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Abstract

Framed in the literature on Interpretable Machine Learning, we propose
a new procedure to assign a measure of relevance to each explanatory
variable in a complex predictive model. We assume that we have a
training set to fit the model and a test set to check its out-of-sample
performance. We propose to measure the individual relevance of each
variable by comparing the predictions of the model in the test set with
those obtained when the variable of interest is substituted (in the test
set) by its ghost variable, defined as the prediction of this variable by
using the rest of explanatory variables. In linear models it is shown
that, on the one hand, the proposed measure gives similar results to
leave-one-covariate-out (loco, with a lowest computational cost) and out-
performs random permutations, and on the other hand, it is strongly
related with the usual F-statistic measuring the significance of a vari-
able. In non linear predictive models (as neural networks or random
forests) the proposed measure shows the relevance of the variables in an
efficient way, as shown by a simulation study comparing ghost variables
with other alternative methods (including loco and random permutations,
and also knockoff variables and estimated conditional distributions).
Finally, we study the joint relevance of the variables by defining the
relevance matrix as the covariance matrix of the vectors of effects on
predictions when using every ghost variable. Our proposal is illustrated
with simulated examples and the analysis of a large real data set.
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1 Introduction

In a stimulating and provocative paper, Breiman (2001) shook the statisti-
cal community by arguing that traditional Statistics was no longer the only
way to reach conclusions from data. Breiman talked about the two cultures
of data modeling, and he noted that, in addition to the Data Modeling Cul-
ture (traditional Statistics), was emerging an Algorithmic Modeling Culture.
The algorithms proposed by the new culture (neural networks, support vector
machines, random forests, etc.) have often better predictive accuracy than tra-
ditional statistical models (linear regression, logistic regression, etc.). On the
other hand, statistical models explain better the relationship among response
and input variables. In fact, these new-culture algorithms usually are called
black boxes.

The need of understanding the effects of variables increases with prediction
rules based on Big Data, that is, data sets with large number of variables, p,
and observations, n, and even with p > n. The main reason is that in some
models, as neural networks, the effect of a variable is a non linear function of
different linear combinations with the rest of the variables, making its total
effect difficult to see. Moreover, the effect of a variable strongly correlated with
others cannot be well measured without considering their joint effects. The
crucial importance of understanding the effect of the variables on algorithmic
models has often been recognized. For instance, Ribeiro et al. (2016b) state
that a vital concern remains: if the users do not trust a model or a prediction,
they will not use it.

There is a powerful research line on variable importance measures in algo-
rithmic models, whose main goal is to provide interpretability for these black
box models. The interest on this field is rapidly growing. As a sample of it,
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search queries in the Web of Science and in Scopus (performed in November
5th, 2021) looking for publications having as topic any of the terms “explain-
able artificial intelligence”, “explainable machine learning” or “interpretable
machine learning” found a total of 5673 publications in the Web of Science,
from which the 51% were published in 2020 or later. In Scopus this percentage
rose to 80% of the 7465 publications found. This vast literature has given rise
to a considerable number of review papers (see for instance the good review
in Barredo-Arrieta et al. 2020) and three monographs: Molnar (2019), Biecek
and Burzykowski (2021) and Maśıs (2021).

Consider the general framework of a prediction problem involving the ran-
dom vector (X,Z, Y ), X ∈ Rp, Z ∈ R and Y ∈ R, where Y is the response
variable that should be predicted from (X,Z). Assume that there exist a train-
ing sample of size n1 (used to fit the prediction rule) and a test sample of size
n2 (used for checking the out-of-sample precision accuracy of the fitted pre-
diction rule). A simple approach to define the importance (or relevance) of the
variable Z consists in measuring its contribution to the forecast of the response.
To compute this measure, the model is fitted twice: first including both X
and Z, and then excluding Z. This approach, known as leave-one-covariate-out
(loco), is often used to decide if the variable Z should be included in the model.
However, other alternatives are possible. Instead of deleting the variable Z,
Breiman (2001) proposed to randomly permute its values in the test sample to
create a new variable Z ′, and compare the model predictions using the original
Z variable and the randomized one Z ′. This method has two main advantages
over deleting the variable: (1) only one predictive model has to be fitted (the
one using all the explanatory variables); and (2) the forecast comparison is
made between two models with the same number of variables. A drawback is
that Z ′ is unrelated to Y but also to X and the joint effect of the Z variable
with the X will be lost. It is worth mentioning that both methods, deleting Z
and replacing it by Z ′, are model-agnostic (Ribeiro et al. 2016a) because they
can be applied to any predictive model, which is a desirable property.

Despite its popularity, using random permutations for interpreting black
box prediction algorithms has received numerous criticisms, mainly when the
explanatory variables present strong dependencies. See, for instance, Hooker
et al. (2021), who explain why what they call permute-and-predict methods fail
when covariates X and Z are dependent: X and Z ′ are independent by con-
struction, then the support of (X,Z ′) is larger than that of (X,Z), which forces
the prediction model to extrapolate. Hooker et al. (2021) propose two strategies
to avoid this problem: to generate values Z ′ from the conditional distribution of
Z given X, and to train again the model with covariates (X,Z ′) in the training
set, which can be applied separately or jointly. When the conditional distribu-
tion of Z given X is unknown, they can be estimated as proposed by Tansey
et al. (2022) in the context of hold-out randomized tests. Another possibility is
to use knockoff variables (Barber and Candès 2015, Candès et al. 2018). Both
approaches, knockoffs and hold-out randomized tests, appear in the variable
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selection problem in models with a large number of possible explanatory vari-
ables with the objective of controlling the false discovery rate. Note that the
problem of measuring relevance of variables is different to that of controlling
the number of false positive results, although they are somehow related. The
relevance variable problem appears when we have a non linear complex model
where the effect of each variable is hard to see. Thus, we are interested in
understanding the effects of each variable. On the other hand, the control of
false discovery rate appears when we have thousands of noise variables, and
we try to avoid including many of them in the model. In the first case the
problem appears for the complexity of the model, whereas in the second one
the model may be simple, as in linear regression, but the problem comes from
the large number of possible irrelevant regressors. In Section 4 the use of these
ideas for variable relevance will be discussed.

In this paper we propose a new approach to measure the effect of an
explanatory variable, which combines the advantages of leaving-it-out or ran-
domly permuting it, and at the same time avoids their drawbacks. First, we
fit the model with all the original variables, X and Z, in the training sample.
Then we apply the model in the test sample twice: first using the observed
values of Z, and then using a new variable Ẑ, which is uncorrelated to the
response given the variables X (as in the randomized method) but reproduces
the relationship between Z and X better than the randomized variable. We

call this new variable a ghost variable, and it is computed as Ẑ = ̂E(Z | X),
the estimated expected value of Z given the other explanatory variables X.
Finally, we expand our proposals to measure the joint relevance of groups of
variables with the definition of the relevance matrix, as the covariance matrix
of the individual effects, showing the importance of a joint analysis of the rela-
tionships between the individual effects of the variables to identify the most
important groups of variables in the prediction.

Our proposal to use ghost variables has similarities and differences with
the work of Hooker et al. (2021). (It is worth mentioning that both works
were developed independently). The main similarity is that we use the con-
ditional distribution of Z given X to generate pseudo-observations of Z, as
in some of the proposals of Hooker et al. (2021). But, while we use just the
conditional expectation of Z given X, Hooker et al. (2021) consider either tak-
ing conditional permutations of Z given X, or generating random data from
this conditional distribution. Observe that modeling E(Z | X) is always sim-
pler than modeling the complete conditional distribution of (Z | X). Another
difference with respect to Hooker et al. (2021) is that we avoid to learn the
prediction model twice, which could be very demanding in time and resources
(this is the main reason why we look for alternatives to loco). Finally, it is
very important to take into account the joint relevance of sets of variables
when they are correlated, and we introduce a relevance matrix to identify joint
effects. This method represents a multivariate approach to relevance measures,
while all the proposals of Hooker et al. (2021) are univariate.



Springer Nature 2021 LATEX template

Understanding predictive models 5

The rest of the article is organized as follows. Section 2 presents the prob-
lem of measuring the relevance of a variable in a prediction problem at the
population level, working with the joint distribution of random vectors. We
briefly present leaving the co-variable out (loco), and substituting it by a ran-
dom permutation. Then we introduce our proposal: replacing it by its ghost
variable, defined as its expected value given the rest of the explanatory vari-
ables. Section 3 deals with the sample implementation of these three variable
relevance measures. Other relevance measures, as those based on knockoffs or
on conditional distributions, will be revised in Section 4, where their differ-
ences with ghost variables will be discussed. Section 5 shows the advantages
of ghost variables versus random permutations in simple models, as multiple
linear regression or additive models, proving that they work very well when
exact results can be obtained and, in particular in the linear model, are asymp-
totically equivalent to loco and to the usual F -statistics for testing variables
significance. This fact supports its application in more complex non linear
models. Section 6 compares the practical performance of relevance based on
ghost variables with alternative approaches in simulated examples. Section 7
introduces the joint relevance of groups of correlated variables and defines the
relevance matrix. It is shown that, in linear regression, this matrix is closely
related with the partial correlation matrix of the explanatory variables. The
properties of the relevance matrix are illustrated in Section 8 in simulated data
and in a real case, at which a neural network is fitted. Section 9 concludes.
The proofs of the results in Sections 3 and 7 are deferred to the appendixes.
An Online Supplement includes results on relevance by loco and by random
permutations, additional outputs corresponding to the real data example, and
the link to the R-scripts containing code to reproduce the computations and
graphics in the paper.

