, t) (orange) from
s to t in a triangular tessellation.
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ai+1

ei1v w
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ai+1
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ei1
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Ti ai+1

ei2

ei1

(d)

Fig. 4: Some of the positions of the intersection points between SPw(s, t) (blue) and a cell.
The vertices of the crossing path X(s, t) in a triangular cell are depicted in orange.

– If ai is an endpoint of ei1, let p be the midpoint of the edge ei2 ∈ Ti not containing ai.
If ai+1 ∈ ei2 is to the left of −→aip, Xi is ai and the endpoint of ei2 to the right of −→aip, see
Figure 4b. Otherwise, Xi is ai and the endpoint of ei2 to the left of −→aip.

– If ai is in the interior of ei1 and ai+1 is a corner, Xi = (ai+1), see Figure 4c.
– If ai and ai+1 belong to the interior of two different edges ei1 and ei2, Xi is the common

endpoint of ei1 and ei2, see Figure 4d.

Let (s=u1, u2, . . . , u`= t) be the sequence of consecutive points whereX(s, t) and SPw(s, t)
coincide. The union of SPw(s, t) and X(s, t) between two consecutive points uj and uj+1,
for 1 ≤ j < `, induces a weakly simple polygon (see [6] for a formal definition). We distin-
guish six different types of weakly simple polygons, denoted P1, . . . , P6, depending on the
number of edges intersected by SPw(uj, uj+1), see Figure 5. Observe that, by definition of
X(s, t), these are the only weakly simple polygons that can arise.

The weakly simple polygons will be an important tool in our proof, since it will be
enough to upper bound ‖X(s,t)‖

‖SPw (s,t)‖ for each of P1, . . . , P6.

Definition 2. Let uj and uj+1 be two consecutive points in a triangular tessellation, where
X(s, t) and SPw(s, t) coincide. Let p be a common endpoint of the edges of the tessellation
that contain uj and uj+1. A weakly simple polygon induced by uj and uj+1 is of type Pk,
for 1 ≤ k ≤ 6, if the subpath SPw(uj, uj+1) intersects k consecutive edges around p.
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uj

uj+1
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uj
uj+1uj

P1 P2 P3

uj

uj+1

uj

uj+1

uj

uj+1

P4 P5 P6

p p p

p p p

Fig. 5: Some weakly simple polygons Pk, and the subpath of the crossing path X(s, t)
(orange) from uj to uj+1 intersecting consecutive triangular cells.

vi2 vi1

vi3

Ti

(a) Position of two points p and q in a triangular
cell.

T2

s t

T1 T3

T4

(b) The ratio ‖X(s,t)‖
‖SPw (s,t)‖ is ≈ 1.4, whereas the ratio

‖Πi(s,t)‖
‖SPw (s,t)‖ is almost 1.

Fig. 6: Weighted shortest path SPw(s, t) (blue), crossing path X (s, t) (orange), and shortcut
path Πi(s, t) (purple) intersecting a weakly simple polygon P2.

2.2 Bounding the ratio for weakly simple polygons

We are now ready to upper bound the ratio
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ for each of the six types of weakly

simple polygons in G6corner.
First we make a geometric observation that will be needed later. Let p and q be two

points that are in the interior of two different edges on the boundary of the same triangular
cell. Then, the length of the subpath of the weighted shortest path between p and q is given
in Observation 2, which can be proved using the law of cosines.

Observation 2 Let Ti be a triangular cell, and let (u, v, w) be the three vertices of Ti, in
clockwise order. Let p ∈ [u, v] and q ∈ [v, w] be two points on the boundary of Ti. Then,
|pq| =

√
|pv|2 + |vq|2 − |pv||vq|, see Figure 6a.

We observe that, by definition, for P1 we have
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ = 1. Therefore the focus

will be on bounding P2, . . . , P6. We will begin from the simpler case of P3, . . . , P6, and later
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we will consider P2, which is substantially more involved. The proof of the lemma below
can be found in the full version [5].

Lemma 1. Let uj, uj+1 ∈ Pk, for 3 ≤ k ≤ 6, be two consecutive points where a shortest
path SPw(s, t) and the crossing path X(s, t) coincide in a triangular tessellation T . An

upper bound on the ratio
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ in G6corner is 2√

3
.

The grid paths in G6corner are paths whose edges are edges of the triangular cells. Thus,
the ratio

‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ between two consecutive crossing points uj and uj+1 depends on the

weights of these regions. So, the next difficulty that we encountered, related to the crossing
path, was that it is possible to find an instance where SPw(s, t) intersects a weakly simple

polygon P2 such that the ratio ‖X(s,t)‖
‖SPw (s,t)‖ is much larger than ‖SGPw (s,t)‖

‖SPw (s,t)‖ , see Figure 6b.

