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A B S T R A C T

Bacterial resistance to antibiotics has been rapidly increasing, resulting in low antibiotic effectiveness even
treating common infections. The presence of resistant pathogens in environments such as a hospital Intensive
Care Unit (ICU) exacerbates the critical admission-acquired infections. This work focuses on the prediction
of antibiotic resistance in Pseudomonas aeruginosa nosocomial infections at the ICU, using Long Short-Term
Memory (LSTM) artificial neural networks as the predictive method. The analyzed data were extracted from
the Electronic Health Records (EHR) of patients admitted to the University Hospital of Fuenlabrada from 2004
to 2019 and were modeled as Multivariate Time Series. A data-driven dimensionality reduction method is built
by adapting three feature importance techniques from the literature to the considered data and proposing
an algorithm for selecting the most appropriate number of features. This is done using LSTM sequential
capabilities so that the temporal aspect of features is taken into account. Furthermore, an ensemble of LSTMs
is used to reduce the variance in performance. Our results indicate that the patient’s admission information,
the antibiotics administered during the ICU stay, and the previous antimicrobial resistance are the most
important risk factors. Compared to other conventional dimensionality reduction schemes, our approach is
able to improve performance while reducing the number of features for most of the experiments. In essence,
the proposed framework achieve, in a computationally cost-efficient manner, promising results for supporting
decisions in this clinical task, characterized by high dimensionality, data scarcity, and concept drift.
1. Introduction

After the discovery of penicillin by Alexander Fleming in 1928,
which initiated the development and administration of antimicrobial
drugs [1], bacteria have been evolving to resist antimicrobials. Though
this evolution is naturally produced by bacteria mutations, it has been
increasingly accelerated by the selective pressure generated by the
widespread, and not always appropriate, use of antibiotics [2]. Bac-
terial resistance has grown to a point where current antibiotics may
be no longer able to treat common infections, becoming antimicrobial
resistance a global public health crisis [3].

In a hospital’s Intensive Care Unit (ICU), due to factors such as the
serious medical conditions of the patients with compromised immune
systems, the cross-transmission among patients, and the high use of
antimicrobial drugs, there is a growing risk for nosocomial infections,
i.e. infections acquired during the ICU stay [4,5]. Furthermore, the
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presence of resistant pathogens increases the impact of these infections.
The current study is focused on Pseudomonas aeruginosa because it is
one of the most common bacteria associated with nosocomial infections
in the ICUs [6].

In order to treat an infection, clinicians usually carry out a culture
to identify the causative bacteria. Afterward, a susceptibility test or an-
tibiogram is normally performed for each particular bacterium, which
informs about bacterium susceptibility to a group of tested antibiotics.
The antibiogram result for a particular bacterium is a set of pairs
antibiotic tested — susceptibility of the bacterium to the antibiotic
tested [7]. The antibiogram is used as a guide in selecting targeted
antibiotic therapy, and also to monitor the bacterial resistance in the
ICU as a whole [7]. The antibiogram results usually require 48 h. Owing
to the critical condition of patients in the ICU, the early availability of
the antibiogram result is crucial to provide the proper treatment for
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infectious disease patients [8]. To support clinical decisions related to
Pseudomonas aeruginosa bacterium, we propose in this work the use of
state-of-the-art Machine Learning (ML) techniques to obtain an early
prediction of the antibiogram results.

Studies have proposed the use of ML for generating rules to improve
the antibiotics administration programs, based on past recommenda-
tions for the patient’s treatment [9]. Also, ML coupled with Feature
Selection (FS) methods has been used to predict the general trend of
antimicrobial resistance in a hospital [10]. Regarding the prediction of
antimicrobial resistance of particular strains using ML, different sources
of data have been considered. For instance, recently bacteria Whole
Genome Sequences have been used for resistance prediction [11–13].
However, the present study makes use of Electronic Health Records
(EHR) of ICU patients for the antibiogram result prediction, since EHR
data are easier to obtain than genomics data. In fact, EHR data have
been used for predicting antimicrobial resistance in previous studies,
applying a number of techniques such as regression-based methods [14,
15], Random Forest [16], Naïve Bayes, Decision Tree, K-Nearest Neigh-
bors [17], Support Vector Machines, Multi-Layer Perceptron [18–20],
and Long Short-Term Memory (LSTM) [21]. The study [17] introduces
the concept drift in this specific field, arising when predicting antimi-
crobial resistance with EHR data. It refers to a phenomenon in which
the data distribution changes over time, and a set of techniques such as
windowing and dynamic selection of models are proposed to get around
this challenge. In [15,16,20], the intrinsic temporal nature of the task
is considered, and the methods are trained on the first instances tempo-
rally ordered (training set) and evaluated on the most recent instances
(test set). In addition, the windowing technique is used to overcome
the concept drift in [15,16]. Several studies applied feature importance
methods and identified highly relevant EHR variables informing about
the results of previous susceptibility tests associated with the patient for
whom the antibiogram result is to be predicted [16,20]. Furthermore,
in [15] it is suggested that information linked to the rest of the ICU
patients could be useful to predict bacterial resistance of cultures for a
particular patient in the ICU.

The data analyzed in the current study have been also used in [15,
16,19,21–24], although considering different time frames, features, and
instance structure. Recently, the work in [21] suggested tackling the
problem by considering instances as time series modeling ICU patients
because of the temporal dynamics of the EHR data. Following a sim-
ilar idea, the current study represents instances as individual cultures
characterized by multivariate time series.

In the literature, many approaches have been proposed for the clas-
sification of instances characterized by time series. These approaches
can be summarized in four main paradigms: the model-based or gener-
ative methods, the distance-based methods, the feature-based methods,
and the end-to-end methods [25,26]. The model-based methods firstly
build a model for the instances associated with a particular class,
commonly using AutoRegressive (AR) method [27,28]. Secondly, the
new instance (based on time series) is evaluated with the generated
models to find the most probable class for the new instance. However,
the AR method can only deal with time series that satisfy the stationary
assumption. The distance-based methods couple a classifier algorithm
with a distance function measuring the difference between two time
series (two instances). A widespread model using this methodology
is Nearest Neighbors (NN) with the Dynamic Time Warping (DTW)
distance [29]. Unfortunately, a drawback of DTW is that, in its basic
form, its calculation is quadratic on the time complexity [30]. The
feature-based methods firstly reduce the dimensionality of the time
series by extracting a set of features and afterward use these features
to train a classifier. An algorithm achieving good performance using
this paradigm is HIVE-COTE [31], an ensemble of 37 classifiers with
different feature representations including a Hierarchical Vote system.
The main disadvantage of HIVE-COTE is the very high computational
cost, making it impractical on real big data mining tasks. Note that
2

the performance of the feature-based methods are highly dependent
on the feature extraction procedure. Finally, unlike the feature-based
methods, the end-to-end methods directly deal with the raw time series
for classification without prior processing. These methods use Artificial
Neural Networks (ANNs) and have gained relevance in classification
tasks involving time series because of their promising performance,
becoming the state-of-the-art in a variety of tasks (for instance exo-
planet transit detection [32]). Among the different architectures, the
Recurrent Neural Network (RNN) [33] design allows it to work with
time series data in a natural way thanks to their feedback connections.
In the current study, we use LSTMs because they are a type of RNNs
capable to handle an arbitrary number of instants of time in the time
series. Also, LSTMs are the state-of-the-art for classification using EHR
data with time series [21,34]. Because of the natural temporal ordering
in which cultures are performed, instances in training are the oldest
cultures in the sequence and test instances are always the most recent
ones in the sequence. Furthermore, the relevant information of previous
susceptibility test results and information about co-admitted ICU pa-
tients is considered and adapted in the time series scheme. Co-admitted
patients are those who stay in the ICU with the patient 𝑝 whose
culture is being considered. The current study devises a dimensionality
reduction method based on the use of LSTM, and does not require
expert knowledge. It consists of two stages: In the first stage, three
feature importance techniques are adapted to the handled data and
the importance provided by the three techniques is averaged. These
features are sorted by importance and, in the second stage, an algorithm
is proposed to calculate the number of selected features. In addition,
in the present study, an ensemble of ANNs is applied with the aim of
improving performance and decreasing variance.

The rest of the paper is as follows. Section 2 describes the data
considered in this study. In Section 3 the methods and the experimental
setting are explained, whereas the Results are presented in Section 4.
Finally, conclusions and future work are discussed in Section 5.

2. Data considered

Data considered in this study have been extracted from the EHR in
the ICU service of the University Hospital of Fuenlabrada (UHF). They
were provided as an anonymized data set and correspond to a period
of 15 years (from July 2004 to May 2019). Our data set contains 764
cultures in which the Pseudomonas aeruginosa bacteria was detected.
These cultures belong to 277 patients, implying that some patients
have assigned more than one culture. Every culture has the associated
antibiogram results.

The study focuses on nosocomial infections, which are those ac-
quired during the ICU stay [35]. Formally, they are defined as infec-
tions arising after 48 h of hospital admission [17] (the ICU admission,
in our case). Because of that, all the considered instances are asso-
ciated with patients such that their ICU stay is longer than 48 h. In
this way, each instance represents a culture of a particular patient
in which the Pseudomonas aeruginosa bacterium has been detected.
Regarding the treatment of this bacterium, six families of antibiotics
are especially relevant: Aminoglycosides (AMG), Carbapenems (CAR),
4th Generation Cephalosporins (CF4), Extended-spectrum penicillins
(PAP), Polymyxins (POL), and Quinolones (QUI) [36,37]. Focusing on
these families, the present work considers six binary targets, one for
each family. Every target indicates whether the culture’s bacterium is
susceptible or resistant to the respective antimicrobial family. Predic-
tive data of the instances contain information registered in the EHR of
the corresponding patient, represented as a multivariate time series. A
multivariate time series is a sequence of data where there is more than
one observation for each time step (the temporal distance among time
steps is one day in our data set).

In this work, fixed-length sequences of 30 days are used to train
the network. Since instances are characterized by time series with
potentially different lengths depending on the patient’s ICU stay, it is

needed to truncate or pad each sequence so that they all have the same
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Fig. 1. Scheme of one instance with 𝐹 features and 𝑀 days, including the representation of the indicator feature 𝑓 (2)
𝑖 (corresponding to Day 2) and its associated 𝑘 features (from

𝑓 (2)
𝑖+1 to 𝑓 (2)

𝑖+𝑘) filled with don’t care values.
length. As previously mentioned, the last day linked to a particular
instance corresponds to the day the particular culture is performed. In
order to truncate the time series of an instance containing more than
30 days, the 29 days immediately previous to the day the culture is
performed are considered. In the case of instances containing less than
30 days, pre-padding with ‘−1’ is used to fill the values of the time
series in these days.

