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Resum 

 
Durant els últims 30 anys, el sector sanitari ha vist una sorprenent evolució en 
molts dels seus camps, especialment pel que fa a la digitalització de dades 
clíniques, el que ha comportat una gran millora de l’eficiència, no només pel 
relatiu a diagnosis com a tal, sinó també en termes d’emmagatzematge de 
dades i el seu subseqüent anàlisis.  La capacitat d’emmagatzemar, compartir i 
accedir a dades mèdiques digitals ha demostrat ser clau quan es tracta de 
distribuir expedients mèdics de pacients independentment de la seva 
localització, disposar  de dades mèdiques a temps real, portar a terme estudis 
de mitjà i gran abast, així com per la detecció, diagnosi i potencial prevenció 
per a futurs casos, entre d’altres. 
 
Malgrat tot, aquesta digitalització està normalment limitada a centres mèdics o 
ambients hospitalaris, encara que moltes dades mèdiques són també 
generades fora d’aquests, mitjançant mesures individuals a casa amb aparells 
mèdics més rutinaris com termòmetres, tensiòmetres, bàscules, etc. Per tant, 
en la majoria d’aquests casos, els resultats són solament observats i analitzats 
pel pacient, i no digitalitzats per a posteriors usos o avaluació per part de 
professionals sanitaris, el que comporta una pèrdua substancial d’informació 
que podria ser útil per a diagnosis remota o per multitud d’usos beneficiosos 
en altres àmbits. 
 
L’anterior problema estableix les arrels d’aquest projecte, l’objectiu del qual ha 
estat crear una aplicació mòbil, desenvolupada en Flutter, que permeti als 
usuaris connectar els seus dispositius mèdics, prendre mesures, 
emmagatzemar-les i accedir al seu registre des d’una base de dades FHIR, 
seguint el format de dades mèdiques estandarditzat HL7 FHIR, per tal que 
aquestes dades puguin ser utilitzades per un professional sanitari per a 
seguiment remot de l’estat de salut del pacient i potencial detecció 
d’anomalies, entre una llista d’altres funcionalitats que també han estat 
afegides per aportar un valor afegit a l’aplicació. 
 
Aquest document exposa detalladament com s’ha complit aquest objectiu, des 
de la teoria darrere l’emmagatzematge i gestió de dades mèdiques, fins com el 
producte final s’ha desenvolupat en l’àmbit tècnic, així com algunes idees pel 
relatiu a línies de continuïtat que es podrien seguir per a futures millores de 
l’aplicació. 
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Overview 
 

 
Over the last 30 years, healthcare has seen an astounding evolution in a vast 
scope of its fields, especially as far as the digitalization of clinical information is 
concerned, which has led to a massive improvement of the efficiency, not only 
relative to diagnosis itself but also in terms of data storage and the subsequent 
analysis of the latter. The ability of storing, sharing and accessing digital 
medical data has proven to be key when it comes to distributing patients’ 
health records regardless of location, getting real-time health data, carrying out 
medium and large-scope studies, as well as premature symptoms detection 
and the following respective diagnosis and potential prevention for future 
cases, among others.  
 
However, this digitalization is usually limited to medical centers or hospital 
environments, yet medical data is often generated outside these as well by 
means of individual self-measurement and more rutinary medical devices such 
as thermometers, pressure bracelets, scales, etc. Thus, in most of these 
cases, the results are just observed, analyzed and stored momentarily by the 
patient, and not digitalized for further uses or evaluation by health-care 
professionals, leading to a loss of information that could be useful for remote 
diagnosis or other beneficial uses in different realms. 

The previous problem sets the roots for this project, which aim has been to 
create a mobile application, developed using Flutter, that allows users to 
connect their medical devices, take measurements, store and access their 
previous measurements’ data from a FHIR database in the official medical 
standardized data format HL7 FHIR so that this data can be used by a 
healthcare professional to remotely keep track of a patient’s health state and 
potentially detect anomalies, among a list of other functionalities that have 
been added as well to provide an added value to the application. 

This document closely covers how this objective has been accomplished, from 
the background theory of the storage and management of medical data, to how 
the final product has been achieved technically, and also some ideas on the 
direction that could be taken for future improvements of its functionalities and 
usefulness. 
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INTRODUCTION 
 
The digitalization of medical data has proven to be a catalyst regarding the rate 
of improvement in most fields of modern medicine, enabling the healthcare 
industry to reach a high level of automation and data connectivity that greatly 
reduces the complexity that might initially be associated to certain tasks, such 
as diagnosis or large population studies. The digitalization of patients’ health 
records grants healthcare professionals instant access to the most up-to-date 
data, with a complete traceability of previous diseases, treatments, clinical 
measurements, among others, which directly translates to more accurate future 
prescriptions and more precise and convenient refill requests, for instance. As a 
summary, clinical data digitalization enables a more holistic approach as far as 
decision-making approaches in different fields of medicine is concerned. 
 
The motivation for this project comes from the detection of a loss of potentially 
useful data coming from healthcare-related measurements carried out outside a 
medical context or, generalizing, not carried out by healthcare professionals that 
would put them in the patient’s health record afterwards. An example would be 
an individual taking his body temperature with a thermometer or any other 
rutinary medical device that is generally owned by most people in a regular 
basis; the result of the measurement might be particularly useful for him, but it 
won’t be registered anywhere and so, it will be out of reach for his doctor, for 
example. This might not be a big deal in a considerable percentage of 
situations, but there are some in which it would, such as when considering 
individuals with some pathological conditions both physical and mental such as 
reduced-mobility or agoraphobia, among others, which might lead to the 
situation where it’s very difficult for a doctor to keep track of the health state of 
his patient. So, in general, it can be stated that the objective of this thesis is to 
provide a base framework for the utilization of daily health-related data 
generated by simple medical devices for wider case, such as remote diagnoses 
or big data studies. 
 
BeHealthApp is a mobile application that contains a set of tools which cover the 
previously mentioned need, enabling a user to connect medical devices that 
allow a Bluetooth connection to his phone, and store the results in the official 
standard for the exchange, integration, sharing and retrieval of electronic health 
information (HL7). It also includes some features for automatic detection of 
health anomalies and groups management where a data manager can access 
to data of his assigned patients to ensure the normalcy of their measurements, 
allowing a certain degree of remote diagnosis in some particular cases.  
 
To achieve the mentioned product, it has been necessary to develop a backend 
with NodeJS, that acts like a gateway between the mobile application made with 
Flutter and an external HAPI FHIR HL7 database that stores the information 
related with the medical measurements of the patient, and at the same time is 
connected to a non-relational database based on MongoDB. The latter stores 
the user’s information and other necessary data that cannot be stored in the 
former. Please, note that more specific information about every single 



  

component regarding the architecture of the solution will be closely approached 
in separate sections of this document.  
 
The document has been divided in three main chapters approaching the 
solution from different perspectives.  
 
In the first chapter, the reader will find all the theory behind the storage and 
management of electronic health information used in the modern industry, 
especially emphasizing on how individual measurements of a patient are stored 
as for the standardized structure and the definition of the attributes, especially 
those that have a remarkable importance for this specific solution. 
 
In the second chapter, a close look to the functionalities of the application 
together with a deep analysis of the architecture used to carry out the software 
to achieve the desired results is carried out. All the technical descriptions 
behind the product can be found in this chapter, including data management 
information, UI creation and security implementations. 
 
And finally, together with the conclusions, an continuity analysis is carried out, 
giving some ideas on how future versions of the application should evolve to 
improve its degree of usefulness. 
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CHAPTER 1. MEDICAL DATA MANAGEMENT 

 
So far, the importance of the digitalization of medical data has already been 
discussed, but one already finds a big challenge in the very first step of the 
mentioned process; how can this data be stored in an efficient, scalable, 
traceable and, if possible, simple way so that the given data can be accessed, 
shared and globally used within the healthcare industry? To begin with, the data 
must be clearly stored following an international standard to make sure 
everyone can use it equally without incompatibility problems. A standard is 
simply a commonly agreed way of carrying out something; in this case, to 
structure electronic healthcare-related data. 
 
Another immediate question that might come to one’s mind, once the data has 
been generated and stored, is how can this data be analyzed and used for 
practical cases.  
 
The aim of this first chapter is to carry out a deep analysis of the possibilities 
that the current standard for medical data storage offers, and to clarify how the 
solution that this project sets out will use it in this first version. 
 

1.1. How medical data is stored: The HL7 FHIR Standards 

 
The set of standards that were created by HL7 International to fulfil the 
mentioned purpose are the HL7 Standards (Health Level Seven).  
 
HL7 provides a framework for the exchange, integration, sharing and retrieval of 
electronic health information. By means of this set of international standards, 
healthcare providers are able to transfer clinical and administrative data 
between software applications. These standards contain the definition of how 
information is packaged, setting the language, structure and data types that 
have to be used to ensure the seamless integration between systems. HL7 
standards support, not only clinical practice data, but also the delivery, 
management and evaluation of an enormous variety of health services. This 
ability to exchange information should help to minimize the tendency for medical 
care to be geographically isolated, leading to the possibility of carrying out 
large-scale studies involving worldwide data. 
 
Furthermore, the HL7 Standards are recognized as the most commonly used in 
the world. For this reason, the medical data coming from devices 
measurements that the application developed in this project will follow these 
standards, giving the solution a large scope of possibilities in terms of 
interconnection and integration in the healthcare industry. As it will be closely 
approached in a following section, this project will specifically use the FHIR 
(Fast Healthcare Interoperability Resources) implementation. 
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The most commonly used and implemented standards and methodologies 
within the HL7 set are the following ones: 
 

• HL7v2 Messaging Standard 

• HL7v3 Messaging Standard 

• Clinical Document Architecture (CDA) 

• Continuity of Care Document (CCD) 

• Structured Product Labeling (SPL) 

• Clinical Context Object Workgroup (CCOW) 

• Fast Healthcare Interoperability Resources (FHIR) 

• Arden Syntax 

• Claims Attachments  

• Functional specification of Electronic Health Record (EHR) and Personal 
Health Record (PHR) systems 

• GELLO 
 
To individually define each of the implementations in a close manner is not 
within the scope of this project given the fact that, as mentioned before, the 
proposed solution only handles relatively simple data coming from rutinary 
medical devices using the HL7 FHIR standard. However, it’s especially 
interesting to mention some of the particularities that some of them offer, 
considering that they all share the same common purpose of allowing the 
exchange of electronical medical data.  
 
HL7v2 and HL7v3 will be addressed individually and down to the last detail 
along the next chapters but, essentially, they are messaging standards that 
define the basis of an interoperability specification for health and medical 
transactions, setting the roots for other HL7 standards that handle data in a 
more specialized manner as far as its type and applications are concerned. 
Some examples of the latter are the CDA standard, which sets a model based 
on HL7v3 (consequently, in XML, as it will be seen) for clinical documents, 
CCD, which consists on a US specification for the very specific aim of 
exchanging medical summaries, based on CDA, SPL for encoding all the 
published information relative to a particular medicine, CCOW, used for the 
visual integration of user applications, or GELLO, which is an interoperability 
specification for the visual integration of user applications. 
 
So, throughout the following chapters, only HL7v2, HL7v3 and, specially, FHIR 
will be covered. 
 

1.1.1. HL7v2 and HL7v3 

 
Although the solution proposed in this project opts for using the FHIR 
implementation for a list of reasons that will be covered in the following section, 
it is far from being the most worldwide used implementation of FHIR Standards 
for electronical medical data. The HL7v2 is arguably the most widely 
implemented so far and, of course, it allows the exchange of clinical data 
between systems. It is designed to support both a central patient care system 
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and a more distributed environment where data is stored in departmental 
systems.  
 
Before HL7v2, every interface between systems had its own specifications as a 
consequence of the continuous creation of custom designs, constantly requiring 
programing on the part of sending and receiving application vendors to make 
them compatible. So, because of the lack of a standard collection of patient 
attributes or other health-related information that could allow a unification 
leading to a compatibility between systems, interfaces were expensive. 
 
Note that rarely did commercial teams share proprietary data and information 
on how their application are built, which was the main reason why it was so 
difficult for other teams to build compatible applications. 
 
But fortunately, as has already been mentioned, some like-minded healthcare 
community members finally agreed on creating a volunteer group to make 
interfacing easier, leading to the creation of HL7 and its first official version 
HL7v2. 
 
The Version 2 Messaging Standard was first released in October 1987 as an 
Application Protocol for Electronic Data Exchange in Healthcare Environments. 
Version 2.7 is the last update to the Version 2 Standard, and it was published in 
2011. Generally, all 2.X versions are backward-compatible with earlier versions, 
as the HL7v2 standard allows applications to ignore message elements they do 
not expect. HL7v2 targets both healthcare IT vendors and healthcare providers.  
 
