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Abstract— In this paper, we propose a data-driven leak
localization method for water distribution networks (WDNs)
which combines two complementary approaches: graph-based
interpolation and dictionary classification. The former estimates
the complete WDN hydraulic state (i.e., hydraulic heads) from
real measurements at certain nodes and the network graph.
Then, we append to the actual measurements a subset of
relevant estimated states to feed and train the dictionary
learning scheme. Thus, the meshing of these two methods
is explored, and several promising performance results are
attained, even deriving different mechanisms to increase the
resilience to classical issues (e.g., dimensionality, interpolation
errors, etc.). The approach is validated using the L-TOWN
benchmark proposed in the BattLeDIM2020 competition.

Index Terms— leak localization, dictionary learning, interpo-
lation, water distribution networks.

I. INTRODUCTION

Fault detection and isolation (FDI) is an unavoidable
element in any engineering system that is operated in an
autonomous manner. This has become especially relevant in
the last decades due to the continued increase in complexity
(in terms of size and interconnections) of networked systems.
Water distribution networks (WDNs) are a prime example:
they involve hundreds or even tens of thousands of nodes,
have poor observability (traditionally outflows are measured
only in tanks and reservoirs) and conservative control ar-
chitecture (i.e., communication and decisions flow rigidly).
All these issues make fault events (pipe bursts leading to
leakage) hard to detect and isolate accurately.

Present day WDNs are becoming smarter by the addition
of sensors, which provide timely information about pressures
(node heads) and debits (pipe flows). This has made possible
and raised considerable interest in two questions:
• how should the limited number of sensors be placed in

the WDN such as to increase observability required for
leak localization [1], [2];

• based on measurements, what is the most efficient
method to ensure leak detection and isolation [3], [4].
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Mainly, the difficulty of these questions comes from the
problem size. Thus, there is a recent trend in the state of the
art to apply data-driven methods [5]. This avoids the need of
having an accurate mathematical model required by model-
based approaches but neglects some physical relations that
exist in the real system. A possible way to compensate the
disregarding of these physical relations is by exploiting the
system structure, i.e., the network’s graph.

Contributions. The above led us to the idea of com-
bining two recently developed and promising approaches:
the graph-state interpolation (GSI) procedure proposed in
[6] and the dictionary learning (DL) detailed in [7]. In
this way, interpolated data (virtual sensors), generated in
an unsupervised way, is added to the real measurements to
feed the learning step of DL, hence indirectly considering
structural information during the leak localization. Moreover,
the use of a robust classification step [8], provided by DL,
allows to improve the node-level classification of GSI.

Thus, this article constitutes an initial step in the devel-
opment of a method which combines two separate methods
such that it compensates their weaknesses and boosts their
strengths. Additionally, a new application scheme is pro-
posed to alleviate the drawbacks of introducing approximated
data to the learning step of DL: separate dictionaries con-
sidering individual extra virtual sensors (subsequently com-
bined using a voting rule) are derived, instead of computing a
single dictionary that encompasses all those virtual sensors.

The theoretical elements are tested over the L-Town
benchmark proposed in [9], carrying out simulations on
EPANET [10] to generate the required fault scenarios. Initial
results show that the methodology is promising in terms
of its comparison with the individual methods, settling an
appropriate path for future developments.

II. PRELIMINARIES

We briefly introduce the theoretical background used in
the rest of the paper.

A. Dictionary Learning Methods

Recently, we successfully applied dictionary learning tech-
niques to solve WDN fault detection and isolation prob-
lems [7], [11]. The DL problem trains an over-complete base
D ∈ Rm×n, also called a dictionary, on a dataset Y ∈
Rm×N to produce the s-sparse representations X ∈ Rn×N :

min
D,X

‖Y −DX‖2F

s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖ = 1, j = 1 : n

(1)



The s nonzero entries of a given dataset sample’s repre-
sentation define the dictionary columns, also called atoms,
and their associated coefficients. A thorough description of
the field is given in [12].

For water networks, the dataset consists of sensor node
pressure measurements where each sample corresponds to a
leak of a given magnitude that occurs in one of the network
nodes. The FDI task consists of finding which node contains
the leak. Looking at this as a classification problem, where
the network nodes represent the classes, we can view the
dataset as multiple column blocks corresponding to pressure
measurements of leak scenarios occurring in a given node at
various magnitudes.