As a result, data characterizing every instance can be represented
as an array of length number_of_days × number_of_features, with the
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 detailed in Section 2.1. Instances consider patient
data from the day of the first ICU admission to the day the culture is
predicted.

2.1. Features of the time series

In total, the number of features used is 398. This high number
is the result of using One-Hot Encoding to represent those variables
which originally are categorical, obtaining a new feature for each
category (modality) of the original variable. The variables with several
modalities are indicated as feature_name-[modality]. The variables and
corresponding modalities are listed in the Annex. All features consider
information always previous to the date and time when the culture is
performed.

Owing to the nature of the data and their encoding, there is a high
number of unknown values. Unknown values encompass both missing
and don’t care values. While missing values do not provide information
about the features, don’t care values tells us that the feature values
are irrelevant to the instance’s class [38]. In the medical field, it is
relevant to differentiate missing from don’t care values, since not all the
features may be related to the patient diagnosis [38]. In the current
study, the values of the subsets of features ‘‘Admissions information’’,
‘‘Culture and antibiogram information’’ and ‘‘ICU admissions information’’
(see Sections 2.1.2 and 2.1.3), will be don’t care values when the patient
whose antibiogram result is being predicted is not currently staying in
the ICU, or the patient has not performed any culture, or there are
not any co-admitted patients, respectively. Since the feature values are
normalized between 0 and 1, the value assigned to don’t care values
is −1, outside the normalized range to distinguish them from actual
values. For an explicit representation of these values, one indicator
feature is created for each of the three subsets of features previously
mentioned. They are named admission_indicator, cultures_indicator, and
icu_admission_indicator, respectively, which denote whether the rest of
the features in the same subset of features (see Sections 2.1.2 and 2.1.3)
are coded as don’t care values or not. Fig. 1 depicts the structure of one
instance in the data set, with the representation of an indicator feature
and its respective don’t care values.

The features in the present study are organized in three broad
groups, named temporal features, patient features, and ICU features. They
are described below.
3

2.1.1. Temporal features
For each particular day 𝑑, some temporal features are considered.

Features such as the complete date or the year are not used, since
they introduce an explicit ordering among instances, and previous
studies [15,16] have shown that their use worsens the results obtained.

• day_week specifies the day of the week with an integer from 0
to 6 representing days from Monday to Sunday, respectively.

• day_month represents the day of the month.
• month represents the month of the year with an integer from 0

to 11 representing months from January to December.

2.1.2. Patient features
The patient features just consider the information of the patient

whose culture and respective antimicrobial resistance, is being pre-
dicted, named patient 𝑝. Each value of these features makes reference
to a specific day 𝑑. For a clearer explanation, patient features are
divided into four sets of features (next described): ‘‘Admissions informa-
tion’’, ‘‘Culture and antibiogram information’’, ‘‘Antibiogram results’’, and
‘‘Treatment information’’.

Admissions information takes into account data about the admis-
sions of the patient 𝑝. The following features are created:

• admission_indicator denotes whether the patient 𝑝 is staying in
the ICU on day 𝑑 or not, with a 1 and a 0 respectively. In the
case the patient is not staying in the ICU, the rest of the features
considered in ‘‘Admissions information’’ set are don’t care values,
represented by −1.

• origin-[modality]: Its value is 1 if the ICU stay starts on the day
𝑑 and the clinical origin of the patient is the one indicated by the
modality of the feature. Otherwise, its value is 0.

• destination-[modality]: A value of 1 denotes that the stay ends
on the day 𝑑 and the clinical destination of the patient is the one
indicated by the modality of the feature. Otherwise, the 0 value
is used.

• reason_admission-[modality]: Its value is 1 if the reason for
admission for patient 𝑝 is the one indicated by the modality of
the feature. Its value is 0 otherwise.

• patient_category-[modality]: There are two types, medical and
surgical, with the value 1 indicating the appropriate category for
the patient 𝑝. Otherwise, a 0 is considered.

• age: Its value is the age of the patient 𝑝 on day 𝑑.
• gender: Its value is 0 or 1 if the patient 𝑝 is female or male,

respectively.

Culture and antibiogram information includes data of the pre-
vious cultures containing Pseudomonas aeruginosa for the patient 𝑝.
Regarding the day when the prediction is performed (the last day
considered in the time sequence), just the culture which result is being
predicted is considered, regardless there were several cultures on the
same day:
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• cultures_indicator denotes whether the patient 𝑝 has had at least
one culture performed on the considered day 𝑑 or not, with a
1 and a 0 respectively. When no culture has been performed,
the rest of the features considered in ‘‘Culture and antibiogram
information’’ set are don’t care values, represented by −1.

• culture_type-[modality]: The features identified as ‘‘cult-
ure_type-[modality]’’ refer to the kind of tissue sample. Some of
them are: ‘‘blood’’, ‘‘urine’’, ‘‘exudate_wound’’, ‘‘abscess’’, among
others. The value registered for each culture_type-[modality]
refers to the number of cultures carried out to the patient 𝑝 in
the considered day 𝑑.

• culture_type_grouped-[modality]: number of cultures perf-
ormed to the patient 𝑝 in the considered day 𝑑 with the type of
culture grouped indicated by the feature.

• culture_type_grouped_2-[modality]: number of cultures per-
formed to the patient 𝑝 in the considered day 𝑑 with the type
of culture grouped 2 indicated by the feature.

• antibiogram_antibiotic-[modality]: number of antibiograms
linked to the patient 𝑝 in the considered day 𝑑 such that the
antibiotic indicated by the feature has been tested for resistance.

• antibiogram_family-[modality]: number of antibiotics tested in
antibiograms belonging to the family indicated by the feature, for
the patient 𝑝 and considered day 𝑑.

Antibiogram results express the results of the cultures contain-
ing Pseudomonas aeruginosa and antibiograms of the patient 𝑝. The
following features are created:

• pseudomonas_aeruginosa_detected: it is 1 if there is at least one
culture containing Pseudomonas aeruginosa for patient 𝑝 and day
𝑑. Otherwise, it is 0.

• resistance-[modality]: refers to results of the antibiograms car-
ried out 48 h before day 𝑑. Three values are possible for every
antimicrobial family 𝑎𝑓 : 0 denotes that it has been found sus-
ceptible bacteria but no resistant bacteria; 1 indicates that there
are results with resistant bacteria; −1 is used to code that the 𝑎𝑓
family has not been tested.

Treatment information details the antibiotics administered to the
patient 𝑝, and whether they have received mechanical ventilation. The
following features are created:

• antibiotics-[modality]: It is 1 if the antibiotic indicated by the
modality is administered to patient 𝑝, and 0 otherwise.

• mechanic_ventilation: It is 1 if the patient receives mechanic
ventilation, and 0 otherwise.

2.1.3. ICU features
The ICU features consider information of co-admitted patients (ca-p)

to the patient 𝑝 whose culture is being considered (see definition of
co-admitted patients in Section 1). Again, each value makes reference
to a particular day 𝑑. ICU features are divided into four sets, described
below: ‘‘Number of co-admitted patients’’, ‘‘ICU admission information’’,
‘‘ICU antibiogram results’’, and ‘‘ICU treatment information’’.

The set number of co-admitted patients contains just the feature
co-admitted_patients, representing the number of ca-p in a particular
day 𝑑.

The group designated as ICU admission information takes into
account data about admissions of ca-p. The following features are
created:

• icu_admission_indicator denotes whether there is at least one
ca-p on day 𝑑 (value 1) or not (value 0). When there are no ca-p,
the rest of the features in the ‘‘ICU admissions information’’ set are
don’t care values, represented by −1.

• icu_origin-[modality]: number of ca-p that start their ICU stay in
day 𝑑 and their clinical origin is the one indicated by the feature
4

modality.
• icu_destination-[modality]: number of ca-p finishing their stay
in day 𝑑, being their clinical destination the one indicated by the
feature modality.

• icu_reason_admission-[modality]: number of ca-p whose rea-
son of admission matches with the one indicated by the feature
modality.

• icu_patient_category-[modality]: number of ca-p whose patient
category matches with the one indicated by the feature modality.

• icu_age: mean age of the ca-p in day 𝑑.
• icu_gender-[modality]: number of ca-p with the gender indi-

cated by the feature modality.

The set ICU antibiogram results refer to the cultures containing
Pseudomonas aeruginosa and antibiograms assigned to the ca-p. The
following features are created:

• icu_pseudomonas_aeruginosa_detected: number of ca-p for
whom at least one culture containing the Pseudomonas aeruginosa
bacterium is detected in the considered day 𝑑.

• icu_resistance-[modality]: its value is calculated as follows.
First, for each ca-p, a value is calculated following the criterion
presented in resistance-[modality]. Then, if the values for all
the ca-p patients are −1, the value of icu_resistance-[modality]
is also set to −1. Otherwise, it is the sum of all the values different
from −1.

The group named ICU treatment information details the antibi-
otics administered to the ca-p, and whether they have received mechan-
ical ventilation. The following features are created:

• icu_antibiotics-[modality]: its value is 1 if there is at least one
ca-p for whom the antibiotic indicated by the modality of the
feature has been administered in the considered day 𝑑. Otherwise,
its value is 0.

• icu_mechanic_ventilation: number of ca-p who are receiving
mechanical ventilation in the considered day 𝑑.

2.2. Data analysis

Six different subsets are generated, one for each target (antibiotic
family). Since the susceptibility tests may have not been carried out
simultaneously for the six antibiotic families, each subset can have a
different number of cultures. Thus, the number of instances is 755,
643, 749, 749, 483, and 708 for the AMG, CAR, CF4, PAP, POL, and
QUI subsets, respectively. Fig. 2 depicts the temporal evolution of the
susceptibility to each of the antibiotics families considered. In general,
it is observed that the fraction of resistant instances increases as time
evolves. It is also observed that the number of cultures performed is
lower in the most recent years. Finally, some particularities are found
in specific antibiotic families. For instance, there are no instances in
the POL family until 2007, probably because until then its use was
not necessary to treat Pseudomonas aeruginosa infections. On the other
hand, the QUI family has a low number of instances in 2018 and none
in 2019. This may be caused because the QUI family is no longer
tested in antibiograms because of the low effectiveness of this antibiotic
to deal with Pseudomonas aeruginosa (note the high rate of resistant
instances from 2014).

