
Universitat Politècnica de Catalunya
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Abstract

Secret sharing allows a dealer to distribute shares of a secret to a set of parties such that only so-called
authorised subsets of these parties can recover the secret, whilst forbidden sets gain at most some restricted
amount of information. This idea has been built upon in verifiable secret sharing to allow parties to verify
that their shares are valid and will therefore correctly reconstruct the same secret. This can then be further
extended to publicly verifiable secret sharing by firstly considering only public channels of communication,
hence imposing the need for encryption of the shares, and secondly by requiring that any party be able to
verify any other parties shares from the public encryption.

In this thesis we work our way up from the original secret sharing scheme by Shamir to examples of various
approaches of publicly verifiable schemes. Due to the need for encryption in private communication,
different cryptographic methods allow for certain interesting advantages in the schemes. We review some
important existing methods and their significant properties of interest, such as being homomorphic or
efficiently verifiable. We also consider recent improvements in these schemes and make a contribution
by showing that an encryption scheme by Castagnos and Laguillaumie allows for a publicly verifiable
secret sharing scheme to have some interesting homomorphic properties. To explore further we look at
generalisations to the recently introduced idea of Abelian secret sharing, and we consider some examples
of such constructions. Finally we look at some applications of secret sharing schemes, and present our own
implementation of Schoenmaker’s scheme in Python, along with a voting system on which it is based.
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Secret sharing

1. Introduction

Secret sharing, as the name suggests, is the idea of sharing a secret among a group of parties. The party
sharing the secret, known as the dealer, first generates a share for each party it will be sharing the secret
with. Each share on its own should give no information about the secret, but if an adequate subset of
parties work together then the combination of their shares will recover the secret. There is little restriction
on what an ‘adequate’ subset can be here, and it is up to the dealer to decide which sets of parties are
qualified and which are forbidden. One of the most common approach to this is simply to set a threshold
number such that any subset with sufficiently many parties can recover the secret.

Secret sharing schemes are useful when the secret at hand is of high importance but the owner of the secret
does not fully trust any of the parties to which it could give it. That is, instead of entrusting a single party
with a secret, it sends to many parties some shares and it knows that they may only recover the secret
if enough of them work together. For example when storing a password, maybe for a bank account that
is too risky to write down but also too important to hope to remember it in one’s heads. Then we could
break this password into say five shares which could each be written down and stored in different locations.
Supposing we generated the shares such that the threshold number to recover the secret was three, then
even if two of the shares happen to be found by an intruder, they would still not be able to recover the
password.

The first secret sharing schemes were actually two independently proposed schemes introduced in the same
year in 1979 by Blakley [5] and Shamir [28]. The former took a geometric approach by assigning the secret
to a point in space and setting the shares as hyperplanes, the idea being that the secret point is recoverable
only by intersecting sufficiently many share hyperplanes. Shamir’s approach on the other hand finds a
random polynomial of sufficiently large degree such that its evaluation at zero is the secret. Then the
shares are evaluations of said polynomial at different points and the recovery of the secret can be carried
out by Lagrange interpolation on these points. In chapter 3 we consider these methods in more detail and
note that of the two, Shamir’s has become a very important basis from which to study secret sharing.

A natural extention to secret sharing schemes is to consider some of the parties and dealer to be dishonest or
corrupt. For example a corrupt dealer could send shares which reconstruct to different secrets depending on
the set of parties taking part in the reconstruction. In 1985 Chor introduced in [15] the idea of a verifiable
secret sharing scheme, where parties could verify the validity of their shares and was soon followed with
different methods by Benaloh [4] in 1986 and Feldman [16] in 1987. In chapter 4 we consider this type of
scheme and how the parties can check that their shares are in-fact valid. We also consider the different
types of security that these schemes may enjoy. In two main categories we have the information-theoretic
security which means even computationally unbounded adversaries cannot recover the secret, and the
weaker computational security which says that the scheme is secure against adversaries with a certain
bounded computational power. For the rest of this chapter we consider a specific example of a verifiable
secret sharing scheme [13] which extends the idea of the Lagrange interpolation to allow for verifiability.
This scheme is secure in the information-theoretic sense, whereas the rest of the schemes considered in
the later chapters are computationally secure. The scheme works in a process of multiple rounds in which
parties can complain about both the dealer and each other if some of their broadcasted values do not fit
with their own. For each complaint there is a resolution process where sharing the right information allows
the honest parties to weed out the corrupt ones. We see that once the whole process is finished then the
honest parties have all recovered the same secret, which is the dealer’s original secret if the latter is honest.

We present only a single example of verifiable secret sharing since the main interest of this thesis lies in
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the next iteration of secret sharing schemes that we consider. The aptly named publicly verifiable secret
sharing model takes the idea of verifiable schemes and requires that they be usable in public spaces where
no party trusts any other. Introduced in 1999 by Schoenmakers [27], publicly verifiable schemes offer two
important changes. The first is that any party, actively taking part in the scheme or not, should be able to
carry out the verifications that the parties are tasked with due to the verifiability of the scheme. That is any
party, with only publicly available information should be able to verify that the shares that any other party
receives are valid. This is often done by consider a new object in the scheme called a verifier whose only
job is to carry out these checks. This requirement of public verifiability allows the schemes to potentially
be used in real implementations, for example in a voting system, where it is ideal to allow anyone to check
for themselves that the scheme is being carried out as it should be. In line with this proximity to real
implementation, the other change coming from publicly verifiable schemes is to make use of an encryption
scheme to send messages. Instead of how the previous schemes were run with the assumption that there
were private channels of communication between any parties and the dealer, here we require messages to
be encrypted. This allows the schemes defined in this way to be truly implementable. However we do note
that it does not make the job of the verifier easier since the latter must now check that shares are valid
from an encryption of these shares. A clever yet potentially costly method of making this possible is to ask
the dealer to send, along with the shares, some proof of the validity of each share. In this way the verifier
need only check that the proofs are correct and this confirms the validity of the shares.

In chapter 5 we define the publicly verifiable schemes and reconsider the correctness and privacy require-
ments in line with the new scheme. The first scheme we consider is Schoenmaker’s [27] which is inspired
by Shamir and is a basis of many later schemes. Then in order to present the Ruiz and Villar scheme intro-
duced in [26] we must first consider a specific cryptosystem from which we use the encryption scheme. The
Paillier cryptosystem [24] considers the difficulty of computing N-th residue classes to construct a homo-
morphic encryption scheme. The scheme was later adapted to a publicly verifiable secret sharing scheme by
Ruiz and Villar in 2005, making use of the homomorphic property. The scheme is based on the decisional
composite residuosity assumption from the Paillier cryptosystem and boasts non-interactive verification
without the need for the Random Oracle Model assumption or other add-hoc methods. Finally we end the
chapter with another interesting publicly verifiable scheme, this one making use of bilinear maps. That is,
a well-behaved and efficiently computable bilinear map between groups from which the equivalence to the
Diffie-Hellman problem is considered hard, namely the Bilinear Diffie-Hellman assumption. The scheme
presented in [20] in 2009 makes clever use of the bilinearity of the map for efficient verifications which
do not require zero-knowledge proofs or Fiat-Shamir heuristics. We also use this scheme to introduce the
idea of an adaptive adversary which can corrupt parties while the scheme is running. Finally we consider
the homomorphic property of this scheme which is made surprisingly simple thanks to the bilinear map,
meaning that any linear combination of shares is valid to recover the same linear combination of their
respective secrets.

In chapter 6 we consider recent improvements in the study of publicly verifiable schemes and make our
own contribution. First we follow the ideas presented in SCRAPE [7] to adapt the verification method
of the Schoenmaker scheme. The idea makes use of the close relation between Shamir’s secret sharing
and Reed-Solomon codes to allow for efficient verification of the validity of shares. This boils down to a
single equation between commitments and a randomly chosen codeword in the dual of the code which is
equivalent to an inner product between the code and its dual. We then consider an adaptation of ElGamal
encryption introduced in [11] by Castagnos and Laguillaumie which we refer to as CL15. This adaptation
comes from the fact that linearly homomorphic encryption is possible with exponential ElGamal where
the messages are in the exponent and hence taking the product results in the encryption for the sum of
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Secret sharing

messages, but it is limited by the fact that to recover the message we must then compute the discrete log
of the encryption. This is viable if it is known that the message in the exponent is small, but otherwise it
has no computable solution. To remedy this the CL15 encryption considers an adapted setup with a group
where the Diffie-Hellman problem is hard but which has a subgroup where the discrete log is easy. This
allows for easy decryption by encrypting to the given subgroup. The CL15 encrytion scheme also allows for
the interesting property that the decryption is linear in the secret keys. This is used by the parties to prove
to each other that they have correctly decrypted their shares. Once we have all these adapted methods we
can consider the DHPVSS scheme with our contribution of using the CL15 encryption instead of ElGamal,
although the two work in very similar ways.

Chapter 7 returns to the standard secret sharing scheme and considers how these can be generalised. First
we consider a generalisation by Schoenmaker from a threshold scheme to an arbitrary linear scheme, making
use of the close relation between secret sharing schemes and linear codes. We then look at Abelian secret
sharing which allows us to construct schemes from a set of Abelian groups and a subgroup code. We
consider three such related constructions which make use of the duals of the code. Of particular interest
here is to see how the authorised and forbidden sets can be expressed in terms of the Abelian groups and
their duals. This use of generalising provides a better understanding of the existing schemes, and with
further work could provide new methods for secret sharing.

The final chapter in this thesis considers some ways in which secret sharing schemes can be applied.
First we look at examples of schemes being used in protocols such as the average consensus problem and
time-locking secrets. Secret sharing schemes are often used in protocols where it cannot be assumed that
parties trust each other or that there is a trusted third party. Finally we consider an implementation of a
publicly verifiable secret sharing scheme and its adaptation to construct a voting system. To bridge the
gap between the theory and the more applied side we chose to write Schoenmaker’s scheme in Python
to see how the application fairs in practice. It is implemented in a straight-forward way with minimal
use of libraries so that we can see the inner workings of the code. In the chapter we present the most
important parts of the code and explain the processes that it follows, the full code being available at
https://github.com/JeremyLvl/TFM. The second implementation is from the same Schoenmaker paper
which presents a voting system based on the publicly verifiable scheme. In this case the voters are dealers
which distribute their shares to talliers, or the parties in the secret sharing scheme. Using the homomorphic
properties of the encryption allows the talliers to recover the sum of votes without having to decypher the
votes directly. That is, the talliers can put together the shares they receive for each vote to produce a
single share for the sum of votes. For both implementations we also present a minimal working example
to run through and show how the whole program works.
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2. Cryptographic prerequisites

For the coming discussions it will be useful to first introduce some basic cryptographic concepts. In this
section we present the very basics of the necessary topics for the schemes that we will consider later. As
we will see, secret sharing is very close to codes and we will make use specifically of Reed-Solomon codes.
For publicly verifiable secret sharing schemes we will also need hashing to be able to use zero-knowledge
proofs, and public key encryption for the parties to communicate privately.

2.1 Encryption

Let us first define symmetric and public key encryption. Following convention we call the sender of the
message Alice, denoted A, and the receiver Bob, denoted B. In short, an encryption scheme allows for A to
publicly send an encrypted version of a message B, such that only the parties with the correct decryption
keys may recover the original message. As the name suggests, a symmetric key encryption scheme assumes
that both A and B share the same key with which they encrypt the message and decipher the ciphertext.

Let us fix some generic domains for simplicity. Let M be the domain of messages, C the domain of
ciphertexts and K the domain for keys. For the encryption and decryption processes, we also need to
differentiate between deterministic and randomised algorithms. So let a deterministic algorithm be one
which always produces the same result given the same inputs, whereas a randomised algorithm has some
form of randomisation and may produce a different result for the same inputs.

Definition 2.1. A symmetric key encryption scheme is a pair of algorithms (Enc ,Dec) defined over
(M, C,K) which are as follows:

- Enc(m, k): a randomised algorithm which encrypts a message m ∈M to a ciphertext in C,
- Dec(c , k) a deterministic algorithm which decrypts a ciphertext c ∈ C to a message inM.

The decryption algorithm returns the original message if the same key is used on the encrypted version of
the message, that is, Dec(Enc(m, k), k) = m.

The requirement that both parties already know a shared key k is strong, in order to avoid it, public key
encryption instead uses two different keys for encryption and decryption. A public key is known to both
parties and a secret key is known only to the receiver. This way, encryption using the public key can only
be decrypted using the adequate private key.

Definition 2.2. A public key encryption scheme ε, is a set of three algorithms as follows:

- Gen(): a randomised algorithm that outputs a pair (pk, sk) of public/private key,

- Enc(m, pk): a randomised algorithm which encrypts a message m ∈ M given a public key and
outputs the ciphertext c ∈ C,

- Dec(c , sk): a deterministic algorithm which decrypts the ciphertext c and outputsm if c = Enc(m, pk)
and (pk, sk) is a valid key pair from Gen.

Now for the security of these encryption schemes. Using the idea of attack games we will define an
encryption scheme to be secure if an adversary cannot tell the difference between two encryptions. More
specifically, an attack game runs as follows. An adversary chooses any two messages and sends them to
the challenger, who will choose one at random, encrypt it and send it back. The adversary then has to
guess which of the two messages was encrypted. If the adversary can do this with a probability significantly
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different to a half, then the encryption scheme is insecure, since clearly some information is visible through
the encryption. We define only the attack game for the public key encryption scheme, from which the
symmetric equivalent is clear.

A note on notation in the attack game. Writing a ← Algo() means running the algorithm Algo() and
setting a to the output. Assigning b ∈R S means setting b to some value in S uniformly at random.

Definition 2.3. The semantic security attack game between the challenger Chal and the adversary Adv
runs as follows, where Adv wins if b̂ = b.

Chal Adv

(pk, sk)← Gen()
pk−−−−→

m0,m1 ∈M
m0,m1←−−−−

b ∈R {0, 1}
c ← Enc(mb, pk)

c−−−−→
b̂ ∈ {0, 1}

Finally we can define the security of the scheme. Note that this depends on the computational power of the
adversary. In short we allow any polynomial time adversary, ie. one who’s algorithms runs in polynomial
time on the size of the input. So we can claim semantic security if such an adversary cannot say which
message was encrypted better than simply guessing.

Definition 2.4. A public key encryption scheme is semantically secure if for any polynomial time adversary
then |P(b̂ = b)− 1/2| < ε.

2.2 Hashing

Let us now introduce the very useful concept of a hash function. We keep the definition of a hash function
quite open to allow for it to be use in many different contexts. The idea is to have a deterministic one-way
function whose output appears random. By one-way here we mean that it is infeasible for a polynomial
time algorithm given H(x) to recover x . By the randomness of the output we mean that any small change
in the input should produce a large change in the output, such that the similitude of the two inputs is not
easily seen.

A common heuristic to consider is the Random Oracle Model, or ROM. This says that it is possible to
model a hash function as having a truly random output, that is, it is uniformly random in the image set.
It is an idealisation of the idea of hashing and clearly a proof in the random oracle model does not imply
security in the standard cryptography model, where hashing is not truly random. However we consider it
anyway since it is useful to be able to construct proofs of security in the ROM.

2.3 Zero knowledge proofs

A zero-knowledge proof is a protocol run between a prover P and a verifier V such that the prover
convinces the verifier of a specific claim, but from which the verifier gains no other information other than
the knowledge that the claim is true. The interactive model is carried out by both parties sending each
other messages, the final list of which is called the transcript of the proof.
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Definition 2.5. A zero-knowledge proof with prover P and verifier V must satisfy:

- correctness: V accepts the proof in the case that both parties are honest,

- soundness: an honest V accepts a proof from a dishonest P with bounded probability,

- zero-knowledge: V learns nothing from the proof other than that the claim is true.

For the zero-knowledge requirement we consider a simulator S of the prover which attempts to prove the
claim is true but without any of the knowledge the prover has. If such a simulation of the proof can be
sucessfully carried out without the required knowledge then indeed the verifier can learn nothing other than
the truth of the claim, since it could itself have formed the simulated proof.

A proof of knowledge is zero-knowledge proof where the prover proves to the verifier that they know a
certain value, often called a ‘witness’ of a claim. We will only consider proofs of knowledge of the form of
sigma protocols, as seen in Figure 1. For such proofs the soundness property is called special soundness

Prover Verifier

commitment
a−−−−→
e←−−−− challenge

response
z−−−−→

Figure 1: A generic sigma protocol proof of knowledge.

and uses the idea of a knowledge extractor. It is assumed that by exchanging messages with a prover,
the extractor is able to recover a witness for the claim. More specifically, given two transcripts (a, e, z) and
(a, e ′, z ′) with the same commitments and different challenges and responses, then the knowledge extractor
can recover the witness from the prover.

Finally we consider the Fiat-Shamir heuristic which is often used in the construction of non-interactive
zero-knowledge proofs, or NI-ZK for short. The idea is to take an interactive proof of knowledge and
convert it into a digital signature, that is, a single message which convinces the verifier in the same way as
the proof. More formally, consider the interactive proof in Figure 1, the Fiat-Shamir heuristic says that this
can be done in a single signature from the prover, as in Figure 2. Note that this only works to convince

Prover Verifier

commitment a
e = H(a)
response z

(a, z)
−−−−→

Figure 2: A non-interactive zero-knowledge proof.

the verifier if it believes that the challenge the prover constructs is in fact random, and hence the verifier
did not construct a specific e to allow themself to cheat. So this requires that hashing is truly random,
since e = H(a), and hence it is a heuristic in the random oracle model. As we will see, this can also be
aided by sending the commitment and having the verifier check that the hash is correct.
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2.4 Codes

Codes and especially linear codes will be useful constructions to have when considering secret sharing. We
introduce here the basics that we will later need to make a parallel between secret sharing schemes and
codes. Referring to a set Fq as an alphabet, a codeword is a sequence of symbols in Fq, and a code C is
a set of codewords. A linear code of length n is a linear subspace of a vector space Fn

q, that is, any linear
combination of codewords is also a codeword. The dimension of a linear code, dim(C ), is the dimension of
the subspace it is defined by. A code is s-error-correcting if given a codeword with up to s of its symbols
changed, it can still recover the original codeword. The minimum distance of a code is the least number
of symbols needed to change one codeword to another. We will focus on error-correcting linear codes and
their duals, which is the set of codewords which are orthogonal to all words in the code.

Definition 2.6. An [n, k, d ] code is a linear error-correcting code over Fq of length n, dimension k and
minimum distance d .

Definition 2.7. For an [n, k , d ] code C , the dual code C⊥ is the vector space of v ∈ Fn
q such that ⟨v , c⟩ = 0

for all c ∈ C .

Note that dim(C ) + dim(C⊥) = n and the dual code is actually an [n, n − k , d ′] code for some d ′.

Reed-Solomon codes are [n, k , n − k + 1] codes introduced in [25] which can be described as having
evaluations of a polynomial for as codewords,

C = {(p(α1), ... , p(αn)) : p(x) ∈ Fq[x ], deg(p) ≤ k − 1}.

And its dual code C⊥ is an [n, n − k , k + 1] code described as

C⊥ = {(v1f (α1), ... , vnf (αn)) : f (x) ∈ Fq[x ], deg(f ) ≤ n − k − 1},

where vi =
∏

j ̸=i
1

i−j .
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3. Secret sharing

3.1 Introductory background

The basic idea of secret sharing is intuitively well-explained by its name. In short, it is the sharing of
a secret between parties, which as is often assumed, do not necessarily trust each other, such that the
secret is only recovered if a correct subset of the parties work together. In other words, consider a set of
n ≥ 2 parties or players and another special party which we call the dealer. The dealer has some secret,
denoted s, which it wants to share in a certain way among the parties. It requires that on its own the share
a party receives gives it no information about the secret, but specific subsets of the n parties can work
together, combining their shares, to find the original secret s. A commonly used approach is to allow any
set of parties to recover the secret if they are sufficiently numerous, that is, setting a threshold size for the
minimum number of parties.

Secret sharing schemes, were first independently introduced in 1979 by Blakley [5] and Shamir [28], and both
in the specific case of threshold secret sharing. Blakley approached this geometrically by considering the
intersection of hyperplanes. That is, each share given to a party is a hyperplane such that the intersection
of sufficiently many describes just a single point. The secret is one of the coordinates of this intersection
point. Note that the intersection of too few hyperplanes gives a subspace of dimension at least two, from
which the secret coordinate cannot be found. Although an interesting approach, we will not go further into
it. The main problem is the size of the shares, which have to be multiple times larger than the secret. This
can be improved by choosing appropriate planes to be shared, although this in turn transforms the scheme
to be equivalent to the one described instead by Shamir. The latter approach is closer to the common
methods of today and we will describe it detail shortly. The idea is simple, for a secret s, a polynomial
q(x) is constructed to have the secret as s = q(0). The shares sent to players are distinct points evaluated
on this polynomial, sufficiently many of which can be used by a Lagrange interpolation to recover the
polynomial, and hence to recover the secret.