For DL classification tasks, Label Consistent K-SVD (LC-
KSVD) [13] extends (1) to simultaneously learn the linear
classifier W based on labels H with an added discriminate
constraint given by Q that enforces sets of atoms to only be
used by a given class

min
D,W ,A,X

‖Y −DX‖2F +α‖H−WX‖2F +β‖Q−AX‖2F
(2)

Locating the leaky node from sensor measurements y is a
two step process: first we obtain the sparse representations
y ≈ Dx by using a greedy algorithm such as OMP [14];
secondly, we perform linear classification i = argmaxWx
to obtain the leaky node1 i. To accommodate large sets
of data, this approach was extended to the online semi-
supervised setting in [15], adapted and applied to large
WDNs in [7]. In terms of complexity, performing OMP
for one data-item costs us O(smn) operations and updating
the dictionary inside LC-KSVD O(sm2N). Training one
dictionary involves K OMP and dictionary update iterations.

B. Interpolation strategies

In the past, we have used interpolation methods as part of
leak localization schemes [6]. In particular, this interpolation
process works over hydraulic head (node pressure + eleva-
tion) data, measured by pressure sensors (cheaper and easier
to install than other metering systems [16]).

The network structure is considered to be represented by
a graph G = (V, E), composed by a set of nodes, i.e., V =
R∪J , that model the reservoirs (R) and junctions (J ) of the
WDN; and a set of edges, i.e., E , representing the pipes of the
network. The proposed interpolation approximates the actual
relation, given by the Hazen-Williams formula, between the
junctions’ hydraulic heads using the following linear relation:

fi =
1

φi
ωif (3)

where f ∈ R|V| is the complete graph-state vector, which
encompasses the estimated and known hydraulic head values;
ωi stands for the i-th row of the weighted adjacency matrix
Ω ∈ R|V|×|V|, which encodes the connectivity among nodes
as well as the strength of these connections; and φi =

1Note that while Y contains only sensor node information, the labels in
H help to identify leaky non-sensorized nodes.

∑|V|
j=1 ωij denotes the i-th element of the diagonal of the

degree matrix Φ ∈ R|V|×|V|, which is a diagonal matrix.
The weights in the matrix Ω are derived from the actual
pipe lengths: considering pij to be the length of the pipe
connecting nodes vi and vj (pij = 0 if they are not
adjacent), then ωij = 1

pij
if pij 6= 0, and ωij = 0 otherwise.

This selection increases the effect of closer neighbors over
the state of a node.

Considering the previous approximation, the interpolation
procedure can be expressed as a quadratic programming
problem (see [6] for the complete development):

min
f

1

2

[
fTLΦ−2Lf + αγ2

]
(4a)

s.t. Bf ≤ 1|V| · γ (4b)
γ > 0 (4c)
Sf = fs (4d)

where L stands for the graph Laplacian, B is the incidence
matrix, S is a diagonal matrix with 1 at the elements
whose associated node is sensorized (and 0 otherwise), and
fs denotes the measurements vector, including the known
hydraulic heads at the elements corresponding to metered
nodes (and 0 elsewhere). α and γ are auxiliary scalars which
control the relative importance of the cost terms in (4a) and,
respectively, relax the direction inequality constraint (4b).

The incidence matrix B deserves some additional expla-
nation. Structural information (node position and elevation,
pipe length) is usually available but information about flow
direction within the pipes is much harder to get, due to the
rare availability of flow meters. A possible way to overcome
this issue is to compute an approximated incidence matrix
only using the network structure: the shortest path from each
reservoir to each junction node is calculated, storing the path,
i.e., list of ordered nodes, for every possible combination.
Considering that each pipe is defined by two nodes, we
can count, for every stored path, how many times a pipe is
traversed following each one of the two possible directions,
adding all the counts regarding a certain pipe and a certain
direction to obtain its final count (note that, at the end of
the process, each pipe would have two assigned final counts,
one per possible direction). Then, the flow direction along a
pipe is taken as the direction with the higher final count.

In terms of complexity, the interpolation procedure re-
duces to solving quadratic problems (4) whose complexity is
polynomial in terms of problem dimension (e.g., solving N
problems with the interior point method gives O(n3.5N)).

