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Motor imagery-based brain-computer interface by implementing a frequency band selection.

Abstract

Motor Imagery-based Brain-Computer Interfaces (MI-BCI) are a promise to revolutionize the way
humans interact with machinery or software, performing actions by just thinking about them.
Patients suffering from critical movement disabilities, such as amyotrophic lateral sclerosis (ALS) or
tetraplegia, could use this technology to control a wheelchair, robotic prostheses, or any other device

that could let them interact independently with their surroundings.

The focus of this project is to aid communities affected by these disorders with the development of a
method that is capable of detecting, as accurately as possible, the intention to execute movements
(without them occurring) in the upper extremities of the body. This will be done through signals
acquired with an electroencephalogram (EEG), their conditioning and processing, and their
subsequent classification with artificial intelligence models. In addition, a digital signal filter will be
designed to keep the most characteristic frequency bands of each individual and increase accuracy

significantly.

After extracting discriminative statistical, frequential, and spatial features, it was possible to obtain an
88% accuracy on validation data when it came to detecting whether a participant was imagining a
left-hand or a right-hand movement. Furthermore, a Convolutional Neural Network (CNN) was used
to distinguish if the participant was imagining a movement or not, which achieved a 78% accuracy
and a 90% precision. These results will be verified by implementing a real-time simulation with the

usage of a robotic arm.
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Resumen

Las interfaces cerebro-computadora basadas en imaginaciones motoras (MI-BCl) son una promesa
para revolucionar la forma en que los humanos interactian con las maquinas o el software,
realizando acciones con tan solo pensar en ellas. Los pacientes que sufren discapacidades criticas del
movimiento, como la esclerosis lateral amiotrdfica (ALS) o la tetraplejia, podrian usar esta tecnologia
para controlar una silla de ruedas, protesis robdticas o cualquier otro dispositivo que les permita

interactuar de manera independiente con su entorno.

El objetivo de este proyecto es ayudar a las comunidades afectadas por estos trastornos con el
desarrollo de un método que sea capaz de detectar, con la mayor precisién posible, la intencién de
ejecutar movimientos (sin que se produzcan) en las extremidades superiores del cuerpo. Esto se hara
mediante sefiales adquiridas con un electroencefalograma (EEG), su acondicionamiento vy
procesamiento, y su posterior clasificacion con modelos de inteligencia artificial. Ademas, se diseiara
un filtro de sefial digital para mantener las bandas de frecuencia mds caracteristicas de cada

individuo y aumentar significativamente la exactitud del sistema.

Después de extraer caracteristicas estadisticas, frecuenciales y espaciales discriminatorias, fue
posible obtener una exactitud del 88% en los datos de validacidn a la hora de detectar si un
participante estaba imaginando un movimiento con la mano izquierda o con la derecha. Ademas, se
utilizé una red neural convolucional (CNN) para distinguir si el participante estaba imaginando un
movimiento o no, lo que logré un 78% de exactitud y un 90% de precisién. Estos resultados se

verificaran implementando una simulacién en tiempo real con el uso de un brazo robético.
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Resum

Les interficies cervell-ordinador basades en imaginacions motores (MI-BCl) sén una promesa per a
revolucionar la manera com els humans interactuen amb les maquines o el programari, realitzant
accions només amb el pensament. Els pacients que pateixen discapacitats de moviment critiques,
com l'esclerosi lateral amiotrofica (ALS) o la tetraplegia, podrien utilitzar aquesta tecnologia per
controlar una cadira de rodes, protesis robotiques o qualsevol altre dispositiu que els permeti

interactuar de manera independent amb el seu entorn.

L'objectiu d'aquest projecte és ajudar les comunitats afectades per aquests trastorns amb el
desenvolupament d'un metode que sigui capac de detectar, amb la maxima precisié possible, la
intencié d'executar moviments (sense que es produeixin) en les extremitats superiors del cos. Aixo es
fara mitjancant senyals adquirits amb un electroencefalograma (EEG), el seu condicionament i
processament, i la seva posterior classificaci6 amb models d'intel-ligéncia artificial. A més, es
dissenyara un filtre de senyal digital per mantenir les bandes de freqiiencia més caracteristiques de

cada individu i augmentar significativament I'exactitud del sistema.

Després d'extreure les caracteristiques estadistiques, freqlencials i espacials més discriminatories, va
ser possible obtenir una exactitud del 88% en les dades de validacié a I'hora de detectar si un
participant estava imaginant un moviment de la ma esquerra o de la dreta. A més, es va utilitzar una
xarxa neuronal convolucional (CNN) per distingir si el participant estava imaginant un moviment o no,
la qual cosa va aconseguir una exactitud del 78% i una precisié del 90%. Aquests resultats es

verificaran mitjangant la implementacid d'una simulacié en temps real amb I'Us d'un brag robotic.
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Glossary

BCl: Brain-Computer Interface.

MI: Motor Imagery.

MI-BCI: Motor Imagery-based Brain-Computer Interface
EEG: Electroencephalogram.

MEG: Magnetoencephalography.

fMRI: functional Magnetic Resonance Imaging.

fNIRS: functional Near-Infrared Spectroscopy.

ECoG: Electrocorticogram.

ALS: Amyotrophic Lateral Sclerosis.

SClI: Spinal Cord Injury.

Al: Artificial Intelligence.

FIR: Finite Impulse Response.

lIR: Infinite Impulse Response.

SMA: Supplementary Motor Area.

SMR: Sensorimotor Rhythm.

ERS: Event-Related Synchronization.

ERD: Event-Related Desynchronization.

ERDS: Event-Related Desynchronization and Synchronization.
ERP: Event-Related Potentials.

EPSP: Excitatory Postsynaptic Potentials.

IPSP: Inhibitory Postsynaptic Potentials.
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SNR: Signal-to-Noise Ratio.

ADC: Analog-to-Digital Converter.

BW: Bandwidth.

CMRR: Common-Mode Rejection Ratio.

PSD: Power Spectral Density.

SSVEP: Steady-State Visually Evoked Potential.

eGUI: experimental Graphical User Interface.

ICA: Independent Component Analysis.

CSP: Common Spatial Patterns.

STFT: Short-Time Fourier Transform.

DFT: Discrete Fourier Transform.

PDF: Probability Density Function.

LDA: Linear Discriminant Analysis.

SVM: Support Vector Machines.

RF: Random Forest.

ANN: Artificial Neural Network.

CNN: Convolutional Neural Network.

SGD: Stochastic Gradient Descent.

TN: True Negative.

TP: True Positive.

FN: False Negative.

FP: False Positive.
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1. Preface

1.1. Origin of the project

The brain is constantly controlling all movements that an individual is planning to carry out; however,
it is impossible to execute them if the peripheral nervous pathways are damaged. This project started
to find out how to keep using the signaling generated by the motor cortex to extract useful
information and perform an activity (control a wheelchair, etc.), thus enhancing the life quality of

people with paralysis.

1.2. Motivation

Not being able to move nor interact with one’s surroundings can devastate the life of patients
suffering from disabilities such as quadriplegia. Based on personal experiences from paralytic
interviewees [1], the hardest difficulties they face are “the loss of independence and the struggle to
overcome physical barriers in their environment.”. After learning from those testimonials and

empathizing with their stories, the author of this thesis wanted to alleviate their situation.

Furthermore, the foundation and milestones of Neuralink, a neurotechnology company, increased
the enthusiasms of the author in the area of Brain-Computer Interfaces, which made him see it as a

viable option for aiding people with spinal cord injuries.

1.3. Previous requirements

For achieving the objectives of this thesis, the author must have advanced knowledge in the following
fields:

e Biomedical Engineering: To understand the functioning of the biomedical devices used to

collect data from the brain (electroencephalogram). To comprehend the physiology of the
motor cortex. To get familiarized with different techniques used to preprocess biomedical
signals.

e Electronics and Automatic Control Engineering: To correctly implement a digital signal

processing algorithm. To understand and design digital filters and interpret Bode magnitude

and phase plots.
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o Artificial Intelligence: To understand Machine and Deep Learning architectures for creating,

designing, and optimizing different classification models.

Hence, this 48 ECTS project covers the competencies of the Bachelor’s degree in Biomedical
Engineering and the Bachelor’s degree in Industrial Electronics and Automatic Control Engineering.

Some of the subjects that were useful for developing this thesis are:

e  Statistics (ES— 820002, EIA and BIO).

e Digital Electronics (ELDI — 820224, EIA).

e Analogue Electronics (EAEIA — 820222, EIA).

e Control Techniques (TCEIA — 820230, EIA).

e Industrial Computer Science (IIEIA — 820226, EIA).

e Biology (BB —820021, BIO).

e Physiology (FIB — 820026, BIO).

e Biomedical Signal Processing (PSB — 820027, BIO).

e Sensors and Signal Conditioners (SCSB — 820030, BIO).
e Monitoring, Diagnostic and Therapeutic Equipment (EMDTB — 820025, BIO).
e Biostatistical Learning (AB — 295601, BIO).
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2. Introduction

Spinal cord injuries (SCls) occur when there is significant damage to the nerve pathways that
interconnect the brain with peripheral nervous systems, impeding the correct transmission of neural
impulses [2]. If the harm is severe, SCIs can produce a complete movement loss, resulting in
paraplegia or tetraplegia. According to the World Health Organization (WHO), there are from 250
thousand to 500 thousand new patients worldwide suffering from SCls yearly who often need
constant assistance from familiars, friends, or caretakers [3]. These concerning numbers make it

essential to seek a technology that could allow them to be more independent.

A Brain-Computer Interface (BCl), also known as Brain-Machine Interface, is a system that could
efficiently aid these patients. It brings together hardware and software for capturing, preprocessing,
extracting, and interpreting valuable features from brain signals with the purpose of controlling a
device, for instance, a robotic prosthesis [4]. In other words, BCls provide a direct communication
pathway between the brain and a computer regardless of the presence of a SCl or a

neurodegenerative disease such as amyotrophic lateral sclerosis (ALS) [5].

Numerous experiments have been implemented to prove the reliability and accuracy of BCls when it
comes to detecting the movement intentions of an individual, known as motor imagery BCI (MI-BCl).
One relevant example is Elon Musk's company Neuralink, which has implanted an array of 1024
miniaturized electrodes into the motor cortex of a monkey and demonstrated that the animal was
able to precisely play “Pong” by just imagining hand gestures [6]. However, implanted BCls are
impossible to implement in a final degree thesis due to their high complexity and the nonexistent
publicly available signal data. Furthermore, this advanced technology is extremely dangerous since it

needs surgery and hardly gets FDA approval.

As an alternative, an electroencephalogram (EEG) can be used since the electrodes are superficially
attached to the person’s scalp. Nevertheless, non-intrusive BCls present drawbacks that must be
addressed for proper system operation. First and foremost, the signals captured from an EEG have an
amplitude of microvolts, which make it highly noise susceptible, especially if there are no active
electrodes [7]. Secondly, it is challenging to find the source of the neural activity if there is not a
sufficient number of electrodes [4]. Thirdly, owing to the poor conductivity of the skull, there is a
substantial spatial resolution loss [8]. Lastly, since the electrodes are manually placed, their position
and quantity of hydrogel used can slightly vary from session to session, which can affect the results of
the BCI [4]. Sophisticated mathematical techniques must be carried out to solve these complications,

thus considerably increasing the performance of the system.
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2.1. Objectives of the project

The main purpose of this project is to implement a non-invasive MI-BCl, with data captured from an
EEG, and design a multitude of algorithms and methods that will be capable to distinguish whether
the user has the intention (just by thinking of it) to move the right or the left hand. From the outputs,

it is intended to control a robotic arm in real-time.

EEG signals must be understood in the context of Ml to painstakingly choose which signal processing
procedures are more suitable for better extraction of pertinent features. These characteristics will act
as inputs to train various Artificial Intelligence (Al) models that will be evaluated with certain metrics
to discriminate which one performs the best. An appropriate tuning and optimization of Al models

are of great importance in this work.

Parallelly, finite impulse response (FIR) filters will be carefully studied and analyzed to exclude
insignificant spectral information. Hence, this project also aims to design a digital filter in a real-time

operation, considering the pros and cons when working with higher or lower order filters.

Due to the inability of the author to gain access to a high-quality EEG unit with a sufficient number of
electrodes, all the objectives proposed will be fulfilled using a large dataset that includes numerous

sessions of patients performing Ml tasks with an EEG [9].
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3. Definitions and basic concepts

In this section, there will be a summary of important notions necessary to understand basic theory
and all the procedures done to accomplish the goals of this thesis. Initially, there will be an
explanation of the nervous system to explain how the brain works. Subsequently, the
electroencephalography technique is described to comprehend how the signals are collected with

the best quality possible. The chapter will end by introducing BCls.
3.1. Brain physiology

3.1.1. The neurons

The nervous system is essential for the correct functioning of the human body thanks to its ability to
rapidly control, regulate, sense and communicate a wide range of biological processes, such as
maintaining homeostasis or activating muscular fibers [10]. All of this is achieved mainly with

specialized cells that respond to the signals of the extracellular space: the neurons.

Neuron

—>———————Denderitic spines

Axon hillock

T~ Initial segment of axon

=

Dendrites
Cell body

Nucleus

Axon

Y Nodes of
Ranvier

%&—Schwann cell
(produces myelin)

Myelin sheath

Terminal branch ———

Bouton (foot) —

Figure 3.1.- The structure of a neuron. Figure extracted from [11].
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These cells constitute the functional part of the nervous system as they can transmit information to
other neurons/cells by producing action potentials and conducting them through its membrane. In
this manner, other interconnected neurons may be triggered or inhibited, causing a cascade of neural

impulses to achieve the desired action [12].

Neurons have distinct parts (Figure 3.1.) that characterize them and play indispensable roles in the
well-functioning of the cell. The cell body, or soma, contains the nucleus and most organelles, such as
the mitochondria. It is the control center of the neuron, where the metabolism and the nerve
impulses are regulated, and most proteins are synthesized. The dendrites are responsible for
receiving information from outside the neuron and transmitting it to the cell body. Notice that these
structures usually have many branches and subbranches (dendritic spines) because a nerve cell can
communicate with thousands of other neurons. The axon is the elongated component of the neuron
that carries the triggered impulses from the soma to the axon terminal, where many

neurotransmitters are produced, stored in vesicles, and released [11][13].

It is important to mention that the axon terminals meet with the dendrites of other neurons in the
synaptic cleft. The synapse is a gap of approximately 20 nm in which chemical molecules
(neurotransmitters) travel from the presynaptic to the postsynaptic neuron (target cell) to excite or
inhibit it.

v
/ A7\ \~
/ W
( Dendrites { LA
~< ) \
\\ / > u Synaptic vesicles in the
\ A terminal buttons of a
\ ; M sending neuron release
\ & neurotransmitters into
Terminal

\\ the synaptic space.
button \

x  Q
y D
x| \\ :
O \1' The neurotransmitters

O cross the synaptic space
to the receiving neuron.
{ \
Y @ o ) J)
Axon

/ » =
Lo NS0
err'n;i ( !

\\‘ S Dendrite or cell body

Terminal
button

|
g Synaptic
space

_] After crossing the synaptic
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on the dendrites or cell body
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Figure 3.2.- Transmission of neurotransmitters between two neurons through the synapse. Figure extracted
from [14].
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There can be up to ten thousand neurons types, which can be classified based on their structure or
function [11]. In Figure 3.3. it is possible to distinguish the different morphologies that these cells can
have: unipolar, pseudounipolar, bipolar, and multipolar. Regarding its functionality, there are
sensory neurons, which are activated by stimuli from the environment; motor neurons, which send
commands to move muscles or secrete substances from glands; and interneurons, which transmit

nerve impulses exclusively to other neurons.

