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Fig. 1. Some of the designs of violin plots we can find in the literature. Though the original violin plot design has boxplots, the ones
used in literature sometimes are enriched with beeswarms, or directly only show the density plot mirrored around an axis.

Abstract—One way to illustrate distributions of samples is through the use of violin plots. The original design is a combination of
boxplot and density plot mirrored and plot around the boxplot. However, there are other designs in literature. Although they seem
a powerful way to illustrate distributions, the fact that they encode distributions makes them difficult to read. Users have problems
comparing two different distributions, and certain basic statistics such as the mean can be difficult to estimate properly. To get more
insights on how people interprets violin plots, we have carried out an experiment to analyze how the different configurations affect
judgments over values encoded in those plots.
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1 INTRODUCTION

Violin plots are designed to provide information about the distribution 
of a set of items. Their original design [12] extended the boxplot design 
with a “density trace”, the smooth version of histograms, also known as 
density plots (or ridgeline plots), with the goal of comparing multiple 
distributions. Actually, the authors added the density plots around the 
boxplot twice, to facilitate comparisons. Violin plots are adequate 
when we are interested in how the values distribute, and the individual 
data is not so relevant. Many variations of violin plots have been 
proposed in the literature. From simple versions that do not include 
the boxplot (actually, are the most widespread version, if we search for 
images in the web), to other versions that include beeswarms. The most 
common representations, as well as some style variations, are shown
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Catalunya. 
E-mail: elena.molina.lopez@upc.edu.

• L. Viale is a student in Universitat Politècnica de Catalunya. 
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in Figure 1. Despite violin plots may do a good job to communicate
the shape of a distribution, they are difficult to interpret for most of the
people, especially when comparing different probability distributions
[13]. Obviously, the higher the exposure to this kind of charts, the better
should be at interpreting values. Unfortunately, violin plots are not very
popular and, though they may be suited for certain tasks, one might
wonder how accurate are judgments based on violin plots. To cast
more light on those issues, and complement previous research, we ran a
user study on the perception of different visual configurations of violin
plots for several tasks. In this paper, we reflect on the results obtained.
Our main contribution is a user study that covers different violin plot
variations and the analysis on how these configurations may affect
the estimation of mean, the maximum density, and the comparison of
different distributions, including bimodal distributions.

The rest of the paper is organized as follows. Section 2 reviews
previous work. Section 3 describes the hypotheses and the design of
the experiment. Section 4 presents our analysis of the gathered data.
The results obtained are summarized in Section 5. We analyze the study
with the opinions of the participants in section 6. Finally, we conclude
with potential lines for future research in Section 7.

2 PREVIOUS WORK

Data visualization practitioners have written all sorts of guidelines to
help other people to create their designs effectively. However, these
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guidelines, though very useful, are commonly quite general [20], and
do not help to understand how well do people interpret concrete charts.
In the same line, some researchers have also created general guide-
lines (e.g., [22]). Moreover, newer research has shown that one cannot
blindly adhere to those general principles. For example, using more
ink than the strictly necessary can help to communicate context about
the data [2], or to give a takeaway/actionable message [19]. There-
fore, it is common to design charts that include redundant information
(such as an overlaid beeswarm in a violin plot) to facilitate the data
interpretation. To entirely understand how well people will interpret
charts, user studies using crowdsourcing platforms such as Amazon
Mechanical Turk and Prolific have been demonstrated to be useful
to run these experiments, when taking enough precautions to avoid
careless users [10].

A recent survey by Franconeri et al. [7] overviews what has been
discovered in several research fields such that require visual communi-
cation of data. However, experimental data must be handled cautiously,
and not all the studies can obtain definitive conclusions. For example,
the controversial technique of pie charts have lengthily been criticized
because humans do not read angles very well. But new research has
shown that angle may not be the cue that humans use to estimate
quantities in pie charts [21]. However, though the experiments were
intended to discriminate among angle, arc length or area, it is still
unclear whether we do estimate values by measuring the area or the
length of the arcs in these charts.

