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Supplemental materials

Supplement A: Results on relevance by loco.

We use the notation

σ̂2
n1

= M̂SPE
Train

(f̂) =
1

n1 − p− 1
(y1 − ŷ1.X.z)

T (y1 − ŷ1.X.z).

Proposition 3 Let

RVTrain
loco (Z) =

1

σ̂2
n1

1

n1
(ŷ1.X.z − ŷ1.X)T (ŷ1.X.z − ŷ1.X)

be the relevance by loco of the variable Z, evaluated in the training sample. It happens
that

n1RV
Train
loco (Z) = Fz .

Moreover,

RVTrain
loco (Z) =

1

σ̂2
n1

β̂2
z σ̂

2
z.x,n1

,

where σ̂2
z.x,n1

is a consistent estimator of σ2
z.x, the residual variance in the model

Z = XTα+ εz, computed from the training sample.

Proof We are dealing with the estimation of models f(x, z) = xT βx + zβz and
fp(x) = xT β0 from the training set (X1, z1,y1). The ordinary least squares (OLS)
coefficient estimators are β̂0 = (XT

1 X1)
−1XT

1 y1 and(
β̂x

β̂z

)
=

(
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1 X1 XT
1 z1

zT1 X1 zT1 z1

)−1
(
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1

zT1

)
y1.

The predicted values for the response are, respectively, ŷ1.X.z = X1β̂x + z1β̂z and
ŷ1.X = X1β̂0. Using the expression of the inverse of a partitioned matrix (see
Appendix A.1), it is easy to obtain the well known result

β̂x = β̂0 − α̂1β̂z (6)

where α̂1 = (XT
1 X1)

−1XT
1 z1 is the vector of regression coefficients in the regression

of the omitted variable on the other explanatory variables in the training set, and

β̂z =
1

k
(z1 − ẑ1)

Ty1

where ẑ1 = X1α̂1 and k = (z1− ẑ1)
T (z1− ẑ1). These results (see, e.g., Seber and Lee

2003) show that the multiple regression coefficient of each variable, β̂z , is the slope
in the simple regression of y on z1 − ẑ1, the part of z1 that is uncorrelated to the
rest of explanatory variables. Also, Var(β̂z) = σ2/k, the standard t-test statistic for
the null hypothesis H0 : βz = 0 is tz = β̂z

√
k/σ̂, where σ̂2

n1
= (y1 − ŷ1.X.z)

T (y1 −
ŷ1.X.z)/(n1−p−1), and the standard F -test statistic for the same null hypothesis is

Fz = t2z =
β̂2
zk

σ̂2
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=
1

σ̂2
n1

β̂z(z1 − ẑ1)
T (z1 − ẑ1)β̂z =

1

σ̂2
n1

(ŷ1.X.z − ŷ1.X)T (ŷ1.X.z − ŷ1.X) = n1RV
Train
loco (Z).

The proof concludes when defining σ̂2
z.x,n1

= (z1 − ẑ1)
T (z1 − ẑ1)/n1. □
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Let us use the notation

σ̂2
n1,n2

= M̂SPE(f̂) =
1

n2
(y − ŷ2.X.z)

T (y − ŷ2.X.z).

Proposition 4 Assume that the regression function of Y over (X,Z) is linear and
that it is estimated by OLS. Then

n1RVloco(Z) = Fz
σ̂2
z.x,n1,n2

σ̂2
z.x,n1

σ̂2
n1,n2

σ̂2
n1

= Fz

(
1 +Op

(
min{n1, n2}−1/2

))
,

and

RVloco(Z) =
1

σ̂2
n1,n2

β̂2
z σ̂

2
z.x,n1,n2

,

where σ̂2
z.x,n1,n2

and σ̂2
z.x,n1

are consistent estimators of the same parameter σ2
z.x

(the residual variance in the linear regression model Z = XTα + εz), the first one
depending on both, the training sample and the test sample, and the second one (also
appearing in Proposition 3) only on the training sample.