However, between s and t there are other grid paths shorter than X(s, t) that intersect a
P2. So, in order to obtain an upper bound when SPw(s, t) intersects a P2, we will need a
finer analysis.

Since the ratio
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ is at most 2√

3
for weakly simple polygons Pk, k 6= 2, we

will assume from now on, that the ratio is maximized when all weakly simple polygons are
of type P2. Otherwise, we are done.

Definition 3 determines another class of grid paths called shortcut paths that gives a
tighter upper bound on the ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ when a weakly simple polygon P2 is intersected

by SPw(s, t).
Let {v1, . . . , vn} be a sequence of corners of a triangular tessellation. Then, the grid

path Π(s, [v1, . . . , vn], t) is defined as the path X(s, v1) ∪ π(v1, . . . , vn) ∪ X(vn, t), where
π(v1, . . . , vn) is the grid path through the vertices v1, . . . , vn in that order. We now define
shortcut paths.

Definition 3. Let (u, v, w) be the sequence of vertices of a cell Ti ∈ T in clockwise order.
If X(s, t) contains the subpath (u, v, w), the shortcut path Πi(s, t) is defined as the grid
path Π(s, [u,w], t), see purple path in Figure 6a.

Now, we have all the tools needed to obtain an upper bound on the ratio
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖

for P2. By using the shortcut path Πi(s, t), we will be able to obtain a relation between
the weights of the cells adjacent to Ti ∈ T intersected by the crossing path X(s, t). This
relation is given in the next lemma.

Lemma 2. Let (Tk, . . . , Tm) be the sequence of consecutive cells for which there exists a
shortcut path Πi(s, t), k ≤ i ≤ m, for a given assignment of weights w to the cells of

the triangular tessellation. The ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is maximized when ‖X(s, t)‖ = ‖Πi(s, t)‖

in G6corner.

Proof. Consider an instance for which the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is maximized. Recall this instance

just contains weakly simple polygons of type P2. We will argue that if there is a grid path
GPw(s, t) among X(s, t), Πi(s, t), k ≤ i ≤ m, that is strictly shorter than the other grid

paths, then this instance cannot maximize ‖SGPw (s,t)‖
‖SPw (s,t)‖ .
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T1 uj+1uj

p

T3

T4T2

T5

p′

ts q=q′

T`

Fig. 7: SPw(s, t) through a P2, where ‖Πi(s, t)‖ < ‖X(s, t)‖.

Suppose that there is one grid path GPw(s, t) among X(s, t), Πi(s, t), k ≤ i ≤ m,
that is strictly shorter than the other grid paths in the set. Since GPw(s, t) is a grid path,

the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is upper bounded by ‖GPw (s,t)‖

‖SPw (s,t)‖ . The objective of the proof is to find

another assignment of weights w′ for the cells, such that GPw ′(s, t) is still a shortest grid

path among the grid paths in the set, and
‖GPw′ (s,t)‖
‖SPw′ (s,t)‖

> ‖GPw (s,t)‖
‖SPw (s,t)‖ .

Let uj, uj+1 be two consecutive points where GPw(s, t) and SPw(s, t) coincide. Let T`
be the cell that shares the edge of Πi(s, t) with Ti, see Figure 7. We first set to infin-
ity the weight of all the cells that are not traversed by SPw(s, t). This way, we ensure
that when modifying the weights of some cells, the combinatorial structure of the short-
est path is preserved. The weight of the crossing path X(s, t) along the edges of Ti is
2 min{ωi−1, ωi} + 2 min{ωi, ωi+1}, and the weight of the shortcut path Πi(s, t) along the
edges of Ti is 2 min{ωi, ω`} = 2ωi (because ω` =∞). Let [p, q], and [p′, q′] be, respectively,
the edges containing uj and uj+1, where p, p′ ∈ T`.

– If GPw(s, t) = X(s, t) then ‖X(s, t)‖ < ‖Πi(s, t)‖, and we have that

min{ωi−1, ωi}+ min{ωi, ωi+1} < ωi. (1)

• Suppose ωi ≤ ωi−1, then ωi + min{ωi, ωi+1} < ωi, which is not possible since
min{ωi, ωi+1} > 0. Hence, ωi > ωi−1.
• Suppose ωi ≤ ωi+1, then min{ωi−1, ωi} + ωi+1 < ωi, which is not possible since

min{ωi−1, ωi} > 0. Hence, ωi > ωi+1.