Regarding the unknown values, our data set includes both missing
and don’t care values, missing values are found in resistance-[modality]
and icu_resistance-[modality] features. The −1 value is used to encode
those features for which the corresponding antimicrobial family has
not been tested (i.e., there is no susceptibility result). Table 1 shows
the percentage of days with unknown values for each feature or set
of features. It is observed that the number of don’t care values in
‘‘Admissions information’’ is relatively low taking into account the data
sparsity. Percentages in ‘‘ICU admissions information’’ are similar to

those in ‘‘Admissions information’’, since patients for whom the culture
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Fig. 2. Evolution in the number of susceptible and resistant instances for each
antimicrobial family. Top panel comprises AMG and CAR data subsets. Middle panel
refers to CF4 and PAP. Bottom panel includes POL and QUI.

results are predicted are always with at least one co-admitted patient
during their ICU stay. ‘‘Culture and antibiogram information’’ has a much
higher percentage of don’t care values. This happens because cultures
are not performed everyday. The features named resistance-[modality]
obtain even higher percentages of unknown values than ‘‘Culture and
antibiogram information’’ because not all the antimicrobial families are
always tested in the same culture. On the other hand, features like
icu_resistance-[modality] also get higher percentages of unknown values
than ‘‘Culture and antibiogram information’’, but they are slightly lower
than those of resistance-[modality] because icu_resistance-[modality] fea-
tures refer to co-admitted patients, and it is likely that they count
with antibiograms. several patients, increasing the chances of having
different antibiotics tested.

3. Methods and experimental setting

The problem at hand is tackled as a multivariate time series clas-
sification task suffering from high dimensionality, with 398 features
and a relatively low number of instances, ranging from 483 to 755.
Because of that, dimensionality reduction is applied to mitigate the
model complexity and potentially improve the model performance.

The selection of features is performed independently for each an-
timicrobial family data set, considering wrapper FS methods for two
reasons [39]. The first is that they usually achieve better predictive
performance than other methods (such as filter FS methods), although
they are computationally more expensive. The second reason is that,
since wrapper methods take into account the same approach later used
5

Table 1
Percentage of days (considering 30 days) with unknown values for each feature (row)
and data set (column). Adm. stands for ‘‘Admission information’’, ICU Adm. stands for
‘‘ICU admissions information’’, Cul. stands for ‘‘Culture and antibiogram information’’, Res.
[...] stands for resistance-[modality] and ICU Res. [...] stands for icu_resistance-[modality]
(co-admitted patients).

AMG CAR CF4 PAP POL QUI

Adm. 38.7 37.1 38.6 38.7 37.6 38.3
ICU Adm. 38.7 37.1 38.6 38.7 37.6 38.3
Cul. 90.1 89.7 90.1 90.1 89.4 89.9
Res. AMG 94.0 93.6 94.0 94.0 93.3 93.8
Res. CAR 94.7 94.1 94.7 94.7 94.1 94.6
Res. CF4 94.0 93.6 94.0 94.0 93.3 93.8
Res. PAP 94.0 93.7 94.0 94.0 93.4 93.9
Res. POL 96.0 95.8 96.0 96.0 94.5 95.9
Res. QUI 94.2 93.8 94.2 94.2 93.6 93.8
ICU Res. AMG 91.5 91.6 91.5 91.5 90.8 91.3
ICU Res. CAR 92.7 92.5 92.7 92.7 92.2 92.6
ICU Res. CF4 91.5 91.6 91.5 91.5 90.9 91.3
ICU Res. PAP 91.5 91.6 91.5 91.5 90.9 91.3
ICU Res. POL 94.3 94.3 94.3 94.3 93.0 94.3
ICU Res. QUI 91.8 91.9 91.8 91.8 91.2 91.4

for classification, they can offer a better performance than the one
provided by filtering feature selection methods.

In the current work, we first propose to calculate indices to measure
the feature importance by adapting some wrapper methods in the liter-
ature; then, we propose an algorithm using these indices to carry out
the selection of the most relevant features. The proposed FS algorithm is
entirely data-driven, not requiring expert knowledge. This allows us to
apply it to any field of study.

The following sections describe how the LSTM neural networks are
built so that it can later be used by the wrapper feature importance
methods (Section 3.1). Our proposal for feature importance is detailed
in Section 3.2, and the proposed FS algorithm is described in Sec-
tion 3.3. With the aim of reducing the performance variability caused
by data scarcity, an ensemble of LSTM is considered in Section 3.4.

3.1. Artificial neural network architecture

The LSTM is a type of RNN able to work with sequential data
or time-series data. Unlike traditional feed-forward ANNs, RNNs have
feedback connections that enable using the information of past inputs
when generating an output [40]. Nevertheless, classical RNNs face the
problem of vanishing gradients and exploding gradients using backpropa-
gation, and they are not capable of learning when tackling sequences
with more than 5–10 time steps up to the target prediction [41]. The
ability of LSTMs to forget and keep information makes them robust to
the vanishing gradient problem, allowing them to handle an arbitrary
number of time steps. This is possible due to the cell state and the
operations carried out by the gates in the LSTM cells [41], depicted in
Fig. 3. The cell state can be seen as the ‘‘memory’’ of the network. The
forget gate consists of a sigmoid layer and decides what information
should be removed from the cell state. The input gate (composed of
a sigmoid layer), together with the tanh layer, store new information
in the cell state. The output gate, which consists of a sigmoid layer,
decides what parts of the cell state are outputted.

As described in Section 2, this work considers six families of antibi-
otics. A binary classification task (susceptible or resistant) is performed
with six LSTM models, each one independently trained with a different
antimicrobial family data set. The network architecture, depicted in
Fig. 4, contains two stacked LSTM layers and 100 units per layer,
which were empirically selected. More specifically, the shape of the
input layer is 30 (time steps) × 398 (features). The LSTM layer has 100
units, each using the Rectified Linear Unit (ReLU) activation function
instead of the default tanh function depicted in Fig. 3, outputting a
different value for each time step in the input data (this allows the
output to have the appropriate shape so that it can be fed to the next
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Fig. 3. Conventional LSTM cell diagram with usual activation functions. (Developed by the authors).
Fig. 4. Diagram of the LSTM architecture used in the experiments.
LSTM layer). The ReLU activation function is broadly used in ANNs
because the model using ReLU is generally less computationally costly
to train and usually achieves equal or better performance than other
activation functions [42]. In addition, the ReLU can avoid the vanishing
gradient problem, which is an advantage over the tanh function [43].
A dropout layer with rate of 0.2 is applied on the 100 units to mitigate
overfitting [44]. Next, a new LSTM layer, again with 100 units and
ReLU activation functions is considered, now returning a single value
per unit (an output from the end of the sequence). A dropout layer, as
before, with 100 units and a rate of 0.2 follows this new LSTM layer.
Finally, the output layer consists of one sigmoid activation function to
predict the binary target.

Instances in every data set are temporally ordered (from the old-
est to the most recent ones) by the date of the culture result being
predicted, and they are split in the training, validation, and test sets.
Afterward, instances in each set are randomly shuffled. In this way, the
model performance is evaluated in the same way as it would be done in
the real setting, that is, the instances in the training set are previous in
time to the instances in the validation set, and validation instances are
temporally previous to instances in the test set. Validation is applied
6

in all the experiments [45]. Also, in order to keep the independence
among sets, the patients considered in the training set are discarded
from the patients included in the validation and test sets. Table 2 details
the number of instances per class (susceptible/resistant) on every data
set for the training, validation and test sets. Data from 2004 to 2012
were considered for the training set. Instances in years from 2013 to
2019 were split in two parts: first half for the validation set and second
half for the test set. Note that the sum of instances per data set is lower
than the total indicated in Section 2.2 since instances linked to patients
considered in the training set were discarded from the validation and
test sets.

The loss function Binary Cross Entropy was optimized using the Root
Mean Square Propagation (RMSprop) algorithm, due to its good perfor-
mance on temporal series prediction [46]. The considered learning rate
was set to 10−4, with a decay of 10−5 and 20 epochs for training. As
illustrated in Fig. 5 for the AMG family, the validation loss increases
from epoch 20, while the training loss continues decreasing, revealing
overfitting on the training data. Though the values shown in Fig. 5
correspond to the AMG family data set, the behavior is very similar
for the rest of the families.
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Table 2
Number of instances per antibiotic family for the training, validation and test sets.
Sus./Res. refers to susceptible/resistant instances. Years from 2004 to 2012 are
considered in the training set. The validation and test sets contain the first and second
half of instances from 2013 to 2019, respectively.

Training Validation Test

Sus. Res. Sus. Res. Sus. Res.

AMG 324 221 30 73 28 76
CAR 205 234 10 90 11 90
CF4 331 207 49 55 37 67
PAP 331 207 42 62 43 61
POL 275 9 90 8 67 31
QUI 250 288 28 55 7 77

ig. 5. Evolution of training and validation loss with the number of epochs when
onsidering the network architecture in Fig. 4 and the AMG antimicrobial family.

The merit figures considered in the experiments are Accuracy, Sen-
itivity and Specificity, which are formulated as follows:

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑛 + 𝑡𝑛 + 𝑓𝑝
(1)

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(2)

𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑛
𝑡𝑛 + 𝑓𝑝

(3)

here 𝑡𝑝 are the true positives, 𝑡𝑛 are the true negatives, 𝑓𝑝 are the false
ositives, 𝑓𝑛 are the false negatives, and a positive is a resistant result
nd a negative is a susceptible result. The Sensitivity takes into account
he accuracy among the resistant instances (i.e. the majority class in
he validation and test sets, except for the POL antibiotic family), while
he Specificity considers the accuracy among the susceptible instances
i.e. the minority class in the validation and test sets, except for the POL
ntibiotic family). The area under the Receiver Operating Characteristic
ROC) curve, abbreviated as AUC [47], is also used to assess the
erformance. The ROC curve is a graph in which the true positive rate is
lotted on the 𝑦-axis and the false positive rate is plotted on the 𝑥-axis.

.2. Feature importance methods

Owing to the intrinsic high cost of training LSTM networks, the
eature importance methods implemented need to be time-efficient.
ecause of that, methods such as Forward Feature Selection, Backward
eature Elimination, and Exhaustive Feature Selection are not feasible
n this context [48]. Three well-known feature evaluation techniques,
amely Sensitivity Analysis, Random Subset Feature Selection, and Permu-
ation Feature Importance have been adapted for handling the temporal
7

e

data in the current study. We name the adapted methods as Gradient
Feature Importance, Random Subset Feature Importance, and Permutation
Feature Importance, respectively. Note that the importance values re-
ported by each method are not comparable, since they are provided
within different ranges. To estimate the general relevance of each
feature, we normalize first these values so that they are in the interval
[0, 1] for each method, and then they are averaged. The figure of
merit considered in the three methods is the average among Accuracy,
Sensitivity, and Specificity. Due to the class imbalance observed in the
validation and test sets, it is relevant to use these measures to evaluate
the performance in each class.