3.2 A secret sharing model

To define a secret sharing scheme we first need to more formally define the access structures which say
which subsets of parties should be able to recover the secret. Let D be the dealer who wants to share
its secret and P = {P1, ... ,Pn} be the set of parties which will receive shares. A subset of parties is
called authorised if it should be able to recover the secret, and forbidden otherwise. The collection of all
authorised parties is called the access structure and denoted Γ ⊂ 2P . One thing that is clear immediately
is that an access structure must be monotone. Naturally if A can find the secret then any set of parties
which contain A can too. That is, for a set of parties A ∈ Γ, if A ⊂ B then B ∈ Γ. Finally we say that for
an (t, n)-threshold secret sharing scheme, the access structure can be described as Γ = {A ⊂ 2P : |A| ≥ t}.

Following Beimel [2] we now define a secret sharing scheme by first defining distribution schemes. Note
that we assume for now that there is a private communication channel for any pair of parties, including
with the dealer.

Definition 3.1. A distribution scheme is a mapping Π : S × R → S0 × · · · × Sn, where S is a domain of
secrets, R is a domain of random strings, and Si is a domain of shares for Pi .

For ease of notation, given a set of parties A ⊂ Γ, let ΠA(s, r) be the restriction of Π(s, r) to the shares
that parties of A receive.

11
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Definition 3.2. A secret sharing scheme is a protocol between a dealer D and a set of parties P =
{P1, ... ,Pn}. For a secret s the protocol runs as follows:

1. D randomly selects some r ∈ R,

2. D computes shares Π(s, r) = (s0, ... , sn),

3. D privately sends si to each party Pi respectively.

The scheme is said to realise an access structure Γ if the two following properties are satisfied:

- correctness: for any authorised set of parties A ∈ Γ there is a reconstruction function Rec :
ΠA(s, r)→ S such that Rec(ΠA(s, r)) = s.

- privacy: for two secrets s0, s1 ∈ S and a forbidden set of parties B /∈ Γ the distributions of ΠB(s0, r)
and ΠB(s1, r) are identical over the choice of r .

The correctness property here requires that, as expected, any authorised set of parties can reconstruct the
secret from the shares they have received, hence the Rec function. The privacy property says that any
forbidden set of parties should have no information about the secret from their collective shares. This is
done by requiring that their shares are as likely to come from any two secrets.

Finally we define two often considered properties of secret sharing schemes which will be the case in most
of the schemes in this work.

Definition 3.3. A secret sharing scheme is perfect if every possible set of parties is either authorised or
forbidden.

Note that since we assume that a set is forbidden if it is not authorised, then we are already working with
perfect schemes. This property essentially gets rid of the idea of sets of parties which gain some information
about the secret from their shares, but not enough to fully recover the secret.

Definition 3.4. A secret sharing scheme is ideal if the size of the shares are equal to that of the secret,
that is, |Si | = |S | for i = 1, ... , n.

In this case the scheme is ideal because the secret does not get larger in size while being shared. As we
will see immediately below, this is the case for Shamir’s scheme which uses the same field Fq for both the
secrets and the shares.

3.3 Shamir’s threshold scheme

We can now describe Shamir’s well-known (t, n)-threshold secret sharing scheme as introduced in [28].
Recall the access structure here authorises any set with t or more parties. Consider a secret s in some field
Fq, and note that for the rest of this section we will be working in this field. The dealer selects a random
polynomial q(x) of degree t − 1 such that q(0) = s. The shares are evaluations of q(x) at distinct points,
for example it is common to give to party Pi the share si = q(i). Note that in this case Shamir’s scheme is
a linear secret sharing scheme meaning that the secret can be written as a linear combination of the shares,
we will see how later in this section. By Lagrange interpolation, and since q(x) has degree t − 1, a set
of at least t shares are enough to uniquely determine q(x), from which the secret can be recovered. This
last statement will be proved in the general case, which is nothing more than the Lagrange interpolation
theorem.

For ease of notation, when we consider a set of say k parties and their shares, we will assume that these are
the first k parties P1, ... ,Pk , and hence their shares are s1, ... , sk . This will save us from double indexing.

12



Note that this can simply be thought of as a re-indexing of all the parties and their shares and is without
loss of generality.

Definition 3.5. The (t, n) Shamir threshold secret sharing scheme is a protocol with the distribution
scheme

Π : Fq × Ft
q → Fq × · · · × Fq

where q > n and the access structure is Γ = {A ⊂ P : |A| ≥ t}. For a secret s ∈ Fq the sharing protocol
for the dealer is as follows:

1. D randomly samples t − 1 elements α1, ... ,αt−1 ∈ Fq,

2. D constructs the polynomial q(x) = s +
∑t−1

i=1 αix
i ,

3. D sets the share si = Π(s, (α1, ... ,αt−1)) = q(i),

4. D privately sends to each party Pi their respective share si .

For an authorised set of parties A = {P1, ... ,Pk} (with k ≥ t) the reconstruction protocol is as follows:

1. Each Pi shares its share si with all other parties in A,
2. Each Pi computes

∑t
j=1 sj

∏
ℓ̸=j

ℓ
ℓ−j = s.

Let us now prove the Lagrange interpolation theorem to show that the reconstruction of shares is indeed
correct. This requires showing that for any set of t points constructed as in the scheme, then there is a
polynomial of degree at most t − 1 which fits these points, and that this polynomial is in fact unique.

Theorem 3.6. Given a set of t pairs {(i1, si1), ... , (it , sit )} in a field Fq with all ij ’s distinct, there is a
unique polynomial q(x) of degree at most t − 1 and such that q(ij) = sij for all j ∈ [t].

Proof. The existence of such a polynomial q(x) comes directly from the Lagrange interpolation formula,
that is, we can construct

q(x) =
t∑

k=1

sik
∏
ℓ̸=k

x − iℓ
ik − iℓ

.

Then q(ij) has an ij − ij term in the product of each element of the sum except at k = j , where

sij
∏

ℓ̸=j
ij−iℓ
ij−iℓ

= sij , and hence q(ij) = sij . Also q(x) has degree at most t − 1 since the product in

each element of the sum takes at most t − 1 elements.

Now to show the uniqueness of this polynomial, suppose there are two distinct p(x), q(x) both satisfying
the required properties. Then let r(x) = q(x) − p(x) be their difference and notice that r(ij) = 0 for all
j ∈ [t]. So r(x) has at least t distinct roots, but must also have degree at most t − 1 since both p(x) and
q(x) do. This means r(x) must be the zero polynomial and hence p(x) = q(x).

It is clear that each party in A can clearly recover the secret q(0) from t shares. This handles the correctness
requirement of the scheme, but what about the privacy. That is, why does a set of at most t − 1 shares
gain no information about the secret? For such a set, the same Theorem 3.6 says that for any secret is as
likely to be correct as any other. To see this take any secret s ∈ Fq and consider it as an additional share
to the set of t− 1 shares an adversary already has. Then by the theorem there is a unique polynomial q(x)
of degree at most t−1 fitting the t−1 shares and the chosen secret s. Since this holds for any secret, they
are each as likely as each other to have been the original secret. Of course if we have no information about
the secret with t − 1 shares then we certainly have no information with less shares, so we can conclude
that the secret is recoverable only with t or more shares.

13



Secret sharing

3.4 Linear secret sharing from codes

We now consider how a secret sharing scheme can be modelled as an [n, k , d ] linear code C , as was first
explained in [23]. Consider the generating matrix of such code, G = (v0, ... , vn), of dimensions (n+1)× k
since the secret is included. Note that the rows form a basis for the code and the codewords in C are
all possible linear combinations of the rows. To generate the secret and shares of such a scheme we can
take any c ∈ Fn+1

q and find cG = (s0, s1, ... , sn). For a description of the sets which are authorised and
forbidden we consider the definition of a secret sharing scheme, saying that an authorised set A ∈ Γ is one
which can recover the secret s0 from its set of shares (si )i∈A. For ease of notation, we simply denote a
set of shares (si )i∈A as sA. So a set of parties A is authorised if and only if v0 =

∑
i∈A λivi for some λi ,

from which it is clear that A can recover the secret as
∑

i∈A λi si = s0 for any generated secret and shares
(s0; s1, ... , sn). The vectors in the generating matrix therefore define exactly which parties are authorised
and which are not, hence the scheme is perfect. Finally we consider the duality of these schemes. The dual
scheme can be generated by considering the dual code CT which is generated by the parity-check matrix
H, ie. the (n − k)× n matrix such that cHT = 0 for all c ∈ C . In this way the dual code is generated as
dH = (x0, ... , xn), and the validity of codewords can therefore be checked probabilistically using the dual
code, as we will consider in detail in section 6.1.

It can be seen that Shamir’s scheme is a particular case of this, where the code is the Reed-Solomon code
introduced in section 2.4. That is, for a secret s ∈ Fq, the code

C = {(p(1), ... , p(n)) : p(x) ∈ Fq[x ], deg(p) ≤ k − 1}.

describes the set of shares given a polynomial p(x) with p(0) = s, as constructed in the scheme. So a
(t, n) Shamir threshold scheme can be described by a [n, t, n − t + 1] Reed-Solomon code. This code can
correct n − t errors and hence as we have seen, a set of t shares is sufficient to recover the secret.
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4. Verifiable secret sharing

4.1 Introduction

A secret sharing scheme as described in the previous section is clearly at risk of a corrupt or dishonest dealer.
For example the dealer may choose to send shares which when reconstructed by different sets of parties
give to each of them different secrets. The dealer could also share arbitrary shares that will reconstruct
no secret at all, just a seemingly random element in the domain of secrets. Apart from their intuition and
context about what the secret should look like, the parties would have no way of knowing this is the case.
The verifiability in verifiable secret sharing schemes is there to overcome such problems. Simply put it
requires that any honest and authorised set will reconstruct the same secret and that they can check this is
the case. Here we must make a distinction about the honesty of the adversary. In secret sharing schemes
an adversary is assumed to be able to see the shares of a forbidden set of parties. Although the privacy
property of the scheme means that the adversary has no information about the secret, even after seeing
these shares. It is also assumed that the adversary cannot control the parties or the dealer, they simply
follow the schemes protocols. These adversaries are generally referred to as passive adversaries.

In verifiable secret sharing we allow for active adversaries that not only see, but also control a forbidden
set of parties. That is, they see their respective shares and choose what messages they send to other
parties or to the dealer. Similarly the dealer may be corrupt, meaning that it may send shares that do not
reconstruct correctly to a unique secret. For these reasons we are interested in a scheme that would allow
honest parties to verify the validity of their shares with regards to reconstructing the correct secret. For
this we need the idea of a consistent set of shares.

Definition 4.1. A set of parties B has a consistent set of shares if there is a fixed secret s ′ ∈ S ,
not necessarily equal to the dealer’s original secret s, such that for any authorised subset C ⊂ B the
reconstruction function gives Rec(ΠB(s, r)) = s ′.

Definition 4.2. A secret sharing scheme is verifiable if for any authorised set of parties B there is a
protocol Verify(ΠB(s, r)) which proves to the parties in B that their shares are consistent.

In short, a verifiable secret sharing scheme must be able to convince its authorised parties that their shares
are consistent. We should also adjust the properties of correctness and privacy to account for the case
that the dealer is controlled by the adversary. For the correctness, even if the dealer is corrupt we want all
honest parties in any authorised set to recover some common secret. Of course in the case of a corrupt
dealer we cannot speak of an original secret since the dealer may not have a secret at all and broadcast
values at random. So we simply require that their is some fixed secret which they all recover.

Definition 4.3. A verifiable secret sharing scheme has the correctness property if the entire set of parties
P has a consistent set of shares. Hence any party in an authorised set recovers the same secret.

Similarly we alter the security property. In the scenario that the dealer is controlled by the adversary it
makes little sense to expect the adversary to not know the secret. So we re-frame the security to require
that under an honest dealer, and denoting as ViewAdv the collection of all the information that the adversary
knows, then the adversary does not gain any information on the dealer’s secret from ViewAdv .

Definition 4.4. A verifiable secret sharing scheme has the privacy property if given an honest dealer then
ViewAdv is independent of the secret s.
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4.2 Background

In 1985 Chor [15] introduced verifiable secret sharing based on Shamir’s (t, n) secret sharing scheme and
the factorisation problem. Interestingly it allowed the parties to verify any share, even those of other
parties. This, we will see, is very close to publicly verifiable secret sharing, although it was not carried
forward in the verifiable schemes that followed. We will not go into the details of Chor’s scheme because
it heavily use ideas such as oblivious transfers and broadcast networks which are not of direct interest in
this thesis. Soon after, in 1986 Benaloh [4] considered a different approach to allow for verifiability. This
time using homomorphic secret sharing to break shares further into ‘sub-share’ and allow reconstruction of
a ‘master-share’, but notably without sharing the respective ‘sub-secrets’. In 1987 Feldman [16] proposed
the first non-interactive verifiable secret sharing scheme, where a party can be convinced of consistency
using only their own share and without communicating with any other party. Note that in general it can be
allowed for the Verify protocol to require interaction between the parties. We say a verifiable secret sharing
scheme is non-interactive if a party can run Verify on its own, with no communication with other parties.

4.3 Security types

Like in most areas of study in cryptography there is an important divide between the assumed powers of the
models we consider. For secret sharing we can speak of conditionally or unconditionally secure schemes.
The latter being what we have so far studied. Also called information-theoretic security, it is defined by
the fact that even a computationally unbounded adversary with unlimited computation power cannot break
the security. We will study in the next section a verifiable secret sharing scheme with this type of security.
The weaker computational security says that a scheme’s security cannot be broken by an adversary whose
computational power is bounded in some way. Such schemes usually rely on a computational problem which
is known to be hard, and prove their own security by showing that breaking the scheme’s security implies
being able to solve the problem. The publicly verifiable secret sharing schemes that we will study later on
are all of this kind, since they are proposed to be possible to implement in the real world. The unconditional
level of security is most often too strong to be considered for such applications since the latter assume that
any adversary will be computationally bounded anyway.

4.4 Extended interpolation idea

The main idea in the verifiable secret sharing scheme we will consider in this section is an extension of the
Lagrange interpolation method of Shamir, extended to a bivariate polynomial in F2

q. For this scheme to work
we will need to show that given two polynomials fi (x) and gj(y) intersecting in the form fi (αj) = gj(αi )
for α0, ... ,αt+1 ∈ Fq, then they describe a unique bivariate polynomial F (x , y) of degrees (t, t). This will
allow the correctness of the scheme to say that what is reconstructed is in fact the same secret for any
authorised set of parties. We will also show that given insufficient shares, ie. strictly less than t shares,
then we gain no information about this secret. In other words, the shares of a forbidden set of parties have
the same distribution for any initial polynomial p(y).

Let us first show that a simple generalisation of the fact that t +1 polynomials of degree t define a unique
bivariate polynomial of degrees (t, t). The claim is similar to that of the Lagrange interpolation theorem
and hence the proof is similar too.

Lemma 4.5. For polynomials f1(x), ... , ft+1(x) of degree t and values α1, ... ,αt+1 ∈ Fq, then there is a
unique bivariate polynomial F (x , y) of degree (t, t) such that F (x ,αk) = fk(x) for k ∈ [t + 1].
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Proof. By Lagrange interpolation let

F (x , y) =
t+1∑
i=1

fi (x)
∏
j ̸=i

y − αj

αi − αj
.

For k ∈ [t + 1], every product in the sum of F (x ,αk) has the term αk − αk = 0, except at i = k , hence
as required we have that

F (x ,αk) = fk(x)
∏
j ̸=k

αk − αj

αk − αj
= fk(x).

Clearly F (x , y) has degrees (t, t) since fi (x) has degree t in x and the products have t elements in y .

Now to show it is unique, suppose there are two such bivariate polynomials, F (x , y) and S(x , y) and
consider their difference D(x , y) = F (x , y) − S(x , y). Letting p(y) =

∑t
j=0 di ,jy

j for some di ,j ∈ Fq we

can write D(x , y) =
∑t

i=0(x
ip(y)). Given that

D(x ,αk) = F (x ,αk)− S(x ,αk)

= fk(x)− fk(x) = 0,

then we have that p(αk) = 0 for all k ∈ [t + 1]. So p(y) has at least t + 1 zeros, but is a polynomial of
degree at most t by definition, hence it must be the constant zero and its coefficients di ,j are all zero. So
D(x , y) is the zero bivariate polynomial and F (x , y) = S(x , y), as required for uniqueness.

We can now use this lemma to show that the polynomials fi (x), gj(y) will define a unique bivariate F (x , y),
as required for this extended interpolation idea to work.

Lemma 4.6. For sets of polynomials {f1(x), ... , fk(x)} and {g1(y), ... , gk(y)} all of degree t, with k ≥ t+1,
such that fi (αj) = gj(αi ) for αi ,αj ∈ Fq and i , j ∈ [k], then there is a unique bivariate polynomial F (x , y)
of degree (t, t) such that all polynomials fi (x) and gj(y) lie on it.

Proof. For any subset K ⊂ [k] of size |K | = t + 1, by Lemma 4.5 we have that there is a unique F (x , y)
of degree (t, t) such that

F (x ,αi ) = fi (x) for i ∈ K . (1)

We want to show that F (x ,αi ) = fi (x) and F (αj , y) = gj(y) for all i , j ∈ [k].

For i ∈ K , j ∈ [k] we are given that fi (αj) = gj(αi ) and from equation (1) we have fi (αj) = F (αj ,αi ), so
gj(αi ) = F (αj ,αi ). Both gj(y) and F (αj , y) are degree t polynomials, so intersecting on the t + 1 points
αi for i ∈ K means that they are equal for all j ∈ [k], as required.

Now to extend F (x ,αi ) = fi (x) from i ∈ K to i ∈ [k]. Let i , j ∈ [k], we have fi (αj) = gj(αi ) = F (αj ,αi ).
Again both fi (x) and F (x ,αi ) are degree t polynomials so intersecting on the r ≥ t + 1 points αj means
that they are equal for all i ∈ [k].

Lastly we consider a lemma which will serve for the privacy of the scheme. Let C ⊂ P be a set of corrupt
parties with |C| ≤ t. We will abuse notation and write i ∈ C to refer to the indexes of these parties. We
want to show that regardless of the initial polynomial p(y), the polynomials fi (x), gj(y) of the bivariate
F (x , y) constructed from it with F (0, y) = p(y) are distributed uniformly. This implies that the shares of
the corrupt parties fi (0) = F (0,αi ) are also uniformly distributed and hence give no information on the
original polynomial p(y) or the secret s = p(0).
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Lemma 4.7. For C ⊂ P with |C| ≤ t and polynomials p(y), q(x) of degree t with p(αi ) = q(αi ) for
all i ∈ C, the probability distributions of F = (F (x ,αi ),F (αi , y))i∈C and S = (S(x ,αi ),S(αi , y))i∈C
are identical, where F and S are random degree (t, t) bivariate polynomials with F (0, y) = p(y) and
S(0, y) = q(y).

Proof. First we want to show that for any pair of degree t polynomials (p(y), q(x)) there are as many
possible pairs F as pairs S. This shows that for some pair (fi (x), gi (y))i∈C the probability that it is obtained
from F or S is the same.

Fix some Z = (fi (x), gi (y))i∈C . We count the number of possible F ’s this Z is valid for. Z has |C| ≤ t
degree t polynomials fi (x) and as we know any set of t + 1 such polynomials define an F of degrees
(t, t). So there are t + 1 − |C| possible polynomials fj(x) that are valid for F , that is fj(0) = p(αj) and
fj(αi ) = gi (αj) for i ∈ C. By these restrictions, fj(x) is already defined on |C| + 1 points (αi with i ∈ C
and 0). Since it is fully defined by t + 1 points, it has t − |C| points left free, each of which has |Fq| = q
possibilities. Hence there are (qt−|C|)t+1−|C| possible fj(x) that are valid for F .

There are exactly the same for S, the counting method is identical. So the probability that Z is obtained
from F or S is the same, as required.

Now that we have the required lemmas for the correctness and privacy, we may define the verifiable secret
sharing scheme in question.

4.5 A verifiable secret sharing scheme

For the rest of this section we will consider a verifiable secret sharing scheme which extends the ideas of
Shamir’s scheme. Our example comes from the survey [13] and is a simplified take on the original [3]. The
GMW verifiably secret sharing scheme has the requirement that n > 3t where t is the number of corrupt
parties. This is necessary for the correctness of the scheme in the case that the dealer is corrupt.