Systems using HL7v2 transmit ASCII text-based messages containing 
information about a great variety of events to one another. Examples of these 
events could be when the result of a measurement carried out on a patient has 
to be stored, when a doctor prescribes medication to a patient, or other less 
directly clinical-related data, such as when a patient is admitted to a hospital.  
 
In Fig. 1.1, the structure of an HL7v2 message can be seen, specifically it 
represents the particular use case of an ORU^R01 (Observation Result R01) 
message, which consists on an unsolicited transmission of an observational 
result. This message was generated after the results of an observation were 
received and needed to be communicated to the system that ordered that 
measurement.  
 
 

 
 

Fig. 1.1 HL7v2 message example (ORU^R01) 
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The syntax encoding in HL7v2 is commonly referred to as the vertical-bar 
syntax. As it can be seen, the message contains 4 main fields: 
 

• MSH (Message Header): In this section, on can find the sender, the 
receiver, the generation date and time, as well as the message type. In 
the example of Fig. 1.1, the sender is GHH LAB, located in ELAB-3, the 
receiver is GHH OE, located in BLDG4, the message was generated on 
15/02/2002 at 09:30, and the message type, as already mentioned, is 
ORU^R01. 

• PID (Patient Identification): This segment contains demographic 
information of the patient. In the example, the patient was Eve E. 
Everywoman, she was born on 20/03/1962, and she lives in Statesville 
OH. Her hospital ID can also be found in this section, and it is 555-44-
4444. 

• OBR (Observation Request): It identifies the observation itself in the 
realm of its original request, meaning how it was originally ordered. The 
measurement request was 15545^GLUCOSE, and it was ordered by 
Patricia Primary MD, and later carried out by Howard Hippocrates MD. 

• OBX (Observation): This last segment simply contains the result of the 
measurement, which in this case is 182 mg/dl. 

 
HL7v2 provides a lot of benefits, given that it supports the majority of common 
interfaces used in the healthcare industry globally, leading to a reduction of 
implementation costs, and it even provides a framework for negotiations of what 
is not in the standard. Also, another benefit for new organizations that decide to 
implement HL7v2 as their messaging standard is that 95% of US healthcare 
organizations and more than 35 countries implement it.  
 
So, due to its widespread use, the presence of HL7v2 protocol will still be 
largely present in healthcare messaging in the near future, despite the creation 
of new implementations that show significant improvements over the original 
version. The latter were created as a consequence of a series of limitations. 
Some examples of these limitations regarding HL7v2 are its lack of traceability 
between messages, events and fields, the fact that it doesn’t support object-
oriented technologies, not featuring “Plug and Play” capabilities to detect the 
addition of a new input or output device and automatically activate the 
appropriate control software, having an implicit information model, not explicit, 
leading to inconsistency across message types, it requires controlled 
vocabularies, it’s limited to a single encoding syntax, there isn’t an explicit 
support for security functions, it has long implementation times and no one-to-
many data exchange capabilities are supported, reducing the interoperability on 
an organizational level. Thus, HL7v2 definitely needed to be improved, leading 
to the creation of HL7v3.  
 
 
HL7v3 was first released in late 2005, and its creation was strongly influenced 
by governments and medical information users rather than clinical interface 
specialists. In general terms, the goal of this new version was to increase the 
worldwide adoption of the standard, define a consistent data model and, above 
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all, to provide a more precise and solid standard by the creation of a completely 
new implementation that wouldn’t be hindered by legacy issues, and so, that 
has to be completely disengaged of the original HL7v2 protocol. Of course, the 
latter leads to one of the first problems of this new version, yet the main reason 
why it hasn’t been widely adopted, as to adopt HL7v3, users would need to 
deploy a whole new infrastructure of HL7v3-based applications and to 
implement interfaces between the new ones and the old HL7v2 interfaces that 
are still in use. In other words, not only HL7v2 couldn’t be completely replaced 
by its evolved version, because of the vast usage of the former in the healthcare 
industry context, but also, if new HL7v3 interfaces wanted to be implemented, 
an extra work of interfacing to make the older ones able to communicate with 
the newest ones and vice versa would also be required. 
 
Despite the complexity, as far as its integration in the healthcare industry is 
concerned, HL7v3 provides important improvements that will set the basis for 
the creation of the FHIR implementation (addressed in the next chapter). 
Among the characteristics of HL7v3, one can find the following ones: 
 

• It introduces a Reference Information Model (RIM) for the first time, 
which is a structured specification of the information within the healthcare 
scope. RIM uses Unified Modelling Language (UML) to graphically 
represent a classes model that allows the contextualization of any event 
that occurs in any healthcare service. From the RIM, the specifications 
for the generation of specific messages for the different fields are built 
(Figure 1.2). The RIM has around 70 classes that come from a main core 
with 6 fundamental classes. It represents the business-logic of any 
healthcare context. 

 
 

Fig. 1.2 HL7 UML RIM 
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• Implementation of XML syntax to encode the messages, following the 
international tendency as a language to exchange structured information 
between different platforms. This leads to a more human readable, but 
also more bloated messages, as it will be seen in a moment. 

• The utilization of Object-Oriented Programming (OOP) and UML provide 
a formal methodology, contributing to a higher detail, clarity and accuracy 
concerning the specifications of the standard, as well as a greater control 
over the final designs of generated messages. 

• It’s not limited to the application layer of the OSI Model. After many years 
implementing HL7v2, HL7 realized the need of creating an 
understandable standard that included other OSI layers. That’s the 
reason why HL7v3 includes specifications about XML, security, 
vocabulary, modelling, methodology, etc. 

• HL7v3 opted for controlled vocabulary, intensively using international 
coding systems to classify healthcare-related data (see 1.1.3). 
Additionally, HL7v3 also offers a list of own codifications for specific 
cases that might not be covered by the international coding system. 

• The standard was created in order to support all healthcare workflows, 
not only limited to the exchange of data between organizations. 
Differently to HL7v2, HL7v3 has the capacity to support the exchange of 
high complexity medical data which, as a whole, can lead to the 
implementation of data-assisted decision making, EHR or clinical 
research, among others. 

 
In order to clarify the differences between HL7v2 and HL7v3 as far as the 
structure of the messages are concerned, let’s take a close look to the same 
example in Fig. 1.1, but now encoded using HL7v3.  
 
As it is about to be seen, HL7v3 messages contain a list of wrappers that 
contain a series of tags, where a diverse variety of information is transported. 
The function of theses wrappers is to provide a structured and standardized 
context for the measurement in terms of its identification, type, sender, receiver, 
interpretation, patient, performer of the measurement, etc.  The exact 
specification of the different fields, groups, sequences and cardinality that the 
message contains is defined by a Hierarchical Message Description (HMD). 
 
In order to be able to encompass all the necessary information that defines a 
specific message, three main pillars have to be formalized. The first one is the 
different possible Application Roles within the system, defining the 
responsibilities of both emitter and receiver systems. The second one is the 
definition of the Activation Events, also referred as trigger events, which define 
the reason why the message has been generated and sent. And the last one is 
the definition of the different Scenarios, also known as storyboards, which, in 
general, define the use case that defines the stream of events of the interaction 
and declares the associated preconditions and postconditions. 
 
In Annex A, some examples of these contextual wrappers will be presented 
from a lower to a higher level, including the section containing the information 
about the patient itself, and the result of the observation.  
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As a conclusion, HL7v3 is full model driven, and all models are derived from the 
RIM. This model serves to promote a high degree of consistency between 
messages. The ability to derive/specialize segments of the message leads to 
the use of properly constrained models for specific use cases.  
 
One of the most widely implemented standard based on HL7v3 is the already 
mentioned CDA, also known as the e-Document standard. CDA ensures both 
human readability as well as software processability. 
 
So, one can state that, to a certain degree, HL7v3 can be considered a next-
generation HL7v2, as it is based on reusable structures, an underlying data type 
definition, and it uses an industry standard as the syntax encoding method. 
Hl7v3, however, has the capacity to comprehend complex medical data and 
allows the data exchange in an interoperability context and between 
organizations. Of course, these improvements are a consequence of a 
significant increase of complexity in the message structure. 
 
But, would it be possible to create a next generation standard that combines the 
best features of HL7v2 and HL7v3 while leveraging the latest web service 
technologies? This is actually the motivation behind the creation of the FHIR 
standard, which will be closely described in the next section. 
 
 

1.1.2. HL7 FHIR  

 
In 2014, the Fast Healthcare Interoperability Resources (FHIR) standard was 
introduced as an important alternative to HL7v2 and HL7v3 standards. FHIR is 
built on the other HL7 previous standards, but unlike them, it employs RESTful 
web services and open web technologies, including XML, RDF and JSON 
formats. These technologies are vastly used in nowadays software 
development, leading to a reduction of the learning curve of this standard 
compared with its antecessors. It’s already worth mentioning that this project, as 
will be seen more closely in future chapters, uses the latter to exchange data 
with a FHIR API.  
 
FHIR also offers multiple options for exchanging data among systems, among 
which one can find messaging (sharing similarities to HL7v2) and documents, 
as well as RESTful API approach. The latter can simplify data sharing as it 
allows the replacement of point-to-point interfaces, used in the previous 
standards, with one-to-many interfaces, notably increasing the potential for 
grater interoperability not only among systems and devices within organizational 
IT systems, but also mobile apps, medical devices and wearables. 
 
The FHIR specification is targeted to individuals and organizations developing 
software and architecting interoperable solutions that will be using FHIR. The 
FHIR specification does not attempt to define good or best clinical practices, 
and so, because of its focus on implementation, many aspects of the 
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specification deal with the technical underpinnings of the exchange of clinical 
information between electronic systems.  
 
The FHIR standard defines “Resources”, which are self-describable pieces of 
data as generic templates that are stored or exchanged (the equivalence within 
the context of HL7v2 messages would be the “segments”). Some examples of 
these Resources will be seen later, especially the ones that have been used for 
this project, but essentially a Resource can include metadata, text or bundled 
collections of information that form clinical documents. The resource instances 
are not limited to patient-related information, but also can refer to administrative 
information (such as practitioners, organizations and locations) as well. In fact, 
some Resources are infrastructure components used to support the technical 
exchange of information by describing what systems are able to do. This means 
that some systems, such as clinical decision support engines, that have to use 
these data for carrying out its function, may expose FHIR interfaces, even 
though they don’t actually store any patient or administrative information 
themselves. The previous example is just to clarify that FHIR has an extended 
scope of usages other than just storing medical data. 
 
Note that each Resource defines a relatively small amount of simple highly-
focused data, and thus, a single Resource might not provide enough data for 
some specific use cases. However, a collection of Resources taken together 
creates a useful clinical record. As will be seen throughout the own Resources 
implementations that make up this project in future chapters, it’s worth 
mentioning that Resources also have the ability to reference one another (an 
observation referring a certain patient, for instance), so that the information can 
kept stored in two different data structures or Resources yet being somehow 
related to provide a wider context to the data. 
 
 One of the features that makes accessing data an easy task is the presence of 
an identifying tag that uniquely identifies the Resource. The RESTful API 
approach also enables Resources to be updated and deleted.  
 
Furthermore, the FHIR Server also provides an extra feature consisting on an 
automatic Resource validation mechanism providing overall syntax and 
semantic validations, including data types, attributes and business-related rules 
to ensure FHIR Resources conform to the predefined structure of the standard. 
If a request is carried out with an incorrect Resource structure, the API will 
return an error with status code 400 (see Fig. 1.3). 
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Fig. 1.3 FHIR API response given an incorrect resource structure 

 
 
There is another interesting feature provided by FHIR in terms of extensibility. 
Given that Resources are somehow generic and they have to be usable in a 
very large variety of different contexts, there is the possibility that there’s the 
need to store some data that is not strictly predefined by the standard. To 
overcome that, FHIR provides the ability to adjust the Resources to be able to 
handle the needs of different implementation spaces by defining “extensions” as 
well as enforcing constraints. Resources are designed so that the addition of 
these changes doesn’t affect the normal functioning of data exchanges, 
enabling any system to consume completed forms even if they have additional 
elements added, whether or not these are used or even recognized by the 
receiving system, giving an enormous flexibility as far as new utilizations of data 
are concerned. 
 