Gradient feature importance is based on the ability to interpret the
knowledge enclosed in the trained model. Interpretability is especially
challenging when analyzing ANNs, often considered as black-boxes.
Particularly, in this study the Sensitivity analysis is considered to mea-
sure the influence of features over the prediction [49,50]. It calculates
the gradient (a partial derivative of a multivariate function) of the func-
tion 𝑔 describing the model for the specific data point (an instance) be-
ing evaluated. The intuition behind it is measuring the relationship be-
tween changes in one feature value and those in the model prediction.
A usual formulation for the Sensitivity analysis is the following:

𝑆𝑖(𝐱) =
(

𝜕𝑔
𝜕𝑥𝑖

)2
(4)

here 𝑆𝑖 is the Sensitivity analysis value for the 𝑖𝑡ℎ feature, 𝐱 is the
ata point being evaluated, and 𝜕𝑔

𝜕𝑥𝑖
is the partial derivative of 𝑔 with

espect to the 𝑖𝑡ℎ feature at the specific point given by 𝐱. The greater
he value of 𝑆𝑖(𝐱), the more sensitive is the model in the particular data
oint 𝐱 to the 𝑖𝑡ℎ feature, and the more important is the 𝑖𝑡ℎ feature. To
et the general Sensitivity analysis value for a particular feature in the
ntire data set, the average over all data points (i.e. instances) in the
alidation set is performed.

The function 𝑔 representing the LSTM model is complex and con-
ains a high number of parameters (the weights and biases) and inputs
the number of features). In order to numerically illustrate the Sensitiv-
ty analysis measure, Fig. 6 shows a simple example of a quadratic func-
ion 𝑔 with respect to the inputs when evaluated in a bi-dimensional
ata point 𝐱 (representing an instance), and how 𝑔 varies when each
ariable changes in one unit. For this example, the value of the function
s more sensitive to changes in 𝑥2, which is reflected in the Sensitivity
nalysis measure when computing Eq. (4).

The Sensitivity analysis has remarkably been applied for interpreting
r explaining Convolutional Neural Networks in image classification,
epresenting sensitivity values as heatmaps over evaluated images to
ndicate the relevant areas for classification [51]. Nevertheless, this
rocess can be generalized for any ANN. For instance, in the field of
ime series prediction, a sensitivity value is calculated for every feature
nd time step of the evaluated instance. To get the general Sensitivity
nalysis value for every feature, values can be averaged over the time
teps [52].

The implementation in this work is specified in the pseudo-code
hown in Algorithm 1. The gradient for each feature and time step
𝑃𝐷𝑖,𝑡(𝐱)), mentioned in the pseudo-code, is calculated using the Gradi-
ntTape context manager from the Tensorflow library. Since the initial
STM weights may cause the relevance values to vary over repetitions,
he calculation is carried out a reasonably high number of times (50,
n this work), averaging values to help to obtain reproducible results.

andom subset feature importance is based on some of the core con-
epts of the Random Subset Feature Selection (RSFS) method [53,54].
pecifically, the Random Subset Feature Importance procedure selects
andom subsets of features of a fixed size in an iterative way, trains a
odel and obtains its performance when using the respective subset of

eatures. In every iteration, this performance is stored for every feature
n the selected subset. Differing from RFSF, the number of iterations is
xperimentally set high enough to make the relevance values converge
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Fig. 6. Simple example of Sensitivity analysis.
Algorithm 1 Gradient Feature Importance pseudo-code
1: for 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = 1, 2,…50 do
2: Set the random seed to initialize the LSTM weights to a random

number.
3: Train the LSTM model using the Training Set.
4: for Every instance 𝐱 in the Validation Set do
5: Calculate the partial derivative for each feature 𝑖 and time

step 𝑡 on instance 𝐱. 𝑃𝐷𝑖,𝑡(𝐱)
6: Get the mean temporal value averaging over time steps.

𝑃𝐷𝑖(𝐱) = 𝑚𝑒𝑎𝑛_𝑜𝑣𝑒𝑟_𝑡(𝑃𝐷𝑖,𝑡(𝐱))
7: Compute sensitivity value 𝑆𝑖(𝐱) = (𝑃𝐷𝑖(𝐱))2
8: end for
9: Calculate the mean sensitivity value for each feature 𝑖, by

averaging over all instances in the Validation set.
10: Calculate the LSTM performance on the Validation Set.
11: end for
12: Calculate weighted average of the sensitivity value over repetitions

for each feature 𝑖. The weights are proportional to the performance
of the LSTM in each repetition.

13: Sorting the features in decreasing order of the sensitivity value
calculated in line 12, returning them.

while being computationally efficient. Finally, the performance values
stored for every feature are averaged to get the mean relevance linked
to that particular feature.

The implementation of the Random Subset Feature Importance is
described as pseudo-code in Algorithm 2, where the chosen number of
features in every subset is 40 and the number of repetitions is 500. In
this way, the total number of feature relevance values calculated is 500
iterations × 40 features = 20.000 values. Note that, since there are 398
features in total, on average there are 50 values per feature, the same
number as in the previous Gradient Feature Importance method.

Permutation feature importance is based on the concept that the im-
portance of a feature is expressed by the increase in the model’s
prediction error after permuting the values of that feature in evaluation.
It was originally proposed in [55,56] specifically for the random forest
algorithm, and has been generalized to any predictive algorithm [57,
58].

The first step of the Permutation Feature Importance method is to
train the predictive model (in this case the LSTM) and to estimate the
performance on a set of instances (validation set) different from those
used in training. Then, just using the validation instances, the values of
the feature whose importance value is being calculated are randomly
permuted while the rest of the features remain unchanged. The new set
8

Algorithm 2 Random Subset Feature Importance pseudo-code
1: for 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1, 2,…500 do
2: Set the random seed to initialize the LSTM weights to a random

number.
3: Randomly, select a subset of 40 features.
4: Train the LSTM model using the Training Set, just considering

the subset of features.
5: Calculate the figure of merit of the LSTM on the Validation Set.
6: Append the figure of merit obtained with the particular subset

to each of the 40 features.
7: end for
8: Calculate the feature relevance for every feature 𝑖 as the mean of

the figures of merit available for the feature 𝑖.
9: Sorting the features in decreasing order of the relevance value

calculated in line 8, and return them.

is a modified validation set such that, though the marginal distribution
of the analyzed feature is not altered, its relation with the target learned
in training no longer holds, leaving this feature uninformative. The
model performance is now computed using the modified validation set,
and it is compared with the performance provided by the same model
when using the original validation set. It is expected to obtain worse
results with the modified validation set since training and validation
data do not have the same relationship with the target. The more
informative and useful for prediction the feature is, the worst will be
the prediction after shuffling its values. This process is repeated for
every feature [59].

It is relevant to remark on the efficiency in cost of this method.
Instead of retraining the model by removing one feature each time,
which would be computationally intensive, the training is carried out
just once, and feature importance values are computed by making just
a series of predictions.

The implementation of the Permutation Feature Importance method
is expressed as pseudo-code in Algorithm 3. The original and the mod-
ified validation set are compared using the figure of merit described
at the beginning of Section 3.2 in order to be consistent with the
implementation of the other two feature importance methods.

3.3. Feature selection approach

In this section, a robust and time-efficient algorithm is proposed
to select the proper number of features. The objective is to find the
minimum number of features maximizing the performance. For this
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Algorithm 3 Permutation Feature Importance pseudo-code
1: for 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = 1, 2,…50 do
2: Set the random seed to initialize the LSTM weights to a random

number.
3: Train the LSTM model using the Training Set.
4: Calculate performance figure of merit 𝑃𝐹𝑀 on the Validation

Set 𝑉 𝑆.
5: for Every feature 𝑖 do
6: Permute values of the feature 𝑖 to generate a new Validation

Set 𝑉 𝑆𝑖
7: Calculate the performance 𝑃𝐹𝑀𝑖 when considering 𝑉 𝑆𝑖
8: Calculate the importance of the feature 𝑖 as 𝐹𝐼𝑖 = 𝑃𝐹𝑀 −

𝑃𝐹𝑀𝑖
9: end for

10: end for
11: Calculate the mean importance value for each feature 𝑖, averaging

over repetitions.
12: Sorting the features in decreasing order of the relevance value

calculated in line 11, and return them.

purpose, we first analyze the performance variation as the number of
features increases.

The importance of each feature is calculated by first normalizing
the feature importance value given by each of the three aforementioned
methods and averaging these three normalized values (see Section 3.2).
With the features sorted in decreasing order according to the averaged
feature importance, they are sequentially picked to be used in the
prediction of the instances from the validation set, and the achieved
Accuracy, Sensitivity, and Specificity are stored. That is, in the first place,
the LSTM network is trained using just the most important feature,
and its performance is stored. Afterward, the first and second most
important features are used to train, and so on, until all the 398 features
are considered. With that, 398 values of performance are obtained, one
per number of features.

Though the number of features with the best tradeoff between mean
and standard deviation performance could be chosen, the randomness
in the network initialization and the data scarcity provide high varia-
tions in the performance. To mitigate this effect, we propose a recursive
algorithm we have called Recursive feature number selection to find the
interval in the number of features providing the best performance. The
algorithm starts by considering the whole number of features and it
is progressively focusing on narrower and narrower intervals until one
of them (with the interval length lower than a predefined threshold)
provides a performance which is better than the one of the neighboring
intervals. The approach is based on calculating a performance value
for every number of features. This performance value considers both
the average of Accuracy, Sensitivity and Specificity and the standard
deviation among the three. It is computed as follows:

𝑃𝑉𝑖 = 𝑚𝑒𝑎𝑛(𝐴𝑐𝑐𝑖, 𝑆𝑒𝑛𝑖, 𝑆𝑝𝑒𝑖) − 𝑠𝑡𝑑(𝐴𝑐𝑐𝑖, 𝑆𝑒𝑛𝑖, 𝑆𝑝𝑒𝑖) (5)

where 𝐴𝑐𝑐𝑖, 𝑆𝑒𝑛𝑖, 𝑆𝑝𝑒𝑖 are the Accuracy, Sensitivity, and Specificity
alues for the 𝑖th number of features. A low standard deviation is
dvantageous since it indicates agreement among figures of merit.