Unipolar neuron Multipolar neuron

Bipolar neuron Pseudounipolar neuron

Figure 3.3.- The different structure types of neurons. Figure extracted from [15].

The glia are another group of crucial cells in the nervous system that are in charge of providing the
structure of the nerves together with supporting, isolating, protecting, and nurturing the neurons. For
instance, some neuroglia such as the oligodendrocytes and Schwann cells are in charge of sheathing
regions of the axon with myelin. By doing so, the uncovered parts, known as the nodes of Ranvier
(Figure 3.1.), enable a faster and further propagation of the action potential [16]. Other glia cells are

astrocytes, ependymal cells, and microglia.
3.1.2. The action potential

The membrane of a neuron plays a fundamental in encapsulating most cell substances and
interchanging ions with the extracellular fluids to achieve polarization. In the lipidic bilayer of the
membranes, which insulates the cells thanks to its hydrophobic properties, there are plentiful
incrusted proteins that act as channels or pumps to enable passive or active transportation of ions,

especially potassium (K*), sodium (Na*), calcium (Ca?*), and chloride (CI).
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When the cell is not excited, there is a higher concentration of K* ions inside than outside the cell; the
opposite effect happens with Na* and CI ions. This result is achieved thanks to mechanisms such as
the sodium-potassium pump that ejects three Na* ions per two K* ions injected inside the cell. The
procedure requires energy since there is a natural tendency for K* ions to leave the cell through the
potassium channels due to the diffusion gradient caused by a concentration imbalance.
Consequently, the interior of the cell becomes negatively charged relative to the extracellular fluid

with a voltage drop that typically ranges from -60 to -70 mV, called the resting potential [13][17].

In contrast with other cells, neurons can change their resting potential and trigger an electric impulse
that travels through their membrane. The process starts when neurotransmitters released from the
presynaptic neurons interact with proteins found in the dendrites of the target cell, allowing the
activation of ionic channels and a slight change in the membrane potential. All the potential changes,
which can be excitatory or inhibitory, arrive at the axon hillock and will be summed up to check if the
voltage level surpasses the threshold (usually between -50 and -55 mV) for generating the action
potential. If the charge summed comes from different synapses, there is a spatial summation, and if
it is added from a train of fast pulses from the same synapse, there is a temporal summation
[11][213][18].
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Figure 3.4.- This figure illustrates how an action potential may be triggered in the axon hillock. And also shows

how the potentials are summed. Figure extracted from [13].
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When the threshold gets exceeded, a massive opening of the activation gate of voltage-gated
sodium channels quickly depolarizes the neuron, making the inside positive relative to the outside.
This spike is counteracted rapidly by the closure of the inactivation gate of the sodium channels and
the opening of voltage-gated potassium channels. Notice that sodium channels, as well as other
ones, have two controllable gates. On the one hand, the activation gate is usually closed and only
opens when the neuron is excited. On the other hand, the inactivation gate is always opened and

only closes for a brief period after the action potential.

While the inactivation gates of the sodium channels remain closed before naturally opening again,
an absolute refractory period occurs to transmit the potential just in one direction. Subsequently,
the potassium channels close, and the membrane potential hyperpolarizes, which means that the
voltage gets lower than the resting potential, making it harder to fire another impulse (relative
refractory period). In this way, the action potential travels until the axon terminal, where it activates
voltage-gated calcium channels that enable the entrance of Ca2+ ions to liberate neurotransmitters
deposited in vesicles to the synaptic cleft. Eventually, the neuron reaches the resting potential again
[11][13][19][20].

The following illustrations summarizes all the concepts explained visually so that the reader can

understand the process with more clarity:
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Figure 3.5.- The action potential. This figure illustrates the procedure in which an action potential occurs. Figure
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Figure 3.6.- The action potential propagation. The behavior of the voltage-gated sodium and potassium

channels when stimulated electrically. Figure extracted from [13].
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3.1.3. Brain structures

The brain is the center of control of the organism, where millions of neurons organize themselves
into dense and complex networks to get specialized in multiple tasks. This organ is responsible for
processing stimuli, executing voluntary and involuntary actions, developing feelings and
consciousness, among many others. It is distributed in four major subgroups: the brainstem, the

cerebellum, the diencephalon, and the cerebrum [11][13][21].

Meninges .
Convolution
Skull Sulcus
Cerebrum

Corpus callosum
Diencephalon

Midbrain

Pons Transverse fissure

Brainstem

Medulla oblongata Cerebellum

Spinal cord

Figure 3.7.- Major portions of the brain. Figure extracted from [22].

The brainstem is the intermediary between the spinal cord and the other brain structures. It controls
the information that enters and exits the brain, and, additionally, it is in charge of many physiological
processes such as respiration, heartbeat, digestion, sternutation, swallowing, etc. This region is

subdivided by the medulla oblongata, the pons, and the midbrain [23].

The cerebellum is located behind the brainstem and below the diencephalon. It is needed to process
the commands going to muscles as well as the information coming from them; therefore, it

synchronizes movements and upholds the body posture and balance [24].

The diencephalon is positioned underneath the two hemispheres of the cerebrum, at the brain's
core. Fundamentally, it consists of the thalamus and the hypothalamus. The former is indispensable
in transmitting and relaying sensory stimuli to the cortex [25]. The latter principally manages the

production and secretion of hormones [26].
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Last but not least, the cerebrum, also known to as the telencephalon, is the largest and uppermost
part of the brain. It starts around the diencephalon, where the limbic system is found, which involves
emotions, behavior, memory, arousal, fear, learning, space perception, navigation, among others
[13]. Furthermore, the telencephalon presents two hemispheres that are connected by the corpus
callosum. On the surface of the cerebrum, the brain’s cortex is present, in which rugosities and
sulcus are abundant. This superficial layer has a greyish color due to the limited myelin surrounding
their neurons. Beneath this layer, there is a white matter that mainly connects the different parts of
the cortex. The whiteish color derives from the myelin sheaths that enable a faster and further nerve

impulse [27]. The cerebral cortex possesses four lobes on each halve of the brain [13]:

e Frontal lobe: This region, located in the front of the cerebrum, allows the planning of future
events and actions, permits self-recognition, and defines the personality and social skills of
the individual. With the help of the limbic system, it also controls sentiments and
attentiveness. Additionally, the Broca area of this lobe has a relation with language
expression. Lastly, the posterior zone of the lobe englobes the premotor cortex,
the supplementary motor area (SMA), and the primary motor cortex, which altogether
contribute to the preparation and execution of simple or complex movements [28].

e Parietal lobe: This segment, situated after the central sulcus, behind the frontal lobe, is
capable of processing tactile feelings from all the body (in the primary somatosensorial
cortex), feeling physical pain, detecting the position of the articulations, learning and reading
Braille language, and focusing on complex stimuli or tasks. Intelligence, especially in
mathematics, is also related to this lobe.

e Temporal lobe: It is found in the laterals of the telencephalon, and it receives and deals with
sounds. This region enables the person to recognize objects, human faces or voices, animals,
or plants and comprehend speeches (in the Wernicke area). In addition, it is extremely
important for maintaining equilibrium.

e Occipital lobe: The lobe is placed at the back of the brain. Its principal function is to handle

visual information and perceive motion.

After understanding how the brain functions, it is clear that the motor cortex is decisive for detecting
the imagery of left or right-hand movements, which is the purpose of this work. Several studies have
shown that motor imagery is linked to the same cortical regions as motor execution, especially in the
primary motor cortex [29]-[32]. The specific muscles controlled in this area can be represented
through the motor homunculus [33] (Figure 3.8.), thus mapping the source of each motor activity.
Notice the enormous hand size, highlighting its abundant neural activity in comparison with other
parts of the body. Furthermore, it is interesting to mention that, as happens to the somatosensorial

cortex, the left hemisphere manages the right side of the body and vice versa [34]; this will be
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Figure 3.9.- The upper illustration contains a distribution Figure 3.8.- The cortical homunculus. It highlights the relevance of the different parts of the body in the motor and
of the different lobes of the brain. The lower one somatosensory cortex. Figure extracted from [33].

highlights some of the functions of the cortex. Figure
extracted from [13].
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3.2. Electroencephalogram (EEG)

The electroencephalogram (EEG) is a non-invasive device used to record the brain's neural activity,
especially from the cortex, and provide relevant information for carrying out several applications, like

diagnosing medical disorders, evaluating cognitive states, or operating a BCI.

Initially, the biosignals, which are in the orders of microvolts, are captured from an array of
electrodes placed meticulously in the patient’s scalp. Subsequently, they must be conditioned, with
an amplification and filtration stage, to increase the signal-to-noise ratio (SNR), enhance the signal
quality, and utilize the appropriate input range of the analog-to-digital converter (ADC) for

maximizing the resolution.
3.2.1. The source of the EEG signal

Pyramidal neurons are widely spread around the cerebral cortex and provide the principal signal of
interest acquired with the EEG. These elongated cells, which have a pyramidically shaped soma and a

multipolar morphology, are critical for the functioning of many cognitive processes [35].

. t/
Dendrites ¢

s
\,
\,
\,

Figure 3.10.- Different parts of the pyramidal neuron. Figure extracted from [36].
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Their multiple dendritic trees interact with other neurons that may trigger excitatory postsynaptic
potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs), which will change the ionic charge of
the cell and its surroundings. If it is excitatory, the extracellular fluid in the active synaptic areas will
become more negative since the neuron depolarizes. As a result, this local exterior area is negative
relative to other extracellular zones of the neuron. If it is inhibitory, the same effect occurs, but with
inversed polarity because the neuron hyperpolarizes. In other words, either potential will initiate an

extracellular charge imbalance, producing a dipole [37].

In the following image, there are two neurons forming dipoles. The left neuron could have gained
that polarity either by EPSPs in the top dendrites (apical dendrites) or by IPSPs in dendrites close to
the pyramidal body (basal dendrites). Regarding the right neuron, the polarity could have been
achieved by IPSPs in apical dendrites or EPSPs in basal dendrites. The circles around each neuron

represent an electrode, with the sensed signal deflection drawn inside it.

Figure 3.11.- Dipoles formed in pyramidal neurons. Figure extracted from [37].

However, it is impossible to measure the deflection of just one neuron’s dipole with an EEG; the
signal would be undetectable due to its low amplitude and the attenuation with other biological
tissues. Hence, the EEG will perceive the cumulative dipole effect of numerous neurons. For optimal
detection, neurons should be parallel, fire synchronously, and possess the same polarity. Otherwise,

the net sum of all the dipoles will tend to be null [37][38].
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Once the dipoles originate, there is a transmission of electric and magnetic fields through the brain
tissue in a process known as volume conduction [39]. This effect provokes a repulsion of ions with
the same charge until they reach and accumulate at the edges of the conductive volume (the brain).
Now, the signal must overcome multiple layers that will act as conductive volumes separated by
insulators (operating as dielectrics), such as the dura, the skull, the scalp, the electrolytic gel, and the
electrode. Therefore, for going from one layer to the other, the potentials will be transmitted

capacitively (capacitive conduction), thus arriving at the electrode [37].

capacitive
conduction <

volume
conduction

Figure 3.12.- Capacitive and volume conduction. Propagation of a signal from the pyramidal cells to the

electrode. Figure extracted from [37].

All this process of signal propagation presents clear limitations. Firstly, a dipole emanates an electric
field in most directions (Figure 3.13.), thus gradually spreading the scalp's charge in the surrounding
areas located above the intracranial source. This behavior, referred to as spatial smearing, is
aggravated by the volume conduction of the tissues (especially the skull) and is the principal reason
for the EEG's low spatial resolution [40]. Another problem is the interaction of groups of dipoles
positioned in different parts of the brain, which may alter the expected reading from the desired
source [41]. Lastly, the capacitive effect and the soft tissues of the stacked layers attenuate cortical

activity with frequencies higher than 30 Hz, restricting the bandwidth (BW) of the signals [42].
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These issues can be mitigated if, instead of an EEG, an electrocorticogram (ECoG) is used. These
devices serve the same function as an EEG, but they are implanted surgically inside the skull. Since
their electrodes are in direct touch with the cerebrum, this apparatus enhances the spatial
resolution, reduces sources interactions, and significantly increases the BW [43]. Nevertheless, the

invasiveness of the ECoG makes this technology risky to use and less appealing to the user.
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Figure 3.13.- Magnetic field (dashed line) and electric field (solid line) of the dipole produced in a pyramidal cell.
Notice that the electric field emanates to all directions. Figure extracted from [44].
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Figure 3.14.- ECoG with 64 channels. Picture A shows the electrodes of the device. Illustration B displays how

the device is implanted. Figure extracted from [43].
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3.2.2. Technical characteristics

The internal electronics of an EEG device must be designed adequately to acquire relevant signals
with the maximum quality possible. Therefore, the user must understand key technical
characteristics that differentiate a first-class EEG from a mediocre one. In this section, there will be a
brief introduction of meaningful features that should not be overlooked, especially if the application
is a MI-BCI. Most of this information will be extracted from an article written by Bitbrain [45], a

neurotechnology company that, among other things, develops competent EEG equipment.

3.2.2.1. Sampling frequency and filters

The sampling rate is the number of samples that an ADC is capable of capturing in a certain time
lapse, usually expressed in Hertz (Hz). While working with any signal that requires a digitalization
process, it is extremely important to take into consideration the Nyquist-Shannon theorem, which
states that the sampling frequency of the converter must be equal or superior to the double of the

highest frequential component of the signal:
fs =2 fuax (Eq.3.1)

Where f is the sampling frequency and fyax is the maximum frequency of the signal. If this
condition is not met, it is impossible to reconstruct the analog signal again due to an undesired effect
referred to as aliasing. The following graphic illustrates this phenomenon, where the sampling
frequency (black dots) is smaller than twice the frequency of the signal (red); hence, the

reconstructed signal (blue) does not match with the original one (red).

Figure 3.15.- Aliasing effect produced by choosing a wrong sampling rate. Figure extracted from [46].
Since most EEG signals cannot reach frequencies greater than 80 Hz, the sampling rate should be at

least 160 Hz. However, the sampling frequency is usually set to a higher value for better rebuilding,

typically 256 Hz. If the rate is too large, the system will have to process much more data points that
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Lastly, it is important to remark that the EEG will have a low-pass filter, or anti-aliasing filter, to
restrict the maximum frequency of the signal and satisfy the Nyquist criterion. Additionally, there is a
high-pass filter to eliminate the DC component, thus erasing the offset and avoiding a possible

saturation of the electronic components.

3.2.2.2. Resolution

The ADC carries out the digitalization process of the analog signal, translating voltage intervals into
binary code. For narrowing the intervals and having a more defined output two factors must be taken

into consideration.

First and foremost, the number of bits available in the converter. This parameter specifies the
resolution of the ADC and, therefore, how many unique binary outputs there are, which can be

calculated using the following formula:

N = 2b (Eq.3.2)

Where N is the number of quantization levels and b the bits of the ADC. Good quality EEGs usually
have a 24 bits ADC, providing around 16 million quantization levels; however, 16 bits is also

acceptable.

The other important aspect is the overall voltage measurement range that can be introduced to the
ADC, which will define the resolution of the acquisition system expressed in volts. Hence, the voltage

resolution is described as following:

FS

Where Q is the resolution (in volts), FS is the full scale voltage range, and b the bits of the ADC.

16-Bit vs. 3-Bit Resolution
5kHz Sine Wave)

3-bit resolution

Figure 3.16.- Difference between a 16 bit and a 13 bit resolution ADC with FS = 10 V. Figure extracted from [45].
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3.2.2.3. Inputimpedance

When the signal is introduced into the amplifying stage of the EEG, it is of the utmost importance to
have the highest input impedance possible. By doing so, the signal of interest is conserved without
significant attenuations from other resistive sources of the system, such as the electrode/skin
impedance and the wire resistance, since most of the voltage drop will occur on the high input
impedance of the amplifiers. Furthermore, this parameter contributes to the maximization of the

SNR, tolerating better the electrical noise [37].

