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I. EXTENDED ABSTRACT

Machine learning (ML) has become an essential tool for
humans to get rational predictions in different aspects of their
lives. Hyperparameter algorithms are a tool for creating better
ML models. The hyperparameter algorithms are an iterative
execution of trial sets. Usually, the trials tend to have a
different execution time.

In this paper we are optimizing the grid and random
search with cross-validation from the Dislib [1] an ML library
for distributed computing built on top of PyCOMPSs[2] pro-
gramming model, inspired by the Maggy [3], an open-source
framework based on Spark. This optimization will use agents
and avoid the trials to wait for each other, achieving a speed-up
of over x2.5 compared to the previous implementation.

A. Background

1) COMPSs and PyCOMPSs: The COMP Superscalar
(COMPSs) is a task-based programming model that provides
a programming interface for developing applications and a
runtime system that exploits the inherent parallelism of ap-
plications at execution time. The main features of COMPSs
are: sequential programming, programmers do not need to
deal with parallel and distributed paradigms, agnostic of the
computing infrastructure, offers single memory and storage
space. COMPSs is a programming environment for developing
complex workflows for parallelization. At runtime generates a
task-dependency graph that encodes the existing parallelism of
the application workflow.

2) Dislib: The Distributed Computing Library (dislib) is
a machine learning library built on top of PyCOMPSs. This
library has a very similar interface to scikit-learn. Not only,
it can scale to large data, but also it is easy to use in high-
performance computing clusters. These features make it easy
to use for non-experts.

The main data structure of Dislib is the distributed arrays
(ds-array). The ds-array is a matrix divided into blocks that
will be stored remotely. All operations performed on the
ds-arrays are parallelized using PyCOMPSs. The degree of
parallelization is controlled by the size of the blocks in which
the ds-array is being split.

It has implemented several ML algorithms, that range
from Classification, Clustering, Regression, Decomposition,
Pre-Processing, Neighbouring, and Model Selection, including
the Grid and Random Search.

3) Agents and Nesting: The agent implementation in
COMPSs [4] aims at enabling the offload the execution of
functions of the embedded host to other nodes on Cloud-
Edge Continuum. The application will request the execution
of functions to the runtime. To do so, will show the execution
logic, dependencies, resource requirements, data locations.
After having received the request, it will invoke the runtime
system. This runtime will handle the task execution asyn-
chronously from the resource pool.

Having the agent implementation allows us to have nested
tasks. Therefore, we can make a task invoke new tasks. This
means that we have a parent task that invokes children. The
parent will have to wait for the child to finish before finishing
itself.

4) Hyperparameter Algorithms: Several algorithms are be-
ing used for hyperparameter [5] tuning, and also there are
different approaches for doing parallel hyperparameter opti-
mization that one can take [6]. However, we will focus on the
ones implemented in the Dislib ML library. The two algorithms
that we have are: Grid Search with Cross-Validation (CV),
this algorithm evaluates exhaustively all the combinations
of all parameters that have been given to it, and Random
Search CV, in this case only a random subset of all the
possible combinations will be executed. The core code of both
algorithms is shared. We will refer to it as Base Search CV.
The Base Search CV is in charge of the trial execution, which
consists of a loop that will launch all the trials that have to be
evaluated.

TABLE I. EXECUTION TIME OF THE GRID SEARCH CV WITH A

DIFFERENT NUMBER OF TRIALS COMPARING THE INITIAL VERSION WITH

THE NEW VERSION.

Number of trials Initial Version time(s) New Version time(s)

4 23.12 34.66
9 40.90 39.80
16 76.53 40.51
25 192.65 72.02
36 244.69 126.34

95



Fig. 1. Task view trace showing one iteration of the Grid Search CV
algorithm, using the initial implementation and four threads.

Fig. 2. Task view trace showing one iteration of the Grid Search CV
algorithm, using the new implementation and four threads

B. Implementation

1) Initial Version: The initial version had a problem which
was a synchronization at the end of the trails. The threads
had to wait for each other, hence making them idle, which
wasted time and resources. In Figure 1, we see one iteration
of the Grid Search algorithm. We can observe four threads that
are executing the trials. We see how the three last threads are
waiting for the first one to finish its trial to start the following
iteration.

2) New Version: The new version overcomes this limitation
by using nested tasks. In this version, we are creating a task
for each trial. Each trial will be able to invoke a new task
with the fit and score tasks of the model being evaluated.
This implementation will avoid the synchronization between
iterations. Hence, we will optimize the resource and time
utilization. In Figure 2, we have the first iteration of the Grid
Search CV execution using the new version. It is a bit hard to
visualize since we have that every new task will be scheduled
in a new virtual thread (but at any point in time, we only have
four). However, we can perfectly see that there are no threads
idle waiting for other threads to finish.

C. Execution Environment

The evaluation of this implementation is done in the
MareNostrum 4 Supercomputer. The configuration selected has
been two nodes, where one acts as a master and the other as
a worker. Each worker uses 48 CPUs.

D. Results

We have executed the Grid Search CV algorithm for
the Cascade Support Vector Machines model. We have done
several runs with a different number of trials to execute by
the algorithm. In Figure 3 we see that for a small number of
trials the new version does not improve. However, once we
start to have a bigger number of trials the new versions start
performing better, reaching a speedup of over x2.5. In Table
I, we reflect the exact times for both executions.

E. Conclusion and Future Work

In this study, we have been able to demonstrate that the
use of nesting has been successful at solving the problem

Fig. 3. Execution time of the Grid Search CV with different number of trials
comparing the Initial Version against the new Version.

of parallel trial execution on the grid and random search
algorithms. The solution has been able to achieve a speedup
over x2.5. This speedup is due to avoiding the synchronization
that was present in the initial version. This allowed us to take
advantage of the time and resources previously being wasted.

As for future work, we have also started and implementa-
tion of early stopping criteria, using COMPSsExceptions [7]
to emulate a wait for any call, which will also reduce the time
execution and resource utilization even further.
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