The performance measurement for an interval of 𝑁 values (𝑁 differ-
ent number of features) is formulated as the mean of the corresponding
𝑁 performance values:

𝑃𝑀 = 1
𝑁

𝑁
∑

𝑖=1
𝑃𝑉𝑖 (6)

The implementation in pseudo-code is detailed in Algorithm 4.
Fig. 7 depicts an execution of the Recursive feature number selection

algorithm when the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to 10. Short vertical red lines
(labeled with numbers) indicate the limits of each interval, step by step.
9

In the first step (marked with the number 1), the whole interval from 1
to 398 is split into two parts, each on containing half of the values.
Since the mean performance (𝑝𝑒𝑟𝑓𝑓 𝑖𝑟𝑠𝑡 in Algorithm 4) is higher in
he interval linked to the left part of the splitting point, the algorithm
ocuses on these values by recursively calling the function. This process
s repeated until reaching the division indicated with the vertical line
abeled as 6. The interval between lines labeled 6 and 5 is selected
ecause its performance is better than the one between lines labeled
and 6. Since the last interval contains less than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values, the

lgorithm finishes and returns the number of features indicated by the
ine labeled as 5 (corresponding to 36 number of features).

.4. Horizontal voting ensemble

Apart from the high number of attributes, the small number of
nstances in the training set (from 284 to 545 training instances depend-
ng on the data set, as shown in Table 2) hinders model generalization
nd causes a high variance in performance. To address this problem,
e use an ensemble of LSTMs following the approach of the Horizontal

Voting Ensemble proposed in [60]. It consists of storing the trained
model after every training epoch and, close to the end of the training
process, obtaining a set of models to be used in the ensemble. That
is, instead of predicting just with the model obtained after training, it
uses an ensemble of models extracted from the partially trained neural
network.

In our implementation, the models included in the ensemble are
those generated from the 10th to the 30th epoch. Note that we have
extended the number of epochs indicated in Section 3.1 for the pur-
pose of using this procedure. Note that the Horizontal Voting Ensemble
approach reduces the high computational cost involved when training
the LSTM networks from scratch. Since LSTMs are trained just using the
features obtained from the FS process, we experimentally checked that
reducing from 100 to 50 units in both LSTM layers was beneficial for
improving performance. The results detailed below (Section 4) consider
the network architecture depicted in Fig. 4 with 100 units per layer
when neither feature selection nor ensemble of networks is considered,
and with 50 units per layer otherwise.

4. Results

The results of the experiments are detailed in the two following
sections: Section 4.1 analyzes the final subset of selected features and
evaluates the performance achieved when applying the dimensionality
reduction method, and Section 4.2 assesses the outcome of predicting
with an ensemble of LSTMs.

4.1. Dimensionality reduction

The number of features chosen per set of features is portrayed
in Fig. 8 for each antimicrobial family. It is remarkable the high
reduction in the number of features, from the original number of
398 to 36 (AMG), 18 (CAR), 67 (CF4), 24 (PAP), 55 (POL), and 49
(QUI) features. The sets of features not selected for any of the families
are ‘‘Number of co-admitted patients’’, ‘‘ICU antibiogram results’’, and
‘‘icu_mechanic_ventilation’’, suggesting that they are not useful in the pre-
diction of antimicrobial resistance for a particular patient. This result
may be reasonable since these three sets of features are not directly
related to the patient whose antibiogram result is being predicted.
Note also that features in the set ‘‘Antibiogram results’’ are selected
in 4 out of the 6 antibiotic families. This fact confirms the findings
in [16,20], which determine that a piece of highly useful information
for prediction is the previous resistance of bacteria to antibiotics for
the considered patient. The set of ‘‘Temporal features’’ are selected only
in the case of the POL family, which was also observed in [16]. Note
also that the mechanic_ventilation feature is selected for 2 families, which
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Algorithm 4 Recursive feature number selection
1: Call function: recursive_number_feature_selection([1, 2, ..., 398], [mean_perf_1_feat, mean_perf_2_feats, ..., mean_perf_398_feats], [std_perf_1_feat,

std_perf_2_feats, ..., std_perf_398_feats], threshold)

2: Define function: recursive_number_feature_selection(𝑎𝑟𝑟𝑎𝑦_𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑎𝑟𝑟𝑎𝑦_𝑚𝑒𝑎𝑛_𝑝𝑒𝑟𝑓 , 𝑎𝑟𝑟𝑎𝑦_𝑠𝑡𝑑_𝑝𝑒𝑟𝑓 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑):
3: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑟𝑟𝑎𝑦_𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
4: Return 𝑎𝑟𝑟𝑎𝑦_𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑙𝑎𝑠𝑡_𝑒𝑙𝑒𝑚𝑒𝑛𝑡]
5: else
6: 𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑛𝑢𝑚 = 𝑎𝑟𝑟𝑎𝑦_𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 → ℎ𝑎𝑙𝑓 ]
7: 𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑛𝑢𝑚 = 𝑎𝑟𝑟𝑎𝑦_𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[ℎ𝑎𝑙𝑓 → 𝑒𝑛𝑑]
8: 𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑚𝑒𝑎𝑛 = 𝑎𝑟𝑟𝑎𝑦_𝑚𝑒𝑎𝑛_𝑝𝑒𝑟𝑓 [𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 → ℎ𝑎𝑙𝑓 ]
9: 𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑚𝑒𝑎𝑛 = 𝑎𝑟𝑟𝑎𝑦_𝑚𝑒𝑎𝑛_𝑝𝑒𝑟𝑓 [ℎ𝑎𝑙𝑓 → 𝑒𝑛𝑑]

10: 𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑠𝑡𝑑 = 𝑎𝑟𝑟𝑎𝑦_𝑠𝑡𝑑_𝑝𝑒𝑟𝑓 [𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 → ℎ𝑎𝑙𝑓 ]
11: 𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑠𝑡𝑑 = 𝑎𝑟𝑟𝑎𝑦_𝑠𝑡𝑑_𝑝𝑒𝑟𝑓 [ℎ𝑎𝑙𝑓 → 𝑒𝑛𝑑]
12: 𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑛𝑢𝑚);

𝑝𝑒𝑟𝑓 _𝑓𝑖𝑟𝑠𝑡 = 1
𝑁

∑𝑁
𝑖=1(𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑚𝑒𝑎𝑛[𝑖] − 𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑠𝑡𝑑[𝑖])

13: 𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑛𝑢𝑚);
𝑝𝑒𝑟𝑓 _𝑠𝑒𝑐𝑛𝑑 = 1

𝑁
∑𝑁

𝑖=1(𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑚𝑒𝑎𝑛[𝑖] − 𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑠𝑡𝑑[𝑖])
14: if 𝑝𝑒𝑟𝑓 _𝑓𝑖𝑟𝑠𝑡 ≥ 𝑝𝑒𝑟𝑓 _𝑠𝑒𝑐𝑜𝑛𝑑 then
15: 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡 = Call function:

recursive_number_feature_selection(𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑛𝑢𝑚,
𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑚𝑒𝑎𝑛, 𝑎𝑟𝑟_𝑓𝑖𝑟𝑠𝑡_𝑠𝑡𝑑)

16: Return 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡
17: else
18: 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡 = Call function:

recursive_number_feature_selection(𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑛𝑢𝑚,
𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑚𝑒𝑎𝑛, 𝑎𝑟𝑟_𝑠𝑒𝑐𝑛𝑑_𝑠𝑡𝑑)

19: Return 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡
20: end if
21: end if
may be indicating the increased probability of acquiring resistance as
a consequence of using mechanical ventilation during the ICU stay.

Table 3 shows that, for the majority of antibiotic families, the
selected features refer to the patient’s admission, the antibiotics ad-
ministered to the patient and information about previous resistance of
the patient’s bacteria to antibiotics. It is relevant that one of the most
selected sets of features is the one linked to the antibiotics administered
to the patient. From a clinical viewpoint, this is explained by the
antibiotic selective pressure phenomenon [61], which favors an increase
in the resistant bacteria strains by selecting the populations surviving
the use of the antibiotic. Furthermore, antibiotic resistance genes can
be transferred among bacteria [62]. Features linked to the set of
‘‘ICU admission information’’ and those sets representing administered
antibiotics to the co-admitted patients are in the table, possibly pointing
towards cross-transmission among ICU patients, although in accordance
with Fig. 8 they appear in a lower frequency. As previously, note the
relevance of the feature resistance_qui, indicating the usefulness of the
‘‘Antibiogram results’’ set of features. Finally, remark the relevance of
features related to respiratory issues (reason admission-acute respiratory
failure and reason admission-acute chronic respiratory failure), also in
accordance with the importance of the feature mechanic_ventilation
previously indicated.

Tables 4 and 5 show the figures of merit on the validation set and
the test set, respectively, when using the LSTM network before and
after applying our FS approach. For each family, the network has been
trained and evaluated 50 times, and the average and standard deviation
of the provided figures of merit have been calculated. Repetitions are
carried out because, due to the randomness in the ANN initialization,
the performance can vary from one trained network to another one
and it is convenient to average the values of the figures of merit
over a number of repetitions to compensate for this variation among
repetitions. In this particular case, 50 repetitions are enough for the
mean and standard deviation to converge. In these tables, the results
without feature selection (X) are calculated with 100 units per LSTM
10
Table 3
Some of the selected features, sorted by the number of times they are selected in the
different antibiotic families, from highest to lowest.

Feature name Antibiotic families #

antibiotics-ciprofloxacin AMG, CAR, CF4, POL, QUI 5
gender AMG, CAR, CF4, PAP, QUI 5
reason_admission-acute_respiratory_failure AMG, CF4, POL, QUI 4
antibiotics-colistin AMG, CAR, POL, QUI 4
reason_admission-neuromuscular AMG, CAR, POL, QUI 4
resistance_qui AMG, CF4, PAP, QUI 4
reason_admission-hypovolaemia AMG, CAR, CF4, QUI 4
antibiotics-doxycycline AMG, CF4, PAP, QUI 4
antibiotics-amikacin CAR, CF4, PAP, QUI 4
patient_category-medical_patient CF4, PAP, POL, QUI 4
antibiotics-meropenem AMG, CAR, QUI 3
antibiotics-clindamycin AMG, CF4, POL 3
reason_admission-acute_chronic_respiratory_failure AMG, POL, QUI 3
antibiotics-tigecycline AMG, CF4, POL 3
icu_antibiotics-colistin AMG, POL, QUI 3
icu_reason_admission-ischemic_cardiopathy AMG, CF4, QUI 3
antibiotics-amphotericin_b_lipid AMG, CAR, QUI 3
icu_antibiotics-erythromycin AMG, CF4, POL 3
reason_admission-urgent_uncomplicated CAR, CF4, QUI 3
icu_reason_admission-neurological_other CAR, POL, QUI 3
antibiotics-aztreonam CF4, PAP, POL 3
reason_admission-gastrointestinal_bleeding PAP, POL, QUI 3
icu_antibiotics-ceftazidime PAP, POL, QUI 3

layer, and the results with feature selection (✓) are with 50 units per
LSTM layer. It is observed that for both validation and test sets, when
FS is applied, not only the complexity of the problem is reduced,
but the loss value is considerably reduced in all cases. Also, the
standard deviation of the values provided by the figures of merit is
generally reduced with the proposed FS method. As expected, the
results in the validation set are slightly better than those in the test set.
This is caused by three reasons: the hyper-parameters are chosen using

the validation set, the training set is temporally further from the test set
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Fig. 7. The plot on the top shows the performance value (𝑃𝑉 ) with a green solid line, as the number of features increases. Inside the plot, the red ticks represent the steps of the
Recursive feature number selection algorithm, with the number of steps showing on top of each red tick. Particularly, each red tick is placed on the splitting point in the interval
to be divided. Below the plot, complementing the red ticks, a set of pairs of brackets represent each step of the algorithm. Each pair of brackets represent the two intervals in
which the number of features is divided at every step. The number inside the bracket represents the performance measure (𝑃𝑀) for its respective interval. As mentioned in the
text, the interval with the highest 𝑃𝑀 is selected and it is subsequently divided. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 4
Results for the validation set. Mean and standard deviation values for each antimicrobial family and merit figure when applying the LSTM,
with (✓) and without (X) FS. The LSTM training and prediction is repeated 50 times, showing: Value of the loss function (Loss), ‘‘Area under
the ROC curve’’ (AUC), ‘‘Accuracy’’ (Acc.), ‘‘Sensitivity’’ (Sen.) and ‘‘Specificity’’ (Spe.).