According to [47], the skin impedance can reach up to 1 MQ; therefore, an appropriate input

impedance should be not less than one hundred times bigger (100 MQ).

3.2.2.4. Common-mode rejection ratio (CMRR)

While performing an EEG session, the user may attract unwanted interferences, predominantly from
the 50/60 Hz powerline, that can be amplified altogether with the brain’s signals. These artifacts are
introduced at both of the input terminals of the amplifier, establishing an inconvenient common
mode voltage. The common-mode rejection ratio (CMRR) is a property that defines the ability of the
amplifier to reject this common mode voltage and magnify the differential mode voltage, as shown in

the following illustration:

VDM AV

GND

CMRR

Figure 3.17.- The effect of the CMRR in an amplifier. The green signal represents the differential voltage, which
is amplified. The blue signal represents the common voltage, which is attenuated. Figure extracted
from [45].

The CMRR can be computed with following formula, expressed in decibels (dB) [48]:

A
CMRR (dB) = 20 - logy, (—d) (dB) (Eq. 3.4)

|Acml
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Where Ay is the differential gain and A,, is the common-mode gain. In addition, the CMRR also

varies depending on the frequency range, decreasing at higher frequencies [49].

Ideally, the CMRR should have an infinite value at all the BW. A CMRR of at least 100 dB (at the

powerline frequency) is considered suitable for a commercial EEG.
3.2.3. Electrode configurations

EEG electrodes are primarily responsible for capturing signals from the brain for subsequent
conditioning. They are usually made of metals with no reactivity (gold, platinum, silver/silver chloride,
etc.) placed on a conductive gel, previously applied to the skin to reduce the electrode-scalp

impedance [50].

As it has been remarked during this thesis, EEGs present poor spatial resolution and require advanced
signal processing techniques to enhance the signal quality by focalizing the potential fields right
above their electrocortical sources, reducing as much as possible the spatial smearing effect. These
procedures need a considerable number of electrodes placed all around the scalp; therefore, the
more electrodes available, the better the localization of the brain's signals will be. Furthermore, an
adequate number and placement of electrodes are crucial when it comes to detecting and erasing

problematic artifacts such as blinking, muscular contractions, or cardiac activity [51].

For that reason, there are worldwide accepted standardizations that define how the electrodes
should be placed, depending on how many electrodes the EEG has. The international 10-20 system is
used for 21 electrodes, where there is a 10% or a 20% separation between two adjacent electrodes
relative to the total distance of the skull. The electrodes are generally named after the brain lobes
located beneath them: F and Fp electrodes are above the frontal lobe, T above the temporal, P above
the parietal, and O in the occipital. C electrodes are in the center of the scalp, where the motor
cortex is found. A electrodes are attached to the earlobes for reference. The numbers' parity
indicates the side of the head where they are encountered; even numbers are found on the right
hemisphere and odd ones on the left hemisphere. The letter z specify that electrode are placed on
the midline sagittal plane of the skull. Other international standards, such as the 10-10 or the 10-5

system, follow the same structure as the 10-20 but use more electrodes [50][52].

It is essential to place the electrodes in the same position between sessions, especially for BCI
applications. Thus, the electrodes can be settled with the help of a head cap that will guide the user
on the exact location where the electrodes need to be [53]. Additionally, these accessories will
decrease the risk of gel dispersion on the scalp, which can be an issue if the hydrogel contacts other

electrodes.
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Figure 3.18.- Electrode name and placement standardization. Left image: the international 10-20 system. Right image: the international 10-10 system. Figure extracted
from [50].

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est

22



Motor imagery-based brain-computer interface by implementing a frequency band selection.
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Figure 3.19.- The exact position of each electrode in the international 10-20 system. Sagittal plane (A), coronal

plane (B), and horizontal plane (C). Figure extracted from [50].

Figure 3.20.- Neuroelectrics EEG head cap. Figure extracted from [53].
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3.2.4. EEG frequency bands

The brain is constantly generating waves due to the synchronized firing of cortical neurons, which
produces rhythmic patterns that can be detected with an EEG. These neural oscillations reveal
characteristic information about the individual's mental state. Brainwaves can be separated into five

major frequency bands, which will be rapidly overviewed.

The slowest one is the Delta band (0.5 Hz — 4 Hz) which is mainly present in the occipital regions of
the EEG when the user is sleeping; in this band, the brain intensifies the healing and restoring process
of the body’s tissues. The next one is the Theta band (4 Hz — 8 Hz) which appears when the person is
sleepy. Alfa activity (8 Hz — 13 Hz) happens when the person is feeling relaxed and calmed. When the
individual starts focusing on a subject, Beta waves (13 Hz — 30 Hz) are abundant. Lastly, the fastest
oscillations take place in the Gama band (> 30 Hz ), which involves high concentration and problem-
solving [50][54][55].

Gamma:

Problem solving,

concentration
0.0 0.2 0:4 0.6 08 1.0

Beta:

Busy, active mind
0.0 02 04 06 08 1.0

Alpha;

Reflective, restful
0.0 0.2 0?4 0.6 0e 1.0

Theta:

Drownsiness
0.0 GIZ Ofd 06 DIB 1.0

Delta

Sleep, dreaming
0.0 02 0.4 06 0.8 1.0

Figure 3.21.- A brief description of the brainwaves. Figure extracted from [56].
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3.3.

Brain-Computer Interfaces (BCls)

A Brain-Computer Interface (BCl), as its name suggests, is a system that enables direct

communication between the brain and a computer to accomplish the desired goal. In other words,

by using BCls, it is possible to detect and interpret cerebral impulses in real-time without minding if

the neural activities reach or not the spinal cord or other peripheral nerves [57]. This technology

often requires a cycle of six steps in order to make it function correctly, which are described below

[58]:

1)

2)

3)

4)

5)

6)

O

Signal acquisition of brain activity: The brain’s signals are captured with an appropriate
device. The most usual techniques for the acquisition are electroencephalography (EEG),
electrocorticography (ECoG), magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS).

Preprocessing: The acquired signals are refined to attenuate undesired attributes and
enhance their quality.

Feature extraction: The relevant information of the signals (contained inside a time window)
is extracted. This step may require a transformation process of the raw data to obtain other
values that still describe the initial signals.

Classification: The features are introduced into a classification algorithm that can distinguish
the class type of the original signals, for instance, if the user has imagined a right or a left-
hand movement.

Application Interface: The classifier's output is translated into a command to control
another device or software.

Feedback: The user is constantly identifying how the target device/software is behaving and

changes his the mental activity to regulate the overall system.

Brain Computer Interface

Signal Processing
: Feature Classification
Preprocessing }- Extraction [| (Detection)
1 t
Signal Application
Acquistion Interface
Applications
Spelling Device
Feedback peing

Meuroprosthetics
Wheelchair
etc.

Figure 3.22.- The closed loop system of a BCI. Figure extracted from [59].
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3.3.1. Classification of BCls

BCls can be categorized depending on various factors that define the nature of the system. In this
subsection, the four major BCI classification criteria will be introduced. First and foremost, the BCI
can be classified based on how the brain’s signal is produced, which can be active, reactive,
or passive. The first one implies that the user is the main responsible for performing an intentional
mental task for controlling the system, such as imagining the movement of an arm. On the other
hand, the reactive BCl needs an external intervention to stimuli the brain in a certain way, evoking a
cerebral reaction that can be subsequently detected. If the BCl does not require any action or

reaction from the user and only analyzes the brain’s activity, it is a passive approach.

Secondly, it can be grouped concerning the period in which the user can interact with the BCI. A
synchronous BCl does not enable continuous cooperation with the system; the user must wait for an
indication to perform the intended mental activity. On the flip side, if the user can carry out the task
at any moment that he wishes, it is an asynchronous BCI. Synchronous BCls are commonly employed
for creating and evaluating datasets that are posteriorly used to design and implement asynchronous
BCls. It is important to note that asynchronous BCls need to identify the passive mental state

occurring when the user is not performing any action [60].

The third categorization distinguishes between hybrid and non-hybrid BCls. It is a hybrid BCI if at

least one of the following conditions are met; otherwise, it is non-hybrid:

e The system also uses information of other biosignals, mainly from muscular activity.
e The system uses different BCI techniques simultaneously, for example, a combination of

active and reactive BCI.

Finally, as it has been mentioned through the work, the signal acquisition device used in the BCl can
be invasive or non-invasive. The former involves direct implantation of the equipment inside the

skull, requiring medical intervention. The latter does not require any surgical procedure.

Hybrid Yoo Does it use

multiple BCI

) < m_etf.lods or
Non-hybrid biosignals?

Invasive Yoo Does it
require an
. . o
Non-invasive »

How the

signal is
generated?

the user

implantable .
P interact?

device?

N> Synchronous
el
é
Asynchronous

Figure 3.23.- Classification of BCls. Figure created by the author.
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3.3.2. Motor Imagery BCls (MI-BCl)

Motor imagery (MI) occurs when someone has the intention to perform a voluntary muscular
movement but at no moment executes the action; therefore, the individual only imagines the motor
activity that wants to perform. Many researchers have proven that Ml tasks can stimulate the motor
cortex in similar ways as an actual motor execution, producing brainwave oscillations known as
sensorimotor rhythms (SMRs) [61][62].

SMRs have two frequency bands that must be considered: the Mu band (8 Hz — 13 Hz), which reflects
alpha fluctuations located in the sensorimotor region of the brain, and the Beta band (13 Hz — 30 Hz).
Both have shown that they are relevant for identifying the activity of neural groups while imagining
or performing a movement [63]. The spectral information of these bands is essential for the MI-BClI
system to perceive event-related synchronizations (ERS), occurring when neurons produce
oscillations that increase in amplitude after the imagery task, and event-related desynchronizations
(ERD), in which there is an amplitude decrease after the MI. As their name suggests, ERS and ERD
are event-related potentials (ERP), defined as a cerebral response in front of a produced event, in
this case, the M.

At first, when the user is resting, no ERS nor ERD is encountered, the motor cortex remains neutral.
When the user starts imagining or executing a motor movement, an ERD starts forming in the Mu
and the Beta band to indicate the brain’s preparation and readiness to act. Under this condition, the
mental activity increases while the rhythmic activity attenuates as neurons work independently and
asynchronously. The ERD is followed by an ERS predominantly in the Beta band, representing
reduced excitability in the sensorimotor areas of the brain even though there is a rise in the
frequential amplitude. In the end, Mu and Beta bands return to the resting state [64][65]. This
procedure can be visualized in Figure 3.24., representing the mental activity at different frequencies

(Y-axis) and through the time (X-axis) after a motor event.

It is important to note that ERS and ERD may appear in a slightly different bandwidth depending on
the subject [66]; this complicates the implementation of a generic MI-BCl. Hence, for the correct
functioning of the system, this thesis proposes to adjust the BCl so that there is always an

appropriate frequency band selection, filtering out irrelevant spectral information.

Furthermore, it is optimal to mentally train the user to enhance his motor and Ml skills for having
better results and more pronounced ERS/ERD (Figure 3.24.). This improvement can be achieved with

hours of practice or neurofeedback [67][68].

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d'Enginyeria de Barcelona Est

27



Final Report

40 Pre-Practice Post-Practice

35
30 ¢
25+

20

Adult Frequency (Hz)

10

RN .. . -

-20 -1.0 0 1.0 2.0 3.0 4:0 50 -20 -1.0 0 1..0 2.0 3.0 4'.0 5.0

Time (s)

Figure 3.24.- Time-frequency spectrogram of ERS and ERD appearing after a motor event. The graph was
created after averaging multiple motor events from adult volunteers, and it also demonstrates
that, after practicing the motor task, there is an improvement in the ERPs. The X-axis represents
the time (1 second per division), the Y-axis represents the frequency (5 Hz per division), and the Z-
axis represents the relative power change of the mental activity (red tonalities show an increase

and blue tonalities a decrease). Figure extracted from [69].

Since MI ERD and ERS occur in the motor cortex, they can be measured with the C3 and C4 EEG
electrodes (10-20 system). For instance, while imagining hand movements, the C3 electrode, located
on top of the left hemisphere, detects the imagery of the right hand; conversely, the C4 electrode,
positioned above the right half of the brain, detects the imagery of the left hand. However, the
remaining electrodes must not be ignored as they are necessary to carry out all the signal processing

techniques needed for extracting the best features possible, used to classify the different Ml actions.

Left hand

Righthand
movement

Figure 3.25.- Mental activity while performing or thinking a left or right-hand movement. Notice that the

activated hemisphere reflects the contralateral side of the body. Figure extracted from [70].
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3.3.3. Steady-state visually evoked potentials BCls (SSVEP-BCI)

Besides MI, which is an active BCl technique, it is possible to use another approach that can
potentially aid people with SCI, ALS, or any other movement dysfunctionality. This alternative
method is a reactive BCl based on steady-state visually evoked potentials (SSVEP-BCI). An evoked
potential is a reaction from the brain after sensory stimulation, which can be traced and processed to

evaluate the cerebral response of the organism [71].

Regarding the SSVEPs, the evoked potentials are produced due to a visual excitement coming from
an object flickering at an established frequency. The cerebral response appears in the occipital lobe,
where it is possible to detect oscillations with a frequency equal to or harmonic to that of the blinking
visual stimuli. Despite not having a general agreement, many studies indicate that the stimulant

should not have frequencies below 3 Hz nor above 40 Hz [58].

In most BCls based on SSVEPs, the person sits in front of a screen displaying animated figures flashing
at different frequencies and is asked to focus visually at any of them. In this way, the BCl can
recognize the stared object since the brain is triggered differently for each figure [72]. One example
that could be used for controlling a wheelchair is a monitor showing a black background with four
separated pink squares appearing and disappearing with a frequency of 9 Hz, 12 Hz, 15 Hz, and 17 Hz,
respectively. Depending on the square that the participant concentrates on, the wheelchair acts

differently:

e 9 Hz:it turns right.

e 12 Hz: it rotates left.
e 15 Hz: it goes forward.

e 17 Hz:it stops.

The processing carried out in the SSVEP-BCI is more straightforward than the MI-BCI since the
frequencies of interest are clearly highlighted in the power spectrum. Moreover, it presents much
lower inter and intra-individual variability as the visual stimuli produces a more robust response from
the brain than the MI. Additionally, there is a lower influence of artifacts, such as eye-blinking, since
the occipital lobe is located at the back of the head [58].

Nevertheless, despite all the benefits described, this thesis does not pursue a SSVEP-BCI approach. To
begin with, the system always requires an external device (for example, a monitor or virtual reality
glasses) that the user must always focus on, hindering his ability to interact with his environment.
Furthermore, this technology does not take into account individuals with visual disabilities. In
addition, many SSVEP-BCI participants complained of having fatigue after a time of seeing flickering
lights [4].
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Figure 3.26.- SSVEP-BCI. The user focuses on a flickering light and, based on its frequency, sends a command to

an external device. Figure extracted from [73].

A

Figure 3.27.- SSVEP-BCI user staring at a blinking pink square. Figure extracted from [74].
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4. Methodology

4.1. Overview of all the procedures carried out

Implementing a MI-BCI is not a simple task as it requires meticulous processes to treat the signals
properly for extracting the most discriminant information from them. In this chapter, there will be a

clear explanation of the followed methodology to ensure the fulfillment of the thesis' objectives.

As the author had no access to a high-quality EEG device, he worked on one of the most extensive
publicly available MI datasets for designing and training the MI-BClI classifier. The dataset, described
in the following subsection, contains EEG recording sessions where different participants had to
imagine left and right-hand movements. Each applicants' data is analyzed to understand the signals,
visualizing the effect of ERS and ERD in a spectrogram. By seeing the most relevant frequency bands
from each subject, the signals were bandpass filtered digitally to exclude unnecessary information
that may disturb the artificial intelligence (Al) models. Subsequently, the data was prepared for
training the classifiers, including artifact removal (eye-blinking) and feature extraction with advanced

methods.