The general idea of the scheme is as follows. For a secret s ∈ Fq the dealer randomly picks a degree t
polynomial p(y) with p(0) = s. It then randomly picks a bivariate polynomial F (x , y) of degrees (t, t)
such that F (0, y) = p(y). For a random set of distinct elements {αi : αi ∈ Fq,αi ̸= αj for j ̸= i}i∈[n] it
gives to each party Pi the polynomials fi (x) = F (x ,αi ) and gi (y) = F (αi , y). Here the fi (x) stands as the
share of the secret, whereas the gi (y) will be used for verifiability. As we will see, a set of at least t parties
can then exchange their shares fi (0) = F (0,αi ) = p(αi ) and hence reconstruct the secret p(0) = s.

In order to achieve verifiability in the presence of corrupt parties, the honest parties verify the shares they
receive from both the dealer and other parties and can choose to publicly complain about either. For
example if party Pi receives fj(αi ) from Pj and fj(αi ) ̸= gi (αj), then at least one of Pi ,Pj or the dealer is
corrupt, so if Pi is honest then it should broadcast a complaint about Pj . The dealer attempts to resolve
these by broadcasting the disputed value, F (αi ,αj). This is followed by complaints about the dealer in
the case that the latter broadcast of the disputed values does not hold with the dealer’s original values.
These complaints can then be resolved by the dealer who broadcasts the original polynomials of any party
who complains about the dealer. Note that, perhaps surprisingly, this does not leak information to the
adversary. Since an honest party would not accuse an honest dealer, if the dealer is accused by a party,
then one of the two must be corrupt and hence the adversary does not gain any new information.

Once the verifications and accusations are done, and if the protocol is still going with sufficient parties, then
they can broadcasts their shares fi (0) and use a decoding algorithm to retrieve the secret. The algorithm
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in question is the Berlekamp-Welch decoding algorithm which we will define below. The protocol makes
use of the error-correction property of the decoding method such that even if an authorised set has some
corrupt parties, the honest ones in the set can still recover the secret.

The idea of the Berlekamp-Welch algorithm is to find a monic polynomial E (x) such that

p(αi )E (αi ) = yiE (αi ) (2)

where αi ∈ Fq and E (αi ) = 0 only for some r indices i , or ‘errors’. This polynomial is often called the
error-locator and can be written as E (x) =

∏
i :p(αi )̸=yi

(x − αi ), but it is unknown since the error indices
are unknown. To find this polynomial we first define Q(x) = E (x)p(x) and hence we can solve equation
(2) as yiE (αi )− Q(αi ) = 0. Having solved the system of linear equations, we can set p(x) = Q(x)/E (x)
and compute the values p(αi ) for each i where E (αi ) = 0.

Definition 4.8. For a dealer D with a secret s ∈ F and parties P = {P1, ... ,Pn}, the GMW VSS scheme
runs as follows.

Distribution:

1. D selects a random degree t polynomial p(y) with p(0) = s,

2. D selects a random degree (t, t) polynomial F (x , y) with F (0, y) = p(y),

3. D selects distinct random αi ∈ Fq,

4. D sets fi (x) = F (x ,αi ) and gi (y) = F (αi , y) and sends both to Pi .

Player complaints:

1. Pi sends fi (αj) to Pj for j ∈ [n],

2. for any Pj for which the received fj(αi ) ̸= gi (αj) then Pi broadcasts a complaint about Pj .

First resolutions:

1. for any complaint from Pi about Pj , D broadcasts F (αi ,αj).

Dealer complaints:

1. Pi broadcasts a complaint of D if:

- any party has complained about more than t parties or has complained about themself,

- or if Pj complained about Pi and F (αj ,αi ) ̸= fi (αj),

- or if Pi complained about Pj and F (αi ,αj) ̸= gi (αj).

Second resolutions:

1. D broadcasts fi (x) and gi (y) for any Pi who has complained about D.

Final complaints:

1. Pi broadcasts a complaint of D if for any j ∈ [n], fj(αi ) ̸= gi (αj) or gj(αi ) ̸= fi (αj),

2. if more than t parties complain about D then Pi exits the protocol, D is considered corrupt.

Reconstruction:
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1. Pi broadcasts si = fi (0),

2. Pi recovers p(0) = s by Berlekamp-Welch decoding with yi = si as the received encrypted messages.

Let us now consider the properties of correctness and privacy of the scheme. For the first we want to
show that in the cases of an honest or corrupt dealer, then honest parties in authorised sets do recover the
appropriate secret. This is done by showing that the information they have, and which they know holds due
to the verifications, is enough to overcome even the maximum number of corrupt parties in their authorised
set.

Theorem 4.9. The GMW VSS scheme is correct. Specifically, if the dealer is honest then an honest party
in an authorised set can successfully recover the secret. And given a corrupt dealer, all honest parties in
any authorised set recover a common secret.

Proof. If D is honest then we know that fi (αj) = gj(αi ) for all i , j ∈ [n]. So no honest party complains
about the dealer or another honest party. In an authorised set of parties A there are at most t corrupt
parties, and hence the decoding method has at most r ≤ t incorrect values. So an honest party in A does
recover the original secret.

Now assume D is corrupt but too few parties complain about it, hence the reconstruction protocol goes
ahead. So at least n − t ≥ 2t + 1 parties do not complain about the dealer. We want to show that the
values that the honest parties know all come from a common F ′(x , y) of degree (t, t) with F ′(0, 0) = s ′.
Let H be the set of honest parties who do not complain about D. In the worse case, all corrupt parties
are in H so |H| ≥ n − 2t ≥ t + 1. So by lemma 4.5 there is a unique F ′(x , y) of degree (t, t). For an
honest party Pi ̸∈ H, then Pi complained about D and hence D broadcast fi (x), gi (y). We are done if we
can show that these polynomials agree with the common F ′(x , y). Firstly we know that fi (αj) = gj(αi )
for j ∈ H, otherwise Pj would have complained about D. Also gj(y) = F ′(αj , y) for the same j . Since
|H| ≥ t + 1 then {(αi , gj(αi ))}i∈H uniquely defines F ′(x ,αj). So fi (x) = F ′(x ,αi ) since they share the
set of points {(αi , gj(αi ))}i∈H. The same argument can be made for gi (y).

Now for the security recall for some adversary Adv we denote ViewAdv the collection of the information
that Adv knows. We want to show that the ViewAdv cannot give any information about the secret s. This
will show that the scheme is information-theoretically secure, that is, even a computationally unbounded
adversary cannot find any information on the secret with insufficient shares.

Theorem 4.10. The GMW VSS scheme satisfies privacy. Specifically, ViewAdv and the secret s are
independent if the dealer is honest.

Proof. Given D is honest then ViewAdv = {fi (x), gi (y)}i∈Adv , where i ∈ Adv denotes the indexes of the
parties that are controlled by the adversary. Since no honest party complains about the honest dealer, the
latter does not broadcast more information than what is known in ViewAdv . This information is derived
from the random F (x , y) which itself comes from the random polynomial p(y). Therefore by Lemma 4.6
the distribution of this information is undistinguishable and gives no information on the secret s.

For completeness we note that this scheme can be improved in terms of efficiency in the following way. As
presented above it has 7 protocols, or rounds, which are required to run one after the other, but this can
actually be shortened 5 rounds. This adaptation comes from [18] and is discussed in the survey [13]. The
idea is to have the parties who complain in the Player complaints round to also broadcast their version
of the relevant value. So Pi complaining about Pj would also broadcast F (αi ,αj). Following that, in the
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First resolutions round both the dealer and the complained about party, Pj in this case, broadcast their
own version of the same value. By comparing the dealer’s version to each parties, then it is possible to
know which of the two parties would complain about the dealer in the later Dealer complaints round. So
the dealer and the complaining parties, can share their versions of the required polynomials fi (x), gi (y) at
the same time. This essentially allows the resolutions of the complaints to be made in the same rounds as
the complaints themselves, hence reducing the scheme to 5 rounds.
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5. Publicly verifiable secret sharing

5.1 Basics

5.1.1 Publicly verifiable secret sharing model

Extending from the idea that the parties should be able to verify that the shares they receive are compatible
with some shared secret, we now consider publicly verifiable secret sharing schemes which is a very popular
model of secret sharing to work on. This introduces two important changes to allow the schemes to be
implemented in a public setting where the parties do not necessarily trust each other. The first is to extend
the verifiability of the shares such that any party can verify any of the shares, even if they are assigned
to another party. This is most often formalised by introducing a verifier party which does not take part in
the distribution or the reconstruction but is only there to verify shares, and does so only with the public
information shared. This highlights the fact that the verification process should be carried out without any
private information from the dealer or the parties, since a verifier who has no such information should be
capable of checking the shares.

The other important change that the publicly verifiable model introduces is to use some form of encryption
for the communication of information. That is, when the dealer sends to each party their respective share,
instead of assuming that there is a private communication channel between the dealer and every party, it
instead uses a public broadcast which all parties and verifiers can read. Of course in this case the shares
must be encrypted such that only the required party recovers the share, otherwise all the parties would
immediately have all shares and secret sharing would be futile. We note that this means the verifier must
be able to check that the shares are consistent but does not even have access to the shares, only to their
encrypted forms. A method which is commonly used to help this is to make the dealer broadcast some sort
of proof which helps the verifier do just that. If such a proof of consistency is written into the protocol of
the scheme, then an honest dealer will therefore help the verifier, and if a dealer does not produce such a
proof then it can be assumed that it is corrupt. The same thing may be done for the parties which share
with each other their decrypted shares during reconstruction. That is, all parties in the authorised set must
trust that the share sent by each party is valid and it is not a corrupt party sending some other value which
will not lead to the secret. Hence the parties can also share a proof of correct decryption and the verifier
can validate these.

We can now define a model for publicly verifiable secret sharing schemes, making use of the public key
encryption for the parties to communicate privately. However we will not define these by building up from
our previous definition of verifiable secret sharing schemes, due to the use of PKE for communication we
now need to reconsider the model for the scheme as a whole.

Definition 5.1. A publicly verifiable secret sharing scheme for a dealer D with a secret s and a set of
players P = {P1, ... ,Pn} is made of four protocols and a PKE scheme denoted ε.

- Setup: D and Pi generate private and public key pairs for ε and broadcast any public parameters.

- Distribution: D computes a share for each party from the secret. It encrypts each share using ε and
the public key of the respective party. Finally it broadcasts the encrypted shares.

- Verification: D broadcasts a proof that all shares are consistent. Any verifier V can check this.

- Reconstruction: Pi recovers its share from the encrypted one using ε. For some authorised set A
and party Pi ∈ A, Pi sends its share to the parties in A. Pi also sends a proof that the share is the
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correct decryption of the encrypted share. A verifier V can check this. Finally Pi can recover the
secret using the shares it has received from the other parties in A.

Now as with the previous sharing schemes we require that the PVSS scheme satisfies at least the properties
of correctness and privacy. More formally, for correctness we require that for an authorised set of parties
where each encrypted share is verified to be consistent and every decryted share is verified to be a valid
decryption, then the reconstructed secret is the original secret. Note that this is regardless of the honestly
of the parties in the set. Even if corrupt parties are taking part in the reconstruction, if the verifications
hold then the reconstruction must hold.

Definition 5.2. The PVSS scheme satisfies correctness if for any authorised set of parties A where both
the verification of consistency and valid shares hold for all shares, then the recovered secret is the original
secret.

For an adversary Adv controlling a set of parties, let ViewAdv be all the information that Adv has access
to, hence the secret keys and shares of all the parties it controls and those that are public. We could
define the privacy requirement just as we did for the secret sharing model earlier, requiring that ViewAdv be
independent of the secret. However it will be more interesting for the coming schemes to instead consider
the approach of conditional security. In this case we want that no computationally bounded adversary can
correctly recover the secret with probability significantly better than zero. Recall that the union of all the
parties under Adv must be a forbidden subset.

Definition 5.3. The PVSS scheme satisfies privacy if for a secret s and any computationally bounded
Adv controlling a set of parties A, then the probability that the original secret is recovered is negligible.

Of course for publicly verifiable schemes we expect a new property, public verifiability. This says that
if a corrupt party comes up with a value without following the protocol and sends it to an honest party,
then this honest party will known that the value they have received is not valid. Of course this is public
since all values are broadcasted publicly and hence anyone can run the verification algorithm. We denote
this by saying that a verifier V can run the algorithm, where the verifier can be anyone, not necessarily a
party involved in the scheme. The verification requires checking that the encrypted shares can indeed be
the encryption of some valid shares for a common secret.

Definition 5.4. The PVSS scheme satisfies public verifiability of distribution if for any subset of parties B
for which the verification holds then the shares are consistent.

Similarly for the verification of the decrypted shares.

Definition 5.5. The PVSS scheme satisfies public verifiability of decryption if for any party Pi for which
the verification of the decrypted shares hold, then they are the correct decryption of the shares.

Finally we also consider non-interactive PVSS schemes. We follow the original non-interactive PVSS
definition of [17] in requiring that the verifications can be done by a single party on their own, without
communicating with other parties. This will be a useful property to consider in the public schemes where it
is assumed the parties do not trust each other and the amount of communication between them ought to
be minimised. Of course the scheme must still allow for the keys, shares and proofs to be communicated
between parties, this is essential.

In this chapter we will study several different approaches to publicly verifiable schemes, coming from the
different encryption systems which can be applied. The paper [19] presents a helpful categorisation of
schemes depending on their underlying encryption. Before we consider a very well known example of a
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publicly verifiable secret sharing scheme by Schoenmaker we first introduce the encryption it will use,
ElGamal.

5.1.2 ElGamal encryption

The ElGamal public key encryption scheme uses the idea of exponentiation in the exponent to encrypt the
message. The security is based on the Diffie-Hellman assumptions, which we present now. For the rest of
this section we consider a cyclic group G of prime order q with a generator g ∈ G. The computational
version of the Diffie-Hellman problem essentially says that it is difficult to compute gαβ from gα, gβ. The
stronger decisional version says that it is difficult to differentiate between gαβ and some random value
gγ even given gα, gβ. We define these by writing them out in the below diagrams, these will be used
throughout the section to illustrate games and protocols between different parties.

Definition 5.6. The computation Diffie-Hellman assumption, CDH, says that the following game is
infeasible for the adversary, where the adversary wins if ŵ = w .

Chal Adv

α,β ∈R Zq

w ← gαβ

(gα, gβ)
−−−−→

ŵ ∈ G

Definition 5.7. The decisional Diffie-Hellman assumption, DDH, says that the following game is infea-
sible for the adversary, where the adversary wins if b̂ = b.

Chal Adv

α,β, γ ∈R Zq

w0 ← gαβ,w1 ← gγ

b ∈R {0, 1}
(gα, gβ,wb)−−−−→

b̂ ∈ {0, 1}

Definition 5.8. The ElGamal public key encryption scheme has the following three functions.

- Gen(): Randomly selects the private key sk ∈ Zq and sets the public key as pk = g sk .

- Enc(m, pk): Randomly chooses an ephermeral key k ∈ Zq and sets the shared secret s = pkk . Sets
c1 = gk and c2 = ms, then the encryption is (c1, c2).

- Dec((c1, c2), sk): Recovers the shared secret by computing csk1 = (gk)sk = pkk = s. Then recovers
the message by computing c2s

−1 = mss−1 = m.

The correctness of the scheme is clear from the decryption step. We do not present a proof of security
since the PVSS scheme which will use this encryption scheme will actually use a slightly modified version
for efficiency. The proof of security will be given there.

5.1.3 Schoenmaker PVSS scheme

We now present an example of a non-interactive PVSS scheme by Schoenmakers [27]. This scheme has
been used as a foundation to build others, of these we will study two [7, 20]. The setup is very similar as
we have had previously, a cyclic group G of prime order q with two generators g and G . Before describing
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the scheme we will need a small protocol which will be useful for the proofs of knowledge between the
parties. Introduced by Chaum and Pederson in [14] the idea is to show an equality between two discrete
logarithms.

Definition 5.9. The protocol DLEQ(g1, h1, g2, h2) shows that logg1 h1 = logg2 h2 for generators g1, h1, g2, h2 ∈
G as follows. Let the prover know some α such that h1 = gα

1 and h2 = gα
2 . The prover sends a commitment

(gw
1 , gw

2 ) to the verifier. The verifier sends a challenge c , to which the prover replies with r = w − αc
mod q. The verifier can check that gw

1 = g r
1h

c
1 and gw

2 = g r
2h

c
2.

Prover Verifier

w ∈R Zq

gw
1 , gw

2 ∈R G
(gw

1 , gw
2 )

−−−−→
c ∈ Zq

c←−−−−
r = w − αc mod q

r−−−−→

check

{
gw
1 = g r

1h
c
1,

gw
2 = g r

2h
c
2.

If the checks hold, the verifier is convinced that the prover knows a suitable α since hc1 = gw−r
1 = gαc

1 ,
and similarly for g2. Hence the verifier is convinced that logg1 h1 = logg2 h2. As discussed previously this
can be transformed to a non-interactive proof by the Fiat-Shamir method. This is simply done by having
the prover hash together h1, g1, h2, g2 and using the result as the challenge, as we will see in the scheme.

Note that this PVSS scheme does not share a secret chosen by the dealer but instead shares a random
secret. Many PVSS schemes are presented like this. We will see afterwards how to transform such a scheme
to instead send a specifically chosen secret.

Definition 5.10. The Schoenmaker PVSS scheme runs as follows for a dealer D, parties Pi for i ∈ [n] and
any verifier V .

Setup:

1. Pi generates a private key ski ∈ Z∗
q and a public key pki = G ski and broadcasts the latter.

Distribution:

1. D picks random polynomial p(x) =
∑t−1

j=0 αjx
j with s = α0.

2. D broadcasts commitments Cj = gαj for j ∈ [t − 1] and encrypted shares Yi = pk
p(i)
i for i ∈ [n].

3. Let Xi =
∏t−1

j=0 C
i j
j , then D broadcasts a non-interactive proof for DLEQ(g ,Xi , pki ,Yi ) using the

Fiat-Shamir method as follows:

(a) commitments a1i = gwi , a2i = pkwi
i with wi ∈R Zq for i ∈ [n],

(b) challenge c = H({Xi ,Yi , a1i , a2i}i∈[n]),
(c) response from the prover ri = wi − p(i)c mod q,

(d) and hence non-interactive proof (c , {ri}i∈[n]).
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This proof shows that D knows of the unique p(i) such that Xi = gp(i) and Yi = pk
p(i)
i .

Verification:

1. V computes Xi =
∏t−1

j=0(Cj)
i j using the Cj ’s.

2. V computes ai = g riX c
i and bi = pk riY c

i .

3. V checks that H({Xi ,Yi , ai , bi}i∈[n]) = c.

Reconstruction:

1. Pi computes the share Si = Y
1
ski
i = Gp(i) and broadcasts Si .

2. Pi broadcasts a proof of correct decryption (of Yi to Si ) using DLEQ(G , pki ,Si ,Yi ), which proves
knowledge of some α such that pki = Gα and Yi = Sα

i .

3. By Lagrange interpolation, given Si for i ∈ [t] and writing λi =
∏

j ̸=i
j

j−i , then Pi can compute

t∏
i=1

Sλi
i =

t∏
i=1

Gp(i)λi = G
∑t

i=1 p(i)λi = Gp(0) = G s .

Let us now consider the security of the scheme, which we claim holds conditionally under the assumptions
of DDH and ROM. In the proof we will need to show that any forbidden set cannot recover any partial
information on the secret. This is done by constructing an adversary AdvDDH to the DDH attack game
which itself uses an adversary AdvPVSS to the Schoenmaker scheme. By construction, if AdvPVSS can
break a decisional version of the scheme then AdvDDH can solve the DDH problem, which is thought to
be computationally hard. Note that the decisional version of the scheme is simply getting the adversary to
guess between two options which one the secret share is.

Theorem 5.11. Under DDH and ROM assumptions, no set of t − 1 parties can gain any information on
the secret.

Proof. We construct an adversary AdvDDH using an adversary AdvPVSS which controls t − 1 parties. We
briefly describe the game as it is given in Figure 5.1.3. Note that in the latter we fix the subscript i ∈ [n]
and j ∈ [t − 1], where the AdvPVSS controls the parties Pj without loss of generality.