Regarding distribution data, there are many ways to create compara-
tive visualizations, as surveyed by Blumenschein et al. [?]. They also
analyzed the utility given by experts to many of those, including violin
plots. Some representations have been studied from the perceptual
perspective. For example, vIbrekk and Morgan [14] studied the effect
of explanations and the lack of in the interpretation of many distribu-
tion representations (including box plots and symmetric density plots),
showing that they are difficult to read by either laymen and educated
users. Other distribution representations such as quantile dot plots [23]
and cumulative distribution plots [14] have also been successfully tested
for certain tasks that involve estimation of values under uncertainty
conditions [6, 17].

Hullman et al. [13] compared error bars, violin plots, and hypothet-
ical outcome plots (HOPs), an animated version of the samples of a
distribution. They found that error bars and violin plots were better
than HOPs at estimating individual values in one variable setups, but
HOPs seem superior as the number of variables to compare grows to
two or three. There is, however, a larger space for experimentation.
For example, we are not aware of perceptual studies evaluating the
performance when violin plots have different modes, such as tasks re-
quiring to compare two distributions, one being unimodal, and the other
bimodal. Or how the different designs (such as including a beeswarm)
may affect the estimation of values. Therefore, our purpose was to build
upon this kind of work to better understand how people read violin
plots of different kinds.

Though our work is centered in violin plots, it is also worth men-
tioning that other researchers have proposed alternative representations,
such as the beanplots [16]. Beanplots include the individual samples
as lines. Thus, they are in some sense similar to violin plots with a
beeswarm. Beanplots can be suitable for a low number of observations,
but will generate clutter if the samples are big. Moreover, to facilitate a
more direct comparison of two distributions, beanplots, can be designed
to hold two distributions. This is commonly handled by avoiding the
mirroring part, and showing a density plot in each part of the vertical
axis. The same strategy has also been used with violin plots. However,
this only scales for two distributions, and our goal was to deal with
the typical violin plots we find more commonly in literature. Other
extensions to violin plots are the so-called violin superplots [18], where
the authors include several distributions inside a violin, each one with
its shape, similar to a streamgraph, but in vertical.

In previous works, researchers have studied how different auxiliary
elements or configurations of the same plots may influence the accuracy
in the estimation of values. For example, Dı́az et al. found that a
gridline on top of bar charts was related to a better reading of values

in bar charts [3]. Fuchs et al. [8] found that Star glyphs were easier
to read under certain configurations, such as using outlines. Our work
is similar to these two approaches in that we examine how different
configurations of the same base plot (we call them auxiliary elements)
affect the accurate estimation of the values encoded. However, the
fact that we evaluate charts that represent distributions leads us to ask
questions that go beyond simply estimating values. We believe that our
results can be considered a step forward to get a proper guideline [4].

3 EXPERIMENT DESIGN

As already noted, violin plots depict distributions, and therefore, are
suitable to address tasks related to distribution characterization and
comparison [1]. We were especially interested in how people read
certain values, such as the mean, as well as how univariate and bivariate
distributions can be compared using violin plots. Moreover, we wanted
to explore how the addition of elements such as the boxplot (present
in the original violin plot design [12]) or beeswarm can help interpret
those values.

3.1 Research questions and hypotheses
After analyzing a set of designs found on the internet (see the following
subsection), we observed that there were many questions worth to
analyze. To define a finite set of objectives, we ended up restricting the
goals for the project. These are summarized in the following research
questions:

• Which of the auxiliary elements of the violin plot can help users
to be more accurate?

• Do bimodal distributions pose problems at perceiving violin
plots?

• Do violin plots at similar height facilitate the comparison of
distribution widths? And, as an extension, would different heights
make width perception more difficult?

To answer those questions, we need to define a concrete set of
hypotheses that can be individually tested through experimentation.
The list of hypotheses we defined is:

• H1: Mean estimation is easier with a boxplot as auxiliary element
than using a beeswarm.

• H2: Density comparison is easier when evaluating unimodal
versus bimodal than with two unimodal distributions.