From there, two Al models were designed; the first one to classify the hands imagery (left and right-
hand) (Model LR) and the second to distinguish between an imagery event and the resting state of
the user (Model IR). It must be highlighted that the Al models will be trained with data from multiple
subjects; hence, the inter-subject variability in the ERS/ERD frequency bands must be taken into
account. Before choosing the cut-off frequencies and the window’s length that will be used for the
model, each participant must undergo a calibration process to understand his frequential information
in order to implement a broader band pass filter that covers the essential spectral behavior of all the

subjects collectively (see Figure 4.3.).

Once the models were trained and evaluated, the MI-BCI was implemented on an hour Ml session
(from the dataset) unseen by the Al models. That was done by coding an algorithm that simulates a
real-time signal acquisition, where the signals of the session are introduced inside a time window the
same way that they would do if the data were obtained live from an EEG. Afterward, the signals are
filtered, and the features are extracted. Notice that this real-time execution requires a proper digital
filter design, avoiding significant delay between the mental imagery and its detection. Next, the
correspondent features are introduced to Model IR. If the prediction is a resting state, no action will
be taken. Otherwise, if it is an imagery prediction, the appropriate features will be introduced to
Model LR, which will classify if the signal present in the time window is a left or right-hand imagery.

By doing so, it is possible to control a robotic arm directly from the mental activity of the subject.
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Figure 4.1.- This diagram shows an overview of all the processes that must be carried out for designing the MI-BCI. Figure created by the author.
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Figure 4.2.- This diagram shows how to implement the real-time simulation and implementation of the MI-BCI. Figure created by the author.
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4.2. Software used

Everything was coded in Python, using libraries that ease all the processes previously mentioned. The

following list indicates the most important ones, detailing the main functionalities used:

e IMNE: Library specialized in treating brain signals captured with an EEG, a MEG, ECoG, or any
other device. It includes many functions that enable optimal preprocessing and processing of
EEG signals. Furthermore, it has many visualization tools that help to understand the data.

e NumPy: It provides data structures that allows the analysis and exchange of data between
different algorithms. It mainly uses multidimensional vectors and arrays.

e Pandas: Used to organize the data into tables, also referred to as DataFrames. By doing so,
the data is more organized and manageable.

e  SciPy: Scientific library used to carry out simple and advanced statistical and mathematical
operations, for example, the short-time Fourier transform. It is widely used for designing
digital filters.

e PyWavelets: Scientific library used to carry out wavelet transforms.

o Matplotlib: It is a data visualization library used for the creation and customization of various
types of graphics.

o Scikit-learn: This library, focused on Machine Learning, includes classifiers, data preparation
tools, evaluation metrics, and other features. It also enables the creation of pipelines,
allowing sequential execution of steps, for example, normalizing the data and then
introducing it inside a Random Forest model.

e TensorFlow: It is mainly used for designing deep neural networks, convolutional neural
networks, and other deep learning architectures. It also possesses plentiful normalization,
optimization, and regularization tools.

e Pickle: It is useful for saving and loading the Al models.

e Pymatreader: Since the dataset’s file has a MATLAB format, this library adapts it to an
appropriate Python structure.

e Streamlit: It is employed for designing local web applications and graphical user interfaces.

e PySerial: It enables a serial communication between Python and Arduino.
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4.3. The dataset

4.3.1. How to create a dataset?

Even though the EEG recordings used in the project were available online, the author wanted to
design an intuitive application (using the Python library Streamlit) to guide future participants on the

tasks they must perform to collect information for a MI-BCl dataset.

Motor Imagery BCI

Ali Abdul Ameer Abbas

Participant Identification

Unkown

Trial

Unkown

LEFT PASS RIGHT

START

STOP

Figure 4.4.- Application created by the author that could be used to collect a dataset.

Before recording a session, the instructor must register the applicant’s identification and the session
number. Afterward, he must ensure that the participant is ready, looking at the application’s
interface and with all the EEG electrodes placed correctly; if everything is fine, he presses the start
button, and the EEG starts capturing the signals. Simultaneously, one of the three figures turns green

randomly for one second, indicating that the applicant must carry out one of the following tasks:

e Left: Imagine a left-hand movement.
e Right: Imagine a right-hand movement.

e Pass: Remain in a resting state without any motor imagery.
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The task must be carried out until the figure changes to the original color. If no action is marked, the

applicant must be in a passive state, waiting for another random figure to turn green. This process is

repeated cyclically and only finishes when the instructor presses the stop button. Once the session is

over, a CSV file is generated with all the markers needed to identify the time intervals in which the

participant performed one of the described tasks; this is useful for segmenting the data. Notice that

there is an indicator for each sample of the signal. The markers are labeled as follows:

e Number 0: No task was asked to the participant.
e Number 1: The participant imagined a left-hand movement.
e Number 2: The participant remained in a resting state without any motor imagery.

o Number 3: The participant imagined a right-hand movement.

LEFT PASS RIGHT
LEFT PASS RIGHT
LEFT PASS RIGHT

Y i

Figure 4.5.- The different tasks turning green. Figure extracted from the author’s application.
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4.3.2. The dataset used

In October 2018, some researchers from the Mersin University (Turkey) published one of the largest
MI-BCl datasets freely available online [9], summing a total of sixty hours of EEG recordings and sixty
thousand mental imageries from thirteen subjects. All the participants (60% males and 40% females
between the ages of twenty and thirty-five ) were healthy students without any psychiatric disorder

diagnosed; they are nicknamed as “Subject X”, being X a letter from A to M.

The protocol followed by the participants was strictly supervised by the instructor, avoiding any
problems while recording the data. They had to sit in front of a screen that displays an experimental
graphical user interface (eGUI) that guides the user in the imagery task that he must carry out during
the session, in a similar way to that explained in the previous subsection. At the beginning of the
session, the participant had two and a half minutes to relax and focus solely on the experimental
process. Subsequently, there are three intervals of fifteen minutes (separated by break times of two
minutes) in which the eGUI showed which imagery must be done. During this time, the eGUI selects
one random action for one second (in which the user must remain to do the imagery), followed by a
pause of approximately two seconds (in which the user must return to the resting state); this is
repeated periodically until the break time. The EEG recorded the session uninterruptedly until the

termination of the last fifteen-minute interval, lasting around one hour.

The medical device used to acquire all the signals was the EEG-1200 JE-921A EEG system from the
company Nihon Kohden. Its datasheet [75] mentions that it works with a CMRR of 105 dB (at 60 Hz),
an input impedance of 100 MQ, a 16 bit ADC, and a sampling frequency that reaches up to 1000 Hz.
These parameters are more than adequate for a MI-BCl application (see section 3.2.2.). The EEG is
carefully placed (with the help of a head set) on the participant’s scalp using the international 10-20
system, cleaning beforehand the area where the electrodes are placed to reduce the skin’s
impedance. In addition, multiple impedance checks are performed to ensure that all the
electrode/skin impedances are below 10 kQ. The sessions were acquired using a 200 Hz sampling
rate, using a bandpass filter with cutoff frequencies of 0.53 Hz and 70 Hz. In this way, it is possible to
remove the DC component and avoid the aliasing effect (meeting the Nyquist-Shannon theorem).

Furthermore, there is a Notch filter in the 50 Hz to attenuate the powerline interferences.

The database contains four different paradigms; however, this thesis will only work with one of them:
the classical (CLA) paradigm. It consists of the imagery of left and right-hand movements and the
resting state; hence, this paradigm is almost identical to the one designed by the author in section
4.3.1. The following table shows all the participants that took part in this paradigm, detailing the
subject’s nickname, the file name of each recording, and the date of execution of the session. Notice

that, in the case that the participants had more than one session, the dates are different; this is
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Table 4.1.- Table showing all the participants, sessions, and dates in the CLA paradigm.

Subject A 1 CLASubjectA1601083StLRHand.mat 08/01/2016
CLASubjectB1510193StLRHand.mat 19/10/2015
Subject B 3 CLASubjectB1510203StLRHand.mat 20/10/2015
CLASubjectB1512153StL RHand.mat 15/12/2015
CLASubjectC1511263StLRHand.mat 26/11/2015
Subject C 3 CLASubjectC1512163StLRHand.mat 16/12/2015
CLASubjectC1512233StLRHand.mat 23/12/2015
Subject D 1 CLASubjectD1511253StLRHand.mat 25/11/2015
CLASubjectE1512253StL RHand.mat 25/12/2015
Subject E 3 CLASubjectE1601193StLRHand.mat 19/01/2016
CLASubjectE1601223StLRHand.mat 22/01/2015
CLASubjectF1509163StLRHand.mat 16/09/2015
Subject F 3 CLASubjectF1509173StLRHand.mat 17/09/2015
CLASubjectF1509283StLRHand.mat 28/09/2015

Inside each file of the CLA paradigm, multiple markers are helpful to understand all the events that
occurred during the session. From them, the signals can be segmented and annotated, which are
essential steps to understand the data for posterior training and testing of the Al models that will

classify the imageries. The markers mean the following:

Table 4.2.- Marker’s meaning in the sessions.

0 No task was asked to the participant.

1 The participant imagined a left-hand movement.
2 The participant imagined a right-hand movement.
3 The participant remained in a resting state.

91 The session break time.

92 The end of the session.

99 The initial relaxation of the participant.
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4.4. Understanding the data

The first step taken in every signal processing project is to understand the data as much as possible,
carrying out different visualization methods necessary to take further actions to enhance the overall

performance of the Al models.
4.4.1. Dataimportation

In the explanatory paper that described the dataset (mentioned in subsection 4.3.2.), the authors
indicate that all the files were saved as MATLAB files (with the extension “.mat”). Thus, for importing
one participant’s session of an EEG recording, it is required to convert the data into a Python-
compatible format, avoiding any information leakage. This can be achieved with the library
Pymatreader. It is important to note that inside each MATLAB file all the data is saved as a structure
array (struct), which can save collections of associated information into organized containers (known

as fields). The following struct named “0” is an example of a EEG recording session:

!.‘ Variables - o

o
[l 11 struct with 8 fields
Field Value
<" id 201510201829.D...
I=" tag ‘NK-data import ...
| | sampFreq 200
I nS 667400
- marker 667400xT double
I data 667400x22 double
{} chnames 22x1 cell
| 1 binsuV 1

Figure 4.6.- MATLAB's struct, corresponding to an EEG recording from a participant. Figure from the author.

As it can be seen, there are containers that, besides providing the EEG signal data, also give relevant
information such as the ID, the sampling frequency (200 Hz), the number of samples, the channel
names, and the markers (explained in Table 4.2.). Notice that the marker's length and the number of
samplings each channel has (shown in the data container) are the same, with 667 400 samples.
Moreover, it is possible to see that there are 22 channels; however, one of them (the X3 channel) will

not be considered as it was used exclusively for signal acquisition purposes.

After the data is imported in Python, the EEG signals’ data should be passed to microvolts multiplying
by 1-10%, this is done because MNE library works by default in volts. Furthermore, all that struct
containers must be saved into a MNE data type known as info, which is used to define basic

information of the EEG recording.
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Additionally, it is crucial to define the EEG configuration used, which is the international 10-20
system. By doing so, all the electrodes’ positions and the distances between them are introduced to
the program, enabling any spatial signal processing. The following illustrations show 2D and 3D head

models with the electrodes drawn on them:

Sensor positions in 2D and in 3D (EEG)

NAISON
//\\\
S 2
,//'4 g ~—
" Fp1 Fp2

Figure 4.7.- Electrodes’ position and distances in the international 10-20 system used in the project. The left
image shows a 2D electrode configuration. The right image represents a 3D head (the brownish sphere) with
the precise position of the electrodes drawn (X and Y-axis with a scale of 0.025 meters per division, and the Z-

axis with 0.05 meters per division). The NAISON corresponds to the nose. Figures designed by the author.

The last step before visualizing the EEG signal for the first time is to set an appropriate common reference to the
electrodes. According to the dataset explanatory paper [9], the acquisition system (EEG-1200 JE-921A)

references all the electrodes to the value obtained from the following formula:
CommonReference = 0.55 - (C3 + C4) (V) (Eq.4.1)

Where C3 and C4 are the voltage value in those electrodes. However, many researchers recommend re-
referencing all the channels to the average value of all the electrodes (common average referencing (CAR))
[76][77]. This technique reduces considerably noisy sources that may be problematic. It also acts as a spatial
filter by reducing the presence of shared activity between electrodes [78]. Therefore, this method was

implemented to improve the signals’ quality by applying the following formula:

C
XER(E) = x, ()~ 2 ) %) () (Ea.4.2)
j=1

Where C is the number of the total electrodes used, x; is the value of the electrode i, x,—CAR , is the value of the

electrode i after the CAR, and xj the value of the electrode j. After this, the EEG signal can be visualized:
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Figure 4.8.- EEG visualization of the raw signals of each electrode of the EEG. The bar below enables one to scroll the window and visualize the whole EEG session. At

the top left, there is a purple bar that indicates the amplitude scale of the signals (53.24 pV). The X-axis shows the time in seconds. Figure created by the

author.
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Motor imagery-based brain-computer interface by implementing a frequency band selection.

4.4.2. Power spectral density (PSD)

When working with signals, it is highly recommended to check their spectral information as it
contains valuable information about their nature. After carrying out a discrete Fourier transform
(DFT), which decomposes the discrete signals into a spectrum of frequencies, it is possible to apply
numerous spectral calculations to better interpret the data, for instance, the power spectral density
(PSD).

The PSD indicates the strength or power of the signals by looking at their squared amplitudes in the
frequency domain, which is a useful indicator to assess the relevance of the different frequency
bands [79][80]. The units used to quantify the spectral power in the EEG signals are squared
microvolts divided per Hertz (uV?/Hz). The MNE library calculates the PSD with the Welch’s segment

averaging estimator [81] and displays the power spectrum of each channel as shown below:

Power spectral density (PSD)
EEG
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Figure 4.9.- PSD of the signals of each EEG channel used. Each color represents a channel (see the top-right 2D
head model). X-axis shows the frequency in Hz (20 Hz per division) and the Y-axis shows the uV?/Hz (1000
1V2/Hz per division). Figure created by the author.

At first sight, it seems that the graph does not provide significant information because the low
frequencies have pronounced power in comparison with higher frequencies. Therefore, to enhance
the visualization, it is convenient to work in dB as it allows the researcher to perceive small values as
well as large ones. That is achieved by passing the Y-axis from linear to logarithmical, using the

following formula:
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Yap =10 -log(Y,,) (dB)

(Eq. 4.3)

Where Y45 is the result in dB and Yy, is the linear value. As it can be seen in the following

illustration, now it is simpler to interpret the results:
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Figure 4.10.- PSD of the signals of each EEG channel used, in dB. Each color represents a channel (see the top-

right 2D head model). X-axis shows the frequency in Hz (20 Hz per division) and the Y-axis shows the puV?/Hz in

dB (20 dB per division). Figure created by the author.

Thanks to this spectral analysis, it is possible to confirm the effect of the EEG’s Notch filter at the 50

Hz component, corresponding to the power line frequency, is remarkably attenuated; this is

important to check out, as the signals might be contaminated with undesired electromagnetic

interferences.

Additionally, there is high power near the DC component, which is a normal behavior in EEG signals.

Furthermore, notice that the frontal channels, especially Fpl and Fp2 (in green), have more

amplitude at frequencies between 0.1 Hz and 10 Hz; this can be associated with the blinking artifact,

which is a low-frequency response.