Proof The vectors of predicted values in the test sample are ŷ2.X.z = X2β̂x + z2β̂z
and, using equation (6) in the proof of Proposition 3,

ŷ2.X = X2β̂0 = X2

(
β̂x + α̂1β̂z

)
= X2β̂x + ẑ2.1β̂z ,

where ẑ2.1 = X2α̂1 is the prediction of z2 using the linear model fitted in the training
sample to predict Z from X. Therefore, using the same notation as in Proposition
3, the relevance by loco of the variable Z is

RVloco(Z) =
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where kloco = (z2−ẑ2.1)
T (z2−ẑ2.1) and k has been defined in the Appendix A.1 of the

paper. Observe that both, σ̂2
n1

and σ̂2
n1,n2

, are consistent estimators of the residual
variance in the linear regression of Y over (X,Z). In a similar way, both kloco/n2 and
k/(n1 − p), are consistent estimators of the residual variance in the linear regression
model Z = XTα+ εz . The proof concludes when defining σ̂2

z.x,n1,n2
= kloco/n2 and

using σ̂2
z.x,n1

defined in Proposition 3. The expression involving the Op notation is
derived by standard arguments for the limit of a quotient. □

In the linear regression model, Proposition 4 and Theorem 1 establish a
parallelism between deleting the variable Z and replacing it by a ghost variable.
This relationship goes even farther. Consider the linear model fz(x) = xTα.
Let α̂1 and α̂2 be the OLS estimators of α in the training and test samples,
respectively. They are expected to be close to each other, because both are OLS
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estimators of the same parameter. This expected proximity and the results
stated in Appendix A.1, lead us to write

ŷ2.X.ẑ = X2β̂x + ẑ2.2β̂z = X2β̂x +X2α̂2β̂z = X2

(
β̂x + α̂2β̂z

)
≈

X2

(
β̂x + α̂1β̂z

)
= X2β̂0 = ŷ2.X .

That is, using the ghost variable ẑ2.2 leads to similar predictions of Y in the test
sample than removing the variable z1 when fitting the model in the training
sample.

Supplement B: Relevance matrix by random permutations in
linear regression

We analyze now the structure of the relevance matrix V when random per-
mutations are used instead of ghost variables. We focus in the case of multiple
linear regression. Define

Ã = (X2 −X′
2)diag(β̂),

where the j-th column of matrix X′
2 is x′

2.j , a random permutation of xj .
Therefore,

Ṽ =
1

σ̂2
n1,n2

1

n2
ÃTÃ =

1

σ̂2
n1,n2

1

n2
diag(β̂)(X2 −X′

2)
T(X2 −X′

2)diag(β̂) ≈

1

σ̂2
n1,n2

2 diag(β̂)S2 diag(β̂) =

1

σ̂2
n1,n2

2 diag(β̂) diag(S1, . . . , Sp)Rdiag(S1, . . . , Sp) diag(β̂),

where S2
j is the sample variance (computed dividing by n2) of xj , and R is the

correlation matrix of the test sample X2. The “approximately equal to” sign
(≈) indicates that XT

2X
′
2 is a matrix with elements approximately equal to 0,

because 0 is their expected value under random permutations. We conclude
that the correlation structure of Ṽ coincides with that of the sample correlation

matrix R, and it has diagonal elements 2β̂j
2
S2
j /σ̂

2
n1,n2

= RVrp(Xj).

We have found analogous expressions for V and Ṽ that allow us to identify
the main differences between both relevance matrices. First, V is related with
partial correlations, while Ṽ is associated with standard correlations. Second,
the expression of V includes the estimated residual variances in the regressions
of each variable over the rest, while the usual sample variances appear in
the expression of Ṽ. These findings suggest that the eigen-structure of Ṽ
will probably be related with the principal component analysis of the test
sample explanatory matrix X2, but hopefully new knowledge can be found
when analyzing the eigen-structure of V.
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Table 5 Rent housing prices: Standard output of the linear model.