• H3: Density comparison at a fixed point is easier when both plots
are at different heights (that is, distributions are quite different).

• H4: Probability (percentage) estimation in a bimodal distribution
generates more error than an unimodal distribution.

• H5: Beeswarms and boxplots facilitate the estimation of proba-
bilities (percentages).

• H6: It is easier to compare maximum density of violin plots when
they are placed at similar heights.

Note that, in an effort to make use of a simple language, we wrote
the tasks related to probabilities as percentages, since we expected them
to be more accessible. We also selected a dataset and tasks to make
them relatable, such as in the paper of Kay et al. [17] that presents their
research around the question of when is a bus arriving.

3.2 Violin plot designs
To determine what representations of violin plots were common in
literature, we first looked at research papers from EuroVis and IEEE
Vis conferences. However, the sample was minimal. Therefore, we
changed our strategy and performed a Google image search with the
term “violin plot”. After discarding the images that were not violin
plots, we selected the first 100 and gathered the following information:



Fig. 2. The design of the violin plots used for the experiment. Left image shows the simple violin plot, center shows the original violin plot, with a
boxplot, while the rightmost figure shows the violin plot with a beeswarm.

i) Single or multiple plots, and number of graphical representations,
ii) Symmetry and whether a symmetry axis was present, iii) Whether
multiple plots were drawn with a single or multiple colors and the
contour color, iv) Unimodal or unimodal and bimodal distributions, v),
Explicit encoding of outliers, vi) Orientation, vii) Auxiliary elements:
boxplot, beeswarm, or nothing.

We then proceeded to analyze the data and found that most of the
charts were vertical, symmetric, and had no symmetry axis. In addition,
the majority also consisted of at least two plots, filled with different
colors, and an outline. When extra elements were present, the most
common was the boxplot, and some cases showed a distribution of
samples in the form of points. On the downside, the search showed
many webpages that explained what violin plots are, and thus, they
are probably not highly representative on how they are used in a pro-
fessional environment, for example. We observed that Google Images
results exhibit a higher prevalence of violin plots with a boxplot than
what appears to be common in research articles. After discussing what
we found, we decided to test the following tentative configurations:

• Number of charts: 2.

• Orientation: vertical.

• Same color and different colors for the two charts.

• Color palettes: continuous and categorical.

• Outline: no outline, darker, and lighter than the area color.

• Background: white.

• Grid: Horizontal (with a low number of grid lines).

These different variations are the ones represented in Figure 1. To
further reduce the configuration space, the three authors analyzed sam-
ples of those variations individually, and agreed on a subset that was
not too large to perform a crowdsourced study. The set of variations
includes parameters in the following categories:

• Overall chart: we chose to include two vertical violin plots, to
provide comparison tasks.

• Graph elements: violin plots without boxplot (we call them sim-
ple), with boxplot, and beeswarm. All of them without explicit
ouliers.

• Chart design: categorical colors for the fill (the most common
configuration found), no outline (since it overlapped with the
beeswarm).

None of these decisions was taken arbitrarily. First, we needed to re-
duce the experimental space. But we also wanted to avoid the collision
of different design elements. Therefore, when the authors thought that

the addition of some graphical elements might generate unnecessary
clutter, we chose the simpler (visually) configuration. For example,
we skipped charts with outliers because they could be confused with
beeswarm points. Furthermore, when there were several options (e.g.,
on the concrete hues to use), we selected well-known sources. For
example, the colors of the violin plots were chosen from a categorical
ColorBrewer [9] palette. The resulting set of configurations used in the
experiment is depicted in Figure 2.

Fig. 3. Original (left) and data with a random decimal to get a smoother
distribution.

3.3 Data acquisition and processing

To generate the charts, we used data from Kaggle, more concretely, a
dataset of NBA players stats since 19501. We chose the height and
the position of the players as the variables to analyze. To get two
different distributions, we reduced the players positions from 7 (center,
center-forward, forward, forward-center, forward guard, guard, guard-
forward) to 2 (center, guard) by rewriting the first four to center, and
the last three to guard. As a result, we have 2466 samples in the center
position, and 1931 for guard. We also further analyzed the data to check
whether rounding to the closer value was present, which sometimes
happens with human-measured data [15]. Since there was some evident
rounding when plotting the values(see 3-left), we added a random
decimal to all values. As a result, the distribution looks more natural
(see 3-right).