Finally, it can be seen that, after the 10 Hz, the power of all the electrodes is constantly decreasing as

the frequency increases. Later than 40 Hz, almost all the channels are below -10 dB.
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Motor imagery-based brain-computer interface by implementing a frequency band selection.

4.4.3. Eventrelated synchronization and desynchronization (ERS/ERD)

As it has been remarked in subsection 3.3.2., plotting the ERD and ERS maps is extremely helpful to
understand the frequential behavior of the left and right-hand imagery over time. With this
information, the relevant frequency bands can be detected in order to posteriorly design the cut-off
frequencies of the band-pass filter, attenuating insignificant bands from the spectrum for better

performance.

Furthermore, it is possible to check the most recurrent reaction time (of each participant) after the
eGUI’s indications to perform imageries. In addition, the time window length is estimated based on
the time in which the ERD/ERS activity lasted in the map. These procedures are necessary to later

segment the data for training the Al models.

The ERDS maps were drawn following instructions described in scientific papers and the MNE
documentation [82][83][84]. They are computed by clustering and averaging the time-frequency
representations of all the periods that contain an imagery event (i.e., right-hand imagery). These
periods start one second before the instruction to perform the Ml task (represented as a dashed line)
and end four seconds later. It is important to remember that, as most of the Ml events occur in the
motor cortex, the ERDS will be plotted in the central electrodes of the EEG (C3, C4, and Cz).

The blue tonalities of the maps represent a low activity (normally an ERD) and the red ones a higher
activity (usually an ERS). The darker the color is, the more mental responsiveness there is. Therefore,
it is optimal to detect ERS and ERD with this property as it means that the participant has an
outstanding ability to control the Ml tasks.

In this section, the ERDS graphics will be generated for each participant (from Subject A to F) using
their first EEG recording session for representing the ERDS in the right and left-hand imageries. With
this, the author can assess whether the participants’ cortical activity behaves as expected or not. This
phase is critical to discard subjects without any clear mental pattern or with uncommon events; as it
has already been explained, MI tasks are not easy to perform at the beginning and, on most

occasions, require hours of practice before mastering them.

Finally, there will be a brief commentary on how to treat the sessions of the participants depending
on their ERS/ERD activity.
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4.43.1. ERD/ERS (Subject A)

Subject A presents remarkably noisy maps; no clear patterns are defining the ERS and the ERD. Both
left and right-hand imageries have very high activity in frequencies above the Beta band, which is
unusual and hardly corresponds to an ERS. Moreover, slightly above the Mu band of the left-hand
imagery at the C4 channel (2.2 s — 3.5 s), there is a mild activity that could indicate a Ml event.
However, if this was true, this same pattern should appear for the right hand at the C3 electrode;
instead, it is repeated at the C4 (0.5 s — 1.8 s), which is unexpected. For these reasons, this

participant will be discarded from the study.

ERDS (left)
c3 ca Cz
35 < 3 < 1.5
’5 | »
30 A . 1
!
' i
254 1
¥ &£
x a— - 0.5
2 20 Ly
[
]
g 15 0.0
'S I
10 4
-0.5
5 B
- ‘r K - = .
T T T T T -1.0
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
Time (s) Time (s) Time (s)
ERDS (right)
c3 ca Cz
35 4 J 1.5
30
1.0
_ 254 -
N
T 0.5
204
c
El
g 15 0.0
“ 3
ol = |
-0.5
5 4 : 4 1 \.' 4
. - s _ - . T e — -1.0
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
Time (s) Time (s) Time (s)

Figure 4.11.- Subject A. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs
represent the time-frequency response occurring while imagining a left-hand movement, and the lower ones
the right-hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-
axis represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low
activity and red for high activity). The dashed line represents the indication to perform the imagery task. The

circles represent areas of interest. Figure created by the author.
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4.4.3.2. ERD/ERS (Subject B)

The overall activity of subject B in electrodes C3, C4, and Cz is not substantial; nevertheless, there is a
visible change in the Beta and Mu bands after the event occurs. For the left-hand imagery, channel
C4 seems to have an ERS between 20 Hz and 25 Hz (1.5 s — 2.8 s), and, at the same time, an ERS
appears at the Mu band (10 Hz — 13 Hz); this happens while channel C3 records neutral activity.
Conversely, the right-hand imagery has a similar effect in the C3 electrode, but more powerfully (20
Hz—-26 Hz, 2 s—3s; 10 Hz— 15 Hz, 2 s — 2.8 s); meanwhile, channel C4 remains with low activity. This
response indicates a Ml detection, especially after seeing that the activated brain hemisphere reflects
the contralateral side of the body. However, as the ERS have low amplitudes, this might indicate that
from all the trials, only a few of them were indeed imageries. After evaluating Subject B, it was
concluded that it perform poorly due to the reason mention before. Therefore, this subject will not

be further considered in the study.
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Figure 4.12. Subject B. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent
the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-
hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis
represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity
and red for high activity). The dashed line represents the indication to perform the imagery task. The circles

represent areas of interest. Figure created by the author.
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4.4.3.3. ERD/ERS (Subject C)

Of all the candidates, subject C is the one that has the most perceptible ERD and ERS patterns,
approaching the theoretical behavior that these maps should have. For the left-hand imagery, there
is a dominant activity in channel C4, where an ERD in the Beta band (17 Hz — 26 Hz, 0.1 s —1s) is
followed by an ERS in the Beta (15 Hz— 21 Hz, 1.8 s— 2.8 s) and the Mu band (10 Hz— 13 Hz, 2 s -3 s).
Notice that a similar pattern occurs in electrode C3 but with much less power. For the right hand,
channel C3 shows the same pattern as the C4 electrode of the left-hand imagery, with ERDs and ERSs
in the same frequency bands and times. Thus, this participant will be considered in the study.
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Figure 4.13. Subject C. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent
the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-
hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis
represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity
and red for high activity). The dashed line represents the indication to perform the imagery task. The circles

represent areas of interest. Figure created by the author.
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4.4.3.4. ERD/ERS (Subject D)

There are no clear ERD/ERS patterns in the left-hand imagery of participant D. Electrodes C3 and C4
show a similar activity distribution. Moreover, electrode Cz is more weighty than both of them, which
more likely indicates that left-hand imagery is hardly appreciable. The right-hand imagery presents an
ERS in the Beta band (15 Hz — 21 Hz, 1.2 s — 2.5 s) and neutral activity in the C4 electrode.
Nonetheless, due to the problematic detection of the left-hand imagery, this subject will be
discarded from the study.
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Figure 4.14. Subject D. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent
the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-
hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis
represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity
and red for high activity). The dashed line represents the indication to perform the imagery task. The circles

represent areas of interest. Figure created by the author.
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4.4.3.5. ERD/ERS (Subject E)

Subject E has an ERS in the Beta band at the C4 electrode of the left-hand imagery (18 Hz — 23 Hz, 2.3

s — 3.2 s) and the C3 electrode of the right-hand imagery (18 Hz — 24 Hz, 2 s — 3 s); the remaining

channels remain neutral. Even though the ERDS maps do not present any ERD or activity at the Mu

band, the ERS described at the beginning of the paragraph could signify a MI; consequently, this

subject will be considered in the study.
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Figure 4.15. Subject E. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent

the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-

hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis

represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity

and red for high activity). The dashed line represents the indication to perform the imagery task. The circles

represent areas of interest. Figure created by the author.
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4.4.3.6. ERD/ERS (Subject F)

The left-hand imagery of Subject F has high activity in the upper Beta band in all the electrodes
represented, which is strange as it should only appear at the C4 channel. Furthermore, there is an
ERS at the Mu band exclusively at C3. Regarding the right-hand imagery, C3 has the most significant
intensity in the Beta band while C4 is lower, which is expected. However, the Mu band is visible at C4
instead of being active at the C3 electrode. Despite the odd behavior of these responses, the high
intensities in the ERS bands could potentially indicate hand imageries; hence, this subject will be

considered in the study.
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Figure 4.16. Subject F. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent
the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-
hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis
represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity
and red for high activity). The dashed line represents the indication to perform the imagery task. The circles

represent areas of interest. Figure created by the author.
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4.4.3.7. ERD/ERS commentary

After analyzing all the ERDS maps, many aspects must be pointed out before segmenting the data

and training the BClI’s Al models.

First and foremost, from all the dataset’s subjects, three participants were discarded from the study
as they had abnormal behaviors that could preclude the distinction between the left and right-hand
imagery. That could be caused due to the lack of experience while carrying out Ml tasks, which could
be mastered by practicing this mental chore for hours. The only subjects with fair quality recordings

are subjects C, E, and F.

Secondly, only Subject C presented ERD, while the remaining participants jumped from a neutral
state to an ERS directly. Hence, from all the time-frequency representations, only the ERS will be
considered for training the Al models. Furthermore, it has been seen that the activity in the Mu band
was not present in all the subjects, and, when it did, its intensity was noticeably lower than the ERS
appearing in the Beta band. That is to say that the band-pass filter that will be implemented should
maintain the ERS of the Beta band. Moreover, the time window length used for segmenting the data

should be sufficient to cover the ERS activity so that the model can process it correctly.

Finally, it is necessary to assess the inter-subject variability in order to know how to train and
implement the BCI. As it can be seen in Figure 4.3., after obtaining the ERS/ERD maps, the researcher
must decide which time window length and cut-off frequencies should be used for each participant
to highlight the ERS. Subsequently, all the subjects will be compared to check if their ERS have
similarities. The following table will compare the selected subjects to determine the most

appropriate frequency band for the final model:

Table 4.3.- Inter-subject variability evaluation. Table created by the author.

C 0.9s 15 Hz — 21 Hz
E 09s 18 Hz — 24 Hz 15 Hz - 26 Hz
F 09s 20 Hz — 26 Hz

To conclude, subjects C, E, and F will be trained in the same Al model with a window length of 0.9
seconds and a band pass filter with lower and higher cut-off frequencies of 15 Hz and 26 Hz,

respectively.
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4.5. Digital filtering

After deciding which frequency bands are suitable, a bandpass digital filter must be designed to
remove undesired frequencies; this is an important step in this MI-BCI design as a well-designed filter
can eradicate noise, interference, artifacts, or mental activities that are not related to Ml. Indeed,
after several trials, the author found out that there is a substantial accuracy and precision increase in
the Al predictions after having a more selective BW. There are two main types of digital filters: the

finite impulse response (FIR) and the infinite impulse response (IIR) filters [85][86][87].

FIR filters have a non-recursive nature and lack feedback. That is to say that, assuming causality, it
only uses the present and a finite number of past samples of the input. Furthermore, designing its
parameters is relatively straightforward, making it more controllable. Their main advantage is that
they are inherently stable since their transfer function presents all the poles at the origin of the Z-
plane. Another crucial characteristic of these filters is that they have a linear phase response in the
desired BW; this is of great interest to avoid significant distortions after filtering the signal. However,
these filters present some drawbacks that must be considered. Firstly, the designer must be careful
while choosing the order of the filter as the system will have less computational efficiency, requiring
high memory. In addition, this will produce a considerable delay that may affect real-time
applications such as the one implemented in this thesis. Therefore, before choosing the filter's order,
one must weigh the benefits of having a highly selective filter and the disadvantages described. In the
discrete-time domain, the output of a sample can be calculated by the convolution of the filter h(k),

as shown below:

M-1
y(n) = h(k) -x(n—k); if causal: h(n) =0,n<0,n=>M (Eq.4.4)
k=0

Where y(n) is the output in an instant n, M is the order of the filter, and x(n) is the input. The FIR

filters have the following transfer function in the Z domain, where by, are the filter’s coefficients:
M 1 M
H(z) = Z by - z7k = Z_MZ b, - ZM-k (Eq. 4.5)
k=0 k=0

To calculate the group delay of a FIR filter, the subsequent formula can be used, where M is the

order, and f ¢ the sampling frequency [88]:

(Eq. 4.6)

M
Delay =

2-fs
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On the flip side, the IIR filters are recursive and present feedback; therefore, they consider the
present and all past samples of the input as well as the past outputs. These filters have better
computational efficiency and require less memory storage compared to the FIR filters. Moreover,
they do not have such a high delay time compared to the FIR filters. Another benefit of these filters is
that they can straightforwardly be converted from digital to analog as they can be based on
renowned analog filter configurations, such as the Butterworth, the Bessel, the Chebyshev, the
Cauer, and many other types of filters. Nevertheless, some weaknesses can affect the performance of
IR filters. The most relevant one is that they can hardly achieve a linear phase response, which may
produce a distorted output signal. In addition, these filters have poles that must be placed carefully
to avoid instabilities; consequently, these filters are less flexible than FIR ones and harder to
implement. In the discrete-time domain, the output of a sample can be calculated by the convolution

of the filter h(k), as shown below:

y(n) = Z h(k) -x(n—k); ifcausal: h(n) =0,n<0 (Eq. 4.7)
k=0

Where y(n) is the output in an instant n, and x(n) is the input. The IIR filters have the following
transfer function in the Z domain, where by, and a;, are the filter’s coefficients:
Yheobi 27

H(z) = =%=0"k ~ (Eq.4.8)
Il¥=0 a, .z k

X, z-1 z1 z1
bO bl bZ bn
FIR Filter IIR Filter

Figure 4.17.- Block diagrams of FIR and IIR filters. Figure extracted from [89].
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Now that both types of filters are understood, it can be seen that the FIR filters have clear benefits

that prevail over the IIR filters. Having a linear phase and avoiding instability scenarios is of great

interest while implementing a suitable band-pass filter, especially in MI-BCl applications.

Furthermore, if carefully designed, the computational efficiency and time delay reduces significantly.

Thus, an FIR filter will be developed in this thesis.

Some considerations must be taken into account before designing the filter [90]:

1)

2)

O

Filter type: In this BCl application, the filter will be a bandpass, having an upper and a lower
cut-off frequency. Additionally, it must be decided which passband ripple is accepted. For
biomedical applications, it should be minimized. Moreover, one must consider which
transition band is desired. Remember that the narrower the transition band, the more
selective the filter is. Lastly, it is important to ensure that the stopband ripple does not

considerably affect the output.

|H(w)|
1+46; |
1 Passband Ripple
1—-6, W___ NS ___"°
|
: Transition Band
Passband I
I
|
|
|
I
|
: Stopband
8 | |
Stopband Ripple | /-\ /
|
Wp Wy T w

Figure 4.18.- Overview of the characteristics of a filter. Figure extracted from [90].

Window type: For avoiding abrupt changes in the tails of the filter's impulse response, it is
preferable to operate with a window function. The Bode of an FIR filter presents a principal
lobe (which is the most important) and many undesired sidelobes. By smoothing the
extremes of the impulse response with a window (Hamming, Blackman, Hann, etc.), the
sidelobes attenuate even more, which is optimal. The tradeoff is that the principal lobe width
augments and filter selectivity can be affected. To solve this problem, one can increase the

window's length (see next point).
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The following graphics show the filter's impulse response with a rectangular (upper figure)

and a Hamming window (lower figure). Notice how the extremes are softer in the Hamming

window:
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Figure 4.19.- Effect of the filter window in the impulse response of the filter. Rectangular window

(upper figure) and Hamming window (lower figure). Figure created by the author.

The following Bode charts highlight the effect of using different window types with the same
filter characteristics. The rectangular window (upper figure) has a narrower primary lobe in
contrast with the Hamming window (lower figure), which seems to have doubled in width.

Nevertheless, the Hamming windows have much more attenuated sidelobes in comparison
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to the rectangular window. Notice that the phase is linear, which is one of the main

characteristics of a FIR filter:
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Figure 4.20.- Effect of the filter window in the magnitude and phase Bode charts of the filter. Rectangular

window (upper figure) and Hamming window (lower figure). Figure created by the author.

3) Window length: The window length defines the number of lobes present in the Bode as well
as the filter’s order. Remember that the higher the order, the more selective the filter is.