Initially AdvDDH receives the DDH problem to distinguish between gαβ and gγ . AdvDDH constructs a
Schoenmaker PVSS scheme with gβ as the secret and gα as the generator G , and hence gαβ as the secret.
AdvDDH randomly choosing p(j) fixes the polynomial p(x) since p(0) is also already fixed. Then it forms
the Xj ,Yj given the public keys pkj and by Lagrange interpolation can compute the rest of the Xi and

hence the Cj since Xi =
∏t−1

j=0(Cj)
i j . Finally it sets Yk such that Yk = X δk

k = gp(k)δk = pk
p(k)
k , as required.

It sends (Cj ,Yi ) to AdvPVSS as in the distribution step of the scheme, although ignoring the proof part. It
is known that AdvPVSS would gain no information from the proof since it is a zero-knowledge proof and
we are assuming the random oracle model. AdvDDH also sends g x to AdvPVSS to see if it can distinguish
it from the secret share Gβ = gαβ. The latter guesses ŵ = 1 if it believes they are the same, and hence
g x = gαβ, and ŵ = 0 otherwise. So all AdvDDH has to do is guess the same b̂ = ŵ , and it will be correct
if AdvPVSS ’s original guess was correct.

As we have noted earlier, the secret share G s with s ∈ Zq is random. It is easy to instead make this scheme
share a specific secret σ ∈ Σ with 2 ≤ |Σ| ≤ q. The distribution step does not change, with some random
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DDH AdvDDH AdvPVSS
α,β, γ ∈R Zq

b ∈R {0, 1}

x =

{
αβ, b = 1,

γ, b = 0.

(gα, gβ, g x)
−−−−→

G = gα,C0 = gβ

p(1), ... , p(t − 1) ∈R Zq

skj ∈ Z∗
q, pkj = g skj

(pkj)←−−−−
Xj = gp(j),Yj = pk

p(j)
j

(Lagrange) Xi = gp(i)

compute Cj from Xi

Yk = X δk
k with δk ∈R Zq

(Cj ,Yi )−−−−→
g x

−−−−→
ŵ ∈ {0, 1}

ŵ←−−−−
b̂ = ŵ .

Figure 3: The DDH attack using a Schoenmaker PVSS adversary. Recall that we fix the subscripts i ∈ [n],
j ∈ [t − 1] and k ∈ [n]\[t − 1].
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s ∈ Zq, but the dealer should also broadcast U = σ +H(G s). Each party having recovered G s can simply
compute U +H(G s) = σ. Finally note that since we are under the random oracle assumption anyway, the
hash of G s is uniformly random, and hence U does not give any information to an adversary.

We also note that this scheme is an example of a homomorphic secret sharing scheme. That is, given

the encrypted shares Y
(0)
i ,Y

(1)
i for secrets s(0), s(1) respectively, then the product of the encrypted shares

Y
(0)
i Y

(1)
i will recover the sum of the secrets s(0)+ s(1). This can be seen from the encryption of the shares

which gives

Y
(0)
i Y

(1)
i = pk

p(0)(i)
i pk

p(1)(i)
i = pkp

(0)(i)+p(1)(i),

and hence when the Lagrange interpolation finds Gp(0)(0)+p(1)(0) = G s(0)+s(1) , the sum of the secrets. This
will be used in section 8.3 to implement a voting scheme from the Schoenmaker scheme. Briefly, the idea
is that given mutliple shares of different votes, the product of these shares is a share for the total of the
votes. Hence using the homomorphic property, the talliers are able to recover the total number of votes
without having to decrypt each individual vote.

5.2 PVSS with Paillier encryption

5.2.1 Paillier cryptosystem

In this section we will consider the Paillier cryptosystem, introduced in [24], which is used to construct
an encryption scheme and a publicly verifiable secret sharing scheme. The system is built around the
assumption that computing N-th residue classes is computationally difficult. We will first introduce this
problem and then consider how it can be used in a cryptosystem.

For the rest of this section we fix N = pq for p, q large primes. Let us consider the Euler totient function
ϕ(N), defined as the number of integer smaller than N that are coprime with N. In our special case of
N = pq we have ϕ(N) = (p−1)(q−1). This simply due to the fact that the function is multiplicative and
that a prime is coprime with all numbers less than itself, so ϕ(p) = p− 1. We will also need Carmichael’s
function λ(N), which is defined as the smallest positive integer m such that αm = 1 mod N for all
α ∈ [N]. In our special case we have λ(N) = lcm(p − 1, q − 1), as shown in the following lemma.

Lemma 5.12. For p, q primes, then λ(pq) = lcm(p − 1, q − 1).

Proof. Clearly pq = lcm(p, q) so λ(pq) = λ(lcm(p, q)) and we are done if we can show that λ(lcm(p, q)) =
lcm(λ(p),λ(q)). Both being prime we have λ(p) = p − 1 and λ(q) = q − 1 and hence we would have
λ(pq) = lcm(p− 1, q− 1). Let λ′ = λ(lcm(p, q)) and ℓ = lcm(λ(p),λ(q)). By definition αλ′

= 1 mod N
for all α ∈ [lcm(p, q)]. Now by the chinese remainder theorem this says that{

αλ′
= 1 mod p,

αλ′
= 1 mod q.

So λ(p),λ(q)|λ′ and hence ℓ|λ′. Similarly the other way, given that λ(p),λ(q)|ℓ, then{
αℓ = 1 mod p for all α ∈ [p],

βℓ = 1 mod q for all β ∈ [q].

Again since pq = lcm(p, q) then γℓ = 1 mod N for all γ ∈ [N], and hence λ′|ℓ. So λ′ and ℓ divide each
other and hence are equal, as required.
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From now on we denote λ = λ(N). Let us now consider a building block of the Paillier system, the N-th
residuosity mod N2, and its associated problem. The originality of the Paillier encryption scheme to be
considered later is in the use of the square moduli in the ring ZN2 .

Definition 5.13. A number z is an N-th residue mod N2 if there is a y ∈ Z∗
N2 such that z = yN mod N2.

It is easy to see that the set of N-th residues is a multiplicative subgroup of Z∗
N2 . More interestingly it has

order ϕ(N), where the larger group Z∗
N2 has order ϕ(N

2). We denote CR[N] the problem of distinguishing
an N-th residue from a non N-th residue, that is, is there such a y . And we form the following assumption
about the intractability of this problem, which will be useful to prove the semantic security of the encryption
scheme.

Conjecture 5.14. The Decisional Composite Residuosity Assumption, DCRA, says that there is no poly-
nomial time distinguisher for N-th residue mod N2.

We consider a function which will later be used as the encryption function, and we note some of its
interesting properties. Fixing g ∈ Z∗

N2 we denote the function Eg : ZN × Z∗
N → Z∗

N2 which maps
(x , y)→ g xyN mod N2. To verify this function is well-defined we consider a different representation of y
given by y ′ = y + kN for k ∈ [N − 1]. This y ′ with the same x is mapped to

Eg (x , y ′) = g x(y + kN)N

= g xyN +
N∑
i=1

(
N

i

)
(kN)iyN−i

= g xyN mod N2,

since each element in the sum has an N2 term. It is easy to see that Eg is homomorphic since

Eg (x1, y1)Eg (x2, y2) = g x1+x2(y1y2)
N = Eg (x1 + x2, y1y2) mod N2.

The property of being homomorphic will be important later on when we use the Eg to encrypt messages. In
order to define the residuosity classes we require another property of the function. That is, Eg is bijective
for an appropriate g . First denote Bα ⊂ Z∗

N2 the set of elements of order αN, and denote B their union
for α = 1, ... ,λ.

Lemma 5.15. If the order of g is a non-zero multiple of N, then Eg is an isomorphism.

Proof. We already know that Eg is homomorphic so we only need to show it is also bijective. Since ZN×Z∗
N

and Z∗
N2 have the same cardinality of Nϕ(N), all that is required is to show that the kernel is the identity.

So consider some x ∈ ZN , y ∈ Z∗
N for which

Eg (x , y) = g xyN = 1 mod N2. (3)

By definition of λ as the smallest positive m such that αm = 1 mod N2 for all α ∈ [N], then (yN)λ =
(Y λ)N = 1 mod N2. So Eg (x , y)λ = g xλ = 1 mod N2 and λx must be a multiple of g ’s order and hence
a multiple of N. Since gcd(λ,N) = gcd(lcm(p − 1, q − 1), pq) = 1 then x is a multiple of N. So x = 0
mod N and equation (3) gives yN = 1 mod N2, so y = 1 over Z∗

N . So we find the kernel is the identity
element (0, 1) ∈ ZN × Z∗

N .

Now that we know that Eg is bijective for g ∈ B, we can define the residuosity class for an element in the
image of Eg .
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Definition 5.16. For g ∈ B and w ∈ Z∗
N2 , the N-th residuosity class of w with respect to g , denoted

JwKg , is the unique x ∈ ZN such that there is a y ∈ Z∗
N with Eg (x , y) = w .

Naturally we can denote the inverse of this function as the class function Cg : (Z∗
N2 ,×)→ (ZN , +) mapping

Cg (w) = JwKg . An important property of this class function is that it is homomorphic for any g ∈ B.
This follows from the fact that the function Eg is an isomorphism and Cg (w) is equivalent to taking the
element x from E−1

g (w) = (x , y). The class function being homomorphic implies that the Paillier encryption
scheme is also homomorphic, since the encryption function is Eg . We will later see a PVSS scheme which
takes advantage of this encryption property. Finally we define a simple function which will be used for the
decryption of the messages in the scheme. Let SN = {u < N2 : u = 1 mod N} be the multiplicative
subgroup of integers mod N2 for which the function L(u) = u−1

N is well defined.

5.2.2 Paillier encryption

We may now describe the Paillier encryption scheme which simply makes use of the Eg function as the
encryption function. Note that a message being sent is assumed to be in the form of an integer of a
predetermined small size.

Definition 5.17. The Paillier encryption scheme for a sender A and receiver B runs as follows.

Setup:

- B fixes N = pq and a random base g ∈ B ⊂ Z∗
N2 .

- B broadcasts the public parameters N and g .

- B computes the private parameter λ = lcm(p − 1, q − 1).

Encryption:

- For a message m < N, A randomly chooses an r < N.

- A computes the ciphertext c = Eg (m, r) = gmrN mod N2.

- A broadcasts c .

Decryption:

- B having received the ciphertext c < N2, computes the message m′ = L(cλ mod N2)
L(gλ mod N2)

mod N.

As stated earlier it is straight-forward to see that the encryption is homomorphic. For messages m1,m2 < N
and random r1, r2 < N then

Eg (m1, r1)Eg (m2, t1) = gm1rN1 gm2rN1

= gm1+m2(r1r2)
N

= Eg (m1 +m2, r1r2).

Now to prove the correctness of the scheme we want to show that the decrypted message m′ is in fact the
original message m.

Theorem 5.18. The paillier encryption scheme is correct, hence m′ = m.

Proof. First we want to show that for any w ∈ Z∗
N2 then

L(wλ mod N2) = λJwKn+1 mod N.
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Since (N + 1)N =
∑N

k=0

(N
k

)
Nk = 1 mod N2 then N + 1 has order N and is in B. This means that EN+1

is surjective and hence there is some (a, b) ∈ ZN ×Z∗
N such that EN+1(a, b) = (N +1)abN = w mod N2.

By definition this says that a = JwKN+1. So we can write

wλ = (N + 1)aλbNλ

= (N + 1)aλ

= 1 + aNλ mod N2.

Where the second line comes from the definition of λ as the smallest m such that αm = 1 mod N2 for all
α < N, and the last equality comes from the fact that all the terms with Naλ are 0 since, λ = lcm(p−1, q−1)
is even and hence Naλ = (N2)aλ/2 = 0 mod N2. So we have the required,

L(wλ mod N2) = L(1 + aNλ mod N2)

= aλ

= λJwKN+1 mod N.

With this equation we can write the received message m′ as follows

m′ =
L(cλ mod N2)

L(gλ mod N2)
=

JcKN+1

JgKN+1
mod M.

Finally we use the equation JwKg1 = JwKg2Jg2Kg1 mod N. This can be seen to hold if we let Eg2(x2, y2) = w

and Eg1(x1, y1) = g2 and check that Eg1(x2x3, y2y
x2
3 ) = w . So we have JcKN+1

JgKN+1
= JcKg mod N. This means

that the decrypted message is the unique m′ ∈ ZN such that for some r ∈ Z∗
N then Eg (m′, r) = c .

The semantic security is quite straight-forward given how the scheme is built around the residuosity class.

Theorem 5.19. The Paillier PKE scheme is semantically secure under the decisional composite residuosity
assumption.

Proof. Given an adversary AdvPKE which can break the semantic security of the encryption scheme, we
construct an adversary AdvDCR which can solve the CR[N] problem. We briefly explain how the attack
game in Figure 4 works. AdvDCR receives a number z and needs to decide if it is an N-th residue or not.
It also receives two messages m0,m1 from AdvPKE from which it chooses one at random mw and sets
c = gmw z . AdvPKE replies to the encryption with ŵ and finally AdvDCR guesses that z is an N-th residue
if and only if ŵ = w .

We consider the cases b = 0, 1 to compute the probability that AdvDCR succeeds. First if b = 1 then z is an
N-th residue and there is some y < N2 such that z = yN . So the encryption is c = gmw yN which is of the
form of Eg (mb, y) for which we assume AdvPKE can guess ŵ = w correctly. Now if b = 0 then z cannot
be written as some yN and hence the encryption c does not have the form of some encryption Eg (mb, y)
and hence AdvPKE ’s guess is no better than random. So P(b̂ = b) = P(ŵ = w) = 1/2. Therefore for
b ∈R {0, 1} we have P(b̂ = b) = 3/4, which is a non-negligable probability of solving the DCR problem,
as required.
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DCR AdvDCR AdvPKE
parameters N, g
b ∈R {0, 1}

z ∈R N — z-reducible iff b = 1
(N, g , z)
−−−−→

(N, g)
−−−−→

m0,m1 ∈ ZN

(m0,m1)←−−−−
w ∈R {0, 1}
c = gmw z

c−−−−→
ŵ ∈ {0, 1}

ŵ←−−−−

b̂ =

{
1 ŵ = w ,

0 otherwise.

Figure 4: The DCR attack using a Paillier PKE adversary.

5.2.3 PVSS scheme with Paillier encryption

We can now introduce the Ruiz and Villar [26] scheme, which we will denote RV, as an example of a
PVSS scheme which makes use of the Paillier encryption scheme. Its privacy is based on the Decisional
Composite Residuosity Assumption, and as we will see, the verification process is unconditionally secure.
An interesting idea presented in this scheme reverses the usual method of each party having a secret key for
which the dealer has a respective public key. Instead the dealer has a single private key and all parties have
the respective public key. Of course the parties also send some other value to the dealer at setup so that
the dealer can encrypt a message which only a specific party can later decipher. Lastly we also note that
this PVSS scheme is non-interactive but without the use of Fiat-Shamir heuristics or other ad-hoc methods.
So the verification process can naturally be carried out by any party without the need for communication.

In their paper Ruiz and Villar first present a scheme and then consider its security, where the adversaries
are assumed to be passive. They say that with some modifications the proposed scheme is also secure
against active adversaries. The modifications this involves are minor differences in the way that parties
broadcast and verify values. Here we will directly consider this modified scheme. Let us now define the
scheme, where the general setup is very similar to that of Paillier encryption.

Definition 5.20. The RV PVSS scheme works as follows for a dealer D with a secret s and parties Pi for
i ∈ [n].

Setup:

1. D selects large primes p, q and sets N = pq,

2. D selects g ∈R Z∗
N2 of order N,

3. D broadcasts (N, g),

4. Pi selects (mi , ri ) ∈R ZN × Z∗
N ,
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5. Pi sets ci = gmi rNi mod N2 and broadcasts it,

6. D checks that ci ∈ Z∗
N2 and kicks out any party for which it is not, or which does not send a ci .

Distribution:

1. D uses Paillier decryption to recover (mj , rj)← Dec(cj) for i ∈ [n],

2. D sets a0 = s and selects aj ∈R ZN for j ∈ [t − 1],

3. D sets the polynomial p(x) =
∑t−1

j=0 ajx
j ,

4. D sets the shares si = p(i) mod N for i ∈ [n],

5. D sets di = si +mi mod N and broadcasts di .

Verification:

1. D selects r ′j ∈R Z∗
N for j ∈ [t − 1],

2. D sets Aj = gaj r ′Nj mod N2,

3. D sets ti = ri
∏t−1

k=0 r
′ik
k mod N for i ∈ [n],

4. D broadcasts (Aj , ti ) for j ∈ [t − 1], i ∈ [n],

5. V can verify that for ℓ ∈ [n],
t−1∏
j=0

Aℓj

j =
gdℓtNℓ
cℓ

mod N2, (4)

Reconstruction: for parties A = {P0, ... ,Pt−1},
1. Pi broadcasts (mi , ri ),

2. V can check cℓ = gmℓrNℓ mod N2 for ℓ ∈ [n],

3. Pi recovers the share si = di −mi ,

4. Pi recovers the secret by Lagrange interpolation s = a0 =
∑

i∈A
∏

h ̸=i
h

h−i si .

Let us first consider how this recovery works and show that the scheme is correct. The important verification
step is equation (4), carried out by V in the verification protocol. First we check that this equation should
in fact hold.

Lemma 5.21. With respect to the constructions in definition 5.20, the verification holds if the commits

are valid, ie. if Aj = gaj r ′Nj mod N2, then
∏t−1

ℓ=0 A
jℓ

ℓ =
g
dj tNj
cj

mod N2.

Proof. Given Aj = gaj r ′Nj mod N2, then we have

t−1∏
ℓ=0

Aiℓ

ℓ =
t−1∏
ℓ=0

(gaℓr ′Nℓ )i
ℓ

= g
∑t−1

ℓ=0 aℓi
ℓ
(
t−1∏
ℓ=0

r ′i
ℓ

ℓ )N mod N2.
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Using si =
∑t−1

ℓ=0 aℓi
ℓ and ti = ri

∏t−1
ℓ=0 r

′iℓ
ℓ mod N then

t−1∏
ℓ=0

Aiℓ

ℓ = g si (
ti
ri
)N mod N.

Finally multiplying by
gmi rNi

ci
= 1 and using di = mi + si then as required

t−1∏
ℓ=0

Aiℓ

ℓ =
gdi tNi
ci

mod N2.

Theorem 5.22. The RV PVSS scheme is correct. Equivalently, if all verifications hold and there is a
sufficient set of parties A for recovery, then each party in A recovers the original secret s.

Proof. Assuming that all verifications hold, most importantly equation (4), then we consider the decryption
of both sides of the equation. By the homomorphism of the Paillier encryption scheme the decryption of
the left-hand side is

Dec

(
t−1∏
ℓ=0

Ajℓ

ℓ

)
=

t−1∑
ℓ=0

Dec(Aℓ)
jℓ

=
t−1∑
ℓ=0

aj
ℓ

ℓ mod N.

For the right-hand side, using ci = gmi rNi and noticing the correct form of the message to decrypt then

Dec

(
gdi

ci
tNi

)
= Dec

(
gdi−mi

(
ti
ri

)N
)

= di −mi

= si mod N.

So si =
∑t−1

ℓ=0 a
iℓ

ℓ mod N. Hence all the recovering parties have the same polynomial p(x) and recover
the same a0 = s.

As mentioned earlier, here we consider a version of the scheme which allows for active adversaries. The
proof of security given in the paper [26] considers passive adversaries. The following proof is an adaptation
of the latter for the active case. Both proofs rely on the Decisional Composite Residuosity Assumption, so
the scheme does not require a stronger assumption for the stronger security. Both have a similar layout
with an adversary AdvDCR to the DCR problem which uses as a black box an adversary AdvPVSS to the
security of the PVSS scheme. The main difference is that with a passive adversary to the PVSS scheme,
all parties follow the protocol honestly and hence AdvPVSS does not provide any values. That is, all values
are constructed by AdvDCR with the only requirement that the verifications hold. In the active adversary
case, AdvDCR must allow for the corrupt parties to input their own values, since they may not follow the
protocol honestly. So AdvDCR must choose the values for the honest parties in such a way that they can
be verified alongside the corrupt ones.
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Definition 5.23. A PVSS scheme is semantically secure against an active adversary if for any active
polynomial time adversary Adv controlling t − 1 parties the distributions (ViewAdv , s) and (ViewAdv , s

′)
are indistinguishable, where s is a fixed secret and s ′ a distinct random secret.

Theorem 5.24. The RV PVSS scheme is semantically secure against an active adversary under the DCR
assumption.