These two facts together with Equation 1 imply that ωi−1 + ωi+1 < ωi. We also have
that

‖X(s, t)‖
‖SPw(s, t)‖

=
‖X(s, p)‖+ 2(ωi−1 + ωi+1) + ‖X(p′, t)‖
‖SPw(s, uj)‖+ |ujuj+1|ωi + ‖SPw(uj+1, t)‖

,

being |ujuj+1| > 0, so if we decrease the weight ωi until ωi−1 + ωi+1 = ωi, the de-
nominator ‖SPw(s, t)‖ will decrease, and the numerator ‖X(s, t)‖ will remain. Hence,

the ratio ‖X(s,t)‖
‖SPw (s,t)‖ will increase, so we found another weight assignment w′ such that

‖X(s,t)‖
‖SPw′ (s,t)‖

> ‖X(s,t)‖
‖SPw (s,t)‖ and ‖X(s, t)‖ = ‖Πi(s, t)‖.
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– Otherwise, if GPw(s, t) = Πi(s, t) then ‖Πi(s, t)‖ < ‖X(s, t)‖, and we have that ωi <
min{ωi−1, ωi}+ min{ωi, ωi+1}. We also have that

‖Πi(s, t)‖
‖SPw(s, t)‖

=
‖Πi(s, p)‖+ 2ωi + ‖Πi(p

′, t)‖
‖SPw(s, uj)‖+ |ujuj+1|ωi + ‖SPw(uj+1, t)‖

,

given |ujuj+1| < 2. If we increase the weight ωi until ωi = ωi−1 + ωi+1, the nu-
merator ‖Πi(s, t)‖ will increase faster than the denominator ‖SPw(s, t)‖. Hence, the

ratio ‖Πi(s,t)‖
‖SPw (s,t)‖ will increase, so we found another weight assignment w′ such that

‖Πi(s,t)‖
‖SPw′ (s,t)‖

> ‖Πi(s,t)‖
‖SPw (s,t)‖ and ‖X(s, t)‖ = ‖Πi(s, t)‖.

We are now ready to prove the upper bound on the ratio
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ in a P2. Lemma 3

presents an upper bound on the ratio
‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ , where uj, uj+1 ∈ Ti are two consecu-

tive points where X(s, t) and Πi(s, t) coincide. Lemma 2 implies that the ratio ‖X(s,t)‖
‖SPw (s,t)‖

in G6corner is maximized when ‖X(s, t)‖ = ‖Πi(s, t)‖ for each i such that the shortcut
path Πi(s, t) exists. Thus, the ratio is obtained in a weakly simple polygon P2 when
‖X(s, t)‖ = ‖Πi(s, t)‖. Since the exact shape of SPw(s, t) is unknown, when calculat-
ing the ratio in the following Lemma 3, we will maximize the ratio for any position of the
points uj and uj+1 where SPw(s, t) and X(s, t) coincide. The prove of the result is given
in the full version [5].

Lemma 3. Let uj, uj+1 ∈ P2 be two consecutive points in a triangular tessellation T ,
where a shortest path SPw(s, t) and the crossing path X(s, t) coincide. Let uj, uj+1 ∈ Ti
and ‖X(s, t)‖ = ‖Πi(s, t)‖, then an upper bound on the ratio

‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ in G6corner is

2√
3
.

Finally, we have all the pieces to prove our main result.

Theorem 1. In G6corner, an upper bound on the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is 2√

3
.

Figure 8 provides an illustration of the lower bound 2√
3

on the ratio between the

weighted shortest grid path SGPw(s, t) (red) and the weighted shortest path SPw(s, t)
(blue) claimed by Nash [15]. Hence, the upper bound in Theorem 1 is tight for G6corner.

3 Discussion and future work

We presented upper bounds on the ratio between the lengths of three types of weighted
shortest paths in a triangular tessellation. The fact that a compact grid graph such as
G6corner guarantees an error bound of ≈ 15%, regardless of weights used, justifies its
widespread use in applications in areas such as gaming and simulation, where performance
is a priority over accuracy.

Our analysis techniques, presented here for triangular grids, can also be applied to
obtain upper bounds for the same ratios in the other two types of regular tessellations,
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Fig. 8: The ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is 2√

3
.

square and hexagonal. The main differences lie in the exact definition of the crossing paths
and the weakly simple polygons. Our techniques can also be used to derive upper bounds
for another type of grid graphs, where the vertices are cell centers instead of corners (see,
e.g., [11, 15]).

For future work, it would be interesting to close the gap for ‖SVPw (s,t)‖
‖SPw (s,t)‖ . It is an intriguing

question whether the seemingly richer graph SVPw(s, t) can actually guarantee a better
quality factor than G6corner.
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