However, the filter’s order must not be too large since the delay will increase. One way of
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calculating this parameter is by looking at Table 4.4. and establish the width of the first lobe

as the normalized passband.

Table 4.4.- Primary Lobe width and the peak of the secondary lobes of the different window types. Information

extracted from [90].

NS
3

Rectangular -13
M+1
Bartlett 8. -25
M
Hanning 8. -31
M
. 8 -m
Hamming — -41
M
Blackman 12w -57
M

For instance, if the cutoff frequencies are 15 Hz and 26 Hz, and the sampling frequency is 200

Hz, the normalized passband can be calculated as:

fz—fl 26_15
fs 200

PB, =Wy, — Wi, =2 1" =0.11 -wrad/s (Eq. 4.9)

If a Hamming window is used, it is possible to calculate the minimum length of the filter from
Table 4.4.:

8 m 8~1t_ 8.1
PB, 0.11-m

~ 73 samples (Eq. 4.10)

Thus, the length must be at least 73 samples, for example, 150 samples. The delay is then

calculated:

M-1_ 150-1
2-fs  2-200

Delay = = 372.5ms (= 75 samples) (Eg. 4.11)

Which is more than acceptable for a MI-BCI. This can be easily checked by plotting the effect
of an all-pass FIR filter of order 150:
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Before and after filtering

Amplitude

0 50 100 150 200 250
Samples
le=5

Amplitude

Samples

Figure 4.21.- lllustrative example to show the delay of a 150 order FIR filter. The filter is an all-pass so

that it is easier to see the delay effect. Figure created by the author.

The filters that will be used in the project will have a window length of 150 samples and will employ
a Hamming window, with a delay of 372.5 ms (75 samples). Notice that these filters can be applied
for filtering signals in real-time. As an example, the following figures show the PSD (compare it to

Figure 4.10.) and the EEG session of a filter with a bandwidth between 15 Hz and 26 Hz on Subject C:

Power spectral density (PSD) (dB)
EEG

uV2/Hz (dB)

0 20 40 60 80 100
Frequency (Hz)

Figure 4.22.- PSD of the signals of each EEG channel used in dB after filtering the data. Each color represents a
channel. X-axis shows the frequency in Hz (20 Hz per division) and the Y-axis shows the uV?/Hz in dB (10 dB per

division). The dashed lines represent the cutoff frequencies. Figure created by the author.
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Figure 4.23.- EEG visualization of the filtered signals of each electrode of the EEG. The scale of the signals if (14.02 uV). The X-axis shows the time in seconds. Figure
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4.6. Preprocessing

In the previous subsections, two different preprocessing techniques have been carried out. The first
one is the common average reference, which filters the data spatially to reduce the undesired
smearing effect as it localizes with better precision the cortical sources responsible for the mental
activity. The second one is the band-pass FIR filter, which maintains the specified frequency band

and wipes out problematic regions of the spectrum.

Besides applying the two previous methods, other steps should be taken in order to clean the signals
from artifacts and prepare the data to improve the overall quality of the extracted features.
Therefore, two more helpful preprocessing procedures are going to be discussed in this subsection:

the independent component analysis (ICA) and the data segmentation and annotation.
4.6.1. Independent component analysis (ICA)

As its name indicates, the independent component analysis (ICA) is a preprocessing tool capable of
detecting and separating a defined number of statistically independent elements that composes a
signal without having prior knowledge of the signal’s content (blind source separation) [91]. As the
EEG contains multiple electrodes that are distributed strategically around the scalp, the sources of
these components can be localized. This technique is suitable for detecting and eliminating artifacts,
such as the eye-blinks or the electromyographic activity of facial muscles, without altering the

valuable signal [4].

The ICA seeks a linear transformation to reduce as much as possible the statistical dependence of the
signal’s components [92][93][94]. Consider that the EEG acquires signals of n samples from M
electrodes; these signals can be arranged as a matrix X = [xi[n], x2[n], ..., xm[n]]", where T denotes the
transpose operator. This matrix can be obtained from a linear combination of M’ components of the
signals, arranged as a matrix S = [s1[n], s2[n), ..., sw [n]]". The mixing matrix A, which is the one linking
together both matrixes, has a size of (M,M’). Therefore, any EEG signals signal can be obtained as

follows:

Xmm) = Amm'y S’ my (Eq.4.12)

The objective of the analysis is to find the S matrix so that the components are identified; hence,

matrix S must be isolated:

Ss=41.4.5=41.% (Eq.4.13)
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However, the inverse matrix of A (A) is unknown, and its value can be approximated with different
mathematical and statistical methods. Therefore, the ICA estimates the most fitting matrix W (=A%)
that maximizes the non-Gaussianity and the independence of the components. Once this matrix is

calculated, the components can be computed:

SS=W-A-S=W-X=~S (Eq. 4.14)

Now that the approximated components are determined, it is possible to reconstruct the signal by

zeroing the rows that correspond to undesired artifacts:

— -1 !
Xwithout_artifacts =W : Swithout_artifacts (Eq' 4.15)

To exemplify it, a process to remove eye-blinking from Subject C will be described below to
demonstrate the utility of this algorithm when it comes to eliminating artifacts that could deteriorate

the classifier’s performance.

The first step is to choose the number of components to estimate, which cannot surpass the number
of EEG electrodes, for instance, ten elements. The MNE library allows performing the ICA visually so
that it is possible to localize the sources of its components on a topographical map, as can be seen in
Figure 4.24.

From all the components, ICAO0O and ICA002 seem to have a strong activity in the frontal area, which
could signify a blinking. In order to confirm this, the component signals are plotted in Figure 4.25.,
where it can be seen that ICAO0O and ICA002 indeed corresponded to a blinking. Nevertheless, only
ICAO00 will be eliminated to reconstruct the signal since ICA002 has higher frequency signals

attached to it that could come from a mental source.

Figure 4.26. and Figure 4.27. show the before and after effects of employing the ICA, respectively.
The red marks indicate the presence of a blink, which is manifested with abnormal high amplitude,
especially in electrodes Fpl and Fp2. The green ovals indicate the previous positions of the blinks,
which disappeared from the signal thanks to the ICA. Furthermore, notice that the rest of the

recording remains unchanged.

This same analysis could have been performed to remove other artifacts, such as muscular activity.
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ICA components

E
|4
&

A ~
ICADOO ICADOL ICADD2 ICADO3
267 195 115

267 195 -115 038 046

~
CAQOD9
Uolb
0.36

Figure 4.24.- Subject C. Topographical maps displaying the sources of 10 independent components computed with the ICA algorithm. Figure created by the
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Figure 4.25.- Subject C. The signals of the 10 independent components computed with the ICA algorithm. Figure created by the author.
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Figure 4.26.- Subject C. Raw data before applying the ICA. At channels Fp1 and Fp2 it is possible to see clear eye-blinking (red). Figure created by the author.
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Figure 4.27.- Subject C. Raw data after applying the ICA (same signals as the previous figure). The eye-blinking disappeared from all channels (green). Figure
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4.6.2. Datasegmentation and annotation

While the participants were carrying out the trials, they constantly followed the indications of the
eGUI, which saved all the taken actions inside a marker vector (described in Table 4.2.). There are
around six hundred left and right-hand imagery events in each EEG session used to train the Al
models. In the following figure, it is possible to see some of the markers that appeared throughout
the recording. The blue and the orange bands represent the indication to execute left and right-hand

imagery, respectively.

Figure 4.28.- EEG visualization of the filtered signals with the markers overlayed. Blue indicates a left-
hand indication. Orange indicates a right-hand indication. The bar below shows all the

markers that appeared during the session. Figure created by the author.

One might think that the mental activity starts right after the marker; however, that is not the case,
as there is a reaction time from the subject that introduces a delay between the indication and the
actual Ml task. This retard can be estimated by looking at the ERS/ERD maps when the Beta band ERS
begins. Furthermore, the length of each segment must be sufficient to grasp all the ERS (see the time

window length column in Table 4.3.). The MNE library refers to each segment as an epoch.

After segmenting all the data, it is important to label each epoch. Without these annotations, the Al
models proposed would not be able to distinguish the classes. The next figure shows a clustering of
all the segmented data, ignoring other parts of the signal. Numbers 1 and 2 represent left and right-

hand imagery epochs, respectively.
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Figure 4.29.- Clustering of all the segmented and annotated data. Numbers 1 (black) and 2 (red) represent left and right-hand imagery epochs, respectively.

The X-axis represents the number of epochs in the session. Figure created by the author.
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4.7. Signal processing and feature extraction

The last step before training the Al models is to extract the most characteristic features that define
the nature of the signals in the most distinctive way. By understanding the different techniques
available to do so, it is possible to increase the overall performance of the MI-BCI considerably. The
common spatial patterns (CSP) and the statistical features are used to train Machine Learning
models, and the short-time Fourier transform to train the Deep Learning models. Notice that the two

first methods also reduce the size of the input data (dimensionality reduction).
4.7.1. Common spatial patterns (CSP)

The common spatial patterns (CSP) technique is one of the most practical feature extraction methods
for Ml applications, enabling a more effective differentiation between two classes, such as the left
and the right-hand imagery. With the CSP algorithm, it is possible to find a set of spatial filters that
will highlight or de-emphasize the activity of various areas of the brain in order to maximize the
variance of one class while minimizing the other one’s variance. Consequently, both categories are

more distinguishable [95].

This algorithm must be trained with labeled epochs (segmented and annotated trials) to find the
optimal spatial filters weights with the highest inter-class variance. Therefore, it is a supervised
technique that applies a transformation to the data to find the most suitable spatial features of the
signals [96].

Fundamentally, the CSP can be obtained after the diagonalization of two covariance matrices, one for
each hand imagery [97][98][99]. Being X a matrix that represents windowed EEG signals with M

channels and N samples, the normalized covariance matrix is calculated as follows:

C X X (Eq. 4.16)

e —— q. 4.
trace(X - XT)

Where T indicates the transposed matrix and trace() is an operation that sums up all the diagonal

elements of the matrix. This calculation is done for all the left and right-hand epochs separately.

Subsequently, the computed normalized covariance matrix is averaged for each class, and, by

summing them, the compound covariance is obtained:

C.=C,+Cq (Eq. 4.17)
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Where €, and Cg are the average covariance matrices for the left and right-hand imagery classes,

respectively.

The next step for diagonalizing the matrices is to find the eigenvectors and eigenvalues of C., which

can be obtained with the following formulas [100]:

A V=21V (Eq. 4.18)
Av—2-1-v=0 (Eq. 4.19)
A-42-D)-v=0 (Eq. 4.20)
dettA—-1-I)=0 (Eq. 4.21)

Where A represents a matrix, ¥ the eigenvectors, A the eigenvalues, I the identity matrix, and det() the
determinant of a matrix. Therefore, C.can be represented with its eigenvectors (U.) and eigenvalues

(4¢) matrices:

C.=U.-2.-UT (Eq. 4.22)

For diagonalizing the matrix it is necessary to calculate the whitening matrix P:

P = Ue (Eq. 4.23)
J2.

Subsequently, the spatial coefficient matrices S,and Sg can be obtained for each class:
S, =P-C,-PT (Eq.4.24)
Sg=P-Cg-PT (Eq. 4.25)

In this way, the spatial coefficient matrices have common eigenvectors B:

S, =B-2,-BT (Eq. 4.26)
Sp=B-2;-BT (Eq.4.27)
AL+ Ag =1 (Eq. 4.28)
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Notice that the sum of the eigenvalues matrices gives the identity matrix; hence, the result of adding
up two matching eigenvalues will be one. This interesting property will ensure that the larger an
eigenvalue is in one class, the smaller it is for the other. Therefore, the eigenvectors are weighed up
contrariwise for each group. By finding the highest (or lowest) eigenvalues Ap and 4;, it is possible to

determine which are the most discriminative eigenvectors that will ensure a better classification.

For transforming the input matrix X into the output matrix Z, a projection matrix W must be

computed, as shown in the following equations:
W = (BT . p)T (Eg. 4.29)
Z=W- X (Eq. 4.30)

Note that the columns of the inverse matrix of W (W?) correspond common spatial patterns, which

are time-invariant vectors.

The subsequent illustration shows the effect of applying the most discriminative CSP. In the
beginning, the left and right-hand imagery classes have similar variances. After calculating the CSP
and filtering the signal with the patterns corresponding to the highest eigenvalues of each imagery (in

this case, CSP1 and CSP2), the inter-class variance is maximized:

o u.w*[\\ﬁ,n4.\&5‘,LM\Wrwu.mwhw.dewwmm i - el
E o Right Hand - Variance = 0.014239 & o Right Hand - Variance = 0.016054
g 1 : U g : ;
it i
o [Ww MLWW\’WMMV«WMJM Ml et
- &
c ght Hand - Varlancc:- 0.015946 Right Hand - Variance = 0.0062401
E H o
U os

Figure 4.30.- Effect of applying the most discriminative CSP. The signals are more differentiable after using CSP1
and CSP2. Figure extracted from [95].
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Finally, for extracting the features from the CSP and reducing the size of the data, the next formula is

calculated:

var(Z,)

—— | ,wherep=1,2,...,2m Eq.4.31
%ﬂ”ar(zi) P (Eq )

fp= 10910<

Where f,, are the feature vectors, var() correspond to the variance, and 2m depends on the number

of filters selected. The subindexes p and i represent the rows of the output matrix Z.

After applying all the previous calculations with the aid of the MNE library, the CSP were obtained.
Figure 4.31. illustrates the CSP gotten from Subject C, showing how each behaves on a topographic
map. Notice that CSPO and CSP3 present emphasized patterns in electrodes C4 and C3, respectively;
this is a clear indicator that the CSP algorithm can detect left and right-hand imageries correctly. After

several trials, it was concluded that having 10 CSP provided better classification results.

CSPO CSP1

B

CSP2 CSP3 CSP4 Patterns (AU)

CSP8 CSP9

Figure 4.31.- Ten CSP for Subject C. The color bar indicates the weights of the patterns while applying the

filters. Figure created by the author.
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4.7.2. Short-time Fourier transform (STFT)

One of the Al models proposed in future sections involves using a convolutional neural network,
which is usually trained with images; therefore, the EEG signals must undergo a process to describe
their contents in a two-dimensional manner. For doing this, the spectrogram of the signals can be

computed, a processing tool that enables a time-frequency analysis of the acquired data.

The short-time Fourier transform (STFT) is employed to compute the spectrograph. This
mathematical technique divides the signal into multiple time segments with the help of a shifting
time window, which is usually a Hamming to avoid spectral leakage and preserve continuousness.
Furthermore, an ensuing window does not begin from the final position of the current window as
there is an overlap to not lose the spectral information due to the Hamming window. After having all
the segmented signals, a discrete Fourier transform (DFT) is calculated for each of them; as a result,

the frequential information is obtained over time [101][102].

There is a tradeoff that must be addressed regarding the resolution of the spectrum. The larger the
window length used in the STFT is, the better the frequential resolution and the more flawed the
temporal resolution is. The contrary effect happens when the window gets shorter. Consequently,

one must choose wisely the length of the window and the amount of overlap allowed [103].

The following equation describes how to carry out a STFT [101]:

= .2 k
S(m, k) = z sm+m-N) -wn)-e/ N™ (Eq. 4.32)

n=0

Where k is a number going from 0 to N-1, S(m, k) specifies the time-frequency spectrograms for an
index m, N is the window length, N’ is the window’s shifting step, and w(n) involves the window
function used. As the coefficients obtained from the previous equation are complex numbers, the

magnitude of S(m, k) must be calculated to obtain the spectrogram.