Proof. Given an adversary AdvPVSS to the scheme that can guess whether or not a given secret is the
shared secret, we build an adversary AdvDCR to the DCR problem. Hence if the scheme can be broken
then so can the DCR problem, a contradiction to our assumption. For the rest of the proof, unless stated
otherwise, we assume the following notation i ∈ [n], j ∈ [t − 1] and k ∈ [n]\[t − 1].

We first describe how AdvDCR transforms the DCR challenge into a valid PVSS challenge for AdvPVSS .
AdvDCR starts by receiving the public parameters which it forwards to AdvPVSS . It also receives zb, where
the DCR problem is to guess whether zb is of the form ρN or gµρN . In return it receives (cj)j∈[t−1] from

AdvPVSS . Note that these may or may not be in the correct form of cj = gmj rNj mod N2, since the
adversary is free to send whatever they want. AdvDCR does not know if they are valid but continues the
protocol honestly and deciphers the cj ’s to recover (mj , rj). Next it randomly selects share (sj)j∈[t−1] and
encrypts them as dj = sj + mj . The other shares (sk)k∈[n]\[t−1] are also random but do not need to be
chosen specifically, it suffices to randomly choose dk . These encrypted shares are broadcasted (di )i∈[n].

Next AdvDCR must create the values (Aj)j∈[t−1] and (ti )i∈[n], which it does working backwards from the
si , rj and zb. First it randomly selects a secret s0 and sets A0 = zbg

s0 , where we note that

A0 = zbg
s0 =

{
g s0ρN if b = 1,

g s0+µρN if b = 0.
(5)

So it is of the correct form for a secret s0 or s0+µ respectively. Next AdvDCR sets (aj)j∈[t−1] as the unique

solutions to the equation sk =
∑t−1

ℓ=0 aℓk
ℓ, and hence each one can be written as aj =

∑t−1
ℓ=0 νℓjsℓ for some

νkj . Finally AdvDCR can set Aj and ti as shown in Figure 5 for j ∈ [t − 1], i ∈ [n]. It sends both sets to
AdvPVSS along with s0, to which it receives the reply b′. Finally AdvDCR sets its guess as b′.

We now consider the probability with which AdvPVSS will be able to correctly guess b′. If it correctly
guesses b′ then by equation (5) this is also a correct guess for the DCR problem. That is, if b′ = 1 then
A0 = g s0ρN , so zb = ρN and hence b = 1, similarly for b′ = 0. This correct guess relies on whether
or not the values AdvPVSS receives are in the correct form for a fixed secret s0. It is clear that the di it
receives are, since for i ∈ [t − 1] AdvDCR follows the protocol honestly. More interesting is the verification
in equation (4), which we can see holds as follows. By construction of Aj for j ∈ [t − 1],

Aj = A
ν0j
0

t−1∏
k=1

(g sk rNk )νkj .

Using A0 = zbg
s0 = g sρN for some s, then

Aj = g sν0j+
∑t−1

k=1 skνkj

(
ρ

t−1∏
k=1

r
νkj
k

)N

. (6)

The critical point here is that if b = 1 then zb = g s0ρN and hence r ′j = zb(
∏t−1

k=0 r
νkj
k )N = (ρ

∏t−1
k=0 r

νkj
k )N .

In which case we can use this and aj =
∑t−1

k=0 νkjsk in equation (6) to find Aj = gaj r ′j . From which Lemma
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5.21 says that equation (4) does indeed hold. So the values sent to AdvPVSS are in the correct form and
hence P(b′ = 1|b = 1) > 1/2 + ε. In the case that b = 0, then the above argument does not hold since
zb = g s0+µρN and hence Aj has an additional term of gµ. In this case AdvDCR keeps the guess b′ = 0
with P(b′ = 0|b = 0) = 1/2. In total, P(b′ = b) = 1

2P(b
′ = 0|b = 0) + 1

2P(b
′ = 1|b = 1) > 1/2 + ε. So

as required, a successful adversary to the DCR problem can be constructed from a successful adversary to
the PVSS semantic security.

DCR AdvDCR AdvPVSS

parameters N, g

b ∈R {0, 1}, ρ ∈R Z∗
N

µ = 0 if b = 1 and µ ∈R ZN otherwise

zb = gµρN mod N

(g ,N, zb)−−−−→
(N, g)
−−−−→

cj ∈ Z2
N

(cj)←−−−−
(mj , rj)← Dec(cj)

sj ∈R ZN

dj = sj +mj mod N

dk ∈R ZN

(di )−−−−→
s0 ∈R ZN

A0 = zbg
s0

aj s.t. sk =
∑t−1

j=0 ajk
j

νkj s.t. aj =
∑t−1

k=0 νkjsk

Aj = A
ν0j
0

∏t−1
k=1(g

sk rNk )νkj

r ′j = zb(
∏t−1

k=0 r
νkj
k )N

ti = ri
∏t−1

j=0 r
′i j
j

(Aj , ti , s0)−−−−→
b′ ∈ {0, 1}

b′←−−−−
b′←−−−−

Figure 5: The DCR attack using a PVSS adversary. Recall that i ∈ [n], j ∈ [t − 1] and k ∈ [n]\[t − 1].

36



5.3 PVSS with bilinear maps

The scheme by Schoenmakers that we saw in section 5.1.3 can be adapted to use bilinear maps as encryption
instead of ElGamal. This was proposed by [20] who noted that one of the main advantages of this changes
was to remove the need for zero-knowledge proofs for verification. As we will see, verifications can be
carried out by sending commitments and checking equations which use bilinear maps. This method boasts
unconditional public verifiability. This means that Villar’s adaptation of the PVSS scheme does not need
the commitment-challenge-response communication of zero-knowledge proofs, or the assumption of the
random oracle model to use the Fiat-Shamir heuristic as was shown above.

In the paper [20] a few small adaptations are proposed which are of interest and we will consider here. The
first is to have secret reconstruction over a public channel. That is, once the parties of an authorised set
agree to recover the secret together, they communicate their shares and verifications as encrypted messages
over the channel to which everyone has access. This is instead of assuming secure private channels between
any set of parties, or allowing the reconstruction to be followed publicly by anyone. There are a few things
to note here. Firstly, this is something that can be done for any PVSS scheme, since it simply requires
encrypting the messages that the parties send to each other. Since it is done using bilinear maps, it is in a
way more efficient to do that using for example ElGamal and zero-knowledge proofs for validity. Here we
consider this small adaptation out of general interest and because it may be a useful consideration when
using such a scheme in the real world.

The other small adaptation is with regards to the adversary model. Here we will consider an adaptive
adversary which can corrupt parties at any time during the scheme, until it reaches at most t − 1 parties.
Note that once a party is corrupted it cannot then become honest. This adversary model is stronger than
what we have so far seen, referred to as a static adversary.

5.3.1 Bilinear maps

For security the scheme relies on the Decisional Bilinear Diffie-Hellman, DBDH, assumption which we
consider now. The main idea behind bilinear maps is as follows. For the rest of this section we fix G and
G1 as groups of order q a large prime, and g a generator of G . For written simplicity we use the additive
notation for G and the multiplicative one for G1.

Definition 5.25. The map e : G × G → G1 is bilinear if it satisfies:

- bilinearity: e(aP, bQ) = e(P,Q)ab for P,Q ∈ G and a, b ∈ Fq,

- non-degeneracy: not all pairs P,Q are mapped to the identity in G1,

- computability: there is an efficient algorithm to compute e(P,Q) for P,Q ∈ G .

As the name suggests, the DBDH assumption is the Diffie-Hellman assumption adapted to a bilinear map.

Definition 5.26. The Decisional Bilinear Diffie-Hellman assumption says that there is no polynomial time
algorithm to distinguish between e(g , g)abc and e(g , g)d , where g , ga, gb, g c are publicly known and
a, b, c , d are randomly selected from F∗

q.

The PVSS scheme we will consider in this section will use a special case of the DBDH problem where
a = b.

Definition 5.27. The Decisional Bilinear Square, DBS, assumption says that there is no polynomial time
algorithm to distinguish between e(h, h)c and e(h, h)d , where g , g c , h = ga are publicly known and a, c , d

37



Secret sharing

are randomly selected from F∗
q.

5.3.2 PVSS scheme with bilinear maps

We stick with the same groups G ,G1 and the bilinear map e : G × G → G1, and consider two dinstinct
generators g , h of group G . Let the dealer D want to share a secret S = e(h, h)z0 with z0 randomly selected
in F∗

q, as before this can be transformed into a scheme sharing a chosen secret.

Definition 5.28. The Villar PVSS scheme runs as follows for D to share S = e(h, h)z0 to parties Pi for
i ∈ [n], with any verifier V .

Setup:

1. Pi randomly chooses a secret key di ∈R F∗
q,

2. Pi sets its public key hi = hdi and broadcasts it.

Distribution:

1. D randomly selects a polynomial p(x) =
∑t−1

j=0 αjx
j with αj ∈ Fq and α0 = z0,

2. D sets the commitments Cj = gαj and broadcasts them,

3. D encrypts the shares Yi = h
p(i)
i and broadcasts them.

Verification:

1. V sets Xi =
∏t−1

j=0 C
i j
j ,

2. V checks that e(Xi , hi ) = e(g ,Yi ) holds for all i ∈ [n].

Reconstruction: for an authorised set A with Pi ∈ A,

1. Pi recovers the share Si = Y
1/di
i ,

2. Pi randomly selects ρ ∈ Fq,

3. Pi sets r = hρi , z = Y ρ
i and w = h

1
diρ

j for j ∈ A\{i},
4. Pi broadcasts (r , z ,w).

5. V checks that e(r ,Yi ) = e(z , hi ) and e(r ,w) = e(hj , h),

6. Pi , having received (r ′, z ′,w ′) from some Pj ∈ A, computes the share e(h, h)p(j) = e(z ′,w ′)1/di ,

7. Pi can recover the secret with the shares of all Pj ∈ A as∏
i∈A

e(z ,w)λi/di =
∏
i∈A

e(h, h)p(i)λi = e(h, h)
∑

i∈A p(i)λi = e(h, h)p(0),

where λi =
∏

j ̸=i
i

j−i and p(0) = z0.

The correctness of this scheme is clear from the reconstruction step, of course assuming that the verifications
hold. We now consider the verifiability of the information broadcast by the dealer during the distribution
and by the players during the reconstruction.

Theorem 5.29. If the verification of the dealer’s share pass, then there is a unique polynomial p(x) such

that Yi = h
p(i)
i for all i ∈ [n].
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Proof. If the verification passes then e(Xi , hi ) = e(g ,Yi ) for all i ∈ [n]. By construction of Xi and Cj

and the bilinearity of e, the left-hand side is e(Xi , hi ) = e(
∏t−1

j=0 C
i j
j , hi ) = e(g

∑t−1
j=0 αj i

j

, hi ) = e(g , hi )
p(i).

Similarly by the construction of Yi the right-hand side is e(g ,Yi ) = e(g , hsii ) = e(g , hi )
si . So together

these give si = p(i). The uniqueness of p(x) is by the usual degree argument.

Theorem 5.30. If the verification of Pi ’s share pass, then Si = Y
1/di
i .

Proof. If the verification passes then e(Si , hi ) = e(Yi , h). By the construction of Si and the bilinearity of e
the left-hand side becomes e(Si , hi ) = e(Y

sj
i , hdi ) = e(Yi , h)

sihi . So by the verification we have si = 1/di

and hence Si = Y si
i = Y

1/di
i , as required.

Now for the proof of security of the scheme. We show that an adversary who can find the secret of the
PVSS scheme with an forbidden set of corrupted parties can be used as a blackbox for the DBS problem. Of
interest in this proof is the way that the adaptive adversary is handled by the dealer. Initially the adversary
chooses which parties to corrupt, if any, and tells the dealer. The dealer then guesses the remaining parties
that the adversary will corrupt while the scheme takes places. if the guess is incorrect the the dealer’s use
of the adversary as a blackbox is of no use and it simply guesses for the DBS problem. So we work with
the worst case probability in terms of the dealer guess, that is if the adversary initially chooses to corrupt
no parties and later corrupts all t − 1. Note that although these later corruptions could take place at any
time, without loss of generality we can model them to all take place just before the reconstruction phase.
This is because the adversary can then take advantage of seeing the encrypted shares broadcast by the
dealer. Again we assume the worst case and send to the adversary all the possible encrypted messages
between any pair of honest parties.

Theorem 5.31. The Villar PVSS scheme is semantically secure against an adaptive adversary under the
DBS assumption.

Proof. Given an adversary AdvPVSS to the scheme that can guess whether or not a given secret is the shared
secret, we build an adversary AdvDBS to the DBS problem. We assume the same parameters as previously,
that is, G ,G1, e, q, h, g . First the DBS problem is set up by randomly selecting a, c, d in Z∗

q and setting

h = ga and m = g c . Then b ∈ {0, 1} is randomly chosen and the challenge is set as Tb = e(h, h)bc+(1−b)d .
The AdvDBS receives (m, h,Tb) from the DBS problem and must guess the value of b.

On the other side the AdvPVSS selects the parties it initially corrupts B0 ⊂ P, with |B0| ≤ t − 1. For each
corrupt party Pj ∈ B0 it sets a public key hj and broadcasts it.

The AdvDBS now guesses the final set of corrupt parties B such that B0 ⊂ B and |B| ≤ t − 1. For each
Pi ∈ B\B0, the honest parties which it guesses will be corrupted later, it randomly selects private and
public keys di ∈R F∗

q and hi = hdi . Then for each Pi ∈ P\B, the honest parties which it guesses will stay
honest, it selects ri ∈R F∗

q and sets hi = g ri . Finally it broadcasts (hi )i∈P\B0
.

Now AdvDBS constructs shares for the parties it thinks will be corrupted by the end and, working backwards,
finds the appropriate commitments for these shares. So for j ∈ B, it randomly chooses sj ∈ F∗

q and sets

Yj = h
sj
j . It finds p(x) =

∑t−1
j=0 αjx

j , the unique polynomial such that p(j) = sj and gp(0) = g c .

So each αj can be written as αj =
∑t−1

ℓ=0(uℓjsj) + u0jc for some uℓj . Then it sets the commitments

Cj = g
∑

ℓ∈B(uℓj si )mu0j for j ∈ [t − 1] and C0 = m. Lastly for i ∈ P\B it sets Yi = h
p(i)
i . It broadcasts all

this information as ((Yi )i∈[n], (Cj)j∈B ,Tb).
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Having received these values, AdvPVSS chooses the honest parties it wants to corrupt as B1 ⊂ P\B0 such
that |B0 ∪ B1| ≤ t − 1. It sends this new set B1 to AdvDBS in order to receive their secret keys. Before
AdvDBS sends these, it first checks if B1 ⊂ B\B0, since if it guessed incorrectly there is no need to continue.
So if B1 ̸⊂ B\B0 then AdvDBS guesses a random b′. Otherwise it broadcasts (di )i∈B1 .

Now for the reconstruction, for any distinct pair j , ℓ ∈ P\(B0 ∪B1), then AdvDBS randomly selects ρ ∈ F∗
q

and sets r = hρi , z = Y ρ
i and w = hrℓ/(riρ) and broadcasts (r , z ,w). Finally AdvPVSS guess b′ and AdvDBS

guess the same.

The probability that AdvDBS correctly guesses the parties B1 is

γ := P(B = B0 ∪ B1) =

(t−1−|B0|
|B1|

)(n−|B0|
|B1|

) .

The worst case of |B0| = 0 and |B1| = t − 1 gives γ = 1

( n
t−1)

. Now if the guess is correct then P(b′ = b) >

1/2 + ε by assuming that AdvPVSS is non-negligibly successful. If the guess of B is incorrect then clearly
b′ is a random guess. So overall this gives

P(b′ = b) = γ(1/2 + ε) + (1− γ)1/2

> 1/2 + γε,

which as required, is a non-negligible probability of success against the DBS problem.

5.3.3 Homomorphic property

The homomorphic property for secret sharing schemes is rather simple since it only requires operations on
the shares of a party. For publicly verifiable secret sharing schemes this is more difficult, since we need the
verifications to hold for the result of the operations too. This is especially true when using such methods
as zero-knowledge proofs for the verifications, which have the inherent property of serving for nothing else
than proving the knowledge of a single value. In this way, the Villar scheme’s homomorphic property is of
special interest since the simple verification method allows for an easy way to combine secrets. That is,
any linear combination of the shares of some secrets is valid to recover the same linear combination of said
secrets.

Theorem 5.32. Given the information sets (Cj ,Yi ) and (C ′
j ,Y

′
i ) broadcast by the dealer to share secrets

s and s ′ respectively. Then for the secret SαS ′β, with α,β ∈ F∗
q, the information is (Cα

j C
′β
j ,Y

α
i Y ′β

i ).

Proof. By checking the validity of the shares as in the scheme we see that sending Y α
i Y ′β

i with commitments

Cα
j C

′β
j is valid for a secret. That is, we check that e(Xi , hi ) = e(g ,Yi ) where Xi =

∏t−1
j=0 C

i j
j . Firstly,

Xα
i X

′β
i =

t−1∏
j=0

Cαi j
j C ′βi j

j = g
∑t−1

j=0 (αjα+βjβ)i
j

.

And therefore we can directly write e(Xα
i X

′β
i , hi ) = e(g ,Y α

i Y ′β
i ), so the verification passes and the

information sent represents consistent shares. Now we consider the reconstruction step to see that the
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shared secret is in fact SαS ′β. The reconstruction step is the same as in the scheme except we have
Si = (Y α

i Y ′β
i )

1/di and z = (Y α
i Y ′β

i )
ρ. This gives

e(z ,w)λi = e(Y α
i Y ′β

i , h
1/di
i )λi

= e(h
p(i)α+p(i)′β
i , h

1/di
i )λi

= e(h, h)(p(i)λi+p(i)′β)λi ,

and so for the reconstruction we find∏
i∈A

e(z ,w)λi = e(h, h)α
∑

i∈A p(i)λi+β
∑

i∈A p(i)′λi

= e(h, h)αp(0)e(h, h)βp(0)
′

= SαS ′β.
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6. Recent improvements in PVSS schemes

In this section we consider and contribute in a small way to the DHPVSS (Diffie-Hellman PVSS) scheme
proposed in the YOLO YOSO paper [9], which itself comes as an improvement of previous works in SCRAPE
[7] and ALBATROSS [8]. Originally built around the the Schoenmaker PVSS scheme, discussed in section
5.1.3, the improvements are two-fold. Firstly, it uses Reed-Solomon codes to allow for more efficient
verification of distributed shares, as introduced in SCRAPE and explained in the next subsection. In this
sense, the dealer commits and proves the validity of the shares it distributes, instead of the polynomial from
which they are computed. Note that this requires a DLEQ proof for each share. The second improvement is
to combine the code verification and the DLEQ proofs to instead require only one DLEQ proof, sufficient for
all shares. This was introduced in the DHPVSS scheme and requires strong homomorphic properties from
the encryption function. It is stated in the YOLO YOSO paper that ElGamal is the only known encryption
for which such properties hold. Our contribution is to show that another, similar encryption scheme has the
required properties and hence we present the DHPVSS with this new scheme. This encryption scheme was
introduced by Castagnos and Laguillaumie in 2015 in [11] and we will refer to it as CL15. The advantage
of this scheme over ElGamal’s is that it can handle additive homomorphic encryption over a set of integers
Zp for any large p, hence it would be fit for a large voting operation.

6.1 SCRAPE adaptation of Schoenmaker

Let us consider a recent adaptation of the Schoenmaker PVSS scheme, as discussed in section 5.1.3. The
main idea behind SCRAPE, as presented in [7], is to use the similarity between Shamir’s secret sharing and
Reed-Solomon codes. As discussed in section 3.4, shares constructed in Shamir’s scheme form codewords
of some Reed-Solomon code C . Due to this, we can check if a set of shares is valid by checking if as a
sequence it is a valid codeword in C . This can be done by considering the inner product of the codeword
and some codeword in the dual code C⊥. If the shares are valid this will give zero, and if the shares are
not valid then with high probability this will give a non-zero value. As we see in the next lemma, for a
code based on Zq, checking invalid shares against a random codeword in the dual has probability 1/q of
incorrectly returning that these are valid. And as expected, for higher accuracy it is possible to repeat the
check multiple times to improve the probability as much as necessary. Recall that an [n, k, d ] code is a
linear error-correcting code over Zq of length n, dimension k and minimum distance d , and whose dual
code C⊥ is the vector space of v ∈ Zn

q such that ⟨v , c⟩ = 0 for all c ∈ C .

Lemma 6.1. Let C be a [n, k , d ] code and C⊥ its dual. For v ∈ Fn
q\C and a randomly choosen c⊥ ∈ C⊥

then P(⟨v , c⊥⟩ = 0) = 1/q.