As homologously happened in HL7v3, FHIR has a relatively large number of 
Resources (see Fig. 1.4), and so, to keep the numbers reasonable, some of 
them are fairly broad. For example, the Observation resource (which will be 
largely used in this project), is used for vital signs (such as blood pressure, 
oxygen levels, temperature, etc.), lab results, psychological assessments and a 
variety of other things. 
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Fig. 1.4 List of FHIR Resources classified in layers and use fields 

 
 
One of the main problems of HL7v2 was the lack of human-readable messages, 
and this new version of the standard also deals with this issue. FHIR is intended 
to support sharing data in a computable manner to allow a certain degree of 
automatism in the form of computer-mediated processes such as decision 
support, rules triggering, trend analysis, etc. However, there are a lot of 
scenarios where certain data cannot be captured in a numerical and discrete 
manner. As a consequence of this, FHIR Resources support sharing, not only 
discrete data for computational purposes, but also a human-readable view (see 
Fig 1.5) so that humans on each end of a healthcare information exchange can 
still get a full picture of the context in which the data is being handled. 
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Fig. 1.5 Human-readable fields in an Observation Resource fragment 

 
 
So, as a conclusion, among the most important characteristics that position the 
HL7 FHIR as an improved version of the previous HL7 standards, making it the 
most optimal solution for this project, one can find the following ones: 
 

• Best accessibility leading to an improvement of healthcare coordination, 
as it allows the electronic medical records of all patients to be accessed 
by multiple users enabling easy access to medical data and seamless 
communication. 

• Easy data sharing, as every Resource is linked with a unique identifier, 
quite similar to a URL. FHIR makes it feasible and easy to get access to 
the right set of data from any device or application. Note that as a 
consequence of this identifiers’ assignment, FHIR eliminates and cuts 
down the ling process of exchanging data back and forth between 
systems as it happened with the previous standards. 

• FHIR Specifications are free to use, with no restrictions. Until 2013, the 
FHIR specifications were not freely available and it might have been one 
of the main reasons why the healthcare industry has lagged on 
interoperability until the last decade. 

• FHIR can be easily set up and accessed by mobile phones, given its 
simplicity and used technologies. Most mobile devices support programs 
with HTTP and JSON. So, it sets the perfect scenario for new healthcare-
related software development, as the one proposed by this project. 

• FHIR supports RESTful architecture, making healthcare data 
manipulation easier than ever.  
 

A FHIR-based system’s capabilities are defined by what the Resources can say 
and, from a clinical perspective, these things define the clinical record: 
 

• What kind of Resources are defined within the system? 

• Which are their data contents and which are the rules regarding what 
terminology codes (see section 1.1.3) are supported and/or required? 

• How are Resources referenced to one another? 

• How can this information be accessed? 
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All these questions, in the domain of the solution developed in this project, will 
be answered in future chapters. 
 
Also, the close analysis of some FHIR Resources as for its internal structure will 
be left for future chapters, when the specific use cases of this project will be 
addressed (see Chapter 1.2). 
 

1.1.3. International coding systems for observations 

 
So far, a general approach around HL7 FHIR standards (together with its 
predecessors) has been carried out in an unrelated way as far as the specific 
solution for this project is concerned. However, from now on, the focus will be 
progressively put on more practical subjects that directly affect the use case of 
this project. This will be attested already in this section where the Resource 
“Observation” (vastly used in the project, together with the Resource “Patient”, 
as will be seen in the next chapter) will be partially addressed.  
 
It has already been mentioned in the previous section that, in order to try to 
reduce the complexity of the FHIR standard as far as diversity of data is 
concerned, some Resources might be a little bit generic. This is the case of the 
Observation Resource, which, among other uses, it serves as the structure to 
store the result of a measurement carried out on a certain patient. Moreover, 
within the specific use case of this Resource, the same Observation is used to 
digitalize different types of measurements’ results, regardless the type of the 
vital sign that is being measured (pressure, weight, pulse rate, etc.).  
 
So, there’s obviously a need to find out how to integrate these variety of 
measurements in the general and reusable Observation Resource.  
 
The proposed solution is to rely on a standard (or multiple standards) that maps 
every single use case of measurement to a code that defines what is being 
measured. This is exactly what International Coding Systems do.  
 
There are multiple standards that aim to provide a solution for this mapping, 
being the most known “SNOMED (Systematized Nomenclature of Medicine) 
Clinical Terms” and “Logical Observation Identifier Names and Codes” (LOINC). 
For the implementation of this project, the latter has been chosen to map the 
data, but giving the system the possibility to understand other coding standards 
would be within the scope of future versions. 
 
LOINC is an international standard that provides universal code names and 
identifiers for laboratory tests and other medical terminology that can be used in 
medical health records, facilitating interoperability and communication within 
healthcare networks. Given the increasingly connected nature of healthcare, 
standardization to a universal coding system allows for the smooth aggregation 
of laboratory (or more rutinary medical devices) results from multiple facilities 
for clinical care, research, and outcome management. LOINC is committed to a 
healthcare ecosystem where data is available with open standards that unlock 
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the potential for information systems and applications to improve health 
decision-making and care. 
 
In Fig. 1.6, a fragment of an Observation can be seen, specifically the section 
where the information relative to the coding systems can be found. Please, note 
how the Observation Resource allows to support multiple international codes, 
three in this particular case (LOINC, SNOMED and ACME), each one with its 
individual and unique code mapping.  
 
If the reader analyzes the structure closely, he will see a couple of things that 
might shock him at first glance; the fact that in this example there are two 
LOINC codes for the same observation, and the presence of a field named 
“display”, where a human-readable description of the code is provided. As for 
the former, an Observation instance can make reference to more than a single 
code within the standard. This example leads with a body weight measurement, 
which can be liked with both codes 29463-7 and 3141-9 (the reasons why in 
this example both codes are added are outside the scope of this discussion, as 
it depends on contextual factors that are ignored). And regarding the latter, 
another example of the implementation of an increased degree of human-
readability in the FHIR standards can be seen. The key point is that systems will 
interpretate the codes regardless the human-readable description, allowing both 
a global interoperability between systems and human understanding of the data 
within the same Resource.  
 
 
 

 
 

Fig. 1.6 Different coding systems in an Observation Resource fragment 
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Again, however, in this project only LOINC has been considered as international 
coding standard, leading to a structure like the one that can be seen in Fig. 1.7, 
which shows a fragment a blood pressure observation (specifically the section 
regarding the systolic measurement). 
 
 

 
 

Fig. 1.7 Unique LOINC coding system in an Observation fragment 

 

1.2. Data Structures and Analysis 

 
Now that the reader has a clearer understanding on how medical data is stored 
and, specially, how the FHIR standard works, a closer analysis of the data 
structures that have been used to develop the solution presented in this project 
can be carried out in a more direct and practical manner, focusing more on the 
practical objectives to be achieved rather than on a theoretical level. 
 
This chapter is divided into two different sections, which correspond to the two 
main actions carried out by the system as far as medical data management is 
concerned, storing data to make it persistent in a FHIR server and accessing it 
for several reasons such as UI visualization, analysis, basic diagnosis, etc. 
 
Note that this chapter only addresses data in the context of the FHIR standard. 
So, all the generated data within the application defined for internal uses (such 
as roles, groups, group requests, devices, etc.) that is completely independent 
on the FHIR side will be addressed in future chapters. 
 

1.2.1. Data generation and storage 

 
All the details regarding the functionalities of the application will be covered in 
future chapters (see Chapter 2.1) but essentially, within the scope of data 
generation, the use case can be summarized in a user generating data by 
carrying out measurements with his medical devices. This data will be 
structured following the FHIR standard, stored in a FHIR server, and later 
accessed by the same user or other users (which a special role that would allow 
them to access the data from other patients, as will be seen later on). 
 
Note that, in this scenario, the user will adopt the role of a patient, and so, the 
FHIR Resource “Patient” will be used to store their personal data and 
demographics. As for the results of the measurements, as has already been 
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suggested in previous chapters, the FHIR resource “Observation” will be used.   
In this chapter, a close analysis of both Resources will be made, as well as the 
justification of their choice and utilization as for the application context.  
 
The Resource Patient contains all the necessary attributes to store the 
demographic information that is needed to support administrative, financial and 
logistic procedures. A Patient record is generally created and maintained by 
each organization providing healthcare services for a patient, and thus, a 
patient receiving care at multiple organizations may have its information present 
in multiple Patient Resources. This justifies the creation of a Patient Resource 
for each user within the realm of this project.  
 
In Fig. 1.8, the UML Diagram for a Patient Resource can be seen. Note that in 
order to provide the maximum flexibility to the Resource, a large variety of fields 
are available, but not strictly required to generate a Patient Resource instance. 
In Fig 1.9, the complete data structure of the resource can be found, together 
with a short description of each field. Please, note that most of its fields are 
FHIR Resources themselves, with their respective sub-fields, which are not 
displayed in Fig. 1.9.  
 
The very nature of this project, as far as its objectives are concerned, leads to 
the possibility (and often to the need because of the lack of data) of using a 
more simplified schema, where only the essential parameters in the scope of 
the application are included. So, in this section, a close analysis of the fields 
that have been used to generate instances of Patients Resources in this project 
will be carried out. If the reader is still interested in knowing all the specific 
information about all the other fields, they will be able to find it in the official HL7 
FHIR documentation attached in the references.  
 
 

 
 
 

Fig. 1.8 UML Diagram of a Patient Resource  
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Fig. 1.9 Complete Data Structure of a Patient Resource  

 
In Fig. 1.10, the final structure used to store patient’s data, derived from the 
complete Patient Resource and only providing the necessary data to ensure the 
correct functioning of the application, can be seen. This data, as will be seen in 
future chapters, is collected when the user registers in the application, and can 
be modified afterwards from a configuration section within the profile page of 
the application.  
 
It's worth mentioning that, even though FHIR supports both XML and JSON 
formats, the latter is the one that have been selected to encode the data in this 
project. 
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Fig. 1.10 Example of a Patient Resource’s fields used in the project 

 
 
So, the fields that have been selected to make up this specific implementation 
of a the FHIR Patient Resource are the following ones: 
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• resourceType: A mandatory field that simply indicates the type of 
resource that is being sent. 

• id: It’s the identification number for this particular Patient Resource within 
the FHIR server. Note that there can be multiple Resources with the 
same id, but they must refer to different Resource types. So, within the 
context of Patient Resources, this is a unique identifier. This identifier will 
later be used in Observation Resources instances to link the latter with 
the corresponding Patient instance. 

• meta: This field is generated automatically when the instance is created, 
and it simply shows some potentially useful information regarding 
traceability of the data and provides technical and workflow context to the 
resource. In fact, this is a Resource itself, called Metadata (see Fig 1.11), 
that extends from the Element Resource, which is essentially the base 
definition for all elements contained in a resource, as they have an 
internal id together with a differentiated extension. As can be seen, this 
Resource contains more attributes that the ones that can be seen in Fig 
1.10, and this is because only the required (that is to say mandatory) 
fields are generated. Among the latter, the reader will find a “versionId” 
field, which changes each time the content of the resource changes. So, 
on receiving a write operation, the FHIR server shall update this item to 
the current value. This can be used to ensure that updates are based on 
the last version of the resource and, again, for traceability purposes. The 
“lastUpdated” attribute just contains the date when the last modification 
of the resource was carried out. And finally, the “source” attribute is a 
Uniform Resource Identifier (URI) that identifies the source system of the 
resource, which can be used to form assessments about its quality, 
reliability, trustworthiness, or to provide pointers for where to go further 
investigate the origins of the resource and the information in it. 

 
 

 
 

Fig. 1.11 UML Diagram of a Metadata Resource 

 
 

• text: This is one of the elements in charge of providing the already 
mentioned human-readability that characterizes the FHIR standard. It 
includes an HTML narrative that contains a summary of the resource and 
may be used to represent its content to a human. In Fig 1.12, the reader 
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will find the HTML visualization of the same example in Fig. 1.10. Note 
that only the most basic information is shown by this human-readable 
representation of the Patient Resource, but a more extended description 
could be generated if the “status” field within this “text” element was set 
to “extensions”, instead of “generated”. 

 
 

 

 

Fig. 1.12 Human-readable information of the Patient 

 
 

• identifier: Differently from the already addressed “id” attribute of the 
Patient Resource, this is a business identifier of the patient. This means 
that, although the logical id of a resource changes as it moves from 
server to server (given that “id” must uniquely identify a Patient Resource 
within the server), the “identifier” value never changes, as all copies of 
the resource refer to the same underlying person. In other words, two 
servers can have the exact same instance of a Patient and, while they 
will individually assign an “id” to uniquely identify that Resource within 
their own context, both copies will share the same “identifier” field, as it 
references the same physical patient. The value of this identifier is 
generated within a context, which means that the patient will be assigned 
a unique identifier. The context that this identifier references is indicated 
in the sub-field “system” of the “identifier” element. Moreover, note that 
this “identifier” is actually defined as an array of identifiers, which is 
completely logical, as a single patient can be part of multiple contexts 
(the patient exists with a different identifier in the public health system, 
one or multiple private healthcare companies, a medical study, this 
application, etc.), and the more identifiers are provided, the more 
potential regarding interoperability that Patient Resource will have. For 
the scope of this project, a can be seen in Fig. 1.10, only the identifier of 
the “beHealthApp” application is provided, and thus, so far this Patient 
instance is only meaningful within the project scope, but it has the 
potential of being extended to other contexts in the future. 