However, performing this operation for all the electrodes can be computationally expensive and
could not allow a real-time analysis. Hence, only the central EEG electrodes (C3, C4, and Cz) will be
chosen, as they are the most relevant for capturing the MI. For instance, the following spectrograms

correspond to a right-hand imagery epoch, where clear activity can be seen in C3 as expected.
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Figure 4.32.- Spectrograms created from the STFT. The effect of a right-hand imagery in time and frequency for
the electrodes C3, C4, and Cz. X-axis indicates the time (0.1 seconds per division), Y-axis indicates
the frequency (5 Hz per division) and the color bar indicates the magnitude. Figure created by the

author.
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4.7.3. Statistical Features

There are statistical parameters of the signal that can be useful for detecting the imageries or the
passive state. Mainly they will be applied only to the central EEG electrodes (C3, C4, and Cz) as they
are the ones of more importance in hand imagery tasks. In this subsection, they will be listed and

concisely explained.

4.7.3.1. Probability density function (PDF)

The probability density function (PDF) determines the likelihood that a particular sample has of
becoming an outcome. In other words, the Y-axis corresponds to the density of probability, showing
the odds of obtaining values found on the X-axis. In the case of EEG signals, this probabilistic
distribution can be estimated by looking at the chances of having a specific voltage value. The

following image shows the PDF estimation for a certain epoch at the channels C3, C4, and Cz:

Probability density function (PDF)
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Figure 4.33.- Probabilistic density function for a certain epoch of Subject C. Channels C3, C4, and Cz. X-axis
indicates the voltage (2-:10°° V per division). Y-axis indicates the probabilistic density. Figure created

by the author.

Plentiful statistical parameters can be found by analyzing the PDF, for instance, the mean, the

variance, the skewness, or the Kurtosis.
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4.7.3.2. Kurtosis

Kurtosis is a statistical parameter that defines the peakedness and the tailedness of a distribution
relative to the normal distribution [104]. This coefficient can be calculated using the following
formula:

13 - %)

= (Eq. 4.33)
R st

Where X is the mean of the samples, 1 is the total number of samples, and S is the sample standard
deviation. If the result is greater than 3, the distribution is Leptokurtic; if it is smaller than 3, it is
Platykurtic; and if it is equal to 3, it is Mesokurtic or normal. Normally, three units are subtracted to
speak relative to zero. Therefore, a positive Kurtosis would indicate that the distribution is denser
around the mean compared to the normal distribution; the opposite happens if the Kurtosis is

negative [105].

Leptokurtic Distribution

Normal Distribution

Platykurtic Distribution .

Figure 4.34.- A representation of Leptokurtic, Platykurtic, and normal distributions. Figure extracted from [106].

4.7.3.3. Skewness

The skewness defines the symmetry of the distribution and can quantify any distortion or asymmetry
by comparing the distribution relative to the normal one [104]. It is calculated as follows:
1 (X - X)°

= Lai= (Eq. 4.34)
Sk =7 s3
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Where X is the mean of the samples, 1 is the total number of samples, and S is the sample standard

deviation. The skewness can be positive, negative, or symmetrical.

" Mean =
Median Median

Median

Mode
Mode — --- Mean . Mean --- — Mode

Positive Skew Symmetrical Distribution Negative Skew

Figure 4.35.- A representation of the effect of skewness. Figure extracted from [106].

4.7.3.4. Energy

The energy of a discrete signal is defined by the sum of the squared samples. Hence, the energy of a

signal x(n) can be calculated with the subsequent formula [106]:
E= Z |x(n)|? (Eq. 4.35)

4.7.3.5. Wavelet-based Entropy

The entropy measures the randomness of a signal, and it is one of the most characteristic features
that can be obtained from EEG data. Besides the general definition of entropy, two more variations
will be computed: the Shannon entropy and the Log Energy-entropy. All of them will be quantified
after applying a Morlet wavelet transform, as indicated in [107] and [108].

A wavelet transform is based on a decomposition of the temporal and frequential contents of a signal
by stretching, compressing, and shifting a waveform known as a wavelet. The coefficients that

describe the segmented data can be obtained thanks to the PyWavelets library.

The formulas that define the entropies are presented below:
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M

Hg, = _Zpi -log,(pi)

i=1

H ShannonEn =

M
2
HlogEn == Z(logz (pz))
i=1

Where p; can be obtained as:

W (a;,t)|

Pi==r ———
COXL Wt

M
— Z p? - (logz(p»)’
i=1

(Eq. 4.36)

(Eq. 4.37)

(Eq. 4.38)

(Eq. 4.39)

Assuming that W(a;, t) (i =1, 2, ..., M ) is a set of wavelet coefficients defined as a matrix of size

(M,N), being M the scales of the transform and N the time points.

Wa1r1
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(Eq. 4.40)
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Figure 4.36.- Example of a Morlet wavelet being elongated and shifted. Figure extracted from [109].
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4.8. Artificial Intelligence models

The last step for implementing the MI-BCl is to train Al models that will classify the three classes (left,
right, and rest) accurately and precisely. The end goal is to find two different Al architectures, one for
distinguishing between left and right-hand imageries and the other for differentiating imageries from
the resting state (see Figure 4.2.). For doing so, manifold Machine and Deep Learning methods will be
tested to see which are the most suitable. In this subsection, the most relevant models will be

presented and described.
4.8.1. Train and test data distribution

From all the segmented data, 80 % will be used to train the models and the remaining 20 % to
test them; this ratio will ensure a correct evaluation of the models. It is important to clarify that the
data will be shuffled randomly. For the Machine Learning architectures, a K-fold Cross-validation will
be used to have a more accurate estimate of the model's prediction performance. This resampling
method divides the data into K groups, training the model with (K-1) groups and testing it with the
remaining fold. This process is repeated for all K possible combinations, and the performance is then

averaged from each iteration's result.

Iteration5 |

Figure 4.37.- K-fold cross-validation. Figure extracted from [110].

Furthermore, remember that one session from each participant will be used for implementing a real-

time application; therefore, that session will not be employed for training the offline models.
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4.8.2. Right vs Leftimagery

The left and right-hand imagery classification will be tested mainly with Machine Learning methods.
Among all the implemented architectures, the best results have been obtained with the following

ones:

e Linear Discriminant Analysis (LDA).
e Support Vector Machines (SVM).
e Random Forest (RF).

Each of the previous classifiers will be trained with the Common Spatial Patterns (CSP).
4.8.3. Imagery vs Resting state

The imagery and resting-state classification will be checked out with the previously mentioned
Machine Learning models (Right vs Left imagery), but instead of using CSP they will employ the
statistical features. Bear in mind that, before inserting the features inside the Machine Learning
models, the statistical characteristics must be scaled, for instance, with a Standard Scaler.
Furthermore, a Deep learning technique based on Convolutional Neural Networks (CNN) will also be

analyzed; this classifier will use the features extracted from the Short-Time Fourier Transform (STFT).
4.8.4. Model tuning

The model’s hyperparameters were selected with the help of appropriate tuning techniques in order
to enhance the classifier’s performance. This optimization is achieved with tools available in the Al
libraries of Python (Scikit-learn and TensorFlow), such as the Random Grid Search and the Bayesian

Optimization; with them, one can assess the effects of choosing different hyperparameters.
4.8.5. Performance metrics

Knowing how to evaluate the Al models is crucial in order to see if they perform correctly while
implemented. One might think that the accuracy, which indicates the correct prediction over the
total predictions, is the only metric that matters, but this depends on the application. Accuracy is
relevant for gaining an insight into the overall behavior of the model; however, this metric doesn’t
take into account how well each class is predicted. For instance, in the case of this project, it is
particularly important to minimize false Ml detections, and it is more acceptable not detecting a Ml

when it is actually happening; this cannot be measured with accuracy.
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Most evaluation metrics can be obtained from the confusion matrix, which contrasts the ground
truth labels with the predicted classes of the model. Hence, it is easier to visualize the True Positives
(TP), the True Negatives (TN), the False Positives (FP), and the False Negatives (TN) of the model.

Table 4.5.- The structure of a confusion matrix. Table created by the author.

Confusion Matrix
No hand imagery Hand imagery
No hand imagery TN FP
Ground truth
Hand imagery FN TP

Besides accuracy, the most relevant metrics for classification models are:

e Precision: It indicates the ratio of true positives and total positives predicted. It is a measure
of the exactness of the model.
TP

precision = TP+ FP (Eq. 4.41)

e Recall/Sensitivity: It specifies how well the model predicts true positives over actual positive
cases. It is a measure of the completeness of the model.
TP

P — Eq.4.42
recall TP LFN (Eq )

e F1 Score: As there is a tradeoff while choosing precision and recall, the F1 Score combines
them by applying a harmonic mean.
(precision - recall)

F1 score =2 — Eq.4.43
(precision + recall) (Eq )

e Specificity: It stipulates how well the model predicts true negatives over actual negative
cases.
TN

specificity = TN+ FP (Eq. 4.44)
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4.8.6. Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a supervised classification technique widely used in Machine
Learning that focuses on maximizing the separability between classes. This objective is done by
applying a dimensionality reduction and finding a suitable linear combination of the features.
Therefore, the categories are projected into a new axis where they will appear more distinguishable

[111]. For doing so, two criteria must be taken into account:

1) Maximize the mean between the categories.

2) Minimize the variation, also known as scatter, of each category.

To simultaneously reflect the previous points, the LDA algorithm optimizes them by working with the

following ratio (considering two categories):

_ 2
R= (1~ )" (Eq. 4.45)

2 2

Where u is the mean, 02 is the scatter, and the subindices indicate the class. The subsequent

illustration show how this method functions:

Figure 4.38.- LDA. Projection of the red and green class to another axis where they can be better separated.

Figure extracted from [112].
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4.8.7. Support Vector Machines (SVM)

The aim of support vector machines (SVM) is to separate the data using hyperplanes, which act as
thresholds for classifying the data. Therefore, the classes can be differentiated depending on where
the data point falls on the hyperplane. Note that the hyperplane dimensionality depends on the
number of features. For instance, two characteristics requires a one-dimensional hyperplane (line),

and three features requires a plane [113].

Moreover, it is crucial to have a large margin, which indicates the shortest distance between the
observations and the hyperplane. The hyperplane should be positioned with an equal distance
between the classes to encounter the highest margin. However, if there are outliers, the margins will
be reduced substantially, leading to a faulty classifier. For that reason, with the help of iterative
methods such as Cross Validation, one can find the best margins by allowing outliers (soft margins).
Hence, it is possible to find new data points for each category, known as support vectors, that will be
considered for finding a better margin. SVM algorithms require a step which enables them to move
the data to higher dimensions with tools known as kernels. By doing so, the model’s performance

increases considerably [114].

O~
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Figure 4.39.- SVM. Margins with and without outliers. The top case shows how small the margins are. The
bottom case enlarges the margins by finding the support vectors that gave the best margin, found

with cross validation. Figure extracted from [114].
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Figure 4.40.- SVM. Hyperplane (blue) and margins (green) drawn. Notice that there are outliers and that the

margins are equally distanced. Figure extracted from [115].

4.8.8. Decision Trees and Random Forest (RF)

As its name suggests, a decision tree classifier is a Machine Learning algorithm with a tree-like
branching structure that allows data classification. It performs a recursive splitting of the dataset
using decision nodes, which contain certain conditions. If they are satisfied, it activates the left path;
otherwise, it triggers the right one. This process occurs until a leaf node is reached, which will contain
a class label that will indicate the prediction of the decision tree. The best splits can be found after

maximizing the entropy gain while training the model.

The drawback of this algorithm is that they are highly sensitive to the training data, resulting in higher
variance. Hence, the random forest (RF) technique is used to tackle this problem, which combines
multiple decisions trees simultaneously. The first step for training these algorithms is to create
various random datasets from the original one; this process is called bootstrapping, employed to
ensure that the trees are trained with different data. Note that this technique creates datasets with
the same amount of rows as the original one, allowing the repetitions of samples. The next step is to
arbitrarily pick out a subset of features to train each bootstrapped dataset independently; this
process is named random feature selection. The last step is to build a decision tree for each dataset.
Finally, an aggregation algorithm is applied to combine all the predictions from each decision tree

and decide on a single output. If bootstrap and aggregation are combined, the procedure is called
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Bootstrap + Aggregating

(Bagging)

Figure 4.41.- RF. The dataset is divided into four datasets by using bootstrap and two random features. For each
dataset, a decision tree is created. The output of the RF is established by aggregating the results of

each decision tree. Figure extracted from [116].

4.8.9. Artificial Neural Networks (ANN)

Inspired by the biological concepts of the nervous system, artificial neural networks (ANN) are a
subbranch of Machine Learning and the nucleus of Deep Learning algorithms that consists of the
interconnection of nodes, known as neurons, that receive and transmit information. The end goal is
to train the ANN to activate or inhibit the neurons for finding complex patterns used for carrying out
prediction tasks [117].

They are composed of multiple layers with multiple neurons each; the first and last layers are
referred to as the input and output, respectively. The remaining ones are the hidden layers; their
behavior is so complex that it is nearly impossible for a human to interpret what the model is actually
doing; hence, neural networks are known to be black-box systems. If there are manifold hidden

layers, the ANN is a deep neural network.

Basically, the inputs of one neuron come from the weighted sum of the signals coming from all the
neurons of the previous layer, which are real numbers parametrized in each neuron. Then, the
neuron processes the result by adding a bias and applying an activation function, such as the Sigmoid
or the RelU. It is strongly recommended to introduce nonlinearity to the system with the activation
function for the correct functioning of the ANN for solving nonlinear problems. The outcome of this

operation defines the value of the neuron. Finally, this calculated parameter will be multiplied by an
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associated weight and introduced to all the neurons of the following layer. The values of the neurons
are initialized with the data in the input layer, and the model's results depend on the neurons

activated in the outcome layer.

The end goal of ANNs is to find the most appropriate bias and weights that can minimize a
loss/cost function, which measures how well the algorithm predicts an expected value. This can be
achieved by training the Al model, thanks to a process known as back-propagation. Hence, during

the training session, the data flows forward and backward for a pre-established number of cycles.

Input Weight Multi-Input Neuron
~ r——1
B —>

L Qutput

Activation Function

Figure 4.42.- A neuron of an ANN. All the operation needed to have an output. Figure extracted from [118].

Deep neural network
Input layer Multiple hidden layers Output layer

Figure 4.43.- The layers of a deep neural network. Figure extracted from [117].

The main difficulty occurring while working with ANN, especially when they are deep, is the

undesired effect of overfitting, where the model performs excellently in the training dataset and
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poorly while testing it. Hence, the models memorize patterns from the training data and are less
capable of generalizing the predictions. Many regularization techniques can help to reduce the effect

of overfitting.

One method is establishing a dropout ratio to randomly drop several connections of the ANN in each
iteration of the training session; this makes the model more likely to generalize a solution. Another
one is to apply an early stopping, which enables the user to select an optimal number of iterations

required (forward and back-propagation) for training the model before it overfits.

Underfit Optimum Overfit
‘_.3*" * - ‘S‘m
¥ .
* X
* * * &
* K ok ok 4
High training error Low training error Low training error
High test error Low test error High test error

Figure 4.44.- A comparison between an underfitted, an optimum, and an overfitted model. Figure extracted
from [119].

4.8.10. Convolutional Neural Networks (CNN)

A convolutional neural network (CNN) is a type of Deep Learning algorithm that is widely used for
classifying, segmenting, or detecting objects from an image, which can be described as a matrix [120].
The process starts when multiple filters, known as kernels or masks, are applied to the matrix. These
kernels are smaller than the picture (usually of size 3x3) and run over all the image by executing a
convolution, which is a mathematical operation that enables the image transformation with these
steps [121]:

1) Flip the kernel horizontally and vertically. This step is done only once.

2) Putthe kernel over a section of the image.

3) Calculate the dot product (multiply the values of the mask with their corresponding image’s
values; then sum the results to obtain the output value in that position).