Proof. Let D be the vector subspace spanned by C and v together. Since c⊥ is orthogonal to all vectors in
C by definition, then by linearity it is orthogonal to all vectors in D if and only if is orthogonal to v . Since
v ̸∈ C , then the dimension of D is dim(D) = 1+dim(C⊥) = k +1, and the dimension of D⊥ is n− k − 1.
So choosing c⊥ uniformly at random, there are |C⊥| = qn−k possible codewords, of which |D⊥| = qn−k−1

are orthogonal to v . So P(⟨v , c⊥⟩ = 0) = |D⊥|
|C⊥| =

1
q as required.

With this in mind we consider the changes made to the Schoenmaker scheme expressed in SCRAPE. The
principal difference is that the dealer commits to the shares instead of commiting to the polynomial from
which they are derived. This is done for a share si by broadcasting Yi = pksii with a commitment vi = g si ,
where pki is the public key of party Pi . To verify the validity of the shares, a verifier can take a random
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codeword c⊥ = (c⊥1 , ... , c⊥n ) of the dual code and check that
∏

i∈[n] v
c⊥i
i = 1. This is equivalent to the

inner product idea above since
∏

i∈[n] v
c⊥i
i = g

∑
i∈A sic

⊥
i = g ⟨v ,c⊥⟩. So the product will give 1 if and only if

the inner product gives 0. An additional step is required here to prove that the encrypted shares are the
same as the ones in the commitments, this can be done by a zero-knowledge proof. So once the shares
and commitments are broadcast by the dealer, a verifier can check DLEQ(g , vi , pki ,Yi ) for each i ∈ [n].

Let us reconsider the verifiability of the scheme with this adaptation. We want that the verification fails
for an invalid set of shares, where invalidity here can come from two possibilities. Either not all encrypted
shares are the same as in the their respective commitments, then logg (vi ) ̸= logpki (Yi ) for some i ∈ [n],
and the DLEQ(g , vi , pki ,Yi ) check will fail. Or the shares are not consistent, then v = (v1, ... , vn) ̸∈ C
and the inner product check will fail with overwhelming probability. So if the verifications hold, then it is
safe to assume that the shares are valid and consistent.

6.2 Adapting ElGamal encryption

As previously mentioned, the DHPVSS scheme uses ElGamal encryption due to its linearly homomorphic
properties which allow short proofs of knowledge. That is, it is easy to prove that one knows the original
message of an encryption in zero-knowledge. Similarly one needs to be able to show that is has correctly
decrypted an encrypted message, again in zero-knowledge. The ElGamal scheme was the only encryption
scheme for which it was known that these properties hold. Although we have so far been considering
the multiplicatively homomorphic ElGamal scheme, it is definitively interesting to look for an additively
homomorphic scheme. In the common application of PVSS schemes for voting systems where the votes
are tallied up while encrypted and hence no individual vote is decrypted, the operation needed is naturally
addition. For this we can look at ElGamal in the exponent, where instead of encrypting a message m we
instead encrypt gm, in which case the product of the encryptions of two messages m1,m2 would be gm1+m2

and hence give the sum of the messages. However this requires being able to compute the discrete log to
recover the sum of the messages. This is commonly assumed to be easy if the exponent is small, but this
may not be the case in a voting system with many voters. To solve this problem we consider the CL15
encryption scheme presented in [11]. The principal idea of the CL15 scheme is to use a group in which the
DDH problem is hard and which has a subgroup in which the DL problem is easy. In this way, encrypting
to the subgroup makes decryption as easy as taking the discrete log of the encrypted message.

In this section we introduce the CL15 encryption scheme and show that it has the required properties of
homomorphic encryption to work with the DHPVSS scheme. Note that this contribution is somewhat
small, since although ElGamal was the only scheme for which it was thought to hold, CL15 is very close
to ElGamal, and this is why it was considered in the first place. Then we present an adaptation of the
DHPVSS scheme with CL15 encryption. We also note the advantage of using this encryption is that the
message space is Zp for some p which can be made as large as necessary and in which any number of
addition operations can be carried out.

Definition 6.2. A CL15 tuple is defined as (B,n,p,g,f,G,F) for which Bp, with p prime, is an upper bound
for n, G = ⟨g⟩ is a cyclic group of unknown order n in which the DDH problem is assumed to be hard,
and F = ⟨f ⟩ is a subgroup of G of order p in which the DL problem is assumed to be easy.

This definition and the following discussion of the encryption scheme are simplifications of the full idea
of DDH groups with easy DL subgroups as presented in [11]. See also further improvements in terms of
simplicity and efficiency in [12] and [10]. These consider in full detail implementations of such a group
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using imaginary quadratic fields and their class groups. We will not go into these details and simply assume
that such groups exist.

Definition 6.3. The CL15 encryption scheme for a CL15 tuple (B, p, g , f ,G ,F ) is as follows.

Key generation:

1. B randomly selects a secret key sk ∈R [Bp − 1],

2. B sets its public key g sk and sends it to A.

Encryption:

1. A randomly picks r ∈R [Bp − 1],

2. A encrypts message m as (c1, c2) = (g r , f mpk r ) and sends it to B.

Decryption:

1. B having received (c1, c2) can compute M = c2c
−sk
1 ,

2. B recovers the message as m = logf (M).

Clearly the CL15 encryption scheme is closely related to the ElGamal scheme. Note that Bp − 1 is used
instead of n since the latter is the order of the group G and must remain unknown. This is required to
maintain the hardness of the partial discrete log problem in G , a detail we will not go into but which
is presented in [11] and was first introduced in [24]. Let us firstly consider the straight-forward proof of
security of the scheme.

Theorem 6.4. The CL15 encryption scheme is semantically secure against IND-CPA attacks under the
DDH assumption.

Proof. We construct an adversary B which uses a CL15 adversary A to break a DDH challenge with the
same advantage as A, denoted ε. Let the DDH challenger send to B the CL15 tuple (B, p, g , f ,G ,F )
and the challenge (X = g x ,Y = g y ,Z ) where Z = g xy if b1 = 0 and Z = g c if b1 = 1, given
x , y , c ∈R [Bp − 1]. Then B sets its public key pk = X and sends it to A. In return it receives two
messages m0,m1 ∈ [Bp − 1]. B randomly selects b2 ∈R {0, 1} and sends the encryption (Y , f mb2Z ) to A.
Receiving b̃2 in return, B guesses b̃1 = 0 if b̃2 = b2 and b̃1 = 1 otherwise.

In the case that the challenge was a valid DDH tuple then Z = g xy , so the encryption was valid and with
probability 1/2 + ε, A guesses b̃2 correctly, so B should guess b̂1 = 0. If the DDH challenge was not a
valid DDH then Z was random and hence the encryption was random and so is A’s guess. So if b̂2 ̸= b2
then B should guess b̂1 = 1. Altogether this gives B a non-negligible advantage of ε/2.

6.3 Proofs through homomorphisms

As we have claimed and as will be needed later for the DHPVSS adaptation, we now consider the linearly
homomorphic properties of the CL15 encryption scheme. Consider messages m,m′ encrypted with a public
key pk as (c1, c2) and (c ′1, c

′
2) respectively. Then it is straight-forward to see that an encryption of the

sum m +m′ can be computed as (c∗1 , c
∗
2 ) = (c1c

′
1g

r , c2c
′
2pk

r ) for some random r ∈R [Bp − 1]. Then the
decryption follows as

M = c∗2 (c
∗
1 )

−sk =
c2c

′
2pk

r

(c1c ′1g
r )sk

= f m+m′
,
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where logf (M) = m + m′ as required. The same can be done for multiplication by a scalar. Again
for a message m encrypted as (c1, c2), and for an integer α ∈ Zp, the encryption of αm is (c∗1 , c

∗
2 ) =

(c ′α1 g
r , c ′α2 , pk

r ) for some random r ∈ [Bp − 1]. Then the decryption finds, as required,

logf ((c2/c
sk
1 )α) = logf (f

mα) = mα.

The other property we are interested in is linear decryption, as it is referred to in YOLO YOSO. This says that
the decryption function which we denote Dc(sk) is linear in sk , that is, Dc(sk1+ sk2) = Dc(sk1)+Dc(sk2)
for any secret keys sk1, sk2 and encrypted message c . This will allow for a party to prove in zero-knowledge
that it has correctly decrypted a share. Let us introduce these non-interactive zero-knowledge proofs in
a general setting and then consider the two examples that will be used in the scheme. We define these
following Schnorr’s protocol for proofs of knowledge. Consider a finite field F, vector spaces W,X over
F and a vector space homomorphism f : W → X . Let R = {(w , x) ∈ W × X|f (w) = x} be the set of
relations between a claim x ∈ X and a witness w ∈ W for the claim. Then the proof protocol between a
prover P and a verifier V is defined as follows.

Definition 6.5. The protocol Π(w ; f , x) for an F-vector space homomorphism f : W → X with respect
to the relation R is:

1. P samples r ∈R W, computes a commitment a = f (r) and sends it to V ,

2. V samples a challenge e ∈R F and sends it to P,

3. P computes the response z = r + ew and sends it to V ,

4. V verifies that f (z) = a+ ex .

Since f is a homomorphism then when V checks the proof it finds the required

f (z) = f (a+ ew) = f (r) + f (e)f (w) = a+ ex . (7)

This can be transformed into a non-interactive zero-knowledge proof by using the Fiat-Shamir heuristic.
Hence instead of sending the commitment to the verifier and receiving a challenge in return, the prover
computes a pseudo-random challenge e = H(x , a) from the claim and the commitment. The verification
for this is simply to have V check if e = H(x , f (z)− ex) which holds if P is honest due to equation (7).

The two non-interactive zero-knowledge, or NI-ZK, proofs that will be used are as follows. The first will
prove knowledge of a discrete log of the form g sk = pk, for a secret key and a respective public key. We
denote this by

DL(sk; g , pk) = Π(sk; f (x) = g x , pk). (8)

The second proof is for knowledge of equality between two discrete logs and the corresponding value and
is of the form {

g sk = pk,

βsk = α,

which we denote as DLEQ(sk, g , pk,β,α) = Π(sk ; f (x) = (g x ,βx), (pk,α)). This is used in two ways.
The dealer will use it show to a valid distribution of the shares and the parties will use it to show valid
decryptions of the encrypted shares.

A final comment on the importance of the validation of the key pairs as seen in equation (8). Since an
adversary can wait for all honest parties to submit their public keys, it could then compute its own public
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keys which allow it to recover the secret from the encrypted shares. Consider an adversary A that controls
a single corrupt party Pn, and all other parties P1, ... ,Pn−1 are honest. Let A wait for all honest parties to
have shared their public keys pki . Then, if the adversary does not need to prove that they know a secret
key equal to the discrete log of the public keys for the parties it controls, it sets

pkn =
∏
i<n

pk−λi
i (9)

where λi =
∏

j ̸=i
j

j−i . Once the dealer sends the shares σi = m(i) for a secret s as the encryptions

(ai ,Ai ) = (g skD , f sigmaipkskDi ), then A can recover the secret by computing

Ai f
σn
∏
i<n

Aλi
i = pkskDn

∏
i<n

(
pkskDλi

i f σiλi

)
=
∏
i<n

(
pk−λi skD

i

)∏
i<n

(
pkskDλi

i f σiλi

)
by equation (9)

= f
∑

i∈[n] m(i)λi

= f m(0).

6.4 Adapted DHPVSS scheme

Combining the previous sections’ work on verification using Reed-Solomon dual-codes and homomorphic
properties of the CL15 encryption scheme, we can now present the adapted DHPVSS scheme. Note that
the scheme itself works in almost the same way as with ElGamal, the only difference being that with CL15
encryption, we may freely use the additive homomorphism without the requirement that the encrypted
message must be small.

Definition 6.6. The adapted DHPVSS scheme runs as follows for dealer D to share secret s ∈ Zp to
parties Pi for i ∈ [n], with some verifier V .

Setup:

1. D generates a CL15 tuple (B, p, g , f ,G ,F ) as defined in definition 6.2 and broadcast it as the public
parameters pp,

2. D randomly selects a secret key skD ∈R Z∗
p and sets a public key pkD = g skD which it broadcasts,

3. Party Pi randomly selects a secret key ski ∈R Z∗
p and sets a public key pki = g ski which it broadcasts,

4. Pi also broadcasts a NI-ZK proof of knowledge of its secret key as Ωi = DL(ski ; g , pki ).

Key verification:

1. V can check Pi broadcasted a valid public key, that is, Ωi proves knowledge of ski .

Distribution:

1. D randomly selects a polynomial m(x) ∈ Zp[x ] of degree at most t and such that m(0) = s,

2. D sets the shares σi = m(i),

3. D encrypts the shares as (ai ,Ai ) = (g skD , f σipkskDi ) and broadcasts them,

4. D sets a code word m∗ = H(pkD , {pki , (ai ,Ai )}i∈[n]) and coefficients di = m∗(αi )
∏

j∈[n]\{i}
1

i−j for
i ∈ [n],
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5. D sets A =
∏

i∈[n] A
di
i and B =

∏
i∈[n] pk

di
i ,

6. D broadcasts a NI-ZK proof of valid distribution ΩD = DLEQ(skD ; g , pkD ,B,A).

Distribution verification:

1. V recovers the code word m∗ and the coefficients di ,

2. V computes A =
∏

i∈[n] A
di
i and B =

∏
i∈[n] pk

di
i ,

3. V checks that the proof ΩD holds with respect to g , pkD ,B,A.

Decryption:

1. Pi computes A′
i = Aipk

−ski
D ,

2. Pi computes and broadcasts the decrypted share σ′
i = logf (A

′
i ),

3. Pi broadcasts a NI-ZK proof of correct decryption Ω′
i = DLEQ(ski ; g , pki , pkD ,Ai/A

′
i ).

Decryption verification:

1. V can check that Ω′
i is a valid proof with respect to g , pki , pkD ,Ai/A

′
i .

Reconstruction: for an authorised set of parties, w.l.o.g. Pi for i ∈ [t].

1. Pi computes the coefficients λj =
∏

ℓ∈[t]\{j}
ℓ

ℓ−j and recovers the secret s ′ =
∑

j∈[t] σjλj .

Theorem 6.7. The DHPVSS scheme with CL15 encryption is verifiable.

Proof. The verifiability of the key generation is straight forward. If Ωi is a valid proof then DL(sk; g , pki )
holds, so the prover, Pi , knows some α such that gα = pki , i.e. α = ski , as required.

Now for the verifiability of the distribution. If ΩD is valid then DLEQ(skD ; g , pkD ,B,A) holds and hence
the dealer knows some γ such that DLg (pkD) = DLB(A) = γ. This can be expressed as the equations{

gγ = pkD , (10)

Bγ = A. (11)

By the verifiability of the key generation and equation (10) then γ = ski . Since V can compute A and B,
equation (11) gives ∏

i∈[n]

(pkdii )skD =
∏
i∈[n]

Adi
i . (12)

Suppose that the shares are not valid as shares from any polynomial of degree at most t. That is, for all
m(x) ∈ Zp[x ]≤t , then there is some i ∈ [n] for which Aipk

−skD
i ̸= f m(i). Let r be the number of queries

made to the oracle for a codeword m∗ in the dual. Then by the dual code lemma 6.1 we claim that the
probability that

∏
i∈[n](Aipk

−ski
i )di = 1, i.e. equation (12), is at most r/p. This is because for share σi

then Aipk
−skD
i = f σi and hence denoting σ = (σ1, ... ,σn) and d = (d1, ... , dn) we have∏

i∈[n]

(Aipk
−skD
i )di = f ⟨σ,d⟩.

So equation (12) holds for these invalid shares only when ⟨σ, d⟩ = 0, that is, with negligible probability no
more than r/p.
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Finally for the verifiability of the decryption. If Ω′
i is valid then DLEQ(sk; g , pki , pkD ,Ai/A

′
i ) holds, hence

logg (pki ) = logpkD (Ai/A
′
i ) = ϕ for some ϕ. Again due to the verifiability of the key generation giving

ϕ = ski this can be written {
g ski = pki ,

pkskiD = Ai/A
′
i . (13)

By the verifiability of the disribution, Ai is an encrypted share and so of the form Ai = f σipkskiD for some
σi . Then equation (13) gives A′

i = f σi , so the decrypted share is logf (A
′
i ) = σi .

Now we consider the security of the scheme, which is proved under the DDH assumption. The general idea
behind the proof is to consider the DDH tuple (g , ga, gb,wb) with wb ∈R {gab, g c} as public keys for the
dealer and some randomly chosen honest party. That is, pkD = ga and pkk = gb for some honest Pk . The
adversary B we construct for the DDH game does not have the secret keys for either, but it does not need
them to simulate a DHPVSS sharing for some blackbox adversary A. More specifically, to encrypt some
share σi for party Pi , then B uses the fact that pki = g ski for some ski and hence f σipkskDi = f σipkskiD .
This requires that all parties public keys are of the correct form of pk = g sk , which is known to be true
since the public keys are verified to show that the party knows such an sk .

To make use of A’s advantage, B distributes shares of two different secrets using randomly chosen b2 ∈R
{0, 1} and some j ∈ [n]. The distribution is such that when j = 1 and b2 = 1 then A sees valid shares
for one secret and, when j = n − t and b2 = 0 then A sees valid shares for the other. For any other
combination of j and b2, it receives an invalid combination of shares for both. In this way, B can guess if
the DDH tuple was valid by seeing if A’s guess is correct.

Theorem 6.8. The DHPVSS scheme with CL15 encryption is semantically secure under the DDH assump-
tion.

Proof. Consider an adversary A which, given a forbidden set of shares can guess with non-negligible
advantage whether or not this is a given secret. Then we construct an adversary B that uses A as a
blackbox to dinstinguish DDH tuples with non-negligible advantage. We now explain how the B adversary
is constructed. Without loss of generality we assume that of the n parties, the ones corrupted by A are
Pn−t+1, ... ,Pn, and the rest, P1, ... ,Pn−t are honest.

First the DDH challenger randomly selects skD , sk, c ∈R Zp and sets w0 = g skDsk and w1 = g c . It
randomly selects b1 ∈R {0, 1} and sends (g , g skD , g sk ,wb1) to B.

Now B randomly chooses an honest party k ∈R [n − t] and sets its private and public keys using the sk
received from the DDH challenger, so skk = sk and pkk = g skk . B can simulate the NI-ZK proof Ωk

without knowing skk as follows. It randomly selects z , e ∈R Zp and sets a = g zpk−e
k . The transcript of

this simulated proof reads as (a, e, z), for which g z = a · pkek as required.

For i ∈ [n − t]\{j}, the other honest parties, B randomly picks private keys ski ∈R Zp and sets public
keys pki = g ski and proofs Ωi = DL(ski ; g , pki ). Sending the public keys and proofs of all honest parties
(pki , Ωi )i∈[n−t] to A, it receives in return those of the corrupt parties (pkj , Ωj)j∈[n−t+1,n]. Since A is run
as a blackbox, B can extract from each proof Ωj the corresponding secret key skj for j ∈ [n − t + 1, n].

Now B randomly picks two secrets s0, s1 ∈R Zp and randomly selects two polynomialsm(x),m′(x) ∈R Zp[x ]
such that m(0) = s0, m

′(0) = s1 and m(i) = m′(i) for i ∈ [n− t +1, n]. Note that these polynomials give
the same evaluation for all corrupt parties. B sets the shares as σi = m(i) and σ′

i = m′(i).
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To encrypt the shares B does the following. For share σk , B randomly selects its own b2 ∈R {0, 1}, and
then sets encryption as {

Ak = f σkwb, if b2 = 0

Ak = f σ
′
kwb, otherwise.

The shares of the corrupt parties are encrypted as Aj = f σjpk
skj
D for j ∈ [n − t + 1, n]. Finally the shares

of the remaining honest parties are encrypted as{
Ai = f σipkskiD , for i ∈ [j − 1]

Ai = f σ
′
i pkskiD for i ∈ [j + 1, n − t].

For all encryptions, ai = g skD as B receives from the DDH challenge.

The last thing for B to do is to construct the NI-ZK proof of valid distribution, ΩD . It sets a random
word m∗(x) = H(pkD , {pki , (ai ,Ai )}i∈[n]) in the dual code and the coefficients di = m∗(i)

∏
j∈[n]\{i} 1

i−j
. It

computes A =
∏

i∈[n] A
di
i and B =

∏
i∈[n] pk

di
i with which it can simulate the proof of distribution ΩD =

DLEQ(skD ; g , pkD ,B,A) as follows. It randomly selects z , e ∈R Zp and sets (a, b) = (g zpk−e
D ,BzA−e).