FS Loss AUC Acc. Sen. Spe.

AMG X 0.91 ± 0.41 68.28 ± 6.21 62.8 ± 9.76 60.93 ± 22.27 67.33 ± 25.68
✓ 0.61 ± 0.07 76.21 ± 3.07 68.78 ± 5.70 65.23 ± 10.92 77.4 ± 13.27

CAR X 0.92 ± 0.19 66.0 ± 4.70 54.82 ± 8.4 53.33 ± 9.89 68.2 ± 7.12
✓ 0.68 ± 0.03 70.38 ± 2.85 66.86 ± 2.14 67.6 ± 2.42 60.20 ± 1.40

CF4 X 0.89 ± 0.11 67.71 ± 3.35 55.69 ± 4.30 29.09 ± 8.67 85.55 ± 3.34
✓ 0.69 ± 0.03 72.8 ± 2.25 63.46 ± 3.09 36.87 ± 6.98 93.31 ± 6.59

PAP X 1.08 ± 0.17 64.28 ± 3.18 49.33 ± 4.22 24.32 ± 7.91 86.24 ± 4.72
✓ 0.75 ± 0.03 67.71 ± 2.74 58.62 ± 3.87 37.16 ± 8.53 90.29 ± 8.15

POL X 0.39 ± 0.11 66.58 ± 7.27 91.84 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
✓ 0.34 ± 0.05 55.69 ± 6.76 91.84 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

QUI X 0.75 ± 0.18 72.47 ± 4.29 65.01 ± 4.68 61.49 ± 12.65 71.93 ± 14.55
✓ 0.56 ± 0.05 78.72 ± 3.58 70.58 ± 3.72 67.96 ± 5.92 75.71 ± 7.39
(concept drift also discussed in Section 4.2), and the relevant features
are identified using the validation set. This difference is evident, for
instance when comparing the average of AUC among the 6 families
without FS in the validation set (67.55%) with the test set (60.53%),
what is caused by the two first reasons commented. And it can also be
observed the difference between the average of AUC values with FS for
validation (70.25%) and test (67.7%), in this case caused by all three
aforementioned reasons. A particular behavior in AUC, Accuracy, and
Sensitivity is observed for the CF4 and PAP families since instances are
usually classified as susceptible. This is probably due to the higher rate
of susceptible instances in training, observed in Table 2. The family
11
with a clearly different behavior is POL, which is an extreme case of
the CF4 and PAP families, classifying all instances as susceptible, as
shown with the 0 percentage in the Sensitivity figure of merit. Table 2
shows that the POL family only counts with 9 resistant instances in the
training set. In these cases, applying a class balancing technique would
be beneficial. These class particularities were also noticed in previous
studies [16].

To determine whether there are statistically significant differences
in prediction when using all features and the proposed FS, we perform
a nonparametric statistical test [63,64] based on bootstrap resam-
pling [65] for each antibiotic family. In particular, we check it by
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Fig. 8. Percentage (inside the pie chart) and number (next to the portion name) of features selected per antimicrobial family and set of features. Names of the sets of features
refer to those specified in Section 2.1: ‘‘Temporal features’’ (‘‘Temp.’’), ‘‘Admissions information’’ (‘‘Adm.’’), ‘‘Culture and antibiogram information’’ (‘‘Cul.’’), ‘‘Antibiogram results’’
(‘‘Res.’’), features ‘‘antibiotics-[modality]’’ (‘‘Ant.’’), feature ‘‘mechanic_ventilation’’ (‘‘Mec.’’), ‘‘Number of co-admitted patients’’ (‘‘Co. Pat.’’), ‘‘ICU admission information’’ (‘‘ICU Adm.’’),
‘‘ICU antibiogram results’’ (‘‘ICU Res.’’), features ‘‘icu_antibiotics-[modality]’’ (‘‘ICU Ant.’’), and feature ‘‘icu_mechanic_ventilation’’ (‘‘ICU Mec.’’).
Table 5
Results for the test set and each antimicrobial family. Mean ± standard deviation of the considered merit figures for 50 LSTM networks (each
one with a different initialization), with (✓) and without (X) FS.

FS Loss AUC Acc. Sen. Spe.

AMG X 1.51 ± 1.07 60.17 ± 11.99 53.08 ± 15.15 46.18 ± 28.94 71.79 ± 27.28
✓ 0.62 ± 0.10 76.6 ± 6.17 63.48 ± 11.14 58.24 ± 18.19 77.71 ± 13.84

CAR X 0.84 ± 0.25 68.88 ± 7.08 53.78 ± 12.80 51.24 ± 16.24 74.55 ± 19.83
✓ 0.61 ± 0.03 65.93 ± 3.52 69.6 ± 1.29 72.33 ± 1.54 47.27 ± 3.64

CF4 X 1.27 ± 0.29 57.96 ± 3.94 43.73 ± 3.61 20.45 ± 8.06 85.89 ± 8.19
✓ 0.92 ± 0.06 62.77 ± 2.64 45.4 ± 3.62 24.33 ± 6.51 83.57 ± 7.07

PAP X 1.24 ± 0.25 63.73 ± 4.53 50.94 ± 4.32 26.59 ± 9.74 85.49 ± 8.56
✓ 0.75 ± 0.04 71.19 ± 3.76 52.33 ± 5.66 26.69 ± 10.95 88.7 ± 6.01

POL X 2.33 ± 1.41 37.13 ± 6.14 68.37 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
✓ 2.15 ± 1.12 41.58 ± 6.05 68.37 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

QUI X 0.66 ± 0.27 75.31 ± 7.26 67.71 ± 12.03 67.01 ± 14.08 75.43 ± 17.15
✓ 0.52 ± 0.09 88.1 ± 4.06 69.24 ± 6.45 66.55 ± 7.13 98.86 ± 3.88
considering the AUC both for the validation and the test sets, which
correspond to results in Tables 4 and 5. Note that the number of
AUC observations in the original population is 50 (same number as
the number of LSTM initializations). The hyper-parameters used for
the statistical test based on bootstrap are: 70% of the number of AUC
observations are selected in each bootstrap repetition, 2000 bootstrap
repetitions, and alpha value (the likelihood that the true population
12
parameter lies outside the confidence interval) of 0.05. Regarding
Table 4, there is a statistically significant improvement when evaluating
the validation sets with models performing FS for all the antimicrobial
families except for the POL family. In this case, a higher AUC (statisti-
cally significant) is provided by models with all features. With regard
to Table 5, the test shows better results (statistically significant) for
all the antimicrobial families when performing FS, except for the CAR
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family (statistically significant higher AUC provided by models with all
features).

In order to assess the effectiveness of the proposed algorithm for
dimensionality reduction, it is compared with two other FS methods.
The first one applies the test based on bootstrap, previously described,
to every feature and then a voting procedure in order to account
for the temporal aspect of the variables [65,66] (hereafter Bootstrap
Voting FS method). The second FS method used for comparison is
Group Lasso [66,67] (hereafter Group Lasso FS method), grouping
time instants related to the same feature. Firstly, each FS method is
applied to obtain the most relevant features for every antimicrobial
family (specified in brackets below). The Bootstrap Voting FS method
selects 99 features in the case of (AMG), 94 (CAR), 86 (CF4), 56
(PAP), 46 (POL) and 187 (QUI). The Group Lasso FS method selects
61 (AMG), 96 (CAR), 100 (CF4), 103 (PAP), 41 (POL) and 93 (QUI).
As mentioned before, the Proposed FS method selects 36 (AMG), 18
(CAR), 67 (CF4), 24 (PAP), 55 (POL) and 49 (QUI). Note that our FS
method selects a considerably fewer number of features than Bootstrap
Voting and Group Lasso for all the antimicrobial families excepting
POL. Afterward, using the new sets of selected features, the LSTM is
trained (same ANN architecture as the one used with the proposed
method, with 50 units per LSTM layer) and its performance is eval-
uated. In this manner, we gather the figures of merit obtained when
using the features selected by each of the three methods (proposed
method, Bootstrap Voting FS method and Group Lasso FS method). As
in the previous paragraph, the AUC values are compared by applying
a nonparametric test hypothesis (based on bootstrap resampling) to
determine statistically significant differences between the proposed
FS method and the other two approaches [63]. When evaluating the
validation sets, the statistical test shows the following. Comparing our
FS method with the Bootstrap Voting FS method, AUC values are higher
(statistically significant difference) when using our approach for all the
antimicrobial families. Comparing with Group Lasso FS, AUC values are
higher (statistically significant difference) when using features selected
with our approach for all the antimicrobial families excepting PAP
and POL. For these two families there is not a statistically significant
difference between the AUC provided when using either FS method.
When evaluating the test sets, the statistical test shows the following.
The AUC values when using our approach are higher (statistically
significant difference) than those provided when considering the Boot-
strap Voting FS method for all the antimicrobial families excepting
AMG and POL (there is not a statistically significant difference when
using either FS method). Comparing with the Group Lasso FS method,
the AUC values are statistically higher when using features selected
with our approach for all the antimicrobial families excepting CAR (no
statistical difference) and POL. The LSTM network built for POL using
features selected with Group Lasso FS provides higher AUC (statistically
significant difference). To sum up, compared to Bootstrap Voting FS
and Group Lasso FS, the use of the proposed FS method maintains or
(in most cases) improves the AUC achieved, both in validation and
est sets, while using considerably less features. The only exception is
he POL family, for which the use of the features provided by Group
asso FS achieves a statistically significant better performance than
hen considering the proposed FS method, also with a lower number
f features. This different behavior with respect to other antimicrobial
amilies can be caused by the high imbalance in training instances for
he POL family, shown in Table 2. The proposed FS method exhibits a
igh capability for reducing the dimensionality in this task (from almost
00 features to 18–67) and also leads to a considerable increase in the
erformance, reducing the standard deviation among repetitions.