III. METHODOLOGY

The methodologies presented in Section II have been
successfully applied to solve the leak localization task, as
illustrated in the provided references. Nevertheless, the per-
formance of these techniques is limited by different aspects:
• The DL approach introduced in Section II-A provides

a satisfactory node-level localization, i.e., the leaks are
mostly correctly located at the node where they appear.
However, the method does not exploit the structure of



the graph during the learning process, missing important
information that may improve the performance.

• The GSI technique presented in Section II-B, together
with the localization strategy proposed in [6], explicitly
uses the graph structure for the sake of the leak isola-
tion. However, the node-level localization precision is
lower, as the method was originally conceived to isolate
an area where the leak is located.

Thus, we propose a combination of GSI and DL that maxi-
mizes their benefits, leading to the presented leak localization
methodology, henceforth referred as GSI-DL (note that the
leak detection phase is not pursued here and is assumed to
be realized through one of the techniques from the state of
the art, e.g, by tracking changes in the night consumption
[17]). Then, GSI-DL consists of the next steps:

1) The hydraulic dataset (hydraulic heads at the sen-
sorized nodes) is generated or provided, considering
different leak scenarios (leak location, magnitude, oc-
curring time, etc.), as well as leak-free historical data.

2) The complete hydraulic state of the network (repre-
sented by the hydraulic heads at the WDN nodes) is
estimated from the measured pressure values by means
of GSI, for both the leak and leak-free scenarios, from
which we derive the complete residuals dataset.

3) A subset of nodes is selected to play the role of virtual
sensors, i.e., their interpolated state value is added to
the information provided by the real sensors, obtaining
an assembled residuals dataset.

4) The DL algorithm is fed with the assembled residuals
dataset, performing the training and obtaining the
corresponding dictionary and linear classifier.

To conclude, the aim of the combined GSI-DL method
is to merge the complementary strengths of each individual
component (i.e., GSI supplies additional information for DL)
in order to improve the classification performance.

A. Selection of the virtual nodes

The interpolation scheme retrieves the complete WDN
state from a reduced set of known values from the physical
sensors subset Sr ⊂ V . However, the introduced approxima-
tions cause differences between the actual hydraulic heads
and the computed states at the unknown nodes, with an
error distribution that strongly depends on the number and
placement of sensors because they are the unique source of
hydraulic data.

Considering the importance of the existence of distinctive
features for each leak, the insertion of estimated data must be
carefully considered to avoid the inclusion of nodes whose
values present high differences between actual and estimated
value, between leaky and nominal data, etc., which can
hinder the DL process and reduce the localization accuracy.

Thus, a grid search is performed over the set of possible
virtual sensors subsets Sv via training and testing to see if
accuracy improves significantly on the training data. At the
end, we select the best virtual sensors in terms of accuracy.
In this way, the selected virtual sensors are very likely to add

valuable information to the learning process and to increase
separability among leaks.

B. GSI-DL procedure

To perform dictionary learning, the first step consists on
collecting readings from pressure sensors in a wide variety of
scenarios (as training samples are required): nominal/leaky,
as well as different leak sizes and locations. This task may
be solved in two different ways:
• On the one hand, synthetic sensor data can be generated

from a known hydraulic model. For a better perfor-
mance assessment, we use this approach for this article.

• On the other hand, if the network is clustered to define
groups of nodes whose leak behaviour is similar, a set
of leak experiments can be performed together with the
water utility at the real WDN to gather the sensor data.

In our case, considering the typically large size of real
networks, as well as the computational cost of performing
simulations for every possible leak event, a subset Z ⊆ V
of nodes is chosen so that |Z| = c ≤ N leak sources (labels
for training) are considered, running scenarios with various
fault magnitudes for each node zi. This subset of nodes must
be scattered throughout the network to capture its hydraulic
behaviour in the most complete way.

Noting that M different leak sizes are considered for
each possible leak location (t time instants are computed
considering each leak size), and that the number of physical
sensors of the network is |Sr|, the complete data set F̃leak ∈
R|Sr|×ψ , with ψ = cMt, may be regarded as the union of
c blocks corresponding to each faulty node zi, where each
block contains Mt samples with M different leak sizes.