3.4 Tasks

When designing the experiment, we tried to make tasks and data un-
derstandable and relatable. That is why we chose a dataset of NBA
players. Then, over different tasks that we initially considered, we
selected some that could be expressed with simple language. Thus, we
ended up defining the following tasks:

1https://www.kaggle.com/datasets/drgilermo/nba-players-stats



• Task A: Choose the player position in which there is a larger
density of players.

• Task B: Guess the percentage of players above a given height on
the left plot.

• Task C: Guess in which player position is more likely to belong
to a player with a given height.

• Task D: Determine the average height of players on the left plot
(closer to the axis).

3.5 Data gathering
Once the tasks were designed, we prepared an initial tutorial, that
describes what a violin plot is, shows the different configurations used
in the study and describes the whole process. We also prepared an initial
set of three charts, where the users had to solve the 4 tasks, so that
participants got familiar with the interface. In this case, for numerical
answers, we provided a set of options through radio buttons, instead of
leaving the user with a text box for a free answer. Each participant was
shown 24 charts (including control charts) sorted randomly, in which
they had to solve the 4 tasks.

A pilot study determined that the average time of completion would
be below 20 minutes. We assigned a payment of the minimum wage
estimated by Prolific2 (a service designed for crowdsourcing experi-
ments) per hour for 22 minutes. We configured the Prolific study to
have a 50% gender balance, and made it available for all countries in
the world where Prolific is deployed, but requiring English knowledge
to perform the study. Moreover, we started the project around 2 pm
in Central European Summer Time (UTC +2) so that people both in
Europe, Africa, and America could answer the questionnaire.

Without considering a few participants who skipped the study or
timed-out (Prolific set a maximum amount of time for the study above
50 minutes to detect participants who did not continue), we got 48
answers on Prolific. We also passed the link to the experiments to our
friends and colleagues and got 23 extra answers.

4 DATA ANALYSIS

4.1 User filtering
To guarantee the ecological validity of the samples, researchers often
perform a set of control tests before and during the experiments. The
first one is intended to determine that participants have understood their
tasks. The second one tries to avoid users that randomly answer to
get the money in the minimum amount of time. Our initial control
did not work due to a bug, so we got users that would not get in other
circumstances. Luckily, this helped us to see that we had been very
strict in the control tests. We also realized that the control tests during
the experiment (that consisted of showing the same chart more than
once, swapping the plots) were not completely trustworthy. The reason
behind is that, except for the qualitative questions, the quantitative ones
may be slightly different, not necessarily due to a careless behavior of
the participant, but because some questions were difficult to answer
properly. Therefore, removing all participants that did not answer a
control chart properly would leave us with an unrepresentative set of
the whole population.

The errors of the different introductory tasks using the unfiltered
sample are very high, especially for some charts. In light of such results,
we proceeded to examine those tasks more carefully and decided a new
strategy to filter users based on the perceived difficulty. Hence, we
relaxed our initial restrictions in a validity test that filtered out partic-
ipants. To this end, we defined a task as correct when the following
conditions were satisfied: Task A: Maximum one error in task A, Task
B: Up to one error (answers with absolute error smaller or equal to
5 units count as correct), Task C: Up to one error, Task D: No error
(imprecision of up to 5 units).

Once we established the correctness factor for each task in the
introductory questionnaire, we considered that users failing more than

2https://app.prolific.co/

two of these tasks should be discarded, either because they had not
understood the problem, or because they were clicking through. This
reduced the available sample set from the initial 71 valid users to
46. This way, the errors in the tutorial diminished substantially. For
example, the errors in the qualitative questions reduce to a quarter (task
A) or roughly half (task C).