4) Shift the kernels to the next position of the image. This parameter can be defined with the
stride, which indicates how many positions the mask shifts in each iteration.

5) Repeat the process until all the positions are covered.
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Figure 4.45.- Application of convolution to an image (green with black numbers) with a kernel (yellow with red

numbers). The result of the convolution is shown in the pink matrix. Figure extracted from [122].

Notice that due to the mask size the edges of the image are eliminated from the output result. This
issue can be solved by zero-padding the images. In this way, the output can have the same size as the

input image.

After the convolution layer, an activation function (ReLU, etc.) is applied to introduce non-linearity to
the system. The next step is to carry out pooling operations, such as the maximum or the average
pooling, to reduce the sizes of the matrices and the computational cost. Furthermore, it decreases
the risk of overfitting the system and makes the model more tolerant in front of slight distortions and

variations.

The convolutional and pooling layers can be computed sequentially multiple times to extract features
from the images. Once all the characteristics are obtained, the matrices are converted into a single

dimension in the flatten layer. Subsequently, a fully connected ANN is used for classifying the image.

While training the CNN model, the back-propagation allows finding suitable weights, bias, and

kernels for enhancing the architecture’s performance by reducing the loss function [123].
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Convolution Neural Network (CNN)

Input TR Output
Pooling Pooling Pooling P —
:é - Horse
e - Zebra
T ~lr' & )“ Do
L "/,,0; " - 9
NN SoftMax
Convolution Convolution  Convolution U Pﬁﬁtr:‘éiité?]"
+ + +
Kernel RelU RelU RelU Flatten
Layer
Fully
< Feature Maps Connected———
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N N
Feature Extraction Classification Probabilistic
Distribution

Figure 4.46.- Overview of the CNN architecture for classifying the image of a zebra. Figure extracted from [124].
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5. Results

After training all the models mentioned in the previous section, the performance of the Al models
must be evaluated to choose the most appropriate ones for real-time implementation. It is important
to remark that each model was trained by using the data of Subjects C, E, and F. Bear in mind that

the right vs left imagery models will be assessed in two separate ways:

e Mixing all the testing data of each subject for obtaining general estimation models.
e Treating the inter-subject testing data independently to see how the models performs for

each participant.

In the case of the imagery vs non-imagery models, only the general estimation will be considered.
5.1. Chosen Al models

The hyperparameter used for the Machine Learning models are the following:

e LDA: A singular value decomposition (SVD) solver and no shrinkage.

e SVM: A radial basis function (RBF) kernel, a gamma of 0.00001, and a C parameter of 10000.

e RF: 100 number of estimators, a Gini criterion for measuring the quality of a split, a
maximum depth of 11, a minimum number of samples to split an internal node of 5, a
minimum number of samples to be considered as a leaf node of 4, and square root (sqgrt)

function to calculate the maximum number of features.

The structure of the CNN is shown in Figure 5.1. Firstly, there is a 2D convolutional layer with 120
filters, a 3x3 kernel, a ReLU activation function, and an input size of (3,91,181); this is followed by a
MaxPooling layer of size two and a dropout of 20%. The second convolutional layer has 240 filters, a
3x3 kernel, and a RelLU activation function, followed by a MaxPooling of size one and a dropout of
20%.

Afterward, a flatten layer prepares the data for entering inside two dense layers with 164 and 128
neurons, respectively. Both have a dropout of 20% and a RelLU activation function. The model ends

with a one neuron layer with a Sigmoid activation function.

Regarding the CNN's hyperparameters, there is a learning rate of 0.0001 with a decay rate of
0.0001/300 and a momentum of 0.8; these parameters are introduced inside a Stochastic Gradient

Descent (SGD) optimizer. The loss will be evaluated with the binary cross-entropy.
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Output
(None, 3, ¢ 195600
max_pooling2d 2 (MaxPooling2 (None, ik 0

dropout_4 (Dropout) (None, ik 0

conv2d 3 (Conv2D) (None, ik 259440

max_pooling2d 3 (MaxPooling2 (None,
dropout 5 (Dropout) (None, 1, 4
flatten 1 (Flatten) (None, 10800)
dense 3 (Dense) (None, 164)
dropout 6 (Dropout) (None, 164)
dense 4 (Dense) (None, 128)
dropout 7 (Dropout) (None, 128)
(None, 1)
params 7

Trainable params: 2,247,653
Non-trainable params: ©

Figure 5.1.- The structure of the CNN. Figure created by the author.

5.1.1. Right vs Left-hand imagery

As can be seen in Table 5.1, all three models present similar results, being the RF architecture slightly
better than the others with an overall accuracy of 83%, reaching 88% in Subject C. Moreover, the
precision and the recall reveal that all the models are more likely to detect left-hand imageries than
right-hand ones. Therefore, the RF will be the chosen model for distinguishing left and right-hand

imageries.
5.1.2. Imagery vs non-imagery

As has been previously remarked, it is extremely important to avoid false positives so that a Ml is not
wrongly detected. Hence, accuracy and precision should be assessed conjunctively to find an optimal

solution.

By using the statistical features, the RF has the best accuracy (77%) and precision (85%) relative to
LDA and SVM. It is possible to obtain the statistical features that are more capable of better
explaining and defining the behavior of the model; this can be done with the Shapley values (Figure

5.2.). The most relevant features are the energy, the entropy, and the log energy-entropy.
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Shapley values for interpreting the model.

energy[C3]
entropy[C3]
loglC3]
entropy[Cz]
energy[Cz]
energy[C4]
krt[Cz]
loglC4]
skw[C4]
krt[C31]
krt[C4]
shannon[C2]

skw([C3]

shannon[C4]
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entropyl[C4] . mmm Class 1
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mean(|SHAP value|} (average impact on medel output magnitude)

0.

=]

Figure 5.2.- Shapley values for interpreting the model’s classes. Blue is for the resting state and red for the
imagery class. The X-axis represents the average impact of the features on the model (0.01 SHAP

values per division). Figure created by the author.

However, the CNN outperforms the RF architecture as it has a 78% accuracy and a precision of 90%,
which is reasonable for the BCIl. Therefore, the CNN will be the chosen model for distinguishing

imageries and resting states.

Figure 5.3. shows how the architecture performed in each iteration; visualizing this type of graph is
crucial in order to ensure that there is no overfitting by finding the suitable number of epochs that

minimizes the testing loss.
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Table 5.1.- A summary of the Al model results. Table created by the author.

Al models results
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LDA | SVM RF | CNN | LDA | SVM RF | CNN | LDA | SVM RF | CNN | LDA | SVM RF | CNN
Accuracy | 82% | 82% | 83% 87% | 88% | 88% 78% | 79% | 79% 80% | 79% | 81%
CSP Precision | 87% | 88% | 87% 92% | 93% | 94% 87% | 87% | 84% 84% | 83% | 83%
Recall 75% | 75% | 77% 82% | 82% | 80% 67% | 68% | 72% 74% | 75% | 79%
Accuracy | 74% | 76% | 77%
Statistical .
Precision | 83% | 83% | 85%
Features
Recall 59% | 63% | 63%
Accuracy 78%
STFT Precision 90%
Recall 72%
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Figure 5.3.- The training and the testing of the CNN model. Train accuracy (orange), train loss (blue), test accuracy (red), test loss (green). The X-axis represents the

epochs (50 epochs per division) and the Y-axis represents the accuracy and the loss (0.1 units per division). Figure created by the author.
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5.2. Real-time implementation

Once the best models are chosen, they will be used to classify an entire EEG session that was unseen
while training them. Therefore, the models will simulate an online categorization of the data,

mimicking the behavior that would be obtained from a live collection of EEG data.

To carry it out, the EEG session will be introduced sequentially inside a window with a size of 180
samples (0.9 seconds since the sampling rate is 200 Hz). The data inside the window is filtered with
the designed FIR filter; bear in mind that there will be a delay of 75 samples (justified in the Digital
filtering section). Subsequently, the STFT features are extracted, and the CNN model will classify
whether the segment is an imagery or a resting state. If an imagery is detected, the CSP are obtained,
and the RF model will distinguish between left and right-hand imageries. If a resting condition is
detected, the BCl will ignore the segment (see the diagram drawn in Figure 4.2.). Afterward, the data

is shifted 20 samples (0.1 seconds) into the window, and the cycle starts again (Figure 5.4.).

In order to avoid noisy classifications, the model must predict four consecutive right or left-hand
imageries to efficiently decide if a movement is really performed or not. For instance, if the model
has been predicting a resting state for 10 seconds and at 10.1 seconds detects a right-hand

movement continued by a passive state, this would be considered a noisy classification.

Figure 5.4.- A visual explanation of how the data slides inside the window (red). Figure created by the author.
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In the following pages, a set of images will highlight some of the predictions from an unseen session
of Subject C, showing cases in which the models perform flawlessly and others where there are some
faults (see the captions of each illustration to have a detailed explanation). Overall, the BCI detects

the imageries precisely, outputting most of the time the correct hand movement.

On the one hand, the red and green color bands indicate the eGUI’s instruction to imagine a right or
left-hand movement, respectively. On the flip side, the orange and blue colors bands denote the right
and left-hand imageries predictions, correspondingly. Notice that there will always be a short delay
between the eGUI’s indication and the prediction; this is caused due to the FIR filter and the subject's

response time after seeing the stimuli.

The last step is to move a MeArm robotic manipulator left or right, depending on the prediction; this
is achieved by establishing serial communication between Python and Arduino. In other words, a

servomotor is activated based on the model’s outputs. The servomotor is connected to Pin 9 of the

Arduino Mega 2560. The set up is shown in the following illustration:

Figure 5.5.- Setting up the MeArm robotic manipulator. Figure created by the author.
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Figure 5.6.- Predictions of an unseen session (Subject C). All the classes were correctly classified (green circles), and the resting state was successfully detected. Red
band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction.

Figure created by the author.

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola d’Enginyeria de Barcelona Est

97



Final Report

noht ght ¢ it naht Fag e T naht 2 3 aé nght h Jact: left Left predictios
i X : | o T L4
Fplw { "‘ fb ) ﬂ‘fﬁlw‘ W\- » i | L }N}b 7 Hf : X M*.“V""W‘*‘“un VJT h —_ “{W, l\.whﬂ.hllt‘.i.‘ Sy |
e W | /1 g NN\ 1) \M ; '\
Fp2 \I LHJM "ﬁ‘ﬁﬁ%‘ﬂmh i s i I '*ﬂ‘ \ M * D L“ﬂ \ v A'W WA 'N\N \ f“‘;‘MN‘\,- " »‘:’-"‘4{ \
W ' ),
e P /4, "VM"\WWW/“'M\ At ! '\W,r N Fhol s g A e e n"',w. ey oo
A Y P i A
£ ~V~/\"LM/~,_AVIV.-!\,‘/’\k“" M e g A P \t e, i oAy ool o gt A e v
a AN s J e Ady o P ! e Mgt MW| [HTERONEE e b ‘
@ AR L e s T TPV, .,\,.M-‘w.v.rw WONGERIER M Ao i
oy |
e3 '\J.‘ WL, it e Mgl M /”W Pavniin o 'NW,WM WA vy M ptahocd N n\."-:v
ra 1 f'vw\ R e L i O Mo p P Vaidna' Ve »-'-3z\jw/‘\,/\,.,|\~;,\»ﬂ_w‘y A A "-.«ﬁ» /
. “- v
o1 ‘A‘f‘ d ‘\\“W‘J"r‘(«""‘ My w‘h'\‘l""" l‘;"M\)f) s ok \ ,-\“.NJ'”W ’*ﬂ\*\“‘w{l’\ F"’W{" .'.""I"‘nl “’P)‘ﬂ J‘M "Wﬁ' " Iil wfl
x ii W “
@ Al '\ll W AP AAA‘W:"\"""J“H \‘-"’\M‘J'"“‘FJ.‘\J.’ "’wf‘i \ J"’N‘W Y, "‘-’.W iy s "“"(\ {"Mﬂ A ‘Wﬂ‘a‘f“ o
\/ W
) . ¥ R~ ) f¥ ™
2 L " \ qqp o P """‘x“‘#mﬂy o 1{""W e N’I‘VWN’W\N‘ JN‘U o W\’\' \'/
i
wa l . b A | A e 8
w2 \ ..N "'w L il n /WW N e mww "y fo ~ i “‘V\ummﬂ
Mg | R A Y S \
7 ,“\' o " '\N_‘ J—.,WM""""‘"' R ‘ o pr i et e o Fephepirtons Al R A oA
L g Nt P S v Fine kol o eaahea T ey oy
e I ! | ks )
Y '“””“’"'””M«\wm R i ! R e L e e WA
w M w;,..ﬁ,‘ﬂ o M’" o hodp Aol ) Ya " g A MM‘ AP ey A N ‘
™ \ 'h'r"’ti"".'“ w\ll, (o -,,.-""A"Mrwﬂ*f/“"' My \ }.‘“ M, AP, o veahy e f v M..:_\
V' \ ' W / ‘
/ W V
™ W \ Rl Y A ”"“‘f\u At or i g Moy \ A PV -'»«W,a’\v,hﬂw._ﬂ’\‘ F,‘w‘f" WM o A
i ¥ \r \J ‘
¥
2 W\Y‘M"‘ \ 3 s N /ﬂ\,,-»wg“mv' . \.MMW'-:# \ /" W LM -""VV\M M\twu A ,Ly‘-‘"& WW”W A W
13 wa}ﬂz‘vw L "%""'W*'Wﬁ"‘“‘“. v ol m_}\w,wwﬂw N aM L M\"‘W\"’ e o,

17004 4025 4050 4075 410 0 4125 4150 4175 4200

Time (s)

Figure 5.7.- Predictions of an unseen session (Subject C). All the classes were correctly classified (green circles). Notice that sometimes the prediction is delayed a little
bit more, which is normal. Moreover, a prediction can be repeated consecutively, indicating that the mental activity is maintained. Red band: Indication to
perform a right imagery. Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the

author.
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Figure 5.8.- Predictions of an unseen session (Subject C). All the classes were correctly classified (green circles), and the resting state was successfully detected. Red

band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction.
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Figure 5.9.- Predictions of an unseen session (Subject C). Almost all the classes were correctly classified (green circles), and the resting state was successfully detected.
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band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the author.
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Figure 5.14.- Predictions of an unseen session (Subject C). This case shows that sometimes an imagery state is detected even though the patient is in a resting state (red
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Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the author.
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6. Environmental analysis

Climate change is a dangerous threat that can devastate the environment and the organisms living in
it. For that reason, one must be constantly aware of the environmental impact that any project will

cause, knowing all the consequences of the actions taken.

All the hardware employed in this project, including the Arduino and the EEG that the researchers in
[9] used for creating the dataset (JE-921A EEG), has been chosen carefully to respect the
environment. Each of the selected components is certified with quality stamps, more precisely
complying with the EU directive 2011/65/EU (RoHS compliant) [125][126]. With the RoHS, the use of
toxic and harmful substances for the environment found on the device's electronics is limited

(chromium, mercury, cadmium, etc.).

Furthermore, one must not overlook the equivalent carbon emissions due to the GPU’s power
consumption while extracting features and optimizing, tuning, and training the Al models.
Approximately, in this thesis, the computer executed the previous operations for 120 hours. The GPU
used is an NVIDIA GeForce GTX 1080, which has a power consumption of 180 W [127]; hence, the

energy consumption can be calculated as follows:

GPU Consumption =180 W - 120 h = 21.6 kWh (Eq.6.1)

According to the Catalan Office of Climate Change [128], the estimated carbon produced based on
the local power grid (Catalonia) is 0.321 kg eq. CO,/kWh; therefore, the equivalent CO, generated
due to the Machine and Deep Learning models is 6.9 Kg of CO,:

Kgeq.CO,

Equi =21. -0.321
quivalent CO, 6 kWh-0