Moreover, a complementary leak-free/nominal dataset
F̃nom ∈ R|Sr|×ψ is required: each column f̃nom must be
obtained for similar boundary conditions at the WDN to the
case of its analogue (by position) column f̃leak from F̃leak.
In this way, the necessary residuals for DL are obtained while
simultaneously reducing the differences between leak and
leak-free scenarios that are not caused by the leak.

The achieved datasets must be divided into training and
testing sets. Then, the learning process, explained in Section
II-A, is applied as summarized by Algorithm 1 (consider that
srv = |Sr|+ |Sv| is the total number of sensors).

The obtained matrices, i.e., D and W , are then used to
classify the entries of the testing dataset in order to assess
the reliability of the solution. Algorithm 2 summarizes the
behavior of the classifier against new data entries.

C. GSI-DL with multiple dictionaries

The application of the strategy is limited due to the inser-
tion of data from multiple interpolated nodes, which leads
to an accumulation of approximation errors and, above a
threshold, deteriorates the leak localization efficacy. Thus, we
devise a new scheme to overcome the above where, instead of
learning a single dictionary-classifier pair that is trained with
the entire set of additional virtual sensor information, we
learn multiple dictionaries (MD)-classifiers pairs by applying
Algorithm 1 separately for each individual virtual sensor.



Algorithm 1: GSI-DL — Training procedure

Data: leak training set F̃ train
leak ∈ R|Sr|×ψtr , nominal

training set F̃ train
nom ∈ R|Sr|×ψtr , sparsity level

s ∈ R, virtual sensors Sv , physical sensors Sr
Result: dictionary D ∈ Rsrv×n, classifier W ∈ Rc×n

1 interpolate F train
nom applying (4) to F̃ train

nom

2 interpolate F train
leak applying (4) to F̃ train

leak

3 compute residuals: Y train = F train
nom − F train

leak

4 assemble dataset (and associated labels Htrain
rv ):

Y train
rv =

[
Y train(Sr);Y train(Sv)

]
5 compute D,W ,A applying (2) to labeled Y train

rv

Algorithm 2: GSI-DL — Classification procedure

Data: sample f̃ testleak ∈ R|Sr|, nominal sample
f̃ testnom ∈ R|Sr|, sparsity level s ∈ R, virtual
sensors Sv , physical sensors Sr, dictionary
D ∈ Rsrv×n, classifier W ∈ Rc×n

Result: faulty node i
1 interpolate f testnom applying (4) to f̃ testnom

2 interpolate f testleak applying (4) to f̃ testleak

3 compute residuals sample: ytest = f testnom − f testleak

4 assemble data: ytestrv =
[
ytest(Sr);ytest(Sv)

]
5 representation: x = OMP(ytestrv ,D, s)

6 classification: i = argmaxj=1:c(Wx)

The result consists of |Sv| dictionaries-classifiers pairs, each
one trained with a single additional virtual sensor.

For the final localization decision, we employ a voting
method [18] on the set of classifications from the dictionary-
classifier pairs. Several advantages are derived from the ap-
plication of this scheme, chiefly, a more robust classification
result [8] and a reduction in the outliers’ effect.

IV. RESULTS

The presented methodologies are implemented in a realis-
tic case study, provided by the “Battle of Leakage Detection
and Isolation Methods 2020” (BattLeDIM2020), detailed
in [9]. This benchmark, illustrated in Fig.1, consists of a
small hypothetical network composed of 782 inner nodes,
909 pipes, 1 tank and 2 water inlets or reservoirs. The
network is composed from three distinct areas (A, B and
C), distinguished by the elevation of its nodes. Hereinafter,
we focus on area A.

A. Data generation

For testing purposes, hydraulic data must be available for
all the considered leaks. In this article, this information is
retrieved through the simulation of an EPANET model.

A list Z ⊂ V of 30 nodes is selected from the junction
nodes (denoted in Fig.1 with “filled blue circle” symbols) as
possible leak sources (“red cross” symbols). Henceforth, 30

zone B

zone C junction node

reservoir node

tank node

sensor

virtual sensor

node under fault

legend

Fig. 1. L-Town illustration with various node highlights

labels (one per each leak) are considered in the subsequent
learning steps. For each possible leak, a week of hydraulic
data is generated, with a time step of 5 minutes. The first
four days of the week are selected to generate the training
set, increasing the leak size each day to cover a wide range
of values, from 1 m3/h to 7 m3/h. The three remaining days
produce the testing set, selecting even leak sizes between the
minimum and maximum values to complete the set, i.e., 2,
4 and 6 m3/h. Finally, a 5% of uncertainty is induced in the
pipe roughness and diameters, whereas the demand patterns
are kept as provided by the BattLeDIM2020 case.