Once the users were accepted to the experiment, it is known that we
may check whether some of them might be doing it as fast as possible,
just to get the money, and without taking care on the instructions [10].
As a result, we analyzed the answers to try to avoid careless users. To
address this, we introduced the so-called control charts. These are plots
that had appeared previously, to check whether the participants were
consistent with their answers. Ideally, users would respond the same.
Unfortunately, there were some large unbalances because the tasks
were complex.When analyzing the charts with higher number of errors,
we found that these were difficult to respond. This happens in three
cases: unimodal figures with similar widths in task A, plots at similar
heights in task C, and average estimation in bimodal figures (task D).
We therefore classified the control charts among easy and difficult and
allow the users to err in the difficult ones but not in the easy ones.

After both filtering processes, we ended with 39 users (14 female) of
ages 20-64 (average 31). Although we had selected a gender-balanced
set on the Prolific platform, adding the other participants among friends
and colleagues resulted in a non-balanced sample (27 female out of 71).
The filtering process left the percentages almost equal.

Fig. 4. Error distribution for task A for the different factors. From these
plots, it seems that the variable mode may be relevant.

4.2 Data analysis techniques
Before starting with our data analysis, we checked for data normality,
we found that none of the answers had a normal distribution. As a result,
we could not analyze the data using ANOVA as usual. To facilitate the
reading, we are going to first explain the modelling process of each
task, and then will summarize the conclusions for the whole set of
hypotheses.

4.2.1 Modeling of task A: Larger density detection
Task A is qualitative. Therefore, we can calculate the error as a binary
variable. To evaluate the task, we adjusted a generalized linear model
of binary response against the explaining variables. We consider the
explaining factors to be: a) the auxiliary element (simple, boxplot, or
beeswarm), b) the mode of the chart (bimodal-unimodal, unimodal-
unimodal, and unimodal-bimodal), and c) the relative position of the
charts in the Y dimension (increasing, decreasing, or similar height).
We can see the distributions of errors in Task A in Figure 4.

To determine which factor categories are related with the response
variable, we applied a chi-square test. The result for task A is that
mode is the only relevant factor (p-value below 0.05). After this initial
test, we analyzed the data using a complete model with interactions,
and then without interactions. The data was analyzed using a binomial
distribution and logit link [11]. The result of this analysis is that the
parameters unimodal-unimodal and bimodal-unimodal are relevant (p-
values of 0.00 and 0.01, respectively). The coefficients in log-odds
terms indicate that these have an error probability of 0.25 and 0.17,
respectively.



Fig. 5. Error distribution for task B for the different configurations. The dashed lines indicate the [−5,+5] error range already mentioned. While
configurations seem not influence the error (left), the heights distribution of the charts look slightly different (center). And crearly, the distributions of
unimodal-unimodal answers are clearly above the others (right).

4.2.2 Modeling of task B: Players above a given height
Since task B has continuous response, we analyzed the data using
a normal lineal model, where the response variable is the difference
between the correct answer and the one by the user in this task. An
initial descriptive analysis is shown in Figure 5, where we use violin
plots to show the error distributions of the answers in task B for the
three different factors. Most of the answers fall in the acceptable error
range (indicated by the dashed lines) for the different configurations
(left). If we analyze considering the different heights, the answers
paint a different picture: we see multimodalities, and the distributions
are not so smooth. A larger range in the responses appears when
the plots are in increasing heights (from left to right). On the other
hand, when the plots are in decreasing height, the errors exhibit less
range, but with a positive bias, which seems to indicate that users
tend to underestimate the percentage of players over a certain value.
Finally, when both plots are at similar height, there appears to be an
overestimation of values above a certain point in the Y axis. But the
significant differences appear on the mode plot (right), where the error
distribution of the unimodal-unimodal configuration is clearly from
the others, with larger error ranges. After this descriptive analysis,
we analyzed the results with an additive model with three explaining
factors. The results showed that when the heights are similar, the mode
variable explains most of the error in task B. To confirm this result, we
analyzed the data using a stepwise model ( [5]) with interactions. The
results showed that the mode variable is not significant by itself, but it
is when interacting with the relative position.