2 Relevance for random variables

Let us consider the prediction problem involving the random vector
(X,Z, Y ), X ∈ Rp, Z ∈ R and Y ∈ R, where Y is the response variable that
should be predicted from (X,Z). A prediction function f : Rp+1 → R has
expected loss E(L(f(X,Z), Y )), where L : R×R → R+ is a loss function mea-
suring the cost associated with predicting Y by f(X,Z). Probably the most
widely used loss in practice is quadratic loss, for which the expected loss is the
Mean Squared Prediction Error (MSPE):

MSPE(f) = E((Y − f(X,Z))2).

Even if we work here only with quadratic loss, we would like to stress that any
other loss function could be used.

We consider the problem of measuring the relevance of Z given the pre-
diction rule f(X,Z). Relevance here is defined as the contribution of Z, or its
importance, in the prediction of Y using f(X,Z). We will compare in detail
three approaches to measure the relevance of a single variable.
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2.1 Relevance by leaving-one-covariate-out (loco)

The first method to measure the relevance is to delete the variable and compare
the forecast with and without it. This procedure, leave-one-covariate-out or
loco, has been often applied and it has a long tradition (for instance, it is the
basic principle when testing H0 : βZ = 0 against H0 : βZ ̸= 0 in a multiple
linear regression model; see Lei et al. 2018 for a recent approach). The idea
is to fit a new prediction rule that includes only the X variables and then
compare the MSPE of both rules. Let fp(X) be the reduced version of f where
the variable Z is not considered. Then the (population) relevance of Z by loco
is usually measured in the literature as either the relative squared change in
the prediction when it is left-out,

RVloco(Z) = E
(
(f(X,Z)− fp(X))2

)
/MSPE(f), (1)

(see, for instance, Gregorutti et al. 2015 or Zhu et al. 2015) or the relative
decrease in the MSPE when Z is removed from the predictive rule,

RV∗
loco(Z) = (MSPE(fp)−MSPE(f))/MSPE(f). (2)

(see, for instance, Breiman 2001 or Hooker et al. 2021). Both measures coincide
when Y = f(X,Z) + ε, where ε is a zero mean random variable such that
E(εf(X,Z)) = E(εfp(X)) (which happens, for instance, when (X,Z) and ε
are independent; see also Theorem 2 in Hooker et al. 2021). Then,

MSPE(fp) = MSPE(f) + E
(
(f(X,Z)− fp(X))2

)
.

In this article we use both, but theoretical results are obtained for RVloco(Z)
because (1) it does not depend on the noisy part of the response variable Y ,
and (2) in linear models it is equivalent to the standard variable significance
measures (see Theorem 1 bellow).

Consider the case of f being additive in X and Z: f(X,Z) = β0+ s1(X)+
s2(Z), with E(s1(Z)) = E(s2(Z)) = 0. Then fp(X) = E(Y | X) = β0+s1(X)+
E(s2(Z) | X) = β0 + s∗1(X), and the relevance of Z by loco is

RVloco(Z) = ηE((s2(Z)− E(s2(Z) | X))2) = ηE(Var(s2(Z) | X)), (3)

where η = (MSPE(f))−1. Assuming additional linearity, Y = β0 + XTβX +
ZβZ + ε, we obtain that

RVloco(Z) = ηE(Var(ZβZ | X)) = ηβ2
ZE(Var(Z | X)).

2.2 Relevance by random permutation

A second approach, proposed by Breiman (2001), is to replace the variable Z
in the prediction rule by an independent copy Z ′: a random variable with the
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same marginal distribution as Z but independent from (X,Y ) and Z. Then,
define the (population) relevance by random permutations by

RVrp(Z) = E((f(X,Z)− f(X,Z ′))2)/MSPE(f).

This procedure has the advantage that does not require the fitting of the
reduced model, fp(X), but has some limitations. Consider the previous
additive case. Then,

RVrp(Z) = ηE
(
{(β0 + s1(X) + s2(Z))− (β0 + s1(X) + s2(Z

′))}2
)
=

2ηVar(s2(Z)).

where, as before, η = (MSPE(f))−1. If additional linearity happens, s2(Z) =
Zβz, then this relevance is 2ηβ2

zVar(Z). These results are similar to those
obtained by Gregorutti et al. (2017, Propositions 1 and 2) or Hooker et al.
(2021, Theorem 1). At a first glance this relevance measure seems to be
suitable, but:

(1) The method of random permutations assigns to Z the same relevance when
it is independent from X or when it is strongly related with X. Clearly Z
is more relevant in the first case than in the second one.

(2) The replacement of Z by an independent copy Z ′ adds some noise to the
prediction function f(X,Z). For instance, in the linear predictor f(X,Z) =
β0 + XTβx + Zβz replacing Z by Z ′ is equivalent to using the following
reduced version of f :

fp(X) = β′
0 +XTβx + ν,

where β′
0 = β0 + βzE(Z) and ν = βz(Z

′ − E(Z)), a zero mean random
variable independent from (X,Y ) that adds noise to the prediction of Y . A
better alternative would be to use the reduced version of f given just by
β′
0 +XTβx, which is equivalent to replacing Z by E(Z) in f(X,Z).

2.3 Relevance by a ghost variable

We propose in this article a new procedure that combines the conceptual sim-
plicity of the loco approach and the computational advantage of the random
permutation approach. The idea is to replace Z by its ghost variable that is
defined as a variable independent of the response that is as close as possible
as the one we want to replace. Using quadratic loss the ghost variable of Z
is E(Z | X), the best prediction of Z given X. Note that if the variable is
independent of the others, this will imply replacing the varible by a constant,
E(Z), and the procedure will be similar to deleting the variable. However, if
there is dependency between X and Z, |Z −E(Z | X)| is expected to be lower
than |Z − E(Z)|, so f(X,E(Z | X)) is expected to be closer to f(X,Z) than
f(X,E(Z)). Therefore, when Z is not available, replacing it by E(Z | X) allows



Springer Nature 2021 LATEX template

8 Understanding predictive models

X to contribute a little bit more in the prediction of Y than replacing Z by
E(Z). The greater this additional contribution of X, the lower the relevance of
Z in the prediction of Y . The (population) relevance of Z with ghost variables
is measured by

RVgh(Z) = E
(
(f(X,Z)− f(X,E(Z | X)))2

)
/MSPE(f).

Observe that replacing Z by E(Z | X) is equivalent to consider fp(x) =
f(x,E(Z | X = x)) as the reduced version of f(X,Z). It follows that
f(X,E(Z | X)) = E(f(X,Z) | X) for linear functions f(X,Z), leading to the
well known result that removing Z or replacing it by E(Z | X) are equivalent
in multiple linear regression. When f is additive in X and Z, and calling as
before η = (MSPE(f))−1, we have

RVgh(Z) = ηE
(
(s2(Z)− s2(E(Z | X)))2

)
.

If, additionally, s2(Z) = Zβz,

RVgh(Z) = ηβ2
zE

(
(Z − E(Z | X))2

)
= ηβ2

zE(Var(Z | X)), (4)

which coincides with RVloco(Z). Observe that ηβ2
zE(Var(Z | X)) coincides

with ηβ2
zVar(Z) when X and Z are independent, but otherwise the first one

would be preferred to the second one as relevance measure of Z. So we conclude
that measuring variable relevance by loco or by ghost variables is preferred to
using random permutations in the important case of multiple linear regression
models. We expect that this better performance will be maintained when these
relevance measures are applied to more complex predictive models.

We conclude that for defining the relevance of a random variable Z in a non
linear model the ghost variable approach has several advantages over the other
two alternative procedures. First, in contrast to the loco approach, we do not
need to fit two complex predictive models for the response, although we need to
compute E(Z | X), which can be approximated by a linear or additive function.
Second, in contrast to the random permutation approach, the relevance by
ghost variable is sensible to changes in the degree of dependence between Z
and the other explanatory variables.

3 Relevance in data sets

Now we consider the practical implementation of the approaches introduced
so far for measuring the relevance of a variable. Calling f(x, z) = E(Y | X =
x, Z = z) to the regression function of Y on (X,Z), the best prediction function
for Y under quadratic loss, any prediction function of Y is also an estimator
f̂(x, z) of the regression function f(x, z), and vice versa. So, from now on, we
will talk indistinctly of prediction functions or regression function estimators.

Consider a training sample of n1 independent realizations of (X,Z, Y ) and
we assume, to simplify the notation and without loss of generality, that all
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the variables have sample mean equal to zero. Let (X1, z1,y1) be the matrix
representation of the training sample, which is used to estimate the regression
function f̂(x, z), and let (X2, z2,y2) be the test sample in matrix format and
z′2 ∈ Rn2×1 be a random permutation of the elements of the column vector z2.

The estimation of MSPE(f̂) from the test sample is

M̂SPE(f̂) =
1

n2

n2∑
i=1

(y2.i − f̂(x2.i, z2.i))
2.

The test sample is used to obtain the sampling versions of the three variable
relevance measures introduced in Section 2. Calling RVv(Z) to the sample
estimate of the relevance of Z by method v ∈ {loco, rp, gh}, this statistic is
computed by

RVv(Z) =
1

n2

n2∑
i=1

(f̂(x2.i, z2.i)− f̂v(i))
2/M̂SPE(f̂),

where for v = loco, f̂v(i) = f̂p(x2.i), for v = rp, f̂v(i) = f̂(x2.i, z
′
2.i), and for

v = gh f̂v(i) = f̂(x2.i, ẑ2.i) with ẑ2.i = Ê(Z | X = x2.i).
This analysis of the relevance of individual variables can be applied to any

prediction rule. When using loco, we need to compute two prediction rules:
f̂(x2.i, z2.i) and f̂p(x2.i). For instance in a neural network we have to run the
estimation process twice in the training sample. By random permutation we
only estimate the model once, and then use the random permutation of the
variable in the test sample to compute the predictions. With ghost variables
we also estimate the model in the training sample only once, and then in the
test sample we compute the ghost variable (the prediction function of Z given
the X variables) and use it in the prediction function computed in the training
set. The method with the least computer time is random permutation, which
can be used directly on the estimated prediction rule. The second fastest is,
in general, the ghost variable approach, which requires computing the ghost
values of Z to be used in the prediction rule in the test sample. The process can
be sped up by using linear regression to estimate the conditional expectation
of Z given X. In general, the most computationally time-intensive is the loco
approach, which requires the estimation of two (usually complex) predictive
models with the training sample.

4 Other possible relevance measures based on
perturbations

Random permutations and ghost variables methods for computing relevance
of an explanatory variable Z follow a general scheme: to replace the values of
Z in the test set by “perturbed” values of them, which are independent of the
response variable Y , given the other explanatory variables X.
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We revise now other possibilities of “perturbation” of Z which have been
considered recently in the literature. We will see that these proposals (which
essentially draw random values from a conditional distribution, known or esti-
mated) are more difficult to apply than ghost variables (which consists of
estimating just a conditional expectation).

Hooker et al. (2021) propose to replace zi by a random value coming
from the conditional distribution of (Z | X = xi), which is usually known
for simulated data. For realistic settings, where the conditional distribution
is unknown, Hooker et al. (2021) propose to use the Model-X (MX) knockoff
framework proposed by Candès et al. (2018) to generate values of Z. In par-
ticular, they sample second-order multivariate Gaussian knockoff variables as
implemented in the R package knockoff (Patterson and Sesia 2022).

Knockoff variables were defined by Barber and Candès (2015) for linear
regression models as variables unrelated to the response and that jointly have
the same distribution as the original ones, but being as different as possible
from them. This idea was extended by Candès et al. (2018) assuming that the
explanatory variables are random variables with some joint distribution. Then
the set of model-X (MX) knockoff variables, X̃ = (X̃1, . . . , X̃p), are unrelated

to the response, and the joint distribution of (X, X̃) does not change if we
swap or interchange any set of original variables and their knockoff variables.
From the definition of MX knockoffs it follows that X and X̃ have the same
distribution.

Any realization of the random variable (X̃ | X = x) can be used as valid
values of the knockoff variables (Candès et al. 2018). In particular, a vector
of random observations of (X̃j | X = x2.i), i = 1, . . . , n2 can be used as a
perturbation of the variable Xj at the test set, as done in Hooker et al. (2021).

For instance, for normal zero mean variables the joint distribution only
depends on the covariance matrix and the swapping rule will be true if this
covariance matrix is of the form

Var(X, X̃) =

(
Σ Σ−D

Σ−D Σ

)
where D is a diagonal matrix so that Var(X, X̃) is positive definite which is
equivalent to say that the matrix 2Σ−D has this property.

Observe that in the definitions of knockoff variables in Barber and Candès
(2015) and Candès et al. (2018) the idea of building new variables associ-
ated to each of the explanatory variables that are the conditional expectation
of the variable given the others does not appear at all. Even though, it is
worth remarking here that ghost variables and knockoff variables are different
concepts.

Consider the p-dimensional random variable X = (X1, . . . , Xp) from which
a realization is x = (x1, . . . , xp). The corresponding vector of ghost variable
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values is Xg = (Xg
1 , . . . , X

g
p ) where

Xg
j = E(Xj | X−j = x−j), j = 1, . . . , p.

From the definition of MX knockoffs it follows that Xj and X̃j have the same
marginal distribution. It is obvious that Xj and the ghost variable Xg

j =
E(Xj | X−j) have different distributions. Therefore ghost variables are not
knockoffs.

To fix ideas, assume that X is a bivariate normal distribution with zero
means, unit variances and correlation ρ > 0:

X ∼ N2

(
02,Σ =

(
1 ρ
ρ 1

))
. (5)

Then, from Candès et al. (2018), the joint distribution of (X, X̃) is(
X

X̃

)
∼ N4

(
04,

(
Σ Σ− diag(s)

Σ− diag(s) Σ

))
with s chosen as large as possible respecting that the joint covariance matrix
is positive semidefinite: s = min{2(1− ρ), 1}. Therefore, for x = (x1, x2)

T the
values of the knockoff variables, given that X = x, are generated from

(X̃ | X = x) ∼ N2

(
(I2 − sΣ−1)x, 2sI2 − s2Σ−1

)
.

On the other hand, the ghost variables in this case are

Xg
1 = E(X1 | X2) = ρX2, X

g
2 = E(X2 | X1) = ρX1.

Calling Xg = (Xg
1 , X

g
2 )

T , the joint distribution of X and Xg is(
X
Xg

)
∼ N4

(
04,

(
Σ ρΣ
ρΣ ρ2Σ

))
,

that does not verify the definition of knockoff variables. In particular, the
distribution of Xg does not coincide with that of X because Var(Xg) ̸=
Var(X).

Both concepts, ghost variables are knockoffs, are related with the condi-
tional distributions used by Hooker et al. (2021) when they are known. To
see that the three concepts are different, we use again the previous example
of X following the bivariate normal model (5). Let Xc

1 be a random variable
distributed as (X1 | X2):

Xc
1 = E(X1 | X2) + ε1 = ρX2 + ε1,
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where ε1 ∼ N(0,Var(X1 | X2) = 1− ρ2) is independent of X. Analogously, let

Xc
2 = E(X2 | X1) + ε2 = ρX1 + ε2,

where ε2 ∼ N(0,Var(X2 | X1) = 1 − ρ2) independent of X and ε1. Let
Xc = (Xc

1 , X
c
2)

T . The joint distribution of X and Xc is(
X
Xc

)
∼ N4

(
04,

(
Σ B
B A

))
,

where

A = Corr(Xc) =

(
1 ρ3

ρ3 1

)
and B = Corr(X,Xc) =

(
ρ2 ρ
ρ ρ2

)
.

Observe that the variables following the conditional distributions are not
knockoffs and that they are different from ghost variables.

Finally, following the classical regression formulae, the value of the bivariate
conditional variable, given that X = x, is

(Xc | X = x) ∼ N2

(
ρx̌, (1− ρ2)I2

)
,

where x̌ = (x2, x1)
T . Observe that there is still randomness in the distribution

of (Xc | X = x).
When the conditional distribution (Z | X = xi) is unknown, it can be

estimated following the proposals of Tansey et al. (2022) when they describe
the general Holdout Randomized Test (HRT). Then random samples from the
estimated conditional distribution can be drawn. This last step can be done
just once, or it can be repeated several times and then record the average
results (this option implies an additional computational cost).

It is worth to say that the estimation of the conditional distribution models
in HRT is a complicated task requiring a considerable computing effort. Tansey
et al. (2022) model the conditional distribution ofXj | X−j = x−j as a mixture
of univariate Gaussian distributions. They fix the number of components in
the mixture at 5. Then there are 5+5+(5−1) = 14 conditional parameters to
be estimated as functions of the (p−1) values of x−j . Following the proposal of
Bishop (1994) on mixture density networks, Tansey et al. (2022) use a neural
network with 14 neurons in the output layer (one for each parameter), instead
of having just one output neuron as it happens when the goal is to estimate
simply the conditional expectation E(Xj | X−j = x−j).

On the contrary, ghost variables requires only to estimate the conditional
expectation using the regression model preferred by the user. For instance,
linear or additive models (or their generalized versions, if the nature of Xj

requires it) can be used. If there are many variables, it may be better to use
lasso type estimation.
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5 Relevance measures in linear regression

As we have stressed, the procedures for finding the relevance of a variable can
be applied in any prediction model. However, in the general case exact results
to compare the procedures cannot be found. Therefore, we will compare them
in the linear case and, when a closed solution can be found, in the additive
model.

5.1 Relevance by loco in linear regression

The estimated linear regressions are now ŷ1.X.z = X1β̂x + z1β̂z, and ŷ1.X =
X1β̂0. Let se(β̂z) be the estimated standard error of β̂z and let tz = β̂z/se(β̂z)
the standard t-test statistic for the null hypothesis H0 : βz = 0. Let Fz = t2z be
the F -statistic for testing the same null hypothesis. The relevance by leaving
the covariate Z out evaluated in the training sample is

RVTrain

loco (Z) =
1

n1

n1∑
i=1

(f̂(x1.i, z1.i)− f̂p(x1.i))
2/M̂SPE

Train

(f̂),

where M̂SPE
Train

(f̂) is the usual estimator of the residual variance, σ̂2
n1
. Stan-

dard computations in the linear model (see, e.g., Seber and Lee 2003, or
the supplemental materials, where we have included them for the sake of
completeness) lead to

RVTrain

loco (Z) = Fz/n1,

It follows that evaluating the relevance of a variable by loco in the training
sample is equivalent to computing the statistic for testing its significance and
that we can compute the relevance by dividing the squared t statistic of the
variable by the sample size. The same computations indicate that RVTrain

loco (Z) =

β̂2
z σ̂

2
z.x,n1

/M̂SPE
Train

(f̂), where σ̂2
z.x,n1

is a consistent estimator of σ2
z.x, the

residual variance in the model Z = XTα + εz, computed from the training
sample. This is a sampling version of the expression (3) obtained in Section
2.1.

When the relevance by loco is computed in the test sample (as we advocate)
similar results are obtained. In this case the vectors of predicted values are
ŷ2.X.z = X2β̂x + z2β̂z and ŷ2.X = X2β̂0, and the relevance by loco of the
variable Z is

RVloco(Z) =
(ŷ2.X.z − ŷ2.X)T (ŷ2.X.z − ŷ2.X)

(y2 − ŷ2.X.z)T (y2 − ŷ2.X.z)
.

Then, it can be proved (detailed computation can be found in the
supplemental materials; see also Theorem 3 in Hooker et al. 2021) that

RVloco(Z) =
Fz

n1

σ̂2
z.x,n1,n2

σ̂2
z.x,n1

=
Fz

n1

(
1 +Op

(
min{n1, n2}−1/2

))
,
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and
RVloco(Z) = β̂2

z σ̂
2
z.x,n1,n2

/M̂SPE(f̂),

where σ̂2
z.x,n1,n2

and σ̂2
z.x,n1

are consistent estimators of the same parameter

σ2
z.x, the residual variance in the linear regression model Z = XTα+ εz. This

is another sampling version of the equation (3). It follows that, for large values
of n1 and n2, σ̂

2
z.x,n1,n2

/σ̂2
z.x,n1

≈ 1, and then

RVloco(Z) ≈ Fz/n1,

approximately the same relationship we have found when computing the
relevance by loco in the training sample.

5.2 Relevance by random permutations in linear and
additive models

We will analyze directly the additive model and show the results for linear
regression as a particular case. Assume that an additive model is fitted in the
training sample

f̂(x, z) = β̂0 +

p∑
j=1

ŝj(xj) + ŝp+1(z),

β̂0 =
∑n1

i=1 y1.i/n1,
∑n1

i=1 ŝj(x1.i)/n1 = 0, j = 1, . . . , p, and for identifiability
reasons

∑n1

i=1 ŝp+1(z1.i)/n1 = 0. These identities are only approximately true
when taking averages at the test sample. Observe that

M̂SPE(f̂)RVrp(Z) =
1

n2

n2∑
i=1

(ŝp+1(z2.i)− ŝp+1(z
′
2.i))

2 =

2
1

n2

n2∑
i=1

ŝp+1(z2.i)
2 − 2

1

n2

n2∑
i=1

ŝp+1(z2.i)ŝp+1(z
′
2.i) ≈

2
1

n2

n2∑
i=1

ŝp+1(z2.i)
2 = 2V̂ar(ŝp+1(Z)).

The approximation follows from the fact that
∑n2

i=1 ŝp+1(z2.i)ŝp+1(z
′
2.i)/n2 has

expected value over random permutations equal to {
∑n2

i=1 ŝp+1(z2.i)/n2}2 ≈ 0
and variance of order O(1/n2).

In the special case of linear regression, ŝj(xj) = β̂j(xj − x̄1.j) for all j =

1, . . . , p, and ŝp+1(z) = β̂z(z − z̄1), where x̄1.j =
∑n1

i=1 x1.ij/n1 and z̄1 =∑n1

i=1 z1.i/n1. Then, in this case

M̂SPE(f̂)RVrp(Z) ≈ 2β̂2
z

1

n2

n2∑
i=1

(z2.i − z̄1)
2 ≈ 2β̂2

z

1

n2

n2∑
i=1

(z2.i − z̄2)
2,

and
RVrp(Z) ≈ 2β̂2

z V̂ar(Z)/M̂SPE(f̂),
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a sampling version of the expression found for random variables in Section 2.2
(see also Theorem 1 in Hooker et al. 2021). Observe that RVrp(Z) is not a mul-
tiple of the statistic Fz used to test the null hypothesisH0 : βz = 0, because the

variance of β̂z, the OLS estimator of βz, is not a multiple of M̂SPE(f̂)/V̂ar(Z),
except in the particular case that X1 and z1 are uncorrelated.

5.3 Relevance by ghost variables in linear regression

To get a model-agnostic proposal, the training sample S1 should be used
only through the estimated prediction function. Therefore, we propose to esti-
mate E(Z | X) using the data in the test sample S2. Let us assume that
the regression function of Y given (X,Z) is linear and that it is estimated

by OLS in the training sample (X1, z1,y1) ∈ Rn1×(p+2). Let β̂x and β̂z be
the estimated coefficients, and let σ̂2

n1
be the estimated residual variance. Let

(X2, z2,y2) ∈ Rn2×(p+2) be the test sample in matrix format. We fit the linear
model Z = Xα+ εz by OLS in the test sample to obtain the ghost values for
z2:

ẑ2.2 = X2α̂2,

with α̂2 = (XT
2 X2)

−1XT
2 z2. Then,

ŷ2.X.z = X2β̂x + z2β̂z,

when using (X,Z) as predictors, and

ŷ2.X.ẑ = X2β̂x + ẑ2.2β̂z,

when using (X, ẐX), that is replacing Z by the ghost variable. Let us define

σ̂2
n1,n2

= M̂SPE(f̂) =
1

n2
(y2 − ŷ2.X.z)

T (y2 − ŷ2.X.z),

which is an estimator of the residual variance depending on both, the train-
ing and the test samples. Therefore, the relevance by a ghost variable of the
variable Z is

RVgh(Z) =
1

σ̂2
n1,n2

1

n2
(ŷ2.X.z − ŷ2.X.ẑ)

T (ŷ2.X.z − ŷ2.X.ẑ).

The following result states a sampling version of equation (4) in Section 2.2,
and connects the relevance measure based on ghost variables with the F -test
for βz. The proof can be found in Appendix A.2.

Theorem 1 Assume that the regression function of Y over (X,Z) is linear, that it is
estimated by OLS, and that the ghost variable for Z is also estimated by OLS. Then

RVgh(Z) =
Fz

n1

σ̂2
z.x,n2

σ̂2
z.x,n1

σ̂2
n1,n2

σ̂2
n1

=
Fz

n1

(
1 +Op

(
min{n1, n2}−1/2

))
,
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and

RVgh(Z) =
1

σ̂2
n1,n2

β̂2
z σ̂

2
z.x,n2

,

where σ̂2
z.x,n2

and σ̂2
z.x,n1

are consistent estimators of the same parameter σ2
z.x

(the residual variance in the linear regression model Z = XTα + εz), the first one
depending on the test sample, and the second one on the training sample.

The properties of the relevance measure based on ghost variables estab-
lished in Theorem 1 are similar to those stated in Hooker et al. (2021, Theorem
3) for variable importance measures based on sampling conditional distribu-
tions and/or re-learning (fitting twice the predictive model). It is worth noting
that using ghost variables is easier than implementing the proposals of Hooker
et al. (2021) because ghost variables only require modeling and estimating
conditional expectations, instead of having to deal with the whole conditional
distribution. Additionally, ghost variables do not require re-learning. A sim-
ulation study comparing ghost variables, conditional distributions, knockoff
variables, as well as loco and random permutations, is presented in Section 6.

In the linear regression model, Theorem 1 establishes a parallelism between
deleting the variable Z and replacing it by a ghost variable. Nevertheless, using
the ghost variable has two clear advantages: first, only one model has to be
fitted in the training sample (the model with all the explanatory variables), and
second, the estimated prediction function is the only element we have to save
from the training sample (and, consequently, our proposal is model-agnostic).

As a last remark, we would like to emphasize that the relevance by a
ghost variable allows us to approximate a very relevant statistic in the linear
regression model, namely the F -statistic for testing the null hypothesis H0 :
βz = 0. This approximation only requires the estimated prediction function
from a training sample and a test sample. Therefore, the relevance measure
by a ghost variable allows us to compute a pseudo F -statistic for algorithmic
predictive model as RVgh(Z)n1. In fact, the examples provided in Sections 6
and 8 include fitting neural networks, random forest or additive models, as
well as linear models estimated by OLS or by lasso.

6 Comparison of relevance measures by
simulation

We introduce two examples of synthetic data (of small and medium sizes,
respectively) for which several prediction models are fitted (neural networks,
random forest, and linear models estimated by OLS or lasso). For each fitted
model, the relevance of the predictive variables is computed using different
approaches. Data from both examples are repeatedly simulated with three
main goals: to calibrate the computational efficiency of the relevance methods,
to check the validity of their results under different scenarios, and to evaluate
their adaptability when the model characteristics change.
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6.1 Example 1. A model with 10 explanatory variables

We present a simulated example following the simple design proposed by
Hooker et al. (2021), Section 2: a multiple linear regression model with 10
explanatory variables uniformly distributed on [0, 1], all independent except
perhaps the first two of them, which could be possibly correlated through a
Gaussian copula with ρ = 0 or ρ = 0.9. Data are generated from the model

Y = x1 + x2 + x3 + x4 + x5 + 0x6 + 0.5x7 + 0.8x8 + 1.2x9 + 1.5x10 + ε,

where ε ∼ N(0, 0.12). We have repeated 50 times the generation of a training
set of size 2000, plus a test set of size 1000.

We start comparing the computational performance of our ghost vari-
ables proposal with perturbing with estimated conditional distributions, for
using which we have taken the Python code provided by Tansey et al.
(2022), available at https://github.com/tansey/hrt. For this comparison we
have implemented our proposal in Python as the estimation procedure for con-
ditional distributions used by Tansey et al. (2022) is not easily transferable to
R because it relies on a neural network to fit a conditional mixture of normal
distributions, as proposed by Bishop (1994).

We have fitted a linear model by OLS, and then a random forest (using the
function RandomForestRegressor from sklearn.ensemble, Pedregosa et al.
2011, with default parameter values). Variable importance is computed in three
different ways: by loco, by ghost variables, and by replacing an explanatory
variable in the test set with a random draw from the estimated conditional
distribution.

To facilitate comparisons with Hooker et al. (2021), the relevance has been
computed based on relative differences in MSPE (RV∗, as defined in equation
(2) for loco) when a feature is removed from the model (in loco) or replaced by
its perturbed version. Additionally, for ghost variables the relevance has also
been computed based on differences in predictions (RV, as in equation (1)).

Table 1 summarizes the computing times (in seconds) required by each
combination of fitting model and variable relevance computation. It can be seen
that measuring the feature relevance using ghost variables is extremely much
faster than using random values from the estimated conditional distributions
(even if only one randomization is done: the really time consuming task is the
estimation of the conditional mixture). Additionally, relevance by loco is faster
than ghost variables when OLS is used to fit a linear model, but it is much
slower when a random forest has to be fitted for each explanatory variable
when it is left out.

Regarding the importance relative rankings for loco, ghost variables and
random data from the estimated conditional distribution, they are quite sim-
ilar in the simulated examples, as it can be seen in the following Figure 1,
which shows the average importance rank (lowest to highest) of each of the
10 explanatory variables according to the different relevance measures. We use

https://github.com/tansey/hrt
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Table 1 Computation times (in seconds) of different relevance measures applied to two
regression models. Implementation done in Python.

Relevancemeasures
estimated

Models loco ghost variables conditional distribution

Linear model (OLS) 0.23 0.34 5102.78
Random forest 1341.62 29.83 12771.48
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Fig. 1 Relative rankings of the explanatory variables according to different relevance
measures applied two regression models. Implementation done in Python.

labels eC for estimated conditional distribution, L for loco, G for ghost vari-
ables using differences in MSPE, and Gp for ghost variables using differences
in predictions. These results are similar to those reported by Hooker et al.
(2021).

The relevance scores obtained by ghost variables are similar to those
obtained by loco (graphics not included here), and they are in general lower
than (in median, the 70% of) those obtained when using random data from
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Table 2 Computation times (in seconds) of different relevance measures applied three
regression models. Implementation done in R.

ghost true conditional random
loco variables distribution permutations knockoffs

Time (in seconds) 4267.84 49.78 42.93 43.07 46.76

the estimated conditional distribution. Nevertheless the three methods lead to
similar importance relative rankings, as Figure 1 shows.

So, we conclude that using ghost variables to assess the relevance of the
explanatory variables gives in this case similar results to those obtained when
estimating conditional distributions, but is much more efficient from the com-
putational point of view. A similar statement applies when comparing ghost
variables with loco, if the prediction model is hard to be fitted (as random
forest).

Given the very large computing time required by the estimation of con-
ditional distributions, we have decided to remove this method from further
simulation studies. This decision allows us to work exclusively in R. This way
we can use part of the R code provided as electronic supplemental material
by Hooker et al. (2021). Now, we simulate in R data following the previous
linear model and we compare 5 ways to assess relevance of features (the last
4 of them following the general scheme of perturbing the features in the test
set): loco, ghost variables, random data from the true conditional distribution
which is known in this simulated example, random permutations, and using
knockoffs (Model-X second-order multivariate Gaussian knockoff variables as
implemented in the R package knockoff, Patterson and Sesia 2022). Three
predicting models have been fitted: a linear model fitted by OLS, a random
forest (using the function randomForest from the R package randomForest,
Liaw and Wiener 2002, with default parameter values), and a 1-hidden layer
neural network (using nnet from package nnet, Venables and Ripley 2002,
with 20 neurons in the hidden layer; we have proceed as in Hooker et al. (2021)
to choose the best neural network among 10 randomly initialized fits).

In our implementation in R, for each simulated data set the four sets of
perturbed values of the explanatory variables are generated only once, and
the three models are fitted to the same data set. Therefore there is no way
to assign computing times to each specific combination of fitting model and
variable relevance computation. The computing times (in seconds) required
by each method of variable relevance computation are shown in Table 2. It
follows that, in terms of computing time, using ghost variables is comparable
with generating data from the known conditional distributions (which is not
feasible in real settings), using random permutations, or using knockoffs, and
that they are much faster than using loco.

Regarding the quality of the computed relevance measures, Figure 2 shows
the results. The main conclusions are the following:
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• The random permutation method is giving bad results when there are some
inter-dependent features, as expected from our arguments as well as those
given by Hooker et al. (2021).

• Ghost variables and knockoffs perform similarly to using random data from
the true conditional distributions, with the advantage that the former are
feasible in a real setting while the latter is not.

• Ghost variables and knockoffs perform similar to loco (except perhaps when
fitting neural networks), with the advantage that the former are much faster
that the latter.

It follows that using ghost variables or using knockoffs to compute relevance
of features are comparable strategies regarding the quality of the resulting
relevance measures, as well as regarding computational efficiency, and that
both are preferred to other alternatives considered in our simulation study.

Let us make a final remark on comparing ghost variables and knockoffs.
When using ghost variables the practitioner has to propose regression models
of each explanatory variable over the others, and then fit these models. This
is a routine process which is easily implemented in any standard platform (R
or Python, for instance), even if the linearity assumption is not fulfilled by our
data. On the other hand, generating knockoffs variables is difficult even in the
most standard settings. Moreover, when the data are far from well mimicked
with Model-X Gaussian knockoffs there is no easy way to generate knockoffs.

To explore the effect of nonlinear relation between explanatory variables
on both, ghost variables and knockoffs, we modify the previous multiple linear
regression model introducing a nonlinear dependence between the first two
explanatory variables (X1, X2). First we generate data (θ,R) uniformly in the
set {[0, π/2] ∪ [π, 3π/2]} × [0.9, 1]. Then we define

X1 = (R cos(θ) + 1)/2, X2 = (R sin(θ) + 1)/2.

This way X1 and X2 are both in [0, 1] and they present a non-linear depen-
dence pattern. We proceed as before with the only difference that now the
ghost variables are fitted using a generalized additive model using the func-
tion gam in the R package mgcv (Wood 2017). Figure 3 shows the results for
the random forest and the neural network (results for the linear model fitted
by OLS are similar to those of the neural network). It can be seen that the
performance of ghost variables is similar to that of using the true conditional
distribution (which is unknown in real settings) and close to loco (mainly for
random forests). Random permutations gives very poor results: the reported
relevance for X1 and X2 is larger than that of X3, X4 and X5, even if the
there is a strong dependence between X1 and X2. Using knockoffs gives results
midway between loco and random permutations, because the MX Gaussian
knockoff method is not able to reproduce the joint distribution of X1 and X2,
which is very far from joint normality.

We conclude that the simplicity and flexibility of the ghost variable
procedure are a clear advantage with respect to using knockoffs.
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Fig. 2 Relative rankings of the explanatory variables according to different relevance
measures applied three regression models. Implementation done in R.
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Fig. 3 Relative rankings of the explanatory variables according to different relevance mea-
sures applied three regression models. A nonlinear dependence pattern has been simulated
between the first two explanatory variables.

6.2 Example 2. A large model with 100 features

We simulate now data following a linear model with 100 explanatory Gaus-
sian variables, grouped into three subsets with 5, 45 and 50 variables each,
respectively. The 5 variables in the first group are independent standard nor-
mal. In the second group, the 45 variables are marginally standard normal but
they are correlated to each other with correlation coefficient ρ2 = 0.95. The
50 variables in the third group are independent normal with zero mean and
standard deviation σ3 = 2. Variables in different groups are independent from
each other. For each observed set of explanatory variables, x1, . . . , x100, the
response variable Y is generated from the linear model

Y =

100∑
j=1

βjxj + ε,

where ε follows a N(0, 1) and βj = γ1 = 0.5, for j = 1, . . . , 5, βj = γ2 = 1, for
j = 6, . . . , 50, and βj = γ3 = 0.1, for j = 51, . . . , 100.

The parameters that control the simulated example, ρ2, σ3, γ1, γ2, γ3,
have been fixed at the previously indicated values with the objective of having
similar relevance (measured by ghost variables) for variables in groups 2 and
3, and higher relevance for variables in the first group (see Figure 4). We look
for such a configuration because later (in Section 8) we use this Example to
illustrate the use of the relevance matrix, defined in Section 7. There we will
see that using the relevance matrix allows to distinguish between the groups
of variables 2 and 3, which can not be differentiated using only individual
relevance measures.

The following procedure has been repeated 100 times. We generate a train-
ing set of size 1000, and a test set of size 500. The training set is used to fit the
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Fig. 4 Relevance of the explanatory variables in the linear model with 100 features of
Example 2, estimated by OLS. The relevance is measured as the relative increment in MSPE
when each feature is replaced by its ghost variables in the test sample. The boxplots show
the relevance values measured in 100 simulated data sets (training set of size 1000, test set
of size 500).

linear model, first by OLS and then using lasso (as implemented in the R pack-
age glmnet, Friedman et al. 2010, using 10-fold cross-validation for choosing
the penalty parameter). The test set is used to measure relevance of variables
by different methods: loco (L, with a cost of 1327.08 seconds in computing
time), ghost variables in its both versions (Gp compares predictions, as RV in
equation (1), and G compares MSPEs, as RV∗ in equation 2; the required time
was 220.26 seconds in total), knockoffs perturbations (Nk, 53.78 seconds), and
random permutations (P, 35.51 seconds).

Figure 4 shows, for each explanatory feature, the boxplot of its relevance
values in the 100 simulated data sets, when ghost variables is used to mea-
sure relevance. It can be seen that the relevance distributions are similar for
variables in groups 2 and 3, as desired.

Figure 5 show the relative ranks, according to different relevance measures,
of the 100 explanatory averaged over the 100 simulations. In the left hand side
graphic, corresponding to OLS estimation of the linear model, it can be seen
that loco (L) gives similar results to ghost variables in any of its both versions,
comparing predictions (Gp) or comparing MSPEs (G). These three relevance
measures are approximately equivalent to compute the F (or t) statistics for
testing that the coefficients in the linear model are equal to zero. Figure 5 also
shows that random permutations (P) and knockoffs (Nk) do not agree with the
other relevance measures. Using knockoffs allows to detect variables in group
1 as the most relevant but this method switch the relevance order of variables
in groups 2 and 3.

When the lasso estimation is analyzed (right hand side of Figure 5) we
can see that the results are qualitative similar to those of the OLS estimation,
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Fig. 5 Average relative rankings, according to different relevance measures, of the 100
explanatory variables in the large linear model of Example 2, estimated by OLS and by lasso.

with certain particularities that we list now. Loco (L) assigns similar average
relative ranks to variables in groups 1 and 2, these being only slightly larger
than those it assigns to variables in group 3. Now ghost variables results are
no longer so similar to those of loco for variables in groups 2 and 3, but its
version comparing MSPEs is still the closest method to loco.

We conclude that measuring relevance based on ghost variables has given
results as least as good as those of loco, with a much lower computational cost.
Using knockoffs, a method that is faster than ghost variables in this example,
has given unsatisfactory relevance results. The same applies to using random
permutations, whose unsatisfactory performance has already been reported in
this article and others as Hooker et al. (2021).

7 Understanding sets of variables: The relevance matrix

In complex models with many possibly grouped variables, the measure of rel-
evance could be more important for groups of variables than for individual
variables. The ideas presented in the previous sections can be generalized eas-
ily when Z is a set of variables, instead of a single one. However, with many
variables a key problem is to find the relevant sets of variables with grouped
effects. Finding relevant groups of variables is similar to the detection of groups
of influential cases and outliers in regression, where a standard approach (sim-
ilar to loco) is to remove each data in turns and compute the effect of these
deletions on the values predicted by the model (or on the estimates of the
parameters). Peña and Yohai (1995) introduced the influence matrix by first
looking at the influence vectors that measure the effect of deleting each obser-
vation on the vector of forecasts for the whole data set and then computing the
n × n symmetric matrix that has the scalar products between these vectors.
Thus the influence matrix has in the diagonals Cook’s statistics and outside
the diagonal the scalar products of these effects. These authors showed that the
eigen-structure of the influence matrix contains useful information to detect
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influential subsets or multiple outliers avoiding masking effects. We propose
a similar idea by computing a case-variable relevance matrix (denoted by A
below).

We will present the case when variables are replaced by their ghost variables
and, in the supplemental material, their replacement by random permutations.
Observe that similar definitions could be done for other relevance measures
based on perturbing variables, as those based on conditional distributions or
on knockoffs.

We consider again the prediction of Y from the p components of X through
the regression function f(x) = E(Y | X = x) estimated in a training sam-
ple (X1,y1) ∈ Rn1×(p+1) that will be tested in the test sample (X2,y2) ∈
Rn2×(p+1).

Let x2.1, . . . ,x2.p be the columns of X2. For j = 1, . . . , p, let X2.[j] =
(x2.1, . . . ,x2.(j−1),x2.(j+1), . . . ,x2.p) be the matrix X2 without the j-th col-
umn, and H2.[j] = X2.[j](X2.[j]X2.[j])

−1XT

2.[j] be the projection matrix on the

column space of X2.[j]. Let x̂2.j = H2.[j]x2.j be projection of x2.j over the col-
umn space of the other columns of X2. We will take x̂2.j as the j-th ghost
variable. Note that alternative regression models (additive models, for instance,
or non linear models) could be also used to define the ghost variable. Let

X2.ȷ̂ = (x2.1, . . . ,x2.j−1, x̂2.j ,x2.j+1, . . . , x2.p)

be the regressor matrix in the test sample where the j-th variable has been
replaced by the j-th ghost variable. We use Ŷ2 = f̂(X2) to denote the n2-
dimensional column vector of forecasts with all the variables and Ŷ2.ȷ̂ =

f̂(X2.ȷ̂) to the vector of forecast with the j-th ghost variable. Define the n2×p
matrix of forecast changes as

A = (Ŷ2 − Ŷ2.1̂, . . . , Ŷ2 − Ŷ2.p̂),

where the element aij of A, i = 1, . . . , n2, j = 1, . . . , p, measures the change
in the response prediction for the i-th case in the test sample, when the j-th
variable has been replaced by its ghost variable. Finally, we define the relevance
matrix as the p× p matrix

V =
1

M̂SPE(f̂)

1

n2
ATA.

Then, the element (j, k) of V is

vjk =
1

M̂SPE(f̂)

1

n2

n2∑
i=1

(f̂(x2.j.i)− f̂(x2.ȷ̂.i))(f̂(x2.k.i)− f̂(x2.k̂.i)),
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where x2.j.i and x2.ȷ̂.i are, respectively, the i-th element of x2.j and x̂2.j . In
particular, the diagonal of the relevance matrix V has elements

vjj = RVgh(Xj), j = 1, . . . , p.

The advantage of working with the matrix V, instead of just computing
univariate relevance measures, is that V contains additional information in
its out-of-the-diagonal elements, which we are exploring through the exam-
ination of its eigen-structure. If, for j = 1 . . . , p, (1/n2)

∑
i f̂(x2.j.i) =

(1/n2)
∑

i m̂(x2.ȷ̂.i) then V is proportional to the variance-covariance matrix
of A.

7.1 The relevance matrix for linear regression

Consider the particular case that m̂(x) is the OLS estimator of a multiple
linear regression. Then

f̂(x) = xTβ̂, with β̂ = (XT

1X1)
−1XT

1Y1.

Therefore, the vector of predicted values in the test sample is Ŷ2 = X2β̂, and

σ̂2
n1,n2

= M̂SPE(f̂) =
1

n2
(Y2 − Ŷ2)

T(Y2 − Ŷ2),

which is an estimator of the residual variance in the regression of Y over X.
Writing β̂ = (β̂1, . . . , β̂p)

T, the predicted values when using the j-th ghost
variable is

Ŷ2.ȷ̂ = X2.ȷ̂β̂ = X2β̂ − (x2.j − x̂2.j)β̂j = Ŷ2 − (x2.j − x̂2.j)β̂j ,

the matrix A is

A = (Ŷ2 − Ŷ2.1̂, . . . , Ŷ2 − Ŷ2.p̂) = (X2 − X̂2)diag(β̂),

where X̂2 is the matrix with each variable replace by its ghost variable. The
relevance matrix is

V =
1

σ̂2
n1,n2

1

n2
diag(β̂)(X2 − X̂2)

T(X2 − X̂2)diag(β̂) =

1

σ̂2
n1,n2

diag(β̂)Gdiag(β̂),

where G = (1/n2)(X2 − X̂2)
T(X2 − X̂2). The elements (j, k) of G and V are,

respectively,

gjk =
1

n2
(x2.j − x̂2.j)

T(x2.k − x̂2.k), and vjk =
1

σ̂2
n1,n2

β̂j β̂kgjk.



Springer Nature 2021 LATEX template

Understanding predictive models 27

Observe that, in the regression of x2.j over X2.[j], σ̂
2
[j] = gjj is the residual vari-

ance estimation that uses n2 as denominator. The following result summarizes
the properties of the relevance matrix V and, in particular, its relationship
with the partial correlation matrix. The proof can be found in Appendix A.3.

Theorem 2 Let P be the matrix that contains the partial correlation coefficients in
the test sample as non-diagonal elements and has −1 in the diagonal. Then

G =
1

n2
(X2 − X̂2)

T(X2 − X̂2) = −diag(σ̂[1], . . . , σ̂[p])P diag(σ̂[1], . . . , σ̂[p]),

and consequently

V = − 1

σ̂2
n1,n2

diag(β̂) diag(σ̂[1], . . . , σ̂[p])P diag(σ̂[1], . . . , σ̂[p]) diag(β̂).

Therefore RVgh(Xj), the j-th element of the diagonal of V, admits the alternative
expression

RVgh(Xj) =
1

σ̂2
n1,n2

β̂2
j σ̂

2
[j],

and the partial correlation coefficient between variables j and k when controlling by
the rest of variables can be computed as

ρ̂jk.R = −
gjk√
gjjgkk

= −
vjk√
vjjvkk

.

The expressions for the partial correlation coefficient appearing in Theorem
2 reminds the well known formula

ρ̂jk.R = − sjk√
sjjskk

,

where the sjk is the element (j, k) of S−1
2 , the inverse of the covariance matrix

of the test sample X2, S2. This coincidence, and the observation that sjj is
the inverse of (x2.j − x̂2.j)

T(x2.j − x̂2.j) (a consequence of the inverse formula
for a block matrix; see Appendix A.1), imply the next Corollary.

Corollary 1 Let S2 be the covariance matrix of the test sample X2. G and S−1
2

verify that

G =
n2 − 1

n2
diag(σ̂2

[1], . . . , σ̂
2
[p])S

−1
2 diag(σ̂2

[1], . . . , σ̂
2
[p]).

The relevance matrix when random permutations are used (say Ṽ) is ana-
lyzed in the supplemental material in the case of multiple linear regression.
There it is proved that

Ṽ ≈ 1

σ̂2
n1,n2

2 diag(β̂) diag(S1, . . . , Sp)Rdiag(S1, . . . , Sp) diag(β̂),
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where S2
j is the sample variance (computed dividing by n2) of xj , and R is the

correlation matrix of the test sample X2. This expression suggests that the
eigen-structure of Ṽ will probably be related with the principal component
analysis of the test sample explanatory matrix X2.

On the contrary, the eigen-structure of V differs from the principal com-
ponents of the explanatory variables. This leads us to expect that the study
of V reveals relevant knowledge that would be hidden if we limit ourselves to
analyzing the covariance structure of the explanatory variables.

8 Relevance matrix in action

We analyze now the performance of the relevance matrix in practice. We use
synthetic data in Section 8.1 and 8.2, while real data are used in Section 8.3.

8.1 Analyzing one case from Example 1

We consider a data set generated as in Example 1 (Section 6.1), following the
linear model with 10 explanatory variables proposed in Hooker et al. (2021),
with the first two variables strongly related (ρ = 0.9). We have fitted three
models to these data in R: a linear model fitted by OLS, a random forest and a
one-hidden-layer neural network, as described in Section 6.1. Linear model and
neural network give very good fits, both with values of the multiple R-squared
around 0.99. Random forest multiple R-squared is 0.88.

We compute the variable relevance, as well as the relevance matrix, for the
neural network model using ghost variables (the results for the linear model are
very similar). Figure 6 summarizes our findings. The relevance of each variable
is represented in the upper left plot, and they are according to the design of the
generating linear model. Variables X10 and X9 are the most relevant (in this
order), followed by X5, X3 and X4, almost tied, then X8 and X7, and finally
variables X1 and X2 have a similar smaller relevance. Variable X6 has almost
null relevance. Note that this relevance information, which is not included in
the standard output of the fitting neural networks routines, is as informative
about the statistical significance of each explanatory variable as the t-values
reported in the standard output of a linear model.

The relevance matrix V provides information on the joint effect that vari-
ables have on the response. The upper middle plot in Figure 6 shows the
eigenvalues of V, and the other plots represent the components of each eigen-
vector. This eigen-structure reveals the following facts. The first and second
largest eigenvalue are linked to eigenvectors defined by the columns of the
case-variable relevance matrix A corresponding to variables X10 and X9,
respectively. The eigenvectors 3, 4 and 5 are jointly related to the variables X3,
X4 and X5, and they correspond to 3 eigenvalues with similar values. There-
fore, these three eigenvectors expand a quite spherical 3-dimensional subspace.
For a different sample, probably the components of these eigenvectors in the
columns of matrix A corresponding to variables X3, X4 and X5 would be quite
different, even if the spanned subspace would remain approximately equal.
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Fig. 6 Ghost variables relevance matrix analysis in one data set generated according to
Example 1 in Section 6.1.

Eigenvectors 6 and 8 are given by variables X8 and X7, respectively. The eigen-
vectors 7 and 9 jointly correspond to the strongly related variables X1 and X2,
and they are associated with 2 quite different eigenvalues. This indicates that
the subspace spanned by the first two columns of the case-variable relevance
matrix A is elliptic, with high eccentricity, a consequence of the strong linear
dependence between the columns in A corresponding to variables X1 and X2.
The last eigenvector, corresponding to an almost null eigenvalue, is associated
with X6.

8.2 Analyzing one case from Example 2

We consider a data set generated as in Example 2 (Section 6.2), following
the linear model with 100 explanatory variables. We fit a linear model, first
using OLS and then using lasso. For both fitted models, the relevance matrix
using ghost variables (with differences in predictions, as in equation (1)) have



Springer Nature 2021 LATEX template

30 Understanding predictive models

been computed. The results are summarized in Figure 7 (the large number of
explanatory variables forces to use a format different from that of Figure 6).
The upper graph shows the variable relevance ranks for both, OLS and lasso.
The first 5 variables are clearly the most relevant in both fits. When using
lasso estimation, the second group of 45 correlated variables are detected as
most relevant than the third group, integrated by 50 uncorrelated variables.
Nevertheless, variables in both groups have similar relevance when using OLS
as fitting procedure. In this last case, we are seeing below that the relevance
matrix reveals the different nature of variables in groups 2 or 3.

Let V be the relevance matrix computed as proposed in Section 7. The sec-
ond graph in Figure 7 is a scree plot showing the eigenvalues of V in decreasing
order. To select which eigenvectors we should explore further, we follow the
usual recommendations in Principal Component Analysis (see, for instance,
Section 8.3 of Johnson et al. 2002): eigenvectors associated with the largest
eigenvalues are relevant; an eigenvector corresponding to an eigenvalue near
zero may indicate an almost exact linear dependency in the columns of the
case-variable relevance matrix A, pointing out a possible group of explana-
tory variables having a joint effect on the model predictions; large steps in the
scree plot occurs between consecutive eigenvalues with potentially different
behavior, and it might be interesting to explore the eigenvectors associated to
both.

In this example, just looking for large steps in the scree plot (we select
those that are marked as outliers in the boxplot of the step sizes, in logarithmic
scale) results on the identification of 9 potentially interesting eigenvectors: the
seven largest ones plus the two smallest ones. The 9 small plots in the lower
part of Figure 7 represent the coefficients of each column of A in the definition
of these 9 eigenvectors. It follows that eigenvectors 1 to 5 are associated with
the first 5 most relevant variables. Eigenvectors 6, 7 and 99 seem not to be of
special interest. Finally, the last eigenvector identifies the variables in group
2, from X6 to X50, as a set of variables having a joint effect over the model
predictions. This is something that we new in advance (because the simulated
model was designed this way) but that was overlooked by the individual rel-
evance measures. This is a clear example of the added value that calculating
the relevance matrix can imply.

8.3 A real data example: Rent housing prices

We present a real data example on rental housing, coming from the Spanish
real estate search portal Idealista (www.idelista.com) which allows customers
to search for housing based on several criteria (geography, number of rooms,
price, and various other filters) among the offers posted by other customers.
We started working from the data set downloaded from www.idelista.com
by Alejandro Germán-Serrano on February 27th 2018 (available at https:
//github.com/seralexger/idealista-data; accessed April 12th 2019). This data
set contained 67201 rows (posted rental offers actives at the download date)

www.idelista.com
www.idelista.com
https://github.com/seralexger/idealista-data
https://github.com/seralexger/idealista-data
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Fig. 7 Ghost variables relevance matrix analysis in one data set generated according to
Example 2 in Section 6.2.
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Table 3 List of variables used in the rent housing prices example. The response variable
is log.price, and other are the explanatory variables. The district price level indicator
categ.distr has been computed in Barcelona and Madrid separately. For each district
(there are NB = 10 districts in Barcelona and NM = 21 in Madrid) the third quartile of
price is computed. Then these N values (where N = NB or NM ) are classified by their
own quartiles, and values −3, −1, 1 and 3 are assigned to them accordingly. Finally this
district value is used to define categ.distr for all the houses in each district.

log.price Monthly rental price, the response variable (in logarithms).
Barcelona 1 for houses in Barcelona, 0 for those in Madrid.

categ.distr An indication of the district price level, taking the values −3,
−1, 1 and 3. See the caption for details.

type.chalet These 4 variables are the binarization of the
type.duplex original variable type with 5 levels:

type.penthouse flat (the most frequent), chalet, duplex,
type.studio penthouse and studio.

floor Floor where the house is located.
hasLift 1 if the house has lift, 0 otherwise.

floorLift abs(floor)*(1-hasLift)

log.size Surface, in squared meters (in logarithms).
exterior 1 if the house is exterior, 0 otherwise.

rooms Number of bedrooms.
bathrooms Number of bathrooms.

hasParkingSpace 1 if the house has a parking space, 0 otherwise.
ParkingInPrice 1 if the parking space is included in the price, 0 otherwise.
log activation logarithm of the number of days since the first activation of

the post.

and 19 attributes, corresponding to all cities in Spain. Some offers where
activated for the first time in 2010.

We have selected posts corresponding to Madrid and Barcelona (16480
rows) and finally work with 17 variables (some of them already in the original
data set, other calculated from the original attributes) listed in Table 3.

In order to predict the logarithm of prices as a function of the other 16
explanatory variables, we have fitted three predictive models: a linear regres-
sion, an additive model, and a neural network. For each model, the variables
relevance has been computed by ghost variables (a 70% of the data are used as
training set, and the rest as test set). The standard outputs of the linear and
the additive models offer a rich information about the statistical significance
of each explanatory variable. Then the relevance analysis represents a comple-
mentary information, which in most cases confirms the standard one, although
matrix relevance can add new lights. The situation is different for the neural
network model: in this case the relevance analysis will provide genuine new
insights on the importance of the explanatory variables, or groups of them.

The variable relevance results for the three models are broadly consistent.
We show below those corresponding to the neural network. The results for
the linear model and for the additive model are accessible as supplemental
materials.
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Table 4 Rent housing prices: Output of the neural network model.

# > nnet.logprice

#

# a 16-10-1 network with 181 weights

# inputs: Barcelona categ.distr type.chalet type.duplex type.penthouse

# type.studio floor hasLift floorLift log.size exterior rooms bathrooms

# hasParkingSpace ParkingInPrice log_activation

#

# output(s): log.price

#

# options were - linear output units decay=0.5

#

# > 1-mean(nnet.logprice$residuals^2)

# [1] 0.8009131

A one-hidden-layer neural network has been fitted using the nnet func-
tion from the R package nnet (Venables and Ripley 2002). The response and
the explanatory variables were centered and scaled before the fitting. Tuning
parameters, size (number of neurons in the hidden layer) and decay param-
eter, are chosen using caret (Kuhn 2018) by 10-fold cross validation (in the
training set). The candidates values for size were 10, 15, and 20, and they
were 0, 0.1, 0.3, and 0.5 for decay. Finally the chosen values were size=10

and decay=0.5. With these values, the whole training sample was used to fit
the neural network and the results were stored in the object nnet.logprice.

Table 4 shows the little information obtained when printing the output of
the nnet function. Additionally, the multiple R-squared has been computed
and printed, with a value of 0.80 (the variance of the response variable is
1 in the test sample because the data has been previously standardized). It
is a little bit larger than those for the linear and the additive models (not
reported here; see the supplemental materials). You can see that the output
in Table 4 does not provide any insight about which explanatory variables are
more responsible for that satisfactory fit. The equation that defines the neural
network is not helpful for this, as it explains the predictions as a non linear
combination of 10 (the number of hidden nodes) variables which are linear
combinations of the original ones. As indicated in the output, 181 parameters
have been fitted. Relevance measures will be of help in this respect.

Results on relevance by ghost variables for the fitted neural network are
shown in Figure 8. We can see (first row, first column plot) that log.size is the
most relevant variable, followed by categ.distr, type.chalet, Barcelona,
bathrooms, and log activation, in this order. The relevance of rooms, floor
and type.studio is lower.

Regarding the analysis of the relevance matrix V, only the 10 eigenvectors
explaining more than 1% of the total relevance are plotted. The first eigen-
vector accounts for the 43% of total relevance, and it is associated with the
size of houses (mainly with log.size, and to a lesser extent with bathrooms

and rooms). The second eigenvector (18% of total relevance) is mostly related
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to the district price level (categ.distr) the third one (10%) to type.chalet

and the fourth one (7%) to Barcelona. The variables bathrooms and rooms

appear together in several eigenvectors (with larger influence in eigenvectors
5th and 9th), always accompanying other variables. This fact indicates that
this pair of variables probably have a joint effect on model predictions. Similar
joint behavior present Barcelona and log activation. Variables referring to
other types of houses appear at eigenvectors 5th, 6th, 8th, and 10th. The 7th
eigenvector is mainly related with floor. Eigenvectors 11th to 16th (not shown
here) are related with the 7 less relevant variables, some of which appear only
in one eigenvector (as exterior) and other appear in pairs in several ones (as
hasLift and floorLift, which are closely related).

9 Conclusions

We have defined the relevance of a variable in a complex model by its contri-
bution to out-of-sample prediction and proposed a new way to measure this
contribution: to compare the predictions of the model in the test set with
those obtained when the variable of interest is replaced (in the test set) by its
ghost variable, which is defined as a prediction of the variable by using the
other explanatory variables. We have also shown that this approach has advan-
tages over other approaches: ghost variables require much less computing time
than leaving-one-covariate-out or using estimated conditional distributions,
they give better results than random permutations when the covariates are
dependent, and they involve a much more flexible modeling stage than using
knockoffs. We have proved that in linear regression this approach is related to
the F -statistic used to check the significance of the variable and, therefore, the
computation of the relevance by ghost variables in a complex predictive model
is an extension of the significance concept to other models in which this con-
cept is not usually considered. With many dependent variables, the relevance
of a each variable separately is less useful than considering the joint contri-
bution of sets of variables. Taken that into account, we have introduced the
relevance matrix as a way to explore joint effects in out-of-sample prediction.
In the linear model, we have proved the relationship between the relevance
matrix and the matrix of partial correlations of the explanatory variables.

Finally, we would like to emphasize the strength that research in Inter-
pretable Machine Learning has taken in recent years. Paraphrasing Breiman
(2001), we want to alert statisticians to be aware that traditional Statistics is
no longer the only way to reach understandable conclusions from data.
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Fig. 8 Rent housing prices: Relevance by ghost variables for the neural network model.
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A Proof of the results

A.1 Updating formula for the OLS estimator

Let b ∈ Rp, c ∈ R, and A ∈ Rp×p, an invertible matrix. The expression of the
inverse of an invertible block matrix is as follows:(

A b
bT c

)−1

=

(
A−1 + 1

kA
−1bbTA−1 − 1

kA
−1b

− 1
kb

TA−1 1
k

)
,

where k = c− bTA−1b.
Consider the linear regression with responses in vector y ∈ Rn and regres-

sion matrix (X, z) ∈ Rn×(p+1). The OLS estimated regression coefficients are
given by (

β̂x

β̂z

)
=

(
XTX XT z
zTX zT z

)−1 (
XT

zT

)
y

Then, using the formula for the inverse of a block matrix, we have that(
β̂x

β̂z

)
=

(
(XTX)−1 + 1

k (X
TX)−1XT zzTX(XTX)−1 − 1

k (X
TX)−1XT z

− 1
kz

TX(XTX)−1 1
k

)(
XTy

zTy

)
with

k = zT z− zTX(XTX)−1XT z = zT z− ẑTx ẑx = (z− ẑx)
T (z− ẑx),

where ẑx = Hxz and Hx = X(XTX)−1XT is the hat matrix in any linear

regression over X. Then, calling β̂0 = (XTX)−1XTy, α̂ = (XTX)−1XT z, we
have (

β̂x

β̂z

)
=

(
β̂0 +

1
k α̂ẑ

T
xy − 1

k α̂z
Ty

1
k (z− ẑx)

T
y

)
and finally

β̂x = β̂0 − α̂β̂z.

Therefore, the following updating formula is derived:

ŷx,z = Xβ̂x + zβ̂z = Xβ̂0 − (Xα̂)β̂z + zβ̂z = ŷx + (z− ẑx)β̂z.

A.2 Proof of Theorem 1

By definition, the relevance by a ghost variable of the variable Z is

RVgh(Z) =
1

σ̂2
n1,n2

1

n2
(ŷ2.X.z − ŷ2.X.ẑ)

T (ŷ2.X.z − ŷ2.X.ẑ) =

1

σ̂2
n1,n2

1

n2
β̂z(z2− ẑ2.2)

T (z2− ẑ2.2)β̂z =
1

σ̂2
n1,n2

1

n2
β̂2
zkgh =

1

σ̂2
n1,n2

σ̂2
n1
Fz

n1

kgh/n2

k/n1
,
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where kgh = (z2 − ẑ2.2)
T (z2 − ẑ2.2) and k has been defined in Appendix A.1.

Observe that both, σ̂2
n1

and σ̂2
n1,n2

, are consistent estimators of the residual
variance in the linear regression of Y over (X,Z). The proof concludes by
observing that σ̂2

z.x,n2
= kgh/n2 is an estimator of the residual variance in

the linear regression model Z = XTα + εz, as they also are k/(n1 − p) and
σ̂2
z.x,n1

= k/n1 = ((n1 − p)/n1)(k/(n1 − p)). The expression involving the Op

notation is derived by standard arguments for the limit of a quotient.

A.3 Proof of Theorem 2

Lemma 1 Let a and b be two non-null vectors of Rd. Let Pb(a) be the projection
vector of a over b, and let α(a,b) be the angle between a and b. Then

cos (α (a− Pb(a),b− Pa(b))) = − cos(α(a,b)).

Proof Given that cos(α(a,b)) = aTb/(∥a∥ ∥b∥) and Pb(a) =
cos(α(a,b))∥a∥(b/∥b∥) = (aTb)b/∥b∥2, it follows that

aTPa(b) = Pb(a)
Tb = aTb, Pb(a)

TPa(b) = cos2(α(a,b))aTb

and
∥Pb(a)∥2 = Pb(a)

TPb(a) = cos2(α(a,b))∥a∥2.
By the Pythagoras Theorem,

∥a− Pb(a)∥2 = ∥a∥2 − ∥Pb(a)∥2 = sin2(α(a,b))∥a∥2.

Finally,

cos (α (a− Pb(a),b− Pa(b))) =
(a− Pb(a))T (b− Pa(b))
∥a− Pb(a)∥∥b− Pa(b)∥

=

aTb− Pb(a)Tb− aTPa(b) + Pb(a)
TPa(b)

sin2(α(a,b))∥a∥∥b∥
=

−(1− cos2(α(a,b)))aTb

sin2(α(a,b))∥a∥∥b∥
= − cos(α(a,b)).

□

Proof of Theorem 2.

We start proving that the matrix

G =
1

n2
(X2 − X̂2)

T(X2 − X̂2)

has generic non-diagonal element gjk = ρ̂jk.Rσ̂[j]σ̂[k] for j ̸= k, where ρ̂jk.R is
the partial correlation coefficient between variables j and k when controlling
by the rest of variables, and σ̂2

[j] is the j-th element in the diagonal of G:

gjj = σ̂2
[j] =

1

n2
(x2.j − x̂2.j)

T(x2.j − x̂2.j).
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It is equivalent to proof that

ρ̂jk.R = − gjk√
gjjgkk

= − (x2.j − x̂2.j)
T(x2.k − x̂2.k)√

(x2.j − x̂2.j)T(x2.j − x̂2.j)
√

(x2.k − x̂2.k)T(x2.k − x̂2.k)
,

that is, we have to prove that the cosinus of the angle between the vector of
residuals x2.j − x̂2.j and x2.k − x̂2.k is equal to minus the cosinus of the angle
between the vector of residuals a = x2.j−x̂2.j.R and b = x2.k−x̂2.k.R, obtained
when regressing x2.j and x2.k respectively over R = X2.[jk], the matrix with
columns x2.1, . . . ,x2.p, except x2.j and x2.k.

We use now the notation PU(x) to denote the projection of the vector x
over the linear space U, and {R,x} for the subspace generated by the columns
of the matrix R and the vector x. Observe that

x̂2.j = P{R,x2.k}(x2.j) = P{R,b}(x2.j) = P{R,b}(x̂2.j.R + a) =

P{R,b}(x̂2.j.R) + P{R,b}(a) = x̂2.j.R + Pb(a).

Therefore
x2.j − x̂2.j = x2.j − x̂2.j.R − Pb(a) = a− Pb(a).

Analogously, x2.k− x̂2.k = b−Pa(b). A direct application of Lemma 1 finishes
the proof that ρ̂jk.R = −gjk/

√
gjjgkk. The other statements in the Theorem

follow directly from the relation V = diag(β̂)Gdiag(β̂)/σ̂2
n1,n2

.
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evance matrix by random permutations are stated and proved. Moreover, in
the real data example, the relevance analysis by ghost variables is included for
the linear and the additive models.
R-scripts and datasets: The code to reproduce the computations and graphics
can be found at https://github.com/pedrodelicado/GhostVariables.
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