B. Application of preliminaries

First, the preliminary works in Section II, i.e., the sepa-
rated application of DL [7] and GSI (together with a leak
candidate selection method: GSI-LCSM) [6]; are applied to
the case study. This is done to provide performance baselines
and to justify the interest in merging the procedures.

On the one hand, the classical DL approach is trained
with the measurements from the real sensors, obtaining
an accuracy of 89.63%, which can be considered as the
reference value to improve with the new proposed schemes
that include the interpolated information. This accuracy is
included in Table I together with the rest of the single-
dictionary results, as they are directly comparable.

On the other hand, GSI-LCSM is fully data-driven (it
does not require prior leak information) and is conceived
to provide a candidate localization area, which limits the
precision for single node localization. Thus, we need to select
a suitable criteria to determine the success of the localization
process, in order to perform a comparable analysis with
respect to the DL ones. Let us consider that GSI-LCSM
provides node vG as the best candidate. If we only accept
localization results as successful when the distance from vG
to vl (node of the actual leak), i.e, r(vG, vl); is the minimum
among the distances from vG to all the possible leaks, a
reduced accuracy of 56.7% is achieved. However, this criteria
can be extended to also consider the case when vl is not
the closest to vG, but the 2nd-nearest one (let us denote
the closest one as vc). Accepting only the concrete cases
when r(vG, vl)−r(vG, vc) < 100 (meters), the accuracy is
drastically increased, reaching a 76.7%. Finally, an accuracy



of 86.7% can be achieved if we accept as successful all the
cases when vl is at least the 2nd-nearest possible leak to vG.

Hence, it is concluded that the GSI-LCSM method suc-
cessfully reduces the uncertainty in the leak’s position to
a small zone around it, but the performance deteriorates
if analysing to the node-level. This justifies the interest in
combining GSI and DL, demonstrated to be suitable for
node-level localization tasks.

C. Single dictionary with virtual sensors

We apply the method in Section III-B to select a set of
virtual nodes, as per the criteria explained in Section III-
A. Thus, GSI is used over a leak dataset having |Sr| =
33 measurements (from 29 nodes with pressure sensors, 2
reservoirs’ pressure sensors, and other 2 known pressures
at the PRVs; depicted with a “green circled diamond” in
Fig. 1), c = 30 different leaks, M = 7 different leak sizes
and t = 288 time slots (at every 5 minutes in 24 hours).

The classification accuracy for a set of considered virtual
sensors is included in Table I, whereas their location within
the network is shown in Fig. 1 (“green diamond” markers).
For each table entry, a different subset of virtual sensors
is selected from the GSI interpolation. Each accuracy value
is averaged over five training runs, to reduce the effect of
possible learning outliers.

TABLE I
SINGLE DICTIONARY - ACCURACY RESULTS

Virtual node/s Testing accuracy (%)
None 89.63
255 90.54
559 90.23
51 90.43

153 90.09
504 90.57
339 91.96
265 89.77
773 82.53
214 81.34

265, 255 89.42
265, 255, 559 88.54

Comparing the first entry (the case without virtual sensors)
against the rest, we conclude that:
• generally, the addition of a single virtual sensor (from

node 255 to node 265 in the table) increases the accu-
racy of the classification, and thus, the leak localization;

• there exist nodes whose interpolated information de-
grades the performance (due to discrepancies between
their nominal and leaky interpolated data), as seen, e.g.,
for nodes 773 and 214 in the table;

• lastly, the insertion of more than one interpolated value
gradually lowers the accuracy, as shown in the last two
entries of the table.

Worth mentioning is also the associated computational
complexity. Increasing the number of sensors by adding
virtual ones leads to larger computation times during DL.
We show in Table II a time consumption analysis, carried
for the same DL training parameters.