.2. Ensemble prediction

The outcomes of applying the Horizontal voting ensemble are pre-
ented in Tables 6 and 7 both for the validation and test set, respec-
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ively. They illustrate the figures of merit by using just one network (X
in ‘‘Ens.’’ column) against an ensemble of 20 networks (✓ in ‘‘Ens.’’
column). Again, the performance is calculated by carrying out 50
repetitions. Since this experiment just considers the features chosen in
the FS process, the LSTM layers have a lower number of units (50, in
this case). It is observed that the standard deviation of the merit figures
is in general moderately reduced, which means that using the ensemble
of classifiers allows decreasing variance to a small extent. Also, the loss
value is slightly diminished in all of the antibiotic families, both for the
validation and test set, implying that the performance is improved. As
before, note that the validation results are better than the test results,
although here the difference is less noticeable. As expected, the stan-
dard deviation is generally reduced both in validation and test when
using the ensemble of networks. In validation, the AUC value is similar
whether or not the ensemble is used. In test, the AUC averaged among
the six families when not using an ensemble is (67.64%), and when
using the ensemble, the AUC improves to (68,35%). As before, for every
antimicrobial family we assess whether the difference in performance
is statistically significant when using an ensemble of LSTMs. We use
the nonparametric hypothesis test on the AUC values for this purpose:
Regarding Table 6 (validation sets), there is no statistically significant
differences between models with one LSTM and those considering an
ensemble for all the antimicrobial families except for the QUI family.
For the QUI family, a higher AUC (statistically significant) is provided
by using network ensembles. As for Table 7, there is a statistically
significant improvement when evaluating the test sets with models
using network ensemble for all the antimicrobial families.

When analyzing these results it must be taken into account that we
study antimicrobial resistance, a phenomenon that changes over time as
bacteria mutates, which constitutes a temporal particularity of the data
set. The features considered in this study refer to the EHR information
of the analyzed patients. Since bacteria’s mutations are not amongst the
available features, the feature’s values discriminating between classes
may change over time [16]. This fact has been previously described
as the concept drift, in which the concept of interest may depend on
some hidden context not explicitly provided in the form of predictive
features. Over time, it can cause a change in the underlying data
distribution [68]. This phenomenon worsens the network performance
when the training set is temporally far from the test set. A usually
proposed solution for this problem is to apply windowing, which consists
in learning from data in a window containing recent instances and
predicting only instances in the immediate future, as temporally close
as possible to the training instances [17]. In the current study, the
concept drift has not been taken into account because it requires training
LSTM networks multiple times, each for a different training window.
Although the use of windowing could improve network performance,
its computational cost is prohibitive. Nevertheless, the presented results
show the potential capability of prediction even when a very small
number of instances (with some amount of class imbalance) are used for
training, making it harder to generalize. This promising performance,
combined with different techniques, could make it possible to integrate
deep neural networks and windowing to achieve accurate predictions.

5. Discussion and conclusions

This paper considers the prediction of antimicrobial resistance in
Pseudomonas aeruginosa bacteria causing nosocomial infections at the
ICU. In order to support physicians’ decisions in clinical practice, we
propose to carry out a binary classification task (susceptible/resistant).
For the decision support implementation, it is suggested to model
patients’ EHR data as multivariate time series instances, using LSTM
neural networks as classifiers. The considered features contain temporal
information related to the time series, information about the admis-
sion, cultures, antibiograms, antibiotics administered and mechanical
ventilation linked to the patient whose antimicrobial resistance’s result

is being predicted. Also, information linked to the ICU co-admitted
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Table 6
Results for the validation set. Mean and standard deviation values for each antimicrobial family and merit figure applying FS, with just one
LSTM network (X in ‘‘Ens’’ column) and with a network ensemble (✓). The training and prediction are repeated 50 times, showing: the value
of the loss function (Loss), ‘‘Area under the ROC curve‘‘ (AUC), ‘‘Accuracy’’ (Acc.), ‘‘Sensitivity’’ (Sen.) and ‘‘Specificity’’ (Spe.).

Ens. Loss AUC Acc Sen Spe

AMG X 0.61 ± 0.08 75.78 ± 3.27 69.67 ± 3.69 67.04 ± 7.65 76.07 ± 10.74
✓ 0.58 ± 0.04 75.85 ± 3.08 69.51 ± 2.55 67.18 ± 5.72 75.2 ± 9.48

CAR X 0.68 ± 0.04 70.44 ± 2.88 67.1 ± 1.89 67.84 ± 2.15 60.4 ± 2.8
✓ 0.67 ± 0.03 70.38 ± 2.68 67.14 ± 1.79 67.89 ± 2.02 60.4 ± 2.8

CF4 X 0.69 ± 0.04 72.86 ± 2.36 63.21 ± 3.19 37.6 ± 6.58 91.96 ± 6.65
✓ 0.69 ± 0.04 72.62 ± 2.06 63.62 ± 2.98 37.89 ± 6.59 92.49 ± 6.3

PAP X 0.74 ± 0.03 67.64 ± 2.9 59.02 ± 4.21 37.55 ± 8.33 90.71 ± 8.0
✓ 0.74 ± 0.03 67.47 ± 2.54 59.38 ± 3.87 38.26 ± 7.85 90.57 ± 7.35

POL X 0.35 ± 0.05 55.55 ± 7.71 91.84 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
✓ 0.34 ± 0.04 54.75 ± 7.84 91.84 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

QUI X 0.56 ± 0.06 78.61 ± 3.9 71.06 ± 3.59 68.84 ± 5.44 75.43 ± 7.94
✓ 0.55 ± 0.04 78.97 ± 3.65 71.66 ± 3.6 69.96 ± 4.81 75.0 ± 8.11
Table 7
Results for the test set. Mean and standard deviation values for each antimicrobial family and merit figure applying FS, with just one LSTM
network (X in ‘‘Ens’’ column) and with a network ensemble (✓). The training and prediction are repeated 50 times.

Ens. Loss AUC Acc Sen Spe

AMG X 0.63 ± 0.15 76.0 ± 5.74 63.69 ± 10.77 58.55 ± 17.38 77.64 ± 11.58
✓ 0.61 ± 0.07 76.77 ± 5.57 64.25 ± 9.61 59.11 ± 15.09 78.21 ± 10.06

CAR X 0.61 ± 0.03 65.83 ± 3.48 69.64 ± 1.0 72.47 ± 1.18 46.55 ± 2.95
✓ 0.61 ± 0.03 66.53 ± 3.28 69.74 ± 0.99 72.58 ± 1.21 46.55 ± 2.95

CF4 X 0.92 ± 0.06 63.04 ± 2.87 45.62 ± 3.36 24.6 ± 6.39 83.68 ± 7.01
✓ 0.9 ± 0.05 63.45 ± 2.64 45.58 ± 3.37 24.51 ± 7.05 83.73 ± 7.24

PAP X 0.74 ± 0.03 71.1 ± 3.93 52.65 ± 5.14 27.61 ± 10.31 88.19 ± 5.88
✓ 0.73 ± 0.03 71.63 ± 3.47 53.02 ± 5.22 28.3 ± 9.93 88.09 ± 5.34

POL X 2.26 ± 1.23 41.56 ± 6.06 68.37 ± 0.0 0.0 ± 0.0 100.0 ± 0.0
✓ 1.57 ± 0.41 42.32 ± 6.73 68.37 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

QUI X 0.50 ± 0.08 88.29 ± 3.71 70.24 ± 5.85 67.74 ± 6.45 97.71 ± 5.97
✓ 0.49 ± 0.07 89.37 ± 3.27 71.12 ± 5.52 68.65 ± 6.04 98.29 ± 5.45
patients about their admission, antibiogram results, antibiotics ad-
ministered and mechanical ventilation is considered. Owing to the
high dimensionality of the data set (∼400 features), an efficient data-
driven FS method is proposed by adapting three feature importance
approaches from the literature (namely, Gradient Feature Importance,
Random Subset Feature Importance, and Permutation Feature Importance),
and developing a method to select the most appropriate number of
features. On the other hand, because of the small number of instances
and the consequent performance variance, an Horizontal Voting Ensem-
ble is applied to reduce the model variability. The results of FS provide
valuable information for both the data analysis and clinical point of
view, by considering the features’ temporal aspect. The features iden-
tified as most relevant are the antibiotics administered, the previous
antimicrobial resistance, and the admission information of the patient
whose antibiogram results are being predicted. This outcome reveals
the presence of the antibiotic selective pressure phenomenon and con-
firms previous findings of recent antimicrobial resistance importance.
Furthermore, our technique is able to capture the temporal dependen-
cies among features in the data sequences and also provides very useful
information both from the predictive and the clinical point of view,
that could be applied to further studies. A nonparametric hypothesis
test based on bootstrap resampling has been carried out to check the
result’s validity. It shows that the use of our feature selection method
achieves a statistically significant improvement in performance for al-
most all of the families, both in validation and test. The only exceptions
are POL in validation and CAR in test, for which it is significantly
better to not carry out the proposed feature selection. The proposed
dimensionality reduction technique is also compared with two other FS
methods (bootstrap followed by voting, and Group Lasso). It is observed
that, in most families, the proposed technique achieves a significantly
better performance while using considerably less number of features.
The ensemble of classifiers extracted from training is able to improve
14
the performance while reducing the variance. A hypothesis test based
on bootstrap resampling reveals that using an ensemble of networks
for prediction does not provide a statistically significant improvement
in the validation set. However, on the test set, the improvement in
performance is statistically significant for all the antimicrobial fami-
lies. In essence, the proposed methods and framework achieve, in a
cost-efficient manner, promising results for the tackled task which is
characterized by high dimensionality, data scarcity, a certain level of
class imbalance, and concept drift. The proposed methodology and the
experimental results have been critically analyzed from the clinical
point of view with the help of clinicians. The features selected through
dimensionality reduction are meaningful from the clinical perspective,
since some of them evidence mechanisms in which bacteria become
resistant in hospitals.

In the real hospital setting, there may be a discrepancy between
the antibiogram result provided by the microbiology laboratory (sus-
ceptible/resistant) and what happens in reality in the ICU. This is
due to the dynamic nature of antimicrobial resistance, which can vary
over time based on multiple factors. In a nutshell, the results of the
LSTM models only reflect how well they predict the antibiogram results
(gold standard). Physicians can combine the prediction of the proposed
method with their medical experience at the ICU to proceed with the
decisions regarding the actual antimicrobial resistance.