The proof transcript is ((a, b), e, z) such that g z = apke and Bz = bAe . Finally B sends to A the encrypted
shares and the proof ({ai ,Ai}i∈[n], ΩD). It receives in return some guess b̃2 ∈ {0, 1} and guess itself b̃1 = 1

if b̃2 = b2 and b̃1 = 0 otherwise.

Now we consider how B breaks the DDH game if A breaks the DHPVSS game. Recall that the shares
of the corrupt parties are valid for both secrets s0 and s1 by construction of the polynomials m(x),m′(x).
When j = 1 and b2 = 1, the shares of the honest parties are for the secret s1. So A is sent s0 and shares
for s1, this is equivalent to the case b = 1 in the DPVSS game. On the other hand when j = n − t and
b2 = 0, the shares of the honest parties are for the secret s0 and hence the adversary sees case b = 0. If A
can break the DHPVSS game then the probability that it correctly guesses b̃2 = 1 is non-negligibly larger
than the probability that it incorrectly guesses b̃2 = 1. That is, for non-negligible ε the advantage of A is

∆A := P(b̃2 = 1|b2 = 1, j = 1)− P(b̃2 = 1|b2 = 0, j = n − t) > ε. (14)

By the assignment of shares, one can check that the shares are equivalent for b2 = 1, j = i + 1 and
b2 = 0, j = i for i ∈ [n − t − 1]. Then equation (14) can be written

∆A =
∑

i∈[n−t]

(
P(b̃2 = 1|b2 = 1, j = i)− P(b̃2 = 1|b2 = 0, j = i)

)
. (15)

Now considering the probability that B guesses correctly when given an invalid DDH tuple, this happens if
b̃2 = b2, hence

P(b̃1 = 1|b1 = 1) =
1

2(n − t)

∑
i∈[n]

(
P(b̃2 = 1|b2 = 1, j = i) + (1− P(b̃2 = 1|b2 = 0, j = i))

)
= 1/2 +

1

2(n − t)

∑
i∈[n]

(
P(b̃2 = 1|b2 = 1, j = i)− P(b̃2 = 1|b2 = 0, j = i)

)
> 1/2 +

ε

2(n − t)
,
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where the inequality comes from equations (14) and (15). Clearly when b1 = 0, B is given a random g c

and hence the shares sent to A are not valid, so b̃2 is a random guess and so is b̃1, giving

P(b̃1 = 1|b1 = 0) = 1/2.

Overall B’s advantage is therefore

P(b̃1 = 1|b1 = 1) + P(b̃1 = 1|b1 = 0)

2
=

ε

4(n − t)
,

which is non-negligible.
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7. Generalisations

We have so far considered schemes based almost exclusively on the (t, n) threshold access structure and
which broadly follow Shamir’s methods of distribution and reconstruction using polynomials and interpo-
lation. However all these schemes considered in chapters 5 and 6 can be generalised to any linear secret
sharing scheme and hence to any access function. For simplicity we continue our explanation for an ideal
scheme, ie. where all parties are either authorised or forbidden, since this can be generalised easily enough.
As discussed in section 3.4, we already know that these can be generalised to linear schemes using codes.
In [27], Schoenmaker explains an extension of its scheme to any linear access structure, that is, using only
linear operations for computing the shares and recovering the secret. The main idea is as follows.

Consider a monotone access structure Γ on a set of parties [n] with the shares and secret in Zq. A matrix
M of size (n + 1)× k is required such that for any authorised set B ⊂ Γ, and only for such an authorised

set, there is a c ∈ Z|B|
q for which

cMB = e1 := (1, 0, ... , 0), (16)

where MB is the matrix of the rows of B. The matrix M will be used to generate the shares and the
requirement can be seen as guaranteeing that any authorised set will be able to recover the chosen element,
in this case e1, and hence the secret. The dealer randomly selects a column vector a ∈ Zd

q , setting the
random secret as s = a1 and computing the shares as si = Mi ·a. The rest of the scheme can be carried out
as in the original scheme presented in section 5.10 until the reconstruction. At this point each participant
has decrypted its share as g si for i ∈ B. By the above requirement (16) there is a c such that cMB = e1
in which case the secret is recovered as∏

i∈B
(g si )ci = g (

∑
i∈B ciMi )a = g e1a = g s .

So the Schoenmaker scheme can be generalised to any linear access structure in this way. As we saw in
section 6.1, as similar generalisation to codes is used in SCRAPE to allow for verification of the shares.
That is, a set of shares is valid if they are valid as codewords, which can be checked using dual code.

7.1 Abelian secret sharing

We can see that the schemes so far studied as transforming a secret and its shares (s0; s1, ... , sn) into some
form of encrypted shares (g s0 ; g s1 , ... , g sn), from which the parties can recover the secret. That is, the
schemes take a elements in a linear space and encrypt them to Abelian groups, similarly with commitments.
An interesting idea would be to generalise this original linear space to an Abelian group. Let us now consider
the generalisation to Abelian secret sharing schemes, basing ourselves on the corresponding sections of [21]
which introduced this idea. Firstly we can define an Abelian secret sharing scheme as one based on Abelian
groups.

Definition 7.1. For Abelian groups Gi , i ∈ [n], an Abelian secret sharing scheme is a code C which is a
subgroup of G0 × · · · × Gn.

Again we denote a codeword in C as (s0, ... , sn), and note that since C is a subgroup, for two codewords
(s0, ... , sn), (s

′
0, ... , s

′
n) then their sum (s0 + s ′0, ... , sn + s ′n) is also in C . Notice that in the particular case

where the Abelian groups are Gi = Fri
q , then the code C is a vector subspace and hence it generates a

linear secret sharing scheme.
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For the authorised and forbidden sets, since we are no longer assuming that the access function is perfect,
we define these individually. So the set of authorised parties are denoted as Γ1 and the set of forbidden
parties are Γ0, where a party may be in neither set. Again for ease of notation we consider an authorised
party A, without loss of generality we assume that A = {1, ... , k} and we denote its complement P\A =: B.
Hence when writing a codeword representing a secret and a set of shares we simply write s0,SA, sB to denote
(s0; s1, ... , sk , sk+1, ... , sn). We will also always speak of an authorised set A and a forbidden set B. Now
we can rewrite the original definition of authorised and forbidden sets from 3.2 in terms of the codewords
in C . Recall this said a set A was authorised if it could recover the secret from its shares, and a set B
forbidden if its shares give it no information about the secret, that is, there are as many codewords with
s0 for any given sB .

Lemma 7.2. Authorised and forbidden sets can be expressed in the following ways:

- A is authorised if and only if sA = 0 implies s0 = 0,

- B is forbidden if and only if for all s0 ∈ G0 there is a codeword s0, sA, 0 ∈ C.

Proof. To show that sA = 0 =⇒ s0 = 0, consider a codeword s0, 0, sB , since 0, 0, 0 is also a codeword
then both s0 and 0 are recoverable secrets from the set of shares 0, so they must be equal, s0 = 0, as
required. In the other direction, to show that A is authorised, consider two codewords with the same A
shares, s0, sA, sB and s ′0, sA, s

′
B , then their difference is also in C , ie. s0− s ′0, 0, sB − s ′B . Since the A shares

of this new codeword are 0 then its secret must also be 0, so s0 = s ′0. Hence a given set of A shares always
recovers the same secret.

Now to show that there is always a codeword s0, sA, 0 given some s0 ∈ G0. Consider some s0 ∈ G0, then
sB = 0 has as many valid codewords s0, sA, sB as for any other sB . If this number is zero then s0 is not a
secret in the scheme, otherwise there is some s0, sA, 0 ∈ C , as required. Finally to show that B is forbidden.
Given s0 we want to show that all sB have the same number of codewords s0, sA, sB . Consider some sB ,
then for any s0, sA, sB ∈ C , we know there is a codeword 0, s ′A, 0, so taking their sum s0, sA − s ′A, sB ∈ C .
That is, each sB has as many codewords as there are possible s ′A.

We now consider three constructions of such schemes. In all three we consider the groups to be subgroups
of some G , which we call the main group. For the first construction, consider mapping to the quotient
groups of the subgroups as follows. For subgroups H0, ... ,Hn of a main group G , consider the map from
G to the quotient groups Gi = G/Hi , mapping g to its respective class si = gHi . Note that when sharing
some g ∈ G , if it is in some subgroup Hi then the i-th share is gHi = Hi , or the identity in G/Hi . Now
referring back to Lemma 7.2 to express authorised and forbidden sets in terms of the groups Hi gives the
following. The requirement for some set of parties A being authorised should say that the intersection of
all Hi for i ∈ A, ie. the subset of G from which every element maps to the identity for all parties in A,
should be a subset of H0, so that the secret is zero when the A share is zero. For a set of parties B to be
forbidden we should require that all of G is covered by H0 and

⋂
i∈B Hi , ie. for any non-zero secret there

is some codeword with all B shares zero. More formally we can write the requirements as follows.

Lemma 7.3. The following equivalences for authorised and forbidden sets of parties hold for the first
construction.

1. A ∈ Γ1 ⇐⇒
⋂

i∈AHi ⊂ H0,

2. B ∈ Γ0 ⇐⇒ H0 +
⋂

i∈B Hi = G.
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Proof. To show that
⋂

i∈AHi ⊂ H0, consider some g ∈
⋂

i∈AHi , then the codeword generated by g is
s0, 0, sB . Since the A shares are zero then s0 = 0 and hence g ∈ H0. Now to show A is authorised, consider
a codeword s0, 0, sB then g ∈

⋂
i∈AHi . By the assumption then g ∈ H0 and hence s0 = 0.

To show H0 +
⋂

i∈B Hi = G , consider some g ∈ G which generates the codeword s0, sA, sB . By the
assumption that B is forbidden there is some g ′ ∈

⋂
i∈B Hi which generates s0, s

′
A, 0. Letting g ′′ be the

element generating the difference of the two, ie. 0, sA − s ′A, sB , then g ′′ ∈ H0 and hence g = g ′ + g ′′ ∈
H0 +

⋂
i∈B Hi . Finally to show that B is forbidden. Given some s0, consider g ∈ G which generates

s0, sA, sB . By the assumption then g = g ′ + g ′′ for some g ′ ∈ H0 and g ′′ ∈
⋂

i∈B Hi where g ′ generates
0, s ′A, s

′
B and g ′′ generates s ′′0 , s

′′
A, 0. So taking the sum we find s ′′0 = s0 and hence g ′′ generates s0, s

′′
A, 0,

as required.

For the second construction we use subgroups G0, ... ,Gn of a main group G and consider their duals. With
Abelian groups we will also want an equivalent idea to that of the dual of a vector space. Hence we consider
the Pontryagin dual for groups.

Definition 7.4. The Pontryagin dual of an Abelian group G , denoted Ĝ , is the group of homomorphisms
G

γ−→ C∗, mapping to the multiplicative group of non-zero complex numbers. Otherwise written Ĝ =
Hom(G ,C∗) = {γ : G → C∗|γ(0) = 1, γ(a+ b) = γ(a)γ(b)}.

More specifically the mappings Πi : Ĝ → Ĝi , (to the restriction of Ĝ to the i-th coordinate), which maps
Π(α) = α|Gi

. In this case the code C is a subgroup of the duals Ĝ0 × · · · × Ĝn. The scheme we construct
now is actually equivalent to the first and hence its authorised and forbidden sets have the equivalent
requirements but on the groups Gi .

Lemma 7.5. The following equivalences for authorised and forbidden sets hold for the second construction.

1. A ∈ Γ1 ⇐⇒ G0 ⊂
∑

i∈A Gi ,

2. B ∈ Γ0 ⇐⇒ G0 ∩
∑

i∈B Gi = (0)1.

Short of giving a proof we give a sketch of the important ideas and leave some ends to be checked.
Considering the map Πi : Ĝ → Ĝi sending α to α|Gi

, the kernel, ker(Πi ), is the set of all α : G → C for
which α|Gi

= 1, the identity element in C. This is exactly the set Hi from the first construction, since
taking g ∈ Gi = G/Hi would give gHi = Hi , ie. the identity in G/Hi . So we have that Hi = ker(Πi ) and
hence the first equivalence in the Lemma is proven if we show that⋂

i∈A
Hi ⊂ H0 ⇐⇒ G0 ⊂

∑
i∈A

Gi ,

ie. that the requirements are in fact equivalent between the subgroups Hi and their quotients with G . This
also holds for the second equivalence which requires that

G0 ∩
∑
i∈B

Gi = (0) ⇐⇒ H0 +
⋂
i∈B

Hi = G .

We consider a final construction which describes the dual scheme of the second. Again for some subgroups
G0, ... ,Gn of G , but in this case we construct the code as containing any codeword (s0, ... , sn) ∈ G0×· · ·×Gn

such that
∑n

i=0 si = 0. It can be show that the access structure here is exactly the dual of the second

1The trivial group with only element 0.
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construction, that is, some set of parties A is authorised if and only if its complement is forbidden in the
second construction, and vice versa. This construction can be seen as the generalisation of the dual in a
linear scheme, and hence duality can be used for verifying the validity of shares.
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8. Applications

8.1 Overview

Secret sharing schemes and their adaptations as we have studied in this thesis can be used in a varied
range of applications. A protocol to share a hidden secret among multiple parties which can be recovered
only by a set of predefined parties can often be useful in real world implementations where it is most often
assumed that no one can trust all parties in a system. There are straight-forward use cases for this, like
the strengthened password system discussed in the introduction. But more interestingly secret sharing can
be used as a sub-protocol to allow a larger operation to take place. In this overview we will consider two
examples which show the utility of secret sharing. Both take advantage of the fact that secret sharing does
not require a trusted third party and does not assume there is trust between parties.

The first considers the problems of distributed computation and introduces a solution to the average
consensus problem with the use of additive secret sharing. The average consensus problem considers a set
of parties, or nodes, distributed in a graph system where two nodes can communicate with each other if
and only if they are neighbours. Each node has a secret value ai and the average consensus problem is
to find the average of these values 1

n

∑n
i=1 ai , whilst keeping each value secret. The protocol proposed in

[22] uses the idea of additive secret sharing. This is a scheme where the threshold is t = n and the shares
si are uniformly random elements in the domain which altogether sum to the secret,

∑n
i=1 si = s. It is

easy to see that even with n− 1 shares an adversary has no way of guessing the final share and hence the
secret is uniformly distributed. More interestingly this scheme is also homomorphic, in this case additively
since for some shares s1, ... , sn of some secret

∑n
i=1 si = s and another set of shares s ′1, ... , s

′
n for secret∑n

i=1 s
′
i = s ′, then if each respective share is summed, when the share sums are put together it finds∑n

i=1(si + s ′i ) = s + s ′. Now the protocol runs by first having each node distribute encrypted shares of
its secret value to its neighbours. Each node takes note of the encrypted shares and the process repeats
until some tracking variable converges. The required average of the values is then computed as an average
of the tracking variable, making use of the additively homomorphic property of the secret sharing scheme.
Note that this protocol does not require a trusted third party at any time and that the secret value of a
node remains secret as long as it has at least one honest neighbour. This sets a strong requirement for an
adversary to find the secret value of any node.

The second example we consider is the I Told You Tomorrow protocol from [1] which looks at time-
locking secrets over a blockchain. A time-locked secret is one which is fixed and then kept secret for a
predetermined amount of time. Commonly this delay is set as the time it takes parties to solve a puzzle or
problem which is assumed to take a certain amount of time. In this protocol the goal is to remove the need
for this puzzle and use economic incentives to control the release of the secret. Of special interest in this
example is the application to the blockchain environment and its use of smart contracts. For a minimal
introduction we will only say that a blockchain can be seen as a public ordered list of information blocks
which, once linked, cannot be changed, removed or hidden. Blockchains are intrinsically linked to some
sort of economic system since they are run by distributed systems which must be incentivised to act in a
certain way. A smart contract is the equivalent of a program set in a blockchain, with the notable property
that since it cannot be edited once it is submitted, then it can be trusted to run exactly as instructed. In
a way this acts as a third party trusted by all parties, since anyone can examine for them-self the program
of the smart contract and therefore know exactly how it will run. So the proposed protocol first distributes
shares of the secret to the parties and then use a smart contract to apply economic incentives and fines
to control the recovery of the secret. Of course it is assumed that the participants are rational, meaning
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that they choose to act in whichever way will give them the most economic value. So the secret is kept
time-locked with the assumption that recovering the secret has a certain value, and the implementation of
rewards and fines, for example a fine when a party is caught sending its share ahead of time.

8.2 Schoenmaker implementation

The goal of this section is to consider how the implementation of a PVSS scheme would fair. For this we
will consider the Schoenmaker scheme since it in a way stands as a basic scheme from which many of the
later PVSS schemes were built. It also relies on the standard DDH assumption in groups which can be
implemented without use of any additional libraries. We do note that the Schoenmaker schemes assumes
a Random Oracle Model for security, which is certainly not achieved with a program as we will construct.
This we overlook since our aim is to demo an implementation of the scheme and not to build a usable
version. The program is built in Python and is available on GitHub2 to be read fully. Our presentation of
the program will go as follows, first we consider the basic implementation of the security aspect, then the
objects involved in the scheme, that is, the parties, the dealer and the verifier, we consider the functions
they each have and finally we see how the demo puts these together for a working implementation of the
scheme.

One of the main reasons we considered the Schoenmaker as the ideal scheme to implement is the fact
that its security relies on the easy to implement DDH assumption. Other encryption methods also have
implemented libraries which we could have used, but the drawback would have been to lose some control
on the exact way in which the values are managed. Working with DDH in groups is instead possible to
implement directly and in the time-frame allowed was ideal in order to focus on other interesting parts
of the implementation. To this end the setup of the encryption is kept very simple. Working in Zp for
some large prime p is done by simply taking the modulus of any operation on the elements. Recalling the
security setup as presented in section 5.1.3, we wish to consider a cyclic group G of prime order q with two
generators g and h. To achieve this we make use of a pair of Sophie Germain and safe primes. In short, a
prime q is a Sophie Germain prime if 2q + 1 is also prime, in which case we call the later a safe prime
and denote it p. The utility of this pair of primes comes from the fact that the multiplicative group Zp

has order 2q, and hence there is a large subgroup of prime order q. So to find the required cyclic group all
that must be done is to find two elements of Zp of order q. Then considering the additive group in Zq is
equivalent to the multiplicative group constructed by taking the powers of these generators. For example
in the demo we have used the following parameters,

Listing 1: parameters for the group

1 #group pa ramete r s
2 params = { 'mod p ' : 1907 ,
3 ' o r d e r q ' : 953 ,
4 ' g e n e r a t o r h ' : 348 ,
5 ' g e n e r a t o r g ' : 483}

where 953 is a Sophie Germain prime, 1907 = 953× 2+ 1 a safe prime and 348 and 483 are generators of
order 953 in Zp. Of course this is sufficient for a demo so that the values are comprehensible when printed
on the screen, for a serious implementation far larger primes would be used. To conclude this section on the
security we note that these parameters are chosen ad-hoc and very much written into the program. That
is, they are hard-coded into the program and stored as parameters for every new object at initialisation.

2https://github.com/JeremyLvl/TFM
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This is a simpler approach than what would be required in a true implementation of this scheme where we
assume that the objects involved do not necessarily trust each other.

The objects involved in this implementation are straight-forward, there is a dealer, a party and a verifier.
The dealer is initialised with the group parameters and uniformly chooses a non-trivial random secret in
Zq, ie. not 0 or 1. From now on we will refer to such an element of α ∈ Zq as a safe number, since it is
for which the Diffie-Hellman assumption says it is infeasible to compute given gα or hα. Recall that in the
Schoenmaker scheme the secret is random and for the dealer to share a chosen secret it must broadcast
an additional value, which the parties can use along with the shared secret to recover the chosen secret.
We implement this feature into the voting program, see Section 8.3, where a vote is a chosen secret and
another random secret shared, so we do not implement it into the PVSS program.

After the dealer, the party objects are created. In their instantiations they each generate a key pair made
up of a safe secret key sk ∈ Zq and its corresponding public key pk = g sk ∈ Zp such that pk is not the
trivial element 1. Finally a verifier object is created and simply given the group parameters. Note that any
number of verifiers can be used but the representation is the same given only a single one. Also the verifier
do not necessarily need to be constructed this early on, ie. a new verifier can be constructed at any time
and asked to verify some broadcast information, as we will see.

Once the dealer has the public keys of the parties it may start the share generation and distribution process.
Given t the number of parties required for a reconstruction of the secret, the dealer constructs a polynomial
poly of degree t − 1 with random coefficients such poly(0) is the secret. Note that random values are
computed using numpy library’s randomness generation.