4.2.3 Modeling of task C: players positions and heights

Fig. 6. Error distribution for task C for the different factors. None of the
factors seem to have an influence in this task.

Like in the case of task A, we begin with a mosaic plot of the errors
to understand their distribution in Figure 6. For the case of the auxiliary
element, the configuration with larger relative error is beeswarm, while
boxplot and simple violin plots have a similar number of errors. Regard-
ing the mode (center), the one that exhibits a smaller number of errors

is the unimodal-unimodal configuration. Finally, the relative positions
of the figures do not show large differences in the responses. We then
proceeded to analyze the different categories using a chi-square test,
and none of them showed significant results. The next analysis was
a logit link. With a complete model without interactions, no variable
seems significant. However, the model with interactions showed a
significant interaction between the mode at unimodal-unimodal level
and the relative position at similar heights. The posterior stepwise
model did not show significance for any variable. Finally, we validated
the stepwise model using an analysis of Pearson residues versus the
linear predictor. We found that residues had concrete values, which is
anomalous and therefore prevents us to validate this model.

4.2.4 Modeling of task D: Average heights
The task D can be modeled analogously to task B, since both result
in continuous answers. The error distributions, faceted by the differ-
ent factors, is shown in Figure 7. For the auxiliary element, we see
distributions with characteristic variations that seem to indicate that
errors concentrate mostly in certain values. Note that, however, most
of the errors are concentrated in the acceptable intervals. The relative
height (center) exhibits the same behavior. On the contrary, the mode
factor (right) is different. The unimodal-bimodal distribution (rightmost
chart) is not as smooth as the others, though its values are closer to
zero. Bimodal-unimodal responses show some degree of polarization,
with a second mode larger than zero. This seems to indicate an un-
derestimation of the average in the bimodal distribution. After this
initial evaluation, we proceeded to analyze the data using an additive
model without interactions. The result is that mode variable in the value
unimodal-bimodal is significant to explain the error in task D (p-value
0.00). This was followed by a stepwise modeling, that shows that the
only variable included is the mode. This means that the errors seem
not to be influenced neither by the auxiliary element nor the relative
position of the figures.

5 RESULTS

After modeling all variables, we are going to see what is their meaning
regarding the hypotheses we defined.

H1: Estimating averages in a chart with boxplot is easier than
without auxiliary element, or with a beeswarm. We expected box-
plots to help determine average values because they explicitly encode
the median, which, in the representations used in the experiment, were
quite similar to the mean. However, the stepwise model that describes
the behavior of the error in task D shows that the average estimation
model does not include the boxplot variable. Descriptively, we can see
that beeswarms seem to produce more biased error estimations. This is
confirmed by the coefficients from the additive model, but the numbers
are not significant. As such, we cannot accept this hypothesis.

H2: Comparing widths between unimodal and bimodal plots
is simpler than with two unimodal plots. The goal of this analysis



Fig. 7. Error distribution for task D for the different factors: auxiliary elements (left), relative height (center), and mode (right).

was to determine whether a bimodal distribution is more difficult to
read than an unimodal distribution. We realize this by analyzing the
estimation of average or percentage in these two distributions. This is
achieved both in Task A and in Task C. In A, the widths to estimate
where at different heights, while in C, we were asking the width for a
certain, fixed Y point. Since in our samples the widths were clearly
different, the results seemed trivial, but we analyzed them thoroughly.
We performed a lineal modelling of the errors in tasks A and C. After-
wards, we applied the stepwise methodology to both complete models.
The result is that the coefficients associated to the mode variable are
significant in both models. This makes us to accept this hypothesis for
our case.

H3: Density comparison at a certain Y point is simpler when
figures are placed at different heights In this case, we expected
that height would be a significant variable. Unfortunately, the results for
tasks A and C are not conclusive, so we cannot accept this hypothesis.