In future studies, alternative FS algorithms able to deal with multi-
variate time series (such as methods based on Mutual Information [69,
70] or those based on the Granger causality discovery [71]) could also
be considered. It is also interesting to apply class balancing techniques
(such as undersampling, oversampling or instance weighting), espe-
cially in cases with high imbalance, for instance in the case of the POL
antimicrobial family. Furthermore, because of the concept drift, it would
be advantageous to carry out class balancing on delimited temporal
windows, so that each temporally local data distribution is balanced.
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Finally, it could also be beneficial to use ensemble learning by combin-
ing methods presented in this study together with remarkably accurate
methods from previous studies (such as Logistic Regression and Ran-
dom Forest [16]), so that the ensemble leverages the advantages of the
different methods.
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Annex

Below we list the features considered in this study specifying all the
different modalities. The description of the feature meaning is provided
in Section 2.1.

Temporal features

• day_week
• day_month
• month

atient features

dmissions information
• admission_indicator
• origin-[modality], with modality being any of the following en-

tries: anaesthesia, another_hospital, cardiology, dermatology, di-
gestive, general_surgery, haematology, internal_medicine, nephr-
ology, neurology, oncology, ophthalmology, other_floor, others,
otorhinolaryngology, pneumology, psychiatry, resuscitation_unit,
surgery_room, traumatology, urgencies, urology.

• destination-[modality], with modality being any of the follow-
ing cases: cardiology, digestive, general_surgery, haematology,
internal_medicine, mortuary, otorhinolaryngology, pneumology,
15

psychiatry and urology.
• reason_admission-[modality], with modality being any of the
following cases: acute_chronic_respiratory_failure, acute_renal_
failure, alteration_level_of_consciousness, cardiac_insufficiency,
cardio_respiratory_arrest, cardiovascular_other, eplilepsy, gastroin-
testinal_bleeding, hepatic_insufficiency, hypovolaemia, immuno-
suppressed_infection, infection_other, ischemic_cardiopathy, neu-
rological_other, neuromuscular, pancreatitis, respiratory_other,
scheduled_with_complications, serious_infection, severe_trauma,
stroke, urgent_uncomplicated, urgent_with_complications, volun-
tary_intoxication

• patient_category-[modality], with modality being any of the fol-
lowing cases: medical_patient, surgical_patient.

• age
• gender

Culture and antibiogram information
• cultures_indicator
• culture_type-[modality], with modality being one of the follow-

ing cases: abscess, abscess_abdominal, ascitic_fluid, blood, bron-
choalveolar_lavage, bronchoaspirate, catheter_vascular, catheter_
introductor_, catheter_telescoped, drainage, drainage_abdominal,
exudate_axillary, exudate_inguinal, exudate_nasal, exudate_pha-
rynx, exudate_pressure_ulcer_, exudate_rectal, exudate_wound, fae-
ces, liquid_biliary, liquid_peritoneal, liquid_pleural, secretions,
sputum, tissue_biopsy, urine

• culture_type_grouped-[modality], with modality being one of the
following cases: blood, catheter, external_wound, faeces, inter-
nal_medium, liquid_abdominal, others, respiratory, sputum, sur-
face, urine

• culture_type_grouped_2-[modality], with modality being either
clinical_sample or surface

• antibiogram_antibiotic-[modality], with modality being one of
the following cases: amikacin, amoxicillin_clavulanic, ampicilin_
sulbactam, ampicillin, ampicillin_sulbactam, aztreonam, cefazolin,
cefepime, cefotaxime, cefoxitin, cefpodoxime, ceftazidime, cef-
triaxone, cefuroxime, cefuroxime_axetil, cefuroxime_axetil_1, ce-
furoxime_sodium, cephalotin, cephepima, chloramphenicol,
ciprofloxacin, clindamycin, colistine, ertapenem, erythromycin,
gentamicin, gentamicin_high_load_synergy, imipenem, kanamycin_
high_load_synergy, levofloxacin, linezolid, meropenem, mezloci-
llin, minocycline, moxifloxacin, nalidixic_acid, nitrofurantoin, nor-
floxacin, ofloxacin, penicillin_g, phosphomycin, piperacilin_ta-
zobactam, piperacillin, piperacillin_tazobactam, teicoplanin, tetra-
cycline, ticarcilin, tigecycline, tobramycin, trimethoprim_sulfa-
methoxazole, vancomycin

• antibiogram_family-[modality], with modality being one of the
following cases: amg, atf, car, cf1, cf2, cf3, cf4, gcc, gli, ibl, lin,
mac, mon, otr, oxa, pap, pen, pol, qui, sul, ttc.

Antibiogram results
• pseudomonas_aeruginosa_detected
• resistance-[modality], with modality being one of the following

cases: amg, car, cf4, pap, pol, qui

Treatment information
• antibiotics-[modality], with modality being one of the follow-

ing cases: amikacina_j01gb, amoxicilina_clavulanico_j01cr, ampi-
cilina_j01ca, anfotericina_b_lipidica_j02aa, anfotericina_b_lipos-
omica_j02aa, anidulafungina, aztreonam_j01df, caspofungina_
j02a1, cefazolina_j01da, cefepime_j01dc, cefotaxima_j01da, ce-
foxitina_j01da, ceftazidima_j01da, ceftriaxona_j01da, cefuroxima-
_j01da, ciprofloxacina_j01ma, claritromicina_j01fa, clindamicina_
j01ff, clotrimazol_d01ac, cloxacilina_j01cf, colistina_j01xb, cotri-
moxazol_j01ee, daptomicina_j01j3, doxiciclina_j01aa, eritromici-
na_j01fa, ertapenem_j01dh, fluconazol_j02ac, fosfomicina_j01xx,

gentamicina_j01gb, imipenem_j01dh, levofloxacino_j01ma,linez-
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olid, meropenem_j01dh, metronidazol_j01ca, metronidazol_j03ca,
naftifina_d01ae, nistatina_a01ab, paramomicina_a07aa, penicilina
_sodica_j01ce, piperaclina_j01c1a, piperacilina_tazobactam_j01cr,
pirimetamina_p01bd, rifaximina_a07a, sulfadiazina_j03a,
teicoplanina_j01xa, tigeciclina_p01bd, tobramicina_j01gb, tobra-
micina_j01gb, vancomicina_j01xa, voriconazol_j02ac

• mechanic_ventilation

CU features

umber of co-admitted patients
• co-admitted_patients

CU admission information
• icu_admission_indicator
• icu_origin-[modality], with modality being any of the follow-

ing cases: anaesthesia, another_hospital, cardiology, cma, der-
matology, digestive, general_surgery, gynaecology, haematology,
hemodynamics, icu, internal_medicine, nephrology, neurology,
obstetrics, oncology, ophthalmology, other_floor, others, otorhi-
nolaryngology, paediatrics, pneumology, psychiatry, rehabilita-
tion, resuscitation_unit, surgery_room, traumatology, urgencies,
urology

• icu_destination-[modality], with modality being one of the fol-
lowing cases: another_hospital, at_home, cardiology, dermatol-
ogy, digestive, endocrinology, floor, general_surgery, gynaecol-
ogy, haematology, internal_medicine, mortuary, nephrology, neu-
rology, obstetrics, oncology, others, otorhinolaryngology, paedi-
atrics, pneumology, psychiatry, resuscitation_unit, traumatology,
urology, voluntary_discharge

• icu_reason_admission-[modality], with modality being one of the
following cases: acute_chronic_respiratory_failure, acute_renal_
failure, acute_respiratory_failure, alteration_level_of_consciousness
cardiac_insufficiency, cardio_respiratory_arrest, cardiovascular_
other, diabetic_decompensation, endocrine_other, eplilepsy, gas-
trointestinal_bleeding, hepatic_insufficiency, hydroelectrolytic_
alteration, hypovolaemia, immunosuppressed_infection, infection_
other, ischemic_cardiopathy, neurological_other, neuromuscular,
obstetric_pathology, other, pancreatitis, respiratory_other, sched-
uled_uncomplicated, scheduled_with_complications, serious_infe-
ction, severe_arrhythmia, severe_trauma, stroke, urgent_uncomp-
licated, urgent_with_complications, voluntary_intoxication

• icu_patient_category-[modality], with modality being one of the
following cases: medical_patient, paediatrics_patient, surgical_
patient

• icu_age
• icu_gender-[modality], with modality being either 0 or 1.

CU antibiogram results
• icu_pseudomonas_aeruginosa_detected
• icu_resistance-[modality], with modality being one of the follow-

ing cases: amg, car, cf4, pap, pol, qui

CU treatment information
• icu_antibiotics-[modality], with modality being one of the follow-

ing cases: amoxicilina_clavulanico_j01cr, amikacina_j01gb, ampi-
cilina_j01ca, ampicilina_j01ca_, ampicilina_sulbactam, anfoteric-
ina_b_convencional_j02aa, anfotericina_b_lipidica_j02aa, anfoteric-
ina_b_liposomica_j02aa, anidulafungina, aztreonam_j01df, azitro-
micina_j01fa, caspofungina_j02a1, cefalozano_tazobactam, cefa-
zolina_j01da, cefepime_j01dc, cefotaxima_j01da, cefoxitina_j01da,
ceftazidima_j01da, ceftriaxona_j01da, cefuroxima_j01da, ciproflo-
xacina_j01ma, claritromicina_j01fa, clindamicina_j01ff, clotrima-
zol_d01ac, cloxacilina_j01cf, colistina_j01xb, cotrimoxazol_j01ee,
daptomicina_j01j3, doxiciclina_j01aa, eritromicina_j01fa, ertape-
nem_j01dh, fluconazol_j02ac, fosfomicina_j01xx, gentamicina_
16
j01gb, imipenem_j01dh, isavuconazol, itraconazol_j02a1a, lev-
ofloxacino_j01ma, linezolid, meropenem_j01dh, metronidazol_
j01ca, metronidazol_j03ca, micafungina, naftifina_d01ae, nistati-
na_a01ab, norfloxacina_j01ma, ofloxacino_j01ma, paramomicina_
a07aa, penicilina_sodica_j01ce, piperacilina_j01c1a, piperacilina_
tazobactam_j01cr, pirimetamina_p01bd, posaconazol_j02, rifax-
imina_a07a, sulfadiazina_j03a, teicoplanina_j01xa, tigeciclina_
j01aa, tobramicina_j01gb, vancomicina_j01xa, voriconazol_j02ac

• icu_mechanic_ventilation
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