Listing 2: construction of secret polynomial

1 #gene r a t e random po l ynom ia l w i th p(0)= s e c r e t
2 c o e f s = np . random . r a n d i n t ( s e l f . q , s i z e=t−1)
3 c o e f s = np . append ( coe f s , s e l f . s e c r e t )
4 po l y = np . po l y1d ( c o e f s )

From this the dealer can compute the share for party i as pkpoly(i) mod p.

Listing 3: user share from secret polynomial

1 #compute each u s e r ' s s ha r e
2 i d x e n c = {}
3 f o r i d x i n i d x p k :
4 #compute sha r e as pkˆ{p ( i )}
5 pk = i d x pk [ i d x ]
6 i d x e n c [ i d x ] = pow( pk , i n t ( po l y ( i d x ) ) , s e l f . p )

Note that each party is indexed by the dealer by the order in which they are constructed, so each has a
unique index denoted idx . This indexing is used through-out by all objects to uniquely determine the parties.
An interesting question that arises when implementing such a scheme into a program is whether or not
the public keys can themselves be used as indexes. I believe this is the case since in a full implementation
the group Zp where the public keys are is assumed to be large enough to have unique public keys. In any
case this demo kept the use of indexes for parties and hence the dealer can store values for the parties in
a simple dictionary mapping an index to its value, for example idx enc for the encrypted share.
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Along with the encrypted shares, the dealer computes commitments for the coefficients coef of the polyno-
mial as g coef and a non-interactive zero-knowledge proof that it knows of the unique polynomial poly from
which the encrypted shares and commitments are computed. All these it stores in a dictionary broadcast
which will be the information publicly sent out to the parties and for any verifier to check.

Listing 4: proof of knowledge of secret polynomial

1 #element s f o r p r oo f o f knowledge o f p ( i )
2 W = np . random . r a n d i n t ( s e l f . q , s i z e=n+1)
3 idx A , idx B = {} , {}
4 f o r i d x i n i d x p k :
5 idx A [ i d x ] = pow( s e l f . g , i n t (W[ i d x ] ) , s e l f . p )
6 idx B [ i d x ] = pow( i d x p k [ i d x ] , i n t (W[ i d x ] ) , s e l f . p )
7
8 #gathe r e l ement s and hash f o r c h a l l e n g e
9 cha l = s e l f . hash ( [ idx X , i d x enc , idx A , idx B ] )

10
11 #re s p on s e s to c h a l l e n g e
12 i d x r e s p = {}
13 f o r i d x i n i d x p k :
14 i d x r e s p [ i d x ] = (W[ i d x ] − i n t ( po l y ( i d x ) ) ∗ cha l ) % s e l f . q
15
16 #broadca s t p r oo f as c h a l l e n g e and r e s pon s e
17 b roadca s t [ ' d e a l e r p r o o f ' ] = { ' cha l ' : cha l ,
18 ' i d x r e s p ' : i d x r e s p }

The proof of knowledge of the polynomial works as follows. Given the set of commitments to the coefficients
coef commits indexed by idx , the dealer computes the product of these each to the power of idx j for
j ∈ {0, 1, ... , t − 1}. Randomly selecting w1, ... ,wn ∈ Zq it then computes the required commitments
as idx A and idx B and finds the challenge by hashing the set of all encrypted shares, the product of
coef commits and idx A and idx B. This hashing is simply done by converting the above set of values to
bits, using the sha256 function from the hashlib library, and finally recovering an integer from the result of
the hash.

Listing 5: hashing function

1 #hash l i s t to i n t e g e r
2 def hash ( s e l f , t o h a s h l i s t ) :
3 t o ha sh = repr ( t o h a s h l i s t ) . encode ( ' ut f −8 ' )
4 return i n t . f r om by t e s ( sha256 ( to ha sh ) . d i g e s t ( ) , ' b i g ' )

Finally the responses are computed using the polynomial, the challenge and the randomly selected values
such that

idx respidx = widx − poly(idx) ∗ challenge mod q, (17)

forming the dealer’s proof as the challenge and the responses. Once the shares, commitments and proof are
publicly sent out in a broadcast, the verifier is tasked with checking the dealer’s proof of distribution. This
is done in a similar way to the construction of the proof above. The verifier computes the same product
of commitments to the coefficients. For idx A and idx B, since it does not know the set of n randomly

58



selected integers in Zq it must instead use the given responses and the fact that equation (17) holds if
the dealer is honest. It can then hash the recovered set of values and check that the result is equal to the
challenge given by the dealer.

With the verification of the dealer’s distribution done, the final step is for an authorised set of parties to
reconstruct the secret. In this demo we simply hard-code a single authorised set of sufficiently many parties
but the generalisation to any other threshold method is straight-forward. The reconstruction method would
not change and it would be a matter of starting the process for any authorised set of parties which wants
to.

The first step in the reconstruction is for each party in the reconstruction set to decrypt the share they
receive as their own from the dealer. As explained in the scheme this is done by computing the encrypted
share to the power of the inverse of the secret key in Zq, as shown below.

Listing 6: Share decryption

1 #dec r yp t s ha r e u s i n g i n v e r s e o f sk i n Z/qZ
2 s k i n v = pow( s e l f . sk , −1, s e l f . q )
3 s e l f . s h a r e = pow( s e l f . en c sha r e , s k i n v , s e l f . p )

Then the party must broadcast its share and a non-interactive zero-knowledge proof of correct decryption.
The latter follows a similar approach to the dealer’s proof except that only one value needs to be proved
accurate in this case. The proof and verification follow the standard DLEQ idea and we do not go further
into either. We however do note that the decrypted shares are shared publicly between the reconstructing
parties without re-encryption and hence anyone following the transcript of public information could recover
the secret. Although it is possible to re-encrypt the shares for the reconstruction step, this adds many
additional requirements since the shares must be encrypted for each reconstruction party and must each
be accompanied by a proof of correct encryption. For this demo we choose to follow the Schoenmaker
scheme directly and have parties publicly send their shares. We will notice that in the later demo of a
voting system this is no longer a problem since the shares themselves are not shared directly but instead
compounded together. That is, what is sent by the parties, which play the role of the talliers, is a share
for the total number of votes, hence publicly sharing poses no problem.

Assuming that each reconstructing party has now received the valid shares from the others, then the final
recovery of the secret can be carried out by each of these.

Listing 7: Secret recovery

1 def s e c r e t p r o d ( s e l f , i d x s h a r e s ) :
2 prod = 1
3 f o r i d x i n i d x s h a r e s :
4 #compute lambda from i n d i c e s
5 i n d i c e s = l i s t ( i d x s h a r e s . key s ( ) )
6 i n d i c e s . remove ( i d x )
7 lambdas = [ F r a c t i o n ( j , j−i d x ) f o r j i n i n d i c e s ]
8 L = m. prod ( lambdas )
9

10 #get sha r e as base o f power
11 sha r e = i d x s h a r e s [ i d x ]
12 base = sha r e
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13
14 #f i n d r oo t i f lambda i s f r a c t i o n
15 i f L . denominator != 1 :
16 denom inv = pow(L . denominator , −1, s e l f . q )
17 base = pow( share , denom inv , s e l f . p )
18
19 #mu l t i p l y p roduc t
20 prod = ( prod ∗ pow( base , L . numerator , s e l f . p ) ) % s e l f . p
21
22 #compute f i n a l s e c r e t
23 return i n t ( prod % s e l f . p )

This follows from the standard Shamir reconstruction, but some care must be taken when manipulating
values in the group Zp. For each party’s idx , share pair the lambda coefficient λ =

∏
j ̸=idx

j
j−idx is

computed. If this is a fraction then the power shareλ must be carried out in two operations. That is,
the inverse of the denominator is found and the base of the calculation is updated to be the share to this
power. Finally the value in the product is the base to the numerator of λ, and the final product is in fact
the secret.

Having seen how the PVSS scheme works we can consider a small demo which puts it all together. First
the user selects the number of parties and gives the indices for an authorised set of parties which will carry
out the reconstruction. The dealer is initialised with some random secret to be shared and the parties are
initialised with a secret key, public key pair. Of course in the demo we print the secret key for completeness
but the secret key is kept private and is not shared with anyone. The encrypted shares for each party
are broadcast along with a proof of correct distribution from the dealer. The verifier then validates the
correctness of this proof before the parties decrypt their own share. For the reconstruction, the authorised
parties broadcast their decrypted share and a proof of having correctly decrypted it. This is checked by
the verifier and once all the verified shares are sent, each authorised party can then reconstruct the original
secret.

Listing 8: Demo of PVSS scheme

1 number o f p a r t i e s : 4
2 a u t h o r i s e d p a r t i e s ( s ub s e t o f [ 1 , 2 , . . . , 4 ] ) : 2 ,4
3
4 d e a l e r i n i t i a l i s e d wi th sha r ed s e c r e t 1405
5
6 pa r t y i n i t i a l i s e d wi th sk : 499 , pk : 487
7 pa r t y i n i t i a l i s e d wi th sk : 456 , pk : 280
8 pa r t y i n i t i a l i s e d wi th sk : 291 , pk : 258
9 pa r t y i n i t i a l i s e d wi th sk : 571 , pk : 1189

10
11 sha r e f o r p a r t y 1 enc r yp t ed as 1540
12 sha r e f o r p a r t y 2 enc r yp t ed as 196
13 sha r e f o r p a r t y 3 enc r yp t ed as 282
14 sha r e f o r p a r t y 4 enc r yp t ed as 746
15
16 d e a l e r b r o ad c a s t s p r oo f o f d i s t r i b u t i o n
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17 v e r i f i e r has v a l i d a t e d the d e a l e r ' s d i s t r i b u t i o n
18
19 pa r t y 1 dec r yp t ed own sha r e to 1515
20 pa r t y 2 dec r yp t ed own sha r e to 636
21 pa r t y 3 dec r yp t ed own sha r e to 1887
22 pa r t y 4 dec r yp t ed own sha r e to 1200
23
24 pa r t y 2 b r oadca s t d e c r yp t ed sha r e as 636 and p roo f o f d e c r y p t i o n
25 v e r i f i e r has v a l i d a t e d pa r t y 2 ' s s ha r e
26
27 pa r t y 4 r e c e i v e d enc r yp t ed sha r e from 2 as 636
28 pa r t y 4 r e c o v e r e d s e c r e t 1405
29
30 pa r t y 4 b r oadca s t d e c r yp t ed sha r e as 1200 and p roo f o f d e c r y p t i o n
31 v e r i f i e r has v a l i d a t e d pa r t y 4 ' s s ha r e
32
33 pa r t y 2 r e c e i v e d enc r yp t ed sha r e from 4 as 1200
34 pa r t y 2 r e c o v e r e d s e c r e t 1405

8.3 A voting scheme

This implementation of Schoenmaker’s publicly verifiable secret sharing scheme can be adapted to make
a voting scheme. This voting scheme will allow for any number of voters to privately cast a 0 or 1 vote
such that the total number of each votes is found without having to decrypt any particular vote. This
is possible due to the homomorphic property of the Schoenmaker scheme as described in section 5.1.3.
The objects in this scheme are as follows. A voter is a dealer from the PVSS scheme to which we give
an index, since in the PVSS scheme there was exactly one dealer, whereas in this voting scheme we will
require many voters. Naturally the voter will share its vote like a dealer would share a secret in the PVSS
scheme. A tallier is a party in the PVSS scheme, although unlike a party which immediately recovers the
secret given the appropriate shares, it will instead combine the shares to construct a share for the sum of
the secrets. Finally there are two verifier objects, the PVSS verifier which checks the validity of the shares
sent by the voters, and a new voting verifier which validates that the vote is either 0 or 1. Of course it
would be tempting for a voter to vote a larger number than 1 or a negative number and bias the total,
which would otherwise go unnoticed since the vote is broken into shares.

Once all the objects are created, the voters can cast their votes as follows. The vote is either 0 or 1, for the
purpose of the demo it is randomly selected. The secret that is shared is actually not the vote itself, but a
safe secret in Zq and they are put together such that the tallier decrypts the sum of votes. The threshold
for the number of parties required to reconstruct the secret is set to be the number of talliers, although it
could certainly be envisaged that for a larger election we would want to only use a few talliers for each vote.
That is, each voter would either have its assigned subset of talliers or would set some threshold number of
talliers required to recover their vote. The voter therefore commits to its vote U and some secret C and
must prove that they are valid, ie. C = g s for some secret s ∈ Zq and U = g s+v for some vote v ∈ {0, 1}.
The proof works as follows, where the challenge is a hashing of the values to imitate the verifier sending a
random challenge.
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Listing 9: Proof of valid vote

1 #s e c r e t and vote
2 C = pow( s e l f . g , s e l f . s e c r e t , s e l f . p )
3 U = pow( s e l f . h , ( s e l f . s e c r e t+v)% s e l f . q , s e l f . p )
4
5 b r oadca s t [ ' s e c r e t c ommi t s ' ] = { ' s e c r e t ' : C ,
6 ' vote ' : U}
7
8 #proo f o f v a l i d vo te
9 w = r a nd i n t (3 , s e l f . q )

10 r = [ 0 , 0 ]
11 d = [ 0 , 0 ]
12 a = [ 0 , 0 ]
13 b = [ 0 , 0 ]
14 r [1−v ] = r a n d i n t (3 , s e l f . q )
15 d[1−v ] = r a n d i n t (3 , s e l f . q )
16
17 a [ v ] = pow( s e l f . g , w, s e l f . p )
18 b [ v ] = pow( s e l f . h , w, s e l f . p )
19 a[1−v ] = (pow( s e l f . g , r [1−v ] , s e l f . p )
20 ∗ pow(C , d[1−v ] , s e l f . p ) ) % s e l f . p
21 f r a c 1 = pow( s e l f . h , v−1, s e l f . p )
22 f r a c 2 = (U ∗ f r a c 1 ) % s e l f . p
23 b[1−v ] = (pow( s e l f . h , r [1−v ] , s e l f . p )
24 ∗ pow( f r a c 2 , d[1−v ] , s e l f . p ) ) % s e l f . p
25
26 cha l = s e l f . hash ( [ a , b ])% s e l f . q
27
28 d [ v ] = ( cha l − d[1−v ] ) % s e l f . q
29 r [ v ] = (w − s e l f . s e c r e t ∗ d [ v ] ) % s e l f . q
30
31 b roadca s t [ ' v o t e r p r o o f ' ] = { ' commit ' : [ a , b ] ,
32 ' cha l ' : cha l ,
33 ' r e s p ' : [ d , r ]}

In short, the values w , r1−v , d1−v ∈R Zq are chosen at random by the voter who sets as commitments

{
av = gw , a1−v = g r1−vCd1−v ,

bv = hw , b1−v = hr1−v
(

U
h1−v

)d1−v .

Hashing the values of a0, a1, b0, b1 to form a challenge c ∈ Zq the voter can then set the responses as

{
dv = c − d1−v mod q,

rv = w − sdv mod q.
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Finally the verifier can check 
c = d0 + d1 mod q,

a0 = g r0Cd0 , a1 = g r1Cd1 ,

b0 = hr0Ud0 , b1 = hr1
(
U
h

)d1 .
It can easily be checked that whenever v ∈ {0, 1} then the verifier’s check will hold. For example with
v = 0, then the voter’s response sets d0 = c − d1 mod q and r0 = w − sc + sd1 mod q and hence
checking the verifier’s second equation becomes

a0 = gw = gW g−sc+sd1(g s)c−d1 = g r0Cd0 .

The voting verification is carried out, along with the same verification of the dealer’s distribution, this for
the shares sent out by the voter. Next the talliers sum the shares they have received from each voter and
compute their product. Once decrypted, this forms for each tallier a share for the total number of 1 votes.

Listing 10: Share of sum of votes from shares of votes

1 #sum r e c e i v e d s h a r e s
2 prod = 1
3 f o r s ha r e i n s h a r e s :
4 prod = ( prod ∗ s ha r e ) % s e l f . p
5
6 #dec r yp t s ha r e sum
7 s k i n v = pow( s e l f . sk , −1, s e l f . q )
8 share sum = pow( prod , s k i n v , s e l f . p )

Finally the talliers count the votes. This first involves reconstructing the secret as in the PVSS scheme,
which recovers C = g s . Then the voter’s values of U = g s+v are combined in a product to find the vote
and secret sum. Finally the sum of votes can be found by dividing the latter by the former.

Listing 11: Computing the sum of votes

1 #gathe r s ha r e sums to r e c o v e r sum o f s e c r e t s
2 s e c r e t s um = s e l f . s e c r e t p r o d ( j d x v o t e s )
3
4 #compute p roduct o f U ' s to f i n d sum o f s e c r e t s and vo t e s
5 U prod = 1
6 f o r U i n l i s t ( idx U . v a l u e s ( ) ) :
7 U prod = ( U prod ∗ U) % s e l f . p
8
9 #compute sum o f vo t e s

10 s e c r e t s um i n v = pow( s ec r e t sum , −1, s e l f . p )
11 vote sum = ( U prod ∗ s e c r e t s um i n v ) % s e l f . p

Note that when we speak here of a sum of votes S , what we really have is hS , hence it remains to find the
discrete log to find the true number of votes.

Lastly we consider a full run-through of the voting demo with 3 voters and two talliers. In this demo we
let the vote be random between 0 and 1, of course the real vote should be entered by the party through
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a machine they trust. As explained earlier, each voter splits their vote into shares, encrypts them and
broadcasts a proof of having done so correctly. Once both the voting verifier and the PVSS verifier validate
each vote and its correct distribution, the tallier can put together their assigned shares to find a share for
the sum of the votes, and hence together they find the sum of votes.

Listing 12: Demo of voting scheme

1 Number o f v o t e r s : 3
2 v o t e r i n i t i a l i s e d wi th sha r ed s e c r e t 1000
3 v o t e r i n i t i a l i s e d wi th sha r ed s e c r e t 1827
4 v o t e r i n i t i a l i s e d wi th sha r ed s e c r e t 1385
5
6 number o f t a l l i e r s : 2
7 t a l l i e r i n i t i a l i s e d wi th sk : 568 , pk : 1633
8 t a l l i e r i n i t i a l i s e d wi th sk : 950 , pk : 1342
9

10 v o t e r 1 vo t e s 0
11 sha r e f o r t a l l i e r 1 enc r yp t ed as 1902
12 sha r e f o r t a l l i e r 2 enc r yp t ed as 610
13 v o t e r 1 b r o ad c a s t s p r oo f o f d i s t r i b u t i o n
14
15 v o t e r 2 vo t e s 1
16 sha r e f o r t a l l i e r 1 enc r yp t ed as 880
17 sha r e f o r t a l l i e r 2 enc r yp t ed as 159
18 v o t e r 2 b r o ad c a s t s p r oo f o f d i s t r i b u t i o n
19
20 v o t e r 3 vo t e s 1
21 sha r e f o r t a l l i e r 1 enc r yp t ed as 529
22 sha r e f o r t a l l i e r 2 enc r yp t ed as 1184
23 v o t e r 3 b r o ad c a s t s p r oo f o f d i s t r i b u t i o n
24
25 vo t i n g v e r i f i e r has v a l i d a t e d v o t e r 1 ' s vo te
26 PVSS v e r i f i e r has v a l i d a t e d v o t e r 1 ' s d i s t r i b u t i o n
27
28 vo t i n g v e r i f i e r has v a l i d a t e d v o t e r 2 ' s vo te
29 PVSS v e r i f i e r has v a l i d a t e d v o t e r 2 ' s d i s t r i b u t i o n
30
31 vo t i n g v e r i f i e r has v a l i d a t e d v o t e r 3 ' s vo te
32 PVSS v e r i f i e r has v a l i d a t e d v o t e r 3 ' s d i s t r i b u t i o n
33
34 t a l l i e r 1 counted 2 vo t e s i n favour , out o f 3 t o t a l
35 t a l l i e r 2 counted 2 vo t e s i n favour , out o f 3 t o t a l

We note that this implementation does not take into account votes and commitments entered by the parties
which do not validate. In the simple case of the implementation we set all parties to send correct shares
and their respective commitments. Although it is an interesting question as to what should be done about
a vote that does not validate, and what is considered not being valid. Of course a party could blame a
verifier for cheating, in which case multiple verifiers should be taken to the vote, since the probability that
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so many have been corrupt in the same direction is decreasing. In the case of a publicly visible code for the
voting platform, it may be best to only allow the party to enter their vote and let the program take care
of construction of the commitment and the rest. Anyone who would like to check the program is honest
may check the public code, but overall the commitments should always be valid. Of course this should be
a problem for only a very small proportion of the votes and as many paper voting systems currently do,
they could simply be counted as ‘unrecognised’.
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