• active: It simply indicates whether this patient record is in active use. 
Many systems use this property to mark as non-current patients, such as 
those that have not been seen for a period of time based on an 
organization’s business rules. For the scope of this project, a patient is 
active as long as it has a created profile within the application.  

• name: It consists on a HumanName Resource (see Fig 1.13) that 
contains the most basic information about the patient’s name. Some 
examples of the different possible values of the “use” field can reference 
to are “usual”, known as the conventional name that a patient normally 
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uses, “official”, which is the formal name as registers in an official 
government registry, but which name might not be commonly used (may 
be called “legal name”), “temp”, which would be a temporary name 
assigned at birth or in emergency situations, “nickname”, which would be 
used to address the person in an informal manner, “anonymous”, used to 
protect a person’s identity for privacy reasons, “old”, for names that are 
no longer in use (or were never correct, but retained for records), or 
“maiden”, which covers the case of names changes for marriage, 
displaying the name used prior to changing it. Within the scope of the 
first version of this project, in order to avoid problems related with 
concreteness, the “usual” value has been used in all cases. The reader 
will also note that the full name has been stored in the “text” attribute of 
the “name” element, and also the family name separately in the “family” 
attribute for particular uses within the application. As it happened with the 
“identification” field, the “name” field is defined as an array of 
HumanName Resources, enabling the possibility to save more multiple 
names, which might have a different “use” among the possibilities that 
were mentioned before. 

 
 

 
 

Fig. 1.13 HumanName Resource structure 

 
 

• telecom: Contains a list with the details of different contact sources of 
the Patient under the structure of another FHIR Resource called 
ContactPoint (see Fig. 1.14). Within the context of this project, only two 
contact sources are asked to the user registers in the application; the 
phone number and an email address. For this particular implementation, 
each of them only contains the two essential fields “system” and “value”, 
where the former indicates the type of source it’s being referenced, and 
the latter contains the information itself. 
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Fig. 1.14 ContactPoint Resource structure 

 
 

• gender: It simply indicates the gender of the patient. 

• birthDate: It indicates the birth date of the patient in a standardized 
format. 

• deceasedBoolean: A Boolean that indicates if the patient is deceased or 
not. The importance of this element’s presence within the basic 
objectives of the application might be indeed debatable, but there’s 
always the possibility that some of the measurement’s data that the 
patient generated within the application might be useful regarding some 
kind of subsequent investigation of the decease causes, and so, if the 
information of deceases patients is kept, as well as the Observation 
Resources that they generated, some potential binding information can 
be extracted for future implementations of preventing services. 

• address: It contains a list of Address Resources (see Fig. 1.15), storing 
data relative to the patient’s addresses. As can be seen, the Address 
Resource is a relatively large Resource, but only some fields are used in 
the application (as can be seen in Fig. 1.10). As it happened with the 
“use” field of the HumanName Resource, an Address also contains this 
same attribute, which in this case can adopt the values “home”, “work”, 
“temp”, for temporary addresses, “old”, for addresses that are no longer 
in use or were never correct but retained for records, and “billing”, which 
references an address to be used to send bills, invoices, receipts, etc. In 
this case, the application allows more flexibility offering the possibility to 
select three different uses when the user registers; “home”, “work” and 
“temp”. 
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Fig. 1.15 Address Resource structure 

 
 

• communication: This last field just indicates a list of languages which 
may be used to communicate with the patient about his or her health. It 
can be seen in Fig. 1.10 that the language code (in that case, English), is 
accompanied by a “system” value, that simply maps the code with the 
IETF BCP language tag standard, which is a standard that is used to 
identify human languages in the Internet. Within the scope of this first 
version of the application, the user is offered to choose among a list of 
two available languages (English and Spanish), which will be the 
language that will be used to display the contents of the application. Of 
course, in future versions, the number of available languages should 
increase to ensure the possibility of a global utilization. 

 
 
After addressing how a patient’s data will be generated and stored, the second 
type of data that this project will deal with is medical data in the form of 
measurement’s results coming from the user’s medical devices that will be 
connected to the application.  
 
Among all the existing FHIR Resources, the one that is aimed to address a 
measurement report is the Observation Resource. This Resource addresses 
measurements and simple assertions made about a patient, device or another 
subject.  
 
Observations are a central element in healthcare, used to support diagnosis, 
monitor progress, determine baselines and patterns, and even capture 
demographic characteristics. Most observations are relatively simple assertions 
with some metadata, but some others group other observations together 
logically, or they might even be multi-component Observations. An example of 
this latter will be covered later with a blood pressure Observation, which is 
made of two components (systolic and diastolic pressure).  
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There are other super-Resources such as the DiagnosticReport Resource, 
which provides a clinical or workflow context for a set of Observation 
Resources, which are obviously referred in the former, and which are used to 
complement the full report. 
 
Some uses for the Observation Resource include vital signs such as body 
weight, blood pressure or temperature (note that this is the block that concerns 
the use case of this project), laboratory data, imaging results, personal 
characteristics (as eye-color), social history (as tobacco use, cognitive status, 
etc.), or some core characteristics (like pregnancy status). 
 
The Observation Resource is intended for capturing measurements and 
subjective point-in-time assessments. Note that is not intended for specific 
cases where there are already other Resources that specifically address those, 
such as the AllergyIntolerance Resource, among many others. The HL7 FHIR 
official documentation has a section to consult weather the Observation 
Resource is appropriate for a specific usage. 
 
The Observation Resource can be used for a large list of situations that imply 
reporting some kind of information, which allows great flexibility as for its usage, 
but also leads to an accordingly enormous Resource regarding the number of 
fields involved in its complete form (see Fig 1.16). Nonetheless, as it happened 
with the Patient Resource, a highly simplified version of the Observation 
Resource has been used for this project, including only the necessary fields to 
ensure that that the objectives of the application are met.   
 
 

 
 

Fig. 1.16 UML Diagram of a complete Observation Resource  
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In Fig. 1.17, the reader will be able to see a real example of a sample 
measurement carried out within the context of this project. In this particular 
case, the result of a body temperature measurement is represented using the 
Observation Resource, but only the strictly essential fields for this first version of 
the application.  
 
 

 
 

Fig. 1.17 Example of an Observation Resource’s fields used in the project 

 
 
Note that a measurement involving temperature is a single-component 
Observation. If it was multi-component, as would be the case for blood pressure 
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measurements, as will be seen in a moment, the Observation Resource would 
contain a “component” attribute. Also, note that the Observation Resource also 
contains the fields “resourceType”, “id” and “meta”, which have been already 
closely addressed in the Patient Resource analysis and, consequently, will be 
omitted here. The rest of fields are the following ones: 
 

• status: This field indicates the current status of the result value, and it 
can cover multitude of cases, adopting the values “registered”, meaning 
that the observation is registered, but there is no result available yet, 
“preliminary”, for incomplete or unverified observations, “final”, for 
observations that have been completed and there are no further actions 
needed (note that this will always be the case for the Observation 
instances generated within the context of this project), “amended”, 
meaning subsequent to being final, of observations that have been 
modified, “corrected”, for observations that have been modified to correct 
an error in the result, “cancelled”, for operations that are unavailable 
because the measurement was not started or not completed, “entered-in-
error”, for withdrawn operations, and “unknown”, for potential specific 
cases where none of the previous one seems to fit the situation. 

• category: This field indicates the type of observation that is being 
considered by indicating a code (see the list of possible codes in Fig. 
1.19) mapped by a standard system indicated in the parameter “system”. 
There is also a “display” field which, essentially, introduces a human-
readable version of the code. Note that all this information is encoded 
within a sub-Resource called Coding, which is a representation of a 
defined concept using a symbol from a defined code system (see Fig. 
1.18). 

 
 

 
 

Fig. 1.18 Coding Resource Structure 
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Fig. 1.19 List of category codes of an Observation 

 

• code: This attribute is also a Coding Resource that describes the type of 
observation that was carried out. This is where the LOINC codes that 
were described in section 1.1.3 are used. In the particular example of 
Fig. 1.17, the LOINC code corresponding to a body temperature 
measurement is 8310-5. As was already mentioned in section 1.1.3, 
some observations might be mapped to more than a single code and, for 
this reason, this field is defined as a list of Coding Resources. 

• subject: In this field is where the binding with the Patient takes place. 
For the use case of this project, the subject will always be a Patient 
Resource, but in other contexts, this could be a reference to other 
Resources such as Group, Organization, Location, Practitioner, 
Medication, etc.  

• effectiveDateTime: It simply indicates the date (and optionally the time) 
when the Observation was created or, in the realm of this project, when 
the measurement was done by the patient.  

• valueQuantity: In this field is where the measurement result itself is 
stored. However, as can be seen in Fig. 1.20, “valueQuantity” is just one 
of the possible fields that can be used to do so. Given the generality 
associated to the use of the Observation Resource, several types of 
results can be stored, both quantitative and qualitative data, and so, the 
most convenient “value” attribute has to be used. In the particular case of 
medical devices’ measurements, a quantitative result is provided, and so, 
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the “valueQuantity” attribute is used, which is a FHIR Resource itself 
called Quantity. Within this latter, as can be seen in Fig. 1.17, the result 
itself can be found in the “value” attribute but, of course, the unit that 
accompanies the result also has to be provided in the field “unit”, which 
itself is globally mapped to a code, which can be found in the “code” field, 
by the Unified Code for Units of Measure (UCUM), which is a code 
system intended to include all unites of measure being contemporarily 
used in international science, engineering and business.   

 
 

 
 

Fig. 1.20 Different types of values depending on the Observation context 

 
 

• referenceRange: This field offers guidance on how to interpret the result 
of the measurement by the comparison to a normal or recommended 
range. FHIR offers the possibility to provide some context to the given 
reference range by indicating the target population this range applies to, 
the age at which is applicable, among others. In this first version of the 
application, this context is not provided, and only a range that is 
generally considered as normal is provided without further consideration 
on more specific personal information of the patient. 

 
As has already been mentioned, the example described by Fig. 1.17 addresses 
a temperature measurement, which is a single-component Observation, as 
body temperature is not a composite value. However, if the patient carries out a 
blood pressure measurement, then both systolic and diastolic values have to be 
included within the same Observation Resource instance, leading to a multi-
component Observation. 
 
Multi-component Observations have the exact same structure as the one that 
has recently been described as far as some common attributes are concerned, 
but those which are specifically related with the result itself are separated into 
two different components encompassed in the attribute “component”. This is the 
case for “code”, “valueQuantity” and “referenceRange” fields (see Fig. 1.21). 
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Fig. 1.21 Multi-component Observation from a blood pressure measurement 

 

1.2.2. Data access and analysis  

 
Once the data has been generated and stored in the FHIR server, then the user 
must be able to access this data, visualize it in the UI of the mobile application 
and be able to see if there’s any anomaly with regards to the obtained value. 
More detailed information about the functionalities of “beHealthApp” will be 
covered in Chapter 2, but this section aims to address how the medical data 
stored in the FHIR server is accessed and give some practical examples from 
the user’s perspective.  
 
The UI when the user accesses his measurements record within a specific 
medical device, he’ll be able to see a page that looks like Fig. 1.22, which are 
exactly the Observation Resources analyzed in the previous section (Fig. 1.10 
and Fig. 1.17 on the right and on the left, respectively), to give an example of 
how a multi-component Observation affects the UI. 
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Fig. 1.22 UI visualization of a patient’s measurements (single-component and 
multi-component Observations on left and on the right respectively) 

 
 
So, let’s go back a few steps to superficially understand how can an 
Observation Resource stored in the FHIR server be accessed and utilized for UI 
visualization purposes as well as to detect medical anomalies. 
 
The first thing that must be done is to request a patient’s Observations to the 
FHIR server. This latter has an extended list of supported requests, but the 
most relevant one can be seen in Fig. 1.23, where the relative URLs that will be 
used to access the different methods can also be see. 
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Fig. 1.23 Most relevant requests supported by the FHIR server 

 
 
Please note that the project was carried out in a development environment, and 
so, the FHIR database is just running in a Docker Container built from a Docker 
Image. Consequently, all absolute URLs that will appear within this document 
contain localhost and port 8080 as the gateway to access the FHIR server. This 
can already be seen in Fig. 1.24, where the reader will be able to find the code 
executed from the NodeJS API gateway (addressed later in 2.3.2) to make a 
GET request to receive all Observation instances of the patient by means of 
proving their id (the Patient Resource’s id) as a path parameter.  
 
 

 
 

Fig. 1.24 Patient’s Observations request 

 
 

This petition is received by the FHIR server, which returns a JSON with some 
metadata, the number of Observation instances found for that specific Patient, 
and the Observations themselves within the “entry” field, as can be seen in Fig. 
1.25. The reader might recall that FHIR supports both JSON and XML, and 
given that JSON is the selected one for this project, it has been indicated in the 
“Accept” header of the request, so that the server also responds with the same 
format.  
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Fig. 1.25 Request and response from the FHIR server 

 
 
The server response indicates that the patient has 2 Observation instances 
stored (the temperature and the blood pressure measurements). So, the 
NodeJS API gateway will send this information to the mobile application, and by 
parsing the different fields of the response and, of course some extra coding 
regarding the UI, the user will be able to see the data of his measurements. 
 
As far as anomaly detections are concerned, a simple check is carried out; a 
normal scenario would be one in which the result was within the range specified 
by the Observation’s “referenceRange” or, on the contrary, if the result is below 
the minimum or above the maximum, it would mean that there’s an anomaly in 
that measurement, and the user should take the necessary actions.  
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In Fig. 1.26, the reader will be able to see the code implementation for detecting 
anomalies in the NodeJS gateway and, again, the results will be sent to the 
application and the user will be able to see if there’s any anomaly. For the 
continuous example dragged throughout this document, as can be clearly seen 
in Fig. 1.22, there’s an anomaly in the temperature measurement, as the 
obtained value is below the minimum reference, while everything is correct in 
the blood pressure measurement. 
 
 

 

 
 

Fig. 1.26 Anomaly detection code implementation 
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CHAPTER 2. BEHEALTHAPP 
 
 
Now that the reader is already familiar with all the theory behind how medical 
data is stored using the HL7 FHIR standard, as well as how this data is 
generated, stored, accessed and used within the context of this project, it’s time 
to adopt a practical approach and start addressing how the mobile application 
“beHealthApp”, together with the rest of elements that allow its correct 
functioning, has been carried out. 
 
In this chapter, the reader will be able to find all the information regarding the 
solution itself, from the general architecture together with a detailed description 
of each of its elements, to a close analysis of all functionalities that 
“beHealthApp” offers. 
 
Please note that this chapter will have a descriptive approach, which aim is to 
present all the features of the application in the context of their potential to 
serve as an important complementary tool for remote tracking of the patient’s 
health state.  
 

2.1. General architecture of the solution 

 
Before going into details, it’s important to address how the ecosystem that 
shapes the project has been structured. As the reader will be able to see in Fig. 
2.1, there are two main blocks to consider. The first one is the HL7 FHIR API 
(the right block in Fig. 2.1) which, essentially, has already been covered in the 
first chapter. However, there are some extra details regarding the technologies 
used to set up this block that will be introduced in this second one (see section 
2.3.1). The second one (the left block), is the proprietary ecosystem that has 
been built from scratch for this project. 
 
The elements within these blocks will be individually addressed in separated 
sections of this second chapter, but in this section, the focus will be put on their 
relations, how they are interconnected, and a general overview of the data flows 
between one another. 
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Fig. 2.1 General architecture of the solution 

 
 
As has been seen in the first chapter, the HAPI FHIR server (which is an 
implementation of an HL7 FHIR server, as will be seen in future sections) is in 
charge to store the medical information following the HL7 FHIR standards, 
however, there’s other information that is also needed to enable the correct 
functioning of the “beHealthApp” application. This extra information can be, for 
instance, the medical devices of the user, groups, group requests, the user’s 
password to access the application, conversations, among others. This 
information will be stored in a separate non-relational database based on 
MongoDB.  
 
The ecosystem has been built so that the communication with the FHIR server 
is carried out by a server in the middle, making it transparent for the mobile 
application. This server has been built using NodeJS and Express, and it acts 
as a bridge between the mobile application, the MongoDB server, and the HAPI 
FHIR server. It also handles all the security behind the connections, making 
sure that the user has the required roles to be authorized for certain operations. 
 
So, when the user wants to carry out some action within the application 
(register, login, store a result from a measurement, access his measurement’s 
record, send a message to his doctor, etc.), firstly an HTTP request with the 
pertinent Authorization headers will be sent to the NodeJS server. Let’s say the 
user has just made a measurement, and an Observation Resource has been 
created and has to be sent to the HAPI FHIR server to be stored. The patient’s 
FHIR “id” is stored in the MongoDB server, together with other information with 
regards to the patient, and so, the NodeJS server first has to access the 
MongoDB server to obtain this “id”, and then it can send an HTTP request to 
store the new Observation instance with the correct “id” of the user. Please note 
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that this description does not fit exactly how the system works, but it’s a 
superficial representation of the whole logic of the ecosystem. 
 
 

2.2. Introduction to BeHealthApp’s functionalities 

 
Now that the reader has already gone through all the necessary background 
information to understand the pillars of this project, let’s now jump into practical 
matters as far as the application is concerned.  
 
By being able to store medical data in the official HL7 FHIR standard, not only 
will it be able to persist and be useful for several applications, but other 
collateral implementations now become possible. An example of the latter is 
enabling a service for doctors so that they are able to create groups of patients 
within the application, and to access their measurements records for remote 
diagnosis or periodical checks in a very simple and direct manner, as well as 
providing a chat service so that the doctor and the patient can chat if necessary.  
So, as a consequence of making this medical data persistent with a 
standardized format, now the application itself can act as a platform where 
doctors and patients can share data and communicate between each other. 
 
This chapter will address all elements and functionalities within the mobile 
application, and the reader will be able to discover the features that position it 
as a potent tool to complement and facilitate remote health tracking. 
 

2.2.1. Profiles / Roles of the user 

 
As can be deduced from the previous introduction, two different types of user 
profiles will be needed in order to be able to provide a doctor-patient interaction 
within the application. With the aim of generalizing the former, this specific 
profile simulating the role of a doctor has been called “Manager”, while the latter 
remains as “Patient”.  
 
Users under the role “Patient” and “Manager” (which, from now on, will be just 
referred as a patients and managers, respectively), share a considerable 
amount of features regarding the available functionalities within the application. 
Both have full access to Medical Devices Management functionalities (see 
section 2.2.2), Measurements and Automatic Anomaly Detection (described in 
section 2.2.3), as well as to Profile Settings features (section 2.2.5).  
 
The main difference can be found in the Groups and Shared Data block of 
functionalities. The general idea is that managers are able to access all 
measurement’s results from his patients, as well as other relevant data, while 
patients can only access their own. The specific differences will be exposed 
naturally throughout the close description of this given block carried out in 
section 2.2.4, and so, it would be redundant to mention them here.  
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This differentiation is carried out at the very beginning, already when the user is 
carrying out the registration process (see Fig. 2.2). In this first version of the 
application, the user can choose any of both just by pressing on one of the 
options, without any further steps. Please, note that in future versions, some 
kind of authentication and subsequent authorization processes should also be 
carried out in order to ensure that only healthcare professionals can sign up as 
managers.  
 
 

 
 

Fig. 2.2 Role selection in the registration process within the application 

 
 
Finally, maybe the reader will have correctly noticed that any role-related 
information appears in the FHIR Patient Resource (in Fig. 1.10, for instance), 
because, in fact, this is a parameter that is stored within the MongoDB database 
and managed by the NodeJS API, being totally independent of the FHIR 
database. 
 

2.2.2. Medical Devices Management 

 
One of the main features that the application provides is the possibility to 
connect Bluetooth medical devices in order to be able to carry out 
measurements and store the resulting data using the HL7 FHIR standard.  
 
To begin with, the connection and synchronization process of the medical 
devices with the application is not within the scope of this project, which is 
limited to their management, as well as the management of the data that they 
generate. 
 
The application offers a very user-friendly interface where the user will be able 
to see all the nearby medical devices detected, as well as some of their basic 
information such as their name, model and if the device is currently linked to the 
application or not (see Fig. 2.3). The user will also be able to link or unlink a 
device by pressing the “Link/Unlink” button that appears when the device is 
selected. 
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Fig. 2.3 Medical devices management page within the application 

 
 
Note that a blue check symbol is present only in some devices. When this 
symbol is present, it means that the device is verified and, consequently, it 
complies with the current legislation in order to be considered as clinically 
certified medical equipment to monitor vital signs. This feature has been 
introduced in order to remove the limitation that the exclusion of non-certified 
devices would entail, so that the user can also connect other devices (such as 
sport or smart watches, among others) to monitor his vital signs, while being 
aware of this lack of certification. 
 
Once a device has been linked to the application, the user will always be able to 
find it in the “Devices” section. However, he will need to carry out the 
connection process to prepare the device to carry out measurements, just by 
pressing a simple button, as can be seen in Fig. 2.4. Moreover, the application 
shows a list of alerts indicating the devices that are currently disconnected. 
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Fig. 2.4 Connection process of a linked device and disconnection alerts. 

 
 
The list of linked devices of the patient is stored in the MongoDB database, 
which again means that devices management is completely independent of the 
FHIR server. Please note that the FHIR standard does offer a Resource to store 
Devices (see Fig. 2.5) but, as has already been mentioned, the physical 
bonding process between devices and the application is outside the scope of 
this project, which means that all the intrinsic information of the device remains 
unknown so far. In this first version, devices are stored with a very simple 
structure, and so, it would be completely pointless to generate a FHIR Device 
instance with so little information. However, in a future version where this 
connection has already been integrated to the ecosystem of the project, then 
the migration to Device Resources could be considered.  
 
Therefore, so far, the FHIR server remains strictly independent of anything 
other than the user’s information as a Patient Resource instance and the 
measurements that he carries out as Observation Resource instances. 
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Fig. 2.5 UML structure of a FHIR Device Resource 

 
 

2.2.3. Measurements and Automatic Anomaly Detection 

 
Once the user has connected one of their devices, then a measurement can be 
carried out. Given that within the scope of this first version the physical 
Bluetooth connection with the medical device is simulated, all measurements 
values are pseudo-randomly generated between corresponding low and high 
values that adequately adjust within normal ranges in humans. 
 
In Fig. 2.6, the reader will be able to visualize the generation of a new 
measurement, together with the measurements’ record of that given device.  
 
After the measurement has been done, the application will send the result to the 
NodeJS API gateway, where a FHIR Observation Resource will be generated 
using the received data and the FHIR id of the user, which is requested from the 
MongoDB database and then sent to the FHIR server, where it will be stored 
referencing the respective Patient Resource instance. And finally, then the user 
will be able to ask for that information and visualize it in the application. 
 
Please, note that this whole process, as well as any other process that implies 
communication with the FHIR server, is completely transparent for the 
application, and so, any future changes with regards to the former will be just 
neglected by the latter, as well as the potential migration of some data to the 
FHIR server, as commented in the previous section regarding Device 
Resources.  
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Fig. 2.6 Temperature measurement (left) and daily record with anomalies (right) 

 
Moreover, the user will be able to see if there’s any anomaly in one or various 
measurements in the same page where the measurements’ record for that 
device can be found. The decision on whether a measurement is considered as 
an anomaly or not is also transparent for the application, as this is a backend 
calculation carried out in the NodeJS API gateway, and the decision is based on 
the reference range indicated by the Observation Resource instance (see Fig. 
1.17). 
 
In the particular example of Fig. 2.6, the most recent measurement turns out to 
be above range and the first one (show in Fig. 1.17) below range. 
Consequently, two notifications are displayed under the chart. As will be seen in 
the next section, not only will this record be accessible by the patient itself, but 
also for a potential manager supervising the health state of the former, and so, 
these alerts will be especially useful in this scenario to easily detect any 
anomaly and contact the patient, if the manager finds it necessary. 
 
However, sometimes it might be unpractical to go through every single device 
and access its record in order to check if there’s any anomaly, and therefore, 
the application also offers the possibility to see a summary of the user’s 
anomalies in the profile section, as can be seen in Fig. 2.7, where the two same 
anomalies displayed in Fig. 2.6 can be also found. 
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Fig. 2.7 List of anomalies in the profile section 

 

2.2.4. Groups and Shared Data 

 
One of the most important features of the application that provides high degree 
of utility to the medical data generated by the patient is the possibility for the 
manager to create groups of patients. These allow the manager to have remote 
access to measurements carried out by any of the patients that belong to a 
specific group.  
 
So, note that this is where the biggest differentiation between both roles within 
the application is more noticeable, as only users with the manager role will have 
the possibility to create and manage groups.  
 
In Fig. 2.8, the manager will be able to find all created groups in the “Groups” 
section of the application.  
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Fig. 2.8 List of groups created by the manager 
 
 

In order to create a group, the manager must provide a name, a description and 
a list of users that will be added. To facilitate the search of a specific user, the 
application offers a search bar where the manager can type the name of the 
wanted patient, and an automatic filtering will be carried out. This whole process 
can be seen in Fig. 2.9.  
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Fig. 2.9 Creation process of a group by a manager 
 
 

Once the group has been created, it would certainly be convinient to have some 
kind of intermediate process to ensure the confidentiality of the patients’ data so 
that it can only be visible by managers that have been previously recognized 
and authorized by the patient. So as to do so, despite the patients have been 
added to a group, the manager won’t have access to their data until they have 
authorized it by accepting the respective group request, which is a simple 
notification that basically offers the possibility to accept or decline the invitation.  
 
As can be seen in Fig. 2.10, patients will find these requests in their “Groups” 
section. If they decline it, the patient will be definitely removed from the group, 
and otherwise, if the request is accepted, now the patient will be able to see the 
group in the groups list. 
 



BeHealthApp   47 

 
 
 

Fig. 2.10 Group request accepted by the patient 
 
 

The manager will be able to notice if a patient has accepted the invitation 
request when the “Pending” label next to the patient’s name within the group 
disappears (see Fig. 2.11).  

 
 

 
 

Fig. 2.11 List of patients of a group from the manager’s perspective 
 
 

The acceptance of the request by the patient also means that, the manager, 
henceforth, will have permissions to access the patient’s most basic personal 
data, along with medical data regarding measurements results generated within 
the context of the application.  
 
As can be seen in Fig. 2.12, by accessing the patient’s profile, the manager can 
see the list of medical devices that the patient has linked, together with their 
measurements. This itself already allows the application to fulfill one of its main 
purposes; to use the medical data generated by a patient at home for remote 
partial diagnosis or tracking purposes.  
 
Note that the manager, in order to access this data, sends a request to the 
NodeJS API gateway, which will connect to the FHIR server, where the data is 
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stored. So, not only can this data be uses for remote tracking and partial 
diagnosis within the context of the application, but other future features that use 
these data to could be implemented in future versions. 
 

 

  
 

Fig. 2.12 Patient’s data from the manager’s perspective 
 
 
Moreover, the application also aims to be a tool that provides a unified set of 
features to offer a certain degree of remote healthcare, at least as far as 
measurements tracking is concerned, and therefore, it also offers an integrated 
chat service, so that the manager and the patients can exchange messages if 
they need to. This can be particularly useful for a similar case of Fig. 2.12, 
where the manager realizes that this particular patient has an abnormally high 
temperature in the last measurement carried out with the temperature bracelet, 
which is a verified and thus reliable medical device. In this situation, as can be 
seen in Fig. 2.13, the manager can contact the patient to ask for their health 
state and, if they find it necessary, arrange a traditional visit.  
 
Persistent high temperatures, blood pressure or any other vital sign can be a 
reliable indicative that there’s an underlying major problem, and so, its early 
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detection can be key to effectively treat it. In this sense, this application can be 
a very useful tool as well. 
 
 

  
 

Fig. 2.13 Chat service between manager and patient 
 
 

Medical data is sensitive data, no matter how simple and apparently irrelevant it 
is. Data concerning health means personal data related to the physical or 
mental health of an individual. The General Data Protection Regulation (GDPR) 
includes this type of data within the sensistive data category and, consequently, 
unauthorized disclosure may lead to verious forms of discrimination and 
violation of fundamental rights. More emphasis in processing sensitive data 
legally will be put in section 2.5, but essentially, patients sharing the same 
manager, that is to say, they are withint the same group, shouldn’t be able to 
see other patient’s medical data, being that privilege exclusive to the manager 
of the group.  
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However, throughout the implementation of the project, it was considered that it 
would be useful to try to exploit the fact that a patient is a group to provide them 
some extra value. The latter couldn’t come by any means from their medical 
data, because of the reasons that have been just discussed, and so, the 
introduction of a new parameter that isn’t considered as sensitive data was 
created; footseteps.  
 
The application will continuously count the user’s footsteps, and persist them 
(sotre the value, together with the date in the MongoDB database) at the end of 
the day. With this data, a lot of information can be extracted and also shared 
among all the users of the group.  
 
Similarly to what happened with devices data, the number of steps of a user 
won’t be stored in the FHIR server. HL7 FHIR standard offers the posibility to 
store custom information under the Extension Resource (see Fig. 2.14), which 
is just an extension of any other Resource. So, it exists the possibility to store 
the user’s steps as an Extension Resource, linked to its respecitve Patient 
Resource.  
 
However, at least in this first version of the application, it has been preferred to 
work under the premise to separate strictly medical standardized data from any 
other data generated within the context of the application. The migration of this 
data to a FHIR server by means of extensions is, however, an open thread that 
could be considered for future versions. 
 
 

 
 

Fig. 2.14 UML diagram of the Extension Resource 
 
 

As can be seen in Fig. 2.15, users will be able to see their performace 
compared to the group average regarding daily number of steps, together with 
other useful information including the group’s historical average per person, the 
registered average of the previous day with an indicator that compares the latter 
to the usual performance of the group, the consistency in terms of standard 
deviation, measuring how stable is the data, and a normal range indicator to let 
users know if they are within the normal range. Additionally, a ranking with the 
three users that registered a higher number of steps the previous day can be 
seen. 
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Fig. 2.15 Group’s performance and statistics page 
 
 

2.2.5. User credentials and profile management 

 
In order to access the contents of the application, the user will need to 
authenticate by means of a login request to the NodeJS server. To do so, they 
will need to provide their email and password. In this first version of the 
application, the authentication by means of the user’s Google account is still not 
supported, but should be in future versions. 
 
If the user doesn’t have credentials yet, first a sign in process is required. 
Throughout the latter, the user will be asked to fill a form with some personal 
data, which will be used to generate a FHIR Patient Resource. As was 
mentioned in previous sections, the role of the user is also assigned during the 
registration process. Both login and register pages can be seen in Fig. 2.16. 
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Fig. 2.16 Login (left) and register (right) pages 
 
 

For security reasons, the user’s password is not stored in clear in the MongoDB 
database, but a hashed version of the password (see Fig. 2.17). A hash is a 
mathematical function that converts an input of arbitrary length into an 
encrypted output of a fixed lenght. The key feature of hashes is that they cannot 
be used to “reverse-engineer” the input from the hashed output. That is to say 
that hashes are one-way functions that always generate the same output for a 
given input, and so, the only way for the server to verify if the user’s sent 
password is correct is to hash it, and compare if both hashes are identical. 
 

 

 
 

Fig. 2.17 Hashed password stored in the MongoDB database 
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And finally, once the user has valid credentials, they can modify some of their 
data when desired, by means of the “Settings” section in the profile page of the 
application, as can be seen in Fig. 2.18. 
 

 

 
 

Fig. 2.18 User’s profile (left) and settings (right) pages 
 

 

2.3. Backend elements  

 
The project’s ecosystem can be separated in two different parts; the backend 
and the frontend. The former refers to the user interface, the application itself in 
this case, and the latter encompasses all the logic that is being carried out 
behind the user interface, including the servers and databases that are involved 
to deliver information to the user. 
 
While section 2.4 will address the frontend part, this section aims to describe 
the different elements of the project’s ecosystem that build the backend network 
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that communicates with the application to deliver information and to handle the 
user’s petitions. 
 
There are three elements involved in the project’s backend; the HAPI FHIR API, 
where the medical data is stored, the NodeJS API Gateway, which is a 
proprietary API developed throughout this project that acts as an intermediate 
entity to communicate the application with the HAPI FHIR API and the 
MongoDB database (see Fig. 2.1), and the MongoDB database itself, where 
other data is stored.  
 
In this chapter, a close description to these elements has been carried out. 
 

2.3.1. HAPI FHIR API 

 
Over this document, a generic server where the HL7 FHIR Resources, such as 
the Patient and Observation Resources, are being stored has been mentioned 
several times, but little detail has been put into how this element has been set 
up.  
 
To create from scratch a functional implementation of a server supporting the 
HL7 FHIR standard would be extremely challenging itself, and certainly 
inefficient, given the fact that there’s an open-source implementation that have 
already been developed and that has been around for eighteen years; HAPI 
FHIR. 
 
HAPI FHIR is a complete implementation of the HL7 FHIR standard for 
healthcare interoperability developed in Java by an open community developing 
software licensed under the business-friendly Apache Software License 2.0. 
The FHIR standard is still relatively new, and so, the HAPI FHIR library is still 
under constant modifications and updates that add more features and flexibility 
to the standard. 
 
In this project, a public Docker image implementing the HAPI FHIR library for 
the server side has been used, and so, the HAPI FHIR server has been locally 
used as a Docker container. There’s already a public Docker image 
implementing the HAPI FHIR library in Docker Hub, and so, its incorporation to 
the project was immediate. 
 
 Please, note that the HAPI FHIR library provides a full mechanism for 
connecting to FHIR REST servers and to easily handle Resources with built-in 
methods to set the different attributes of a resource. This initial version of the 
project handles very simple data without any complexity, and therefore, a 
custom implementation of the Patient and Observation resources has been 
created. Moreover, there’s extra custom data that is being used in the project 
that is obviously not considered in the HAPI FHIR implementation. 
 
So, the HAPI FHIR implementation has only been used in the server’s side to 
deploy a FHIR RESTful API, and not in the client’s. However, the migration to a 
client’s side server built in Java using the HAPI FHIR library that would replace 



BeHealthApp   55 

the currently NodeJS API Gateway should be considered as data becomes 
more complex.  
 

2.3.2. NodeJS API Gateway 

 
One of the proposed objectives when carrying out the project was to isolate the 
mobile application from all the logic behind data handling, so that the application 
never communicates with the HAPI FHIR server nor the MongoDB database, 
getting itself rid from all that workload. Instead, it only communicates with an 
intermediary server using an HTTP connection.  
 
The entity created from scratch to serve as the mentioned intermediary is a 
server built in Typescript using NodeJS and Express. In Fig. 2.19, the reader 
will be able to find the server’s file where the connection with the MongoDB 
database and the different API endpoints base URL can be found, together with 
some middlewares that have also been used to improve the server’s 
capabilities, offering a certain degree of security in front of some cracking 
attacks, the possibility to send data in a compressed format, and automatically 
handling CORS issues, among others. Regarding the endpoints, this file sets 
the base URL for each of the logic endpoints handled by the server. There are 
four categories: patients, managers, groups, and conversations. 
 
 

 
 

Fig. 2.19 Server’s settings and setup file 
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In Fig. 2.20, the structure of the Group entity can be seen. Again, groups have 
only been created within the context of the application to provide some users 
under the manager role the possibility to access their patient’s medical data, 
and so, all data regarding groups and group requests will remain within the local 
BeHealthApp ecosystem, the left block of the general architecture shown in Fig. 
2.1.  
 
In this first version, groups have a simple structure, containing a name and a 
description that will be set by the manager that creates the group (see Fig. 2.9), 
the manager id, the list of patient’s id that belong to that group, a list of requests 
id (group requests are another entity themselves, as can be seen in Fig. 2.21), 
a list of daily step averages (used in the group information page seen in Fig. 
2.15) and a creation date.  
 

 

 
 

Fig. 2.20 Group Schema in the NodeJS server 
 
 

 
 

Fig. 2.21 Group Request Schema in the NodeJS server 
 

 
As will be seen in the next section, this data will be stored in the MongoDB 
database as a document. In order to establish the connection between the 
database and the NodeJS server is by means of the Mongoose library, which is 
an Object Data Modeling (ODM) library for MongoDB and NodeJS. It manages 
relationships between data, provides schema validation, and is used to translate 
between objects in code and the representation of those objects in MongoDB 
(see Fig. 2.22). 
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To create these objects, Mongoose allows to create their structure in NodeJS 
by means of Schemas, which can be seen both in Fig. 2.20 and Fig. 2.21. A 
Mongoose schema is a document data structure that is enforced via the 
application layer. 
 

 
 

Fig. 2.22 Mongoose Mapping between NodeJS and MongoDB  
 
Every instance of a particular Schema that is created (the creation of different 
groups, for example) will be stored under the same “collection”. Collections are 
the MongoDB equivalence to tables in relational databases such as an SQL 
table. 
 
The requirements of this project have led to the creation of four collections, as 
can be seen in Fig. 2.23.  
 

 
 

Fig. 2.23 The four beHealthApp collections seen from MongoDB Compass 
 
 

There are a lot of methods defined in the NodeJS server that are used as 
endpoints by the application, but the example of figures Fig. 2.24 and Fig. 2.25 
really illustrates how the project’s ecosystem works, regarding the internal 
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communication between the different blocs. Fig. 2.24 shows the code defined 
within the application itself, where the user needs to download the data of their 
FHIR Patient Resource stored in the HAPI FHIR API, but instead of directly 
fetching the latter, the application fetches the NodeJS API endpoint, so that the 
external communication with the HAPI FHIR API is completely transparent for 
the application. In the application, this request is done after the user is logged 
in, and so, the user already knows their internal id, which is the unique 
identification of that particular User document, who in turn contains the FHIR 
Patient Resource id (referred as “fhir_id” in the User schema) stored in the 
MongoDB database. This id is passed as a path parameter in the GET HTTP 
request to the NodeJS API. Then, the latter has to perform a search in the 
MongoDB database to find a user instance with the received id. Once found, the 
“fhir_id” attribute of the instance is used by the NodeJS server to finally fetch 
the HAPI FHIR server, where the corresponding Patient Resource will be sent 
back with status code 200, if there’s actually an existing instance holding that id. 
Finally, in the last stage of the communication, the NodeJS server will send the 
received Patient Resource JSON to the application, which will be accordingly 
parsed. This whole exchange of data is carried out by means of an 
asynchronous communication. 
 
 

 
 

Fig. 2.24 FHIR Patient request data to the NodeJS server 
 

 

 
 

Fig. 2.25 User verification before request 
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Finally, in Fig. 2.26, the reader will be able to find an example showing some of 
the NodeJS API endpoints regarding a patient, used by the application to get 
some information or to carry out certain actions. 
 
 

 
 

Fig. 2.26 Patient’s endpoints in the NodeJS server. 
 

2.3.3. MongoDB 

 
As the reader already knows, MongoDB has been used as the internal 
database of the project. In this section, a more detailed analysis of this block of 
the project’s ecosystem will be carried out.  
 
MongoDB is a document-oriented non-relational (NoSQL) database used for 
high volume data storage. NoSQL refers to the wide variety of technologies that 
have been developed as a response to modern applications needs, which 
include the generation of large volumes of data in constant evolution, among 
others. Relational databases weren’t designed to face the scalability and agility 
that modern applications require, and neither to take advantage of the 
processing power that exists nowadays. 
 
NoSQL databases are more scalable and offer an increased performance 
compared to the SQL databases. Moreover, their data models address several 
issues that the relational model ignores, such as: 
 

• The equal consideration between huge volumes of structured, semi-
structured and not structured under constant variation data. 

• In line with OOP  

• Horizontal Scaling instead of Vertical Scaling (MongoDB collections are 
self-contained and not couple relationally, leading to the possibility to 
share the load to different nodes, one for each collection, for example, 
instead of increasing the processing power of a single server, as would 
happen with relational databases). 

 
Fig. 2.27 and Fig. 2.28 are an example to illustrate the difference between 
relational and non-relational databases.  
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In the case of Fig. 2.27, if a user needs to have a list of hobbies, two different 
tables would likely be created, and a relation is stablished by means of the id of 
the user. 
 
 

 
 

Fig. 2.27 Relational database (SQL) example  
 
 

However, if the same example had to be considered using a non-relational 
model (see Fig. 2.28), all the information could be included in a single JSON 
file, so that no joints are required, resulting in faster queries. 

 
 

 
 

Fig. 2.28 Non-relational database (NoSQL) example 
 

 
Moreover, the reader might correctly have realized that, since the HAPI FHIR 
server continuously handles FHIR resources data using JSON, it must also use 
a NoSQL database. Certainly, NoSQL databases are used in nearly every 
industry, including the most highly critical use cases, where one could find 
healthcare records storage.  
 
To conclude the section, Fig. 2.29 shows the MongoDB document for the group 
shown in Fig. 2.11, and sets a perfect example of a continuously changing 
structure, as requests and patients have to be dynamically added or removed, 
and every day a new entry to the daily steps average list have to be added. To 
define an equivalent structure in a relational context would be highly complex, 
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especially given the dynamism that a group document has within the context of 
the application. 
 
 

 
 

Fig. 2.29 Real example from the project of a Group document in MongoDB  
 
 

2.4. User Interface Development 

 
At this point, the reader is already familiar with all blocks of the ecosystem of 
the project that provide the “background logic”. As has been seen, each of them 
has its role and, together, they carry out all the necessary operations and data 
exchanges so that the application can be provided by the necessary data that 
will be shown to the user by means of a User Interface (UI) which is the 
application itself.  
 
The features that the application provides have already been described 
throughout section 2.2, and so, the aim of this section is to address the 
technical details regarding the development of the application as for the 
technology that have been used and how the internal management of the data 
has been approached. 
 

2.4.1. Technology choice: Flutter 

 
In the last few years, the app development market has grown a lot, and is 
expected to grow exponentially in the coming decade. So, much development 
and research has been done to deliver the best performance and to make the 
app development process faster and much simpler.  
 
Applications can be broadly categorized as: 
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• iOS Apps: These apps are made for Apple devices and are made using 
the Swift language. 

• Android Apps: These apps are made for Android devices and are 
created using Java and Kotlin. 

 
Thus, this differentiation leads to a large list of problems, among which one can 
find the fact that iOS and Android applications work very differently internally 
and, consequently, there’s no Cross-Platform Dependency that could carry out 
a “translation”, leaving no other option than the parallel development of two 
versions of the application, one for each Operative System (OS). This obviously 
also means more employees and the subsequent increased development cost. 
 
However, most of these problems were solved with the launch of Flutter in May 
2017. Flutter is a mobile app Software Development Kit (SDK) created by the 
Google that allows developers to create web, desktop, and cross-platform apps 
that run both on Android and iOS devices, as well as in web. Among other 
reasons that will be discussed in a bit, this was the main pillar that led to the 
decision of using Flutter to develop the application, as it sets a good solution for 
a scenario where a single person is carrying out all the code. 
 
Along this document, it can be seen that all figures showing features from the 
application have been running on iOS (specifically using an iPhone 13 Pro Max 
simulator) but, as can be seen in Fig. 2.30, thanks to having developed the 
application using Flutter, it can also run in Android and web with no issues.  
 
 

  
 

Fig. 2.30 Cross-platform demonstration with Android (left) and web (right) 
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The Flutter framework uses the Dart programming language and facilitates the 
task to build user interfaces that are beautiful, fast and responsive. Flutter works 
with “widgets”, which are the basic building blocks of the app. Some straight 
examples of Flutter widgets are buttons and text, which are a very illustrating 
example of the concept of widgets hierarchy, as a button widget can have a text 
widget as a so called “child”. In fact, there are widgets (such as the container, 
column or row widgets) which are only intended to serve as an external 
“skeleton” to organize inner widgets in a particular way.  
 
There are two types of widgets: 
 

• Stateless widgets: They don’t have an inner state, and thus, they are 
not expected to dynamically undergo changes that could affect their 
visualization. Some examples would be buttons or static image widgets. 

• Stateful widgets: They have an internal state which can change over 
time. This can be reflected in how the widget looks and behaves. Some 
examples could be input fields, or a whole application page which, in 
essence, is a huge widget containing a lot of children widgets (which can 
be both stateless and stateful). 

 
In Fig. 2.31, the reader will be able to find the Dart code where the login button 
shown in the left part of Fig. 2.27 can be seen. The button is created under as a 
“RaisedButton” widget, which has a list of attributes for customization reasons, 
together with the “onPressed” attribute, which contains the code that will be 
executed when it is clicked (in this case, a trigger to initiate the login process). 
Moreover, it has a “child” attribute, which contains the “Text” button with its own 
properties. 
 

 
 

Fig. 2.31 Flutter widget’s structure 
 
After seeing Fig. 2.31, the reader might have realized that the text of the button 
is actually the result of a translate method provided by the Flutter Translate 
library. This is because this application also provides is the support for both 
English and Spanish languages. The user will be able to select their language 
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from the very beginning in the registration process, and will be able to change it 
from the profile configuration section. This have been achieved by statically 
defining all the text within the application twice in two JSON files (see Fig. 2.32), 
and then referencing the shared identifier of that particular word or sentence. 
 
 

 
 

Fig. 2.32 Spanish (left) and English (right) JSON files 
 
 

So, one can easily crate both Stateless and Stateful widgets using the Dart 
programming language, and one can also use various other development tools 
such as the Dart Analyzer and the Flutter Inspector. 
 
So, as a summary, there are several key benefits that led to the decision to use 
Flutter as the technology to develop the “beHealthApp” mobile application, 
including the following ones: 
 

• Flutter is fast, as Dart is compiled into native code, meaning that there is 
no need for a JavaScript bridge, leading to fast and responsive results. 

• Flutter gives the possibility to create cross-platform applications, which 
means that the same code can be used to run the project in iOS, Android 
and web from a single codebase, eliminating the need to carry out a 
parallel independent development for each OS. 

• Flutter has a rich set of widgets and a very well developed and instructive 
documentation with a lot of examples. 

• Flutter is open source, meaning that anyone can contribute to its 
development by creating libraries with new widgets. 

• Flutter is free. 

• It’s created by Google, which gives a certain degree of confidence as 
Flutter will continue growing and getting improved.  

• Different screen adaptability, as can be seen in Fig. 2.27. The screen 
sizes and ratios dynamically adapt the device where the application is 
running. 
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2.4.2. States Management: BLoC Pattern Architecture 

 
The discussion of how to structure an app is among the most heavily debated 
topics that arise in the development stage. Android and iOS developers use the 
Model-View-Controller (MVC) pattern as a default choice when building apps. 
However, Flutter brings a new reactive style that is not entirely compatible with 
MVC. As a consequence, a variation of this classical pattern emerged from the 
Flutter community; the BLoC pattern, which is the architectural pattern that have 
been used to manage the internal states of the application. 
 
BLoC stands for Business Logic Components, and its basic premise is that 
everything within the app should be represented as a stream of events that 
cause a change of the app’s state. In simple words, BLoC is a component that 
mediates between what the user sees and the logic behind it, and thus, 
separating the presentation layer from the business logic. 
 
Essentially, the application is constantly linked to a particular state (or multiple 
states, as will be seen later), which affects what the user sees in the app. A 
simple example would be when the user authenticates by carrying out the login. 
Before their credentials are validated, the application’s state is 
“UnauthorizedState”, but once the system has recognized the user, the state 
switches to “AuthorizedState”, which obviously leads to a change in the UI, 
indicating the user that the login has been successful. To trigger this change of 
state, an event (“LoginEvent”, for example) is sent from the UI to the BLoC 
element when the user presses the “login” button after having introduced the 
respective credentials. The BLoC knows that after receiving such event, it must 
send a request to the NodeJS server, within the context of the project, and 
depending on the response, emit a particular state (“AuthorizationFailedState or 
“AuthorizedState, for instance) that, again, will affect the UI. This whole process 
is illustrated by Fig. 2.33. Within the project, in fact, there are multiple BLoC 
components, each one to manage state and events related with a particular 
service. The previous example regarding authorization (which will be analyzed 
at the code level later in this section) would be handled by an 
“AuthorizationBloc”.  
 
 

 
 
 

Fig. 2.33 BLoC general structure  
 
 
So, now that the reader knows that in Flutter the whole UI is made of a 
hierarchy of Widgets and that the BLoC element is constantly listening to a 
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stream of events, the next upcoming question would be where does this 
element listen within the UI? A button itself can clearly trigger a login event, so 
does the block only need to provide service to that specific small widget?  The 
answer depends on the type of service. If a widget is contained by a BLoC 
instance, the latter will only be accessible (to generate events or to access the 
current state) within the widget itself and from the child ones (see Fig. 2.34). 
States and events carry information (the “LoginEvent” will need to contain the 
credentials provided by the user, and the “AuthorizedState” will contain the 
profile’s information of the user that has been sent by the NodeJS server after 
the authentication has been successfully carried out. So, for this specific use 
case, it is quite obvious that the user’s information should be accessible from 
everywhere within the information, as other requests that require some user’s 
data (the id, in most endpoints, as has been seen in section 2.3.2). That’s why 
the “AuthorizationBloc” is actually declared in the root widget of the application. 
 
 

 
 

Fig. 2.34 BLoC Hierarchy  
 
 
However, there are other services that only affect very specific parts of the 
application (groups, conversations, or historical measurements data, for 
example) and, in this case, the respective BLoC is declared way lower as far as 
the widgets hierarchy is concerned. 
 
In Fig. 2.35, the different BLoC entities that have been used in the project can 
be found within the business logic folder. As can be seen, each BLoC contains 
three files; one where the different states are defined, another one where the list 
of events are defined, and a third one where the actions carried out by the bloc 
and the states that are emitted are defined. 
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Fig. 2.35 BLoC entities used in the project 
 
 

In Fig. 2.36, the reader will be able to take a closer look to the files where the 
Authorization BLoC states and events have been defined. There are some 
states which don’t need to hold any information, and are only used to determine 
what the UI must show to the user, while other states and events do hold 
information, such as the “AuthorizedState” and the “LoginEvent”. 
 
 

 
 

Fig. 2.36 Authorization BLoC states (left) and events (right) definition 
 
 

Based on the previous definitions of states and events, now the inner logic and 
mapping within the BLoC element itself can be carried out, as shown in Fig. 
2.37. As can be seen, each event received by the BLoC leads to the emission 
of new states. For instance, when a “LoginEvent” is received, the first thing that 
the BLoC does is emit a state to let the user know that the system is processing 
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the request (“AuthorizingState”), and then, depending on the server’s response, 
the corresponding authorized or not authorized state will be emitted. 
 
 

 
 

Fig. 2.37 Authorization BLoC logic definition 
 
 
As far as the presentation layer is concerned, different widgets will be displayed 
to the user depending on the current state of the application. This mapping 
between the state and the widget that have to be displayed can be done by 
means of an intermediary function that returns a Widget. An example for the 
BLoC entity managing devices’ states can be seen in Fig. 2.38. 

 
 

 
 

Fig. 2.38 Mapping function between states and widgets 
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2.5. User Authorization: JWT 

 
As was covered in section 2.2.1, there are two different roles within the 
application context; managers and patients. Managers are also patients, but 
they have extra privileges to carry out some more actions, such as creating and 
managing groups, or accessing their patients’ medical data.  
 
The NodeJS server has a vast list of endpoints which, if no further protection is 
implemented, can be accessed publicly. So, it’s obvious that some kind of 
authorization method has to be implemented, so that only registered users and 
depending on their role can access the server’s endpoints. In this project, JSON 
Web Token (JWT) has been used to achieve so.  
 
JWT is an open industry standard used to share information between two 
entities (in this case the application and the NodeJS server) that contains JSON 
objects which have the information that needs to be shared. Moreover, each 
JWT is signed by means of a hash, to ensure the JSON’s content integrity, so 
that it cannot be altered by the client or a malicious party.  
 
So, when the user sends a “login” request, after verifying that the user exists in 
the MongoDB database, the server will generate a token that will be sent to the 
application. This token is the result of signing (by means of a server’s private 
key) a JSON containing some information regarding the user’s identity. From 
then on, the user will need to attach this token as an authorization header, so 
that the server can verify the integrity of the request. 
 
As can be seen in Fig. 2.39, the structure of a JWT contains three parts:  
 

• Header: Indicates the signing algorithm that is being used so that the 
server can verify the signature, and the type of token, which in this case 
it’s JWT. 

• Payload:  Contains the JSON object itself with the data that the server 
will use to verify the user. 

• Signature: A string that is generated via a cryptographic algorithm that is 
used to verify the integrity of the JSON payload. 

 
 

 
 

Fig. 2.39 Structure of a JSON Web Token (JWT) 
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Now that the reader is already familiar with JTW basics, let’s take a closer look 
to the specific use case of the project. As can be seen in Fig. 2.40, the JWT 
payload only contains the MongoDB document id of the user together with their 
full name and role. This code is defined within the “login” function defined in the 
NodeJS server, and the “patientFound” variable is the user’s data sent by the 
MongoDB database after verifying that the user exists. This JSON is then 
signed using a secret key, and sent to the application. The validity of this token 
has been set to one hour, and so, after this time, the session expires and the 
user needs to authenticate again in order to receive a new token. This adds an 
extra security layer in case the user’s token is somehow intercepted by a 
malicious party. 
 

 

 
 

Fig. 2.40 Signature process of the JWT payload in the NodeJS server 
 
 

When the application receives the token, it stores it (see Fig. 2.41), and 
attaches it to every single request as an authorization header (see Fig. 2.42). 
 
 

 
 

Fig. 2.41 The application stores the received token from the NodeJS server 
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Fig. 2.42 The application attaches the token as an authorization header  
 
 
When the NodeJS server receives a request, the first thing it does is to check 
the JWT. First, it fetches the header part, where it is able to discover the 
algorithm that has been used to sign the payload. By definition, a hash is not 
reversible, and so, the only way for the server to verify that the signature is valid 
is to generate it again with the header and the body of the JWT using its private 
key, and then checking if they coincide. Note that if the incoming JWT’s body is 
different, this step will generate a different signature and the request will be 
discarded. The request will also be ignored if JWT is expired. 
 
As was seen before, the JWT payload contains the roles of the patients, and 
thus, after the JWT has been validated (valid signature and not expired), the 
server can proceed to check the content of the payload and, depending on the 
user’s permissions, the request will be accepted or declined with a 403 
forbidden code, indicating that the user doesn’t have permissions to access that 
endpoint. This process can be seen in Fig. 2.43. 
 

 
 

Fig. 2.43 Server verification of the user’s permissions 
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CONLCUSIONS AND CONTINUITY 
 
 
The digitalization of data within the healthcare system has proven to be an 
important trend that is continuously transforming the way patients and 
professionals communicate and treat medical conditions. One of the most 
important developments in digital healthcare is the widespread use of 
telehealth, and the last few years have witnessed so with the SARS-CoV-2 
pandemics.  
 
Thanks to digitalization, healthcare providers can access patients’ data 
remotely, regardless their location, which can be particularly useful in cases 
where the patient is unable to be treated in a healthcare center environment, 
due to physical or mental pathologies, as well as other external reasons that 
make it impossible for the doctor to treat their patients conventionally. 
 
Moreover, a more holistic approach can be reached by means of the utilization 
of digitalized medical data in a vast list of realms within the healthcare industry, 
such as individual diagnosis, relying on the patient’s health record, large scale 
studies or remote health state tracking.  
 
There’s, however, some potentially relevant medical data that is constantly 
generated, but never used, due to the lack of a mechanism to persist it in a 
database following a worldwide known standardized format. This is the case for 
rutinary medical devices commonly owned at home, such as thermometers, 
pressure bracelets, oximeters, etc. Note that this is only possible if the medical 
device allows a Bluetooth connection, and given that their price is generally 
higher, so far this application could be used in more clustered environments and 
situations, such as nursing homes, where a unique device could be used to 
monitor all residents’ vital signs and be remotely checked by a doctor, or a case 
where the hospital itself provides the device to the user. 
 
This project has presented a solution to this use case, by means of the creation 
of a mobile application that allows to connect medical devices and carry out 
measurements, which will be stored following the current HL7 FHIR standard 
format, making this data compatible for real healthcare system practical 
utilization and allowing interconnectivity with other medical services that follow 
the same standard. Moreover, the application offers an integrated service for 
healthcare professionals to manage groups of patients and remote tracking, as 
well as a certain degree of automatic anomaly detection of measurements. To 
do so, a whole ecosystem together with the application has been implemented, 
including an internal MongoDB database connected to a NodeJS server that 
acts as a gateway to allow the communication between the application and the 
HAPI FHIR server.  
 
However, this first version of the software still lacks a list of features to be 
implemented so that it could really be released as a commercial product, such 
as the implementation of a mechanism to physically establish the connection 
between the devices and the application, and some security implementations to 
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protect the user’s data, such as the incorporation of Transport Layer Security 
(TLS) in the connection between the different elements that make up the 
project’s architecture given that, currently, only user authorization is 
implemented in the NodeJS server by means of JWT. 
 
Moreover, so far, the UI considers that a device is only able to carry out 
measurements for a unique vital sign, but certainly there are devices that can 
provide measurements for multiple ones, and so, this use case should also be 
addresses in a future version. 
 
As far as roles administration is concerned, a future version of the application 
should also include a mechanism to ensure that a user can only be registered 
with a “manager” role if they can really prove that they are real healthcare 
professionals with a license of some sort.  
 
Due the simplicity of the generated data within the application and for other 
reasons regarding efficiency, the server gateway was developed in TypeScript 
using NodeJS and Express. However, the migration to a Java server that fully 
implements the HAPI FHIR library on the client’s side should be considered, as 
a lot of agility regarding data modification and a more organized code structure 
could be achieved. 
 
And as a last potential improvement for a future version of the application, once 
more data regarding the device is known, after the implementation of the 
system to establish the connection between the latter and the application, the 
possibility to store the device’s data under a FHIR Device Resource in the HAPI 
FHIR server instead of in the internal MongoDB database should be 
considered.  
 
Healthcare data management implies a certain Information and Communication 
Technology (ICT) resources that will lead to certain energy costs from the 
server’s side, and so, the final solution should provide some kind of proposal to 
minimize these effects, such as unifying both HAPI FHIR and MongoDB 
databases under a unique entity that manages both blocks internally, for 
example. However, the collection of digitalized clinical data can lead medical 
devices to have more powerful and valuable information, which implicitly means 
that decision making procedures in front of emergencies will be considerably 
expedited, and the possibility to gather and access clinical data remotely avoids 
unnecessary travel, contributing to the reduction of emissions. 
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ANNEX A. HL7v3 XML message analysis 
 
 
In Fig. A.1, the XML structure of the Transmission Wrapper can be seen, and 
it’s the perfect example to justify the previously mentioned feature of the new 
messaging protocol, the one that contemplated expanding the protocol beyond 
the application layer of the OSI Model, as it serves as the lowest layer, 
identifying the message, its type, the trigger event and the receiver’s 
responsibilities. The receiving application is described in the receiver/device 
tags and the sending application is described in the sender/device and the 
asLocatedEntity subsection identifies the facility. In this case, the receiver of the 
message is GHH LAB, located in ELAB-3, and the receiver is GHH OE, located 
in BLDG24. The Transmission Wrapper, acting as the root element, wraps the 
payload, which is another wrapper; the Control Act Wrapper. 
 
 

 
 

Fig. A.1 HL7v3 Transmission Wrapper  

 
 
The Trigger Event Control Act Wrapper is another wrapper around the actual 
message. Its structure (visible in Fig. A.2), includes the data relative to the 
trigger event, in this case the event POLB_TE224200 and information about the 
date and time when the trigger event occurred. Although the responsible parties 
for the trigger event are not present in this example, they could also be 
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conveyed as part of the wrapper. For a clearer visualization, the domain content 
part of this wrapper, where all the explicit information relative to the observation 
itself is contained, has been approached separately.  
 
 

 
 

Fig. A.2 HL7v3 Trigger Event Control Act Wrapper  

 
 
The domain context (labeled as Observation Event) contains de directly-related 
data about the measurement, including the observation itself, the author who 
has carried out the measurement, the patient and, as in HL7v2, the field 
containing the data about the original observation order.  
 
The Observation Event section contains the data about the measurement (see 
Fig. A.3), including main data as the date and time when it was carried out and 
the result itself, but also other complementary fields such as a status code, 
indicating the current state of the observation (in this case, it’s already 
completed), and a reference range, which indicates the low and high values 
between which the result of the measurement should be placed to consider the 
patient’s health state within a normalcy scenario. As it will be seen in the next 
section, these latter have a great similarity with the FHIR implementation, 
leading to a very similar structure to the one that this project has used to store 
the generated observation results coming from the user’s medical devices. 
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Fig. A.3 Observation Event (I). Measurement results and parameters 

 
 
In the Author section (see Fig. A.4), shows two levels of information regarding 
the performing provider (Mr. Harold H Hippocrates). The first level is the 
practitioner level, where his ID is present, and the personal level, where it’s full 
name and qualifier are shown.  
 
This structural bisection is also carried out on the patient’s (referenced as 
record target) side (see Fig. A.5). Note that this is just a section of an 
observation report of a measurement, and thus, the information as for the 
patient is very limited, just enough to provide some form of error-checking. 
Other specific and detailed information about the patient could be found in 
another type of HL7v3 message (a demographic message for updating a 
patient’s personal information, for instance). 
 
 

 
 

Fig. A.4 Observation Event (II). Author section 

 
 

 
 

Fig. A.5 Observation Event (III). Record target section 
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The last section of the Observation Result section contains the reference to the 
original observation order, identifies by a placer number, which is used by the 
receiver to match the results to the order (see Fig. A.6). 
 
 

 
 

Fig. A.6 Observation Event (IV). Original order information.  
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ANNEX B. CODE 
 
 
The code that has been developed throughout this project can be found in the 
following GitHub repositories.  
 
The following link corresponds to the frontend’s code, the application itself: 
https://github.com/eetac/medicaldevices 
 
And, as for the backend’s, the NodeJS server, the code can be found in: 
https://github.com/eetac/medicalDevices-backend  
 
And regarding the Docker Image of the HAPI FHIR server, it is public in Docker 
Hub, accessible through the following link: 
https://hub.docker.com/r/hapiproject/hapi 
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