TABLE II
SINGLE DICTIONARY - TIME CONSUMPTION

No. of added virtual sensors Time consumption (s)
0 97

193 119
448 150

628 (zone A + reservoirs) 188

D. Multiple dictionaries and voting methods

The performance degradation observed in Section IV-
C, associated to the inclusion of multiple virtual sensors,
justifies the development of the scheme introduced in Section
III-C. Thus, multiple dictionary-linear classifier pairs are
derived, considering a single virtual sensor for each case.
Besides, a voting method is applied to improve the classifica-
tion result. In this case, a “plurality voting” scheme has been
selected, i.e., the label with the maximum number of votes
among the different dictionary-classifier pairs is selected as
the definitive label for the classified sample. We apply the
voting scheme to two different implementations, and present
performance results in Table III, including the classification
accuracy (Acc.) and the model training time (Time):
• (MD)DL: the classical DL construction is applied, with

consecutive increase for the number of dictionaries;
• (MD)GSI-DL: each dictionary adds a single virtual sen-

sor (distinct from all the others inserted a priori), again,
the number of dictionaries is augmented consecutively.

TABLE III
MULTIPLE DICTIONARIES - ACCURACY RESULTS

No. of (MD)DL (MD)GSI-DL
dicts.∗1 Acc. (%) Time (s) Acc. (%) Time (s)

1∗2 94.40 247 94.40 272
2 93.91 494 93.57 525
3 95.50 740 95.38 773
4 95.17 985 95.78 1017
5 96.09 1231 96.54 1257
6 95.78 1472 96.36 1499
7 96.09 1724 96.54 1741

∗1Considered virtual sensors: 255, 559, 51, 153, 504, 339.
∗2The first dictionary is a classical DL for both cases.

E. Discussion

Several conclusions may be derived from the results in
Table III, regarding the suitability of the proposed method.

Interestingly, the classification performance for both meth-
ods is almost identical for the first three entries (to be
expected for the first entry since here a classical dictionary
is computed in both cases) with significant improvements
appearing only when considering four or more dictionaries
in the voting step. This shows that subsequent dictionary-
classifier pairs complement the classification performance
of the standard DL, strengthening the common correct re-
sults and providing extra information to overcome possible
weaknesses. Moreover, we note that (MD)GSI-DL surpasses
(MD)DL when extra dictionary-classifier pairs with single



virtual sensors are included, confirming the appropriateness
of this methodology over the single-dictionary approach.

Besides, a comparison among the original and proposed
approaches presented in this article, i.e., DL (with a sin-
gle dictionary), GSI-LCSM, (MD)DL and (MD)GSI-DL, is
represented in Fig. 2. The first two methods are used as
baselines, and hence they are included in Fig. 2 as dashed
lines, despite only one or even no dictionary is used in their
resolution. Then, for the proposed multiple dictionary (MD)
approaches, the performance evolution regarding the number
of “different” dictionaries (three dictionaries of the same kind
are used at each entry of Table III) is included.
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Fig. 2. Performance comparison among the original and proposed methods

This comparison illustrates the advantages of the MD
scheme, which increases the accuracy from 89.63% to 94.4%
using the same base method (classical DL) with the only
difference of deriving extra dictionaries and voting among
them. Moreover, the improvement of (MD)GSI-DL with
respect to (MD)DL is graphically represented to highlight the
benefits of including virtual sensors at the extra dictionaries.

In conclusion, these results show the promising character-
istics of the proposed methodology, justifying the continu-
ation on this research line to develop future improvements
that yield a rounded data-driven leak localization strategy.

V. CONCLUSIONS

This article proposes a method for leak localization in
WDNs that combines graph-based state interpolation (GSI)
and dictionary learning (DL). We have presented the original
methods, explaining advantages and drawbacks to show and
justify the interest in their complementary application.

Furthermore, several different schemes have been intro-
duced regarding this combination, i.e., computing a single
dictionary that considers a set of interpolated values, deriving
multiple dictionaries (classical or including virtual sensors)
and voting over their classification results, etc.

The advantages and limitations of all these approaches
have been stated and demonstrated by means of a case study,

based on the L-Town benchmark from BattLeDIM2020,
obtaining several promising results.

Further works will cover additional enhancements of the
methodology, such as a better integration of the components,
an analysis of the interpolation procedure to improve its
performance (weight computation, nonlinear fitting, etc.).
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