H4: Estimating percentages or averages in bimodal plots is
more difficult and generates larger errors This task is related to
errors in tasks B and D. In both cases, the modeling procedures found
that the mode variable is relevant. Thus, we can accept the hypothesis
that there is a difference in percentage and average estimation between
unimodal and bimodal figures. To determine whether this is a positive
or negative difference, we need to get deeper into the analysis. For
model B, the error distribution of bimodal plots seems to be centered in
0, while unimodal charts show the errors centered around the absolute
value of 5. But stepwise modeling shows that this error depends on the
relative position of the figures. However, the analysis showed that we
cannot conclude this. On the other hand, mean estimation (task D) also
exhibits larger errors in bimodal distributions. The error seems to be
centered at 3 units (absolute value) while for unimodal distributions the
error is centered at 0. In this case, it is clear that the estimation error is
larger for bimodal distributions than for unimodal ones. As a result, we
can accept hypothesis H4 for the average estimation, but it is unclear
the concrete percentage.

H5: Addition of a beeswarm or boxplot improves the accu-
racy in density/percentage estimation This hypothesis is analyzed
through task C. But we showed previously that this has not led to
conclusions because the modeling did not present a proper validation.
Therefore, we can only establish that beeswarm charts produced a larger
error in this task than the other auxiliary elements. Note that we also
found the model was not acceptable, so it is difficult to extract relevant
conclusions.

H6: Similar height in two unimodal figures facilitates the maxi-
mum density comparison This hypothesis refers to the error in task
A. Here, we found that the interaction between mode and relative posi-
tion is not significant. But when estimating the maximum density, we
found that the error depends on the auxiliary element. More concretely,
a violin plot without auxiliary elements was difficult, as well as charts
with boxplots. On the contrary, beeswarms showed more accuracy.

6 STUDY ANALYSIS

After the tasks were answered, we also posed a questionnaire to the
users to evaluate their degree of understanding and satisfaction on the
study. This was designed as a regular form with answers in a 1-5 Likert
scale, where 1 means strongly disagree and 5 means strongly agree.
The questions asked were: Q1: I have understood the tasks to perform,
Q2: It has been easy to complete the tasks, Q3: I am satisfied with the
amount of time spent to complete the tasks, and Q4: Open comments.

Most of the people declared they understood the tasks (strongly
agree: 20.51%, agree: 64.10%, neutral: 12.82%). Only a tiny bit rec-
ognized not proper understanding (disagree: 2.56%, strongly disagree:
0.00%). Participants also found them easy to solve (strongly agree:
7.69%, agree: 51.28%, neutral: 17.97%), but around one quarter found
them complex (disagree: 23.08%, strongly disagree: 0.00%) The ma-
jority of the participants were also satisfied (strongly agree: 20.51%,
agree: 53.85%, neutral: 15.38%), and only a tiny amount declared not
having understood them properly (disagree: 10.26%, strongly disagree:
0.00%). Unfiltered sample showed roughly the same percentages.

7 CONCLUSIONS AND FUTURE WORK

After the experiment and the evaluation of the results, it appears that
there are more open questions than before. Although the study revealed
several insights, some of them opposite to our beliefs, there is still a
lot to learn about how people interpret violin charts. We found that
mixing unimodal and bimodal charts leads to more difficult tasks than
similar unimodal distributions, which are more common. We also found
that the relative height seems not relevant to determine the maximum
density point, and that boxplots do not seem to help in estimating
averages. Thus, our advice (that still requires further experimentation)
would be not to use violin plots for bimodal distributions, and keep the
design simpler, without boxplots.

Our research questions revolved about what components of violin
plots are more useful to interpret distributions. However, we were
unable to answer most of the questions through our study. Though
the initial set of 71 participants seems big enough, the user filtering
process let us with a total of 39 participants. One notable result is that
the distribution of the answers was not normal. This prevented us to
use a typical ANOVA modeling and had to turn to more sophisticated
statistics such as the logit link and the stepwise models.

We think that progress can be made in two different directions. First,
we could get more participants into the study to solve some partial
results (e.g., beeswarms seem to produce more errors). And we could
generate new studies with the more promising configurations and get
bigger sample sizes.
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