## lm(formula = log.price ~ ., data = rhBM.price[Itr, ])

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.73746 -0.17693 -0.02142 0.15657 1.46787

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.8173767 0.0346767 110.085 < 2e-16 ***

## Barcelona 0.1136419 0.0052738 21.548 < 2e-16 ***

## categ.distr 0.1180689 0.0034057 34.668 < 2e-16 ***

## type.chalet -0.0936153 0.0201548 -4.645 3.44e-06 ***

## type.duplex -0.0298433 0.0152426 -1.958 0.050267 .

## type.penthouse 0.0519714 0.0101414 5.125 3.03e-07 ***

## type.studio -0.0959335 0.0137110 -6.997 2.76e-12 ***

## floor 0.0129268 0.0009929 13.020 < 2e-16 ***

## hasLift 0.0426585 0.0119147 3.580 0.000345 ***

## floorLift -0.0045339 0.0044637 -1.016 0.309772

## log.size 0.6203055 0.0090442 68.586 < 2e-16 ***

## exterior -0.0325094 0.0068722 -4.731 2.27e-06 ***

## rooms -0.0504532 0.0033378 -15.116 < 2e-16 ***

## bathrooms 0.1442336 0.0046214 31.210 < 2e-16 ***

## hasParkingSpace -0.0016900 0.0129244 -0.131 0.895968

## ParkingInPrice -0.0571662 0.0138070 -4.140 3.49e-05 ***

## log_activation 0.0397800 0.0018478 21.528 < 2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Residual standard error: 0.2647 on 11519 degrees of freedom

## Multiple R-squared: 0.7621,Adjusted R-squared: 0.7618

## F-statistic: 2306 on 16 and 11519 DF, p-value: < 2.2e-16

Supplement C: Linear and additive models for the real data
example (rent housing prices).

Linear model
Table 5 shows the standard output of the fitted linear model. Thirteen variables
and the intercept are significant at level 0.001. There are 7 variables with
t-value larger than 10 in absolute value: Barcelona, categ.distr, floor,
log.size (this one being the most significant variable), rooms, bathrooms,
and log activation. The adjusted coefficient of determination R2 is 0.7618.

The relevance by ghost variables results are shown in Figure 9. We can see
(first row, first column plot) that the 7 most relevant variables are the seven
we cited before (those with largest t-values in absolute value). This is a con-
sequence of the existing relation (Theorem 1) between the relevance by ghost
variables and F -values (the squares of t-values) in the linear model. This plot
shows that log.size is the most relevant variable, followed by categ.distr,
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bathrooms, log activation, and Barcelona. The relevance of rooms and
floor is much lower. The second graphic in the first row of Figure 9 com-
pares the values of the variables relevance with the corresponding F -statistics
(divided by n1, the training sample size). It can be seen that, for every explana-
tory variable, both values are almost equal. Blue dashed lines in these two first
graphics indicate the critical value beyond which an observed relevance can
not be considered null, at significance level α = 0.01. According to Theorem
1, this critical value is computed as

F1,n−p−1,1−α/n1,

where F1,n−p−1,1−α is the (1− α) quantile of a F1,n−p−1 distribution (p = 16
in this example).

Regarding the analysis of the relevance matrix V, only the eigenvectors
explaining more than 1% of the total relevance are plotted. The first eigen-
vector accounts for the 60% of total relevance, and it is associated with the
size of houses (mainly with log.size, and to a lesser extent with bathrooms

and rooms). The second eigenvector (16% of total relevance) is mostly related
to the district price level (categ.distr) and least to bathrooms and rooms.
The 3rd, 4th and 5th eigenvectors are combination of the six most relevant
variables, with bathrooms having the largest weight in the 3rd one, while
log activation and Barcelona are dominant in the 4th and the 5th. Given
that the eigenvalues corresponding to these three eigenvectors (the first and
second could be included here as well) have different values, it follows that
the six most relevant variables have related effects on the model predictions,
and that they hardly admit isolated interpretations. Finally, the eigenvector
6th is related to floor, and the eigenvector 7th to rooms, bathrooms, and
type.studio.

Comparing the relevance results for the linear model with those for the
neural network, it can be said that they present small differences. The most
important one is that less variables are considered relevant in the linear model,
but the order of their relevance does not change with respect to the results for
the neural network.
Additive model
The standard output of the additive model is shown in Table 6. Three variables
are not significant at level size 0.001 (one of them, floorLift, enters in the
model in a non-parametric way). The adjusted R2 is 0.784 (larger than in the
linear model, and lower than in the neural network).

Let us examine the relevance by ghost variables results (Figure 10). Now, in
the additive model, there is no theoretical support for a direct relation between
the t and F -values shown in Table 6, and the relevance values plotted in the
first plot of Figure 10. In fact we can see that this direct relation does not
happen in this case (for instance, log.size appears in Figure 10 as much more
relevant than categ.distr, but the F -value of the term s(categ.distr) is
larger than that of s(log.size) in Table 6). The 7 most relevant variables
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Table 6 Rent housing prices: Standard output of the additive model.

## log.price ~ Barcelona + s(categ.distr, k = 3) + type.chalet +

## type.duplex + type.penthouse + type.studio + s(floor) + hasLift +

## s(floorLift, k = 6) + s(log.size) + exterior + s(rooms) +

## s(bathrooms, k = 6) + hasParkingSpace + ParkingInPrice +

## s(log_activation)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.280683 0.012121 600.690 < 2e-16 ***

## Barcelona 0.102610 0.005251 19.540 < 2e-16 ***

## type.chalet -0.103370 0.020701 -4.993 6.02e-07 ***

## type.duplex -0.051914 0.014772 -3.514 0.000442 ***

## type.penthouse 0.062322 0.009977 6.247 4.35e-10 ***

## type.studio -0.022915 0.024865 -0.922 0.356773

## hasLift 0.053318 0.012274 4.344 1.41e-05 ***

## exterior -0.023472 0.006580 -3.567 0.000363 ***

## hasParkingSpace 0.002794 0.012322 0.227 0.820600

## ParkingInPrice -0.055495 0.013192 -4.207 2.61e-05 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(categ.distr) 1.996 2.000 682.908 <2e-16 ***

## s(floor) 8.470 8.867 46.036 <2e-16 ***

## s(floorLift) 1.000 1.000 6.589 0.0103 *

## s(log.size) 8.760 8.977 567.263 <2e-16 ***

## s(rooms) 7.275 8.048 48.518 <2e-16 ***

## s(bathrooms) 4.843 4.979 122.147 <2e-16 ***

## s(log_activation) 3.510 4.363 114.468 <2e-16 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## R-sq.(adj) = 0.784 Deviance explained = 78.5%

## GCV = 0.063817 Scale est. = 0.063564 n = 11536

coincide with the 7 most statistically significant in the additive model, which
were also detected as the most relevant in the linear model.

From the study of the relevance matrix V we observe that its first 3 eigen-
vectors are very similar to the corresponding ones in the linear model. The
first eigenvector is mainly associated with log.size, while the second one is
mainly related with categ.distr. The relationship between bathrooms and
rooms is reflected in eigenvectors 3 and 7. The 4th eigenvector is related with
floor, the 5th with log activation, and the 6th with Barcelona.
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Fig. 9 Rent housing prices: Relevance by ghost variables for the linear model. Only the
eigenvectors explaining more than 1% of the total relevance are plotted.
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Fig. 10 Rent housing prices: Relevance by ghost variables for the additive model. Only the
eigenvectors explaining more than 1% of the total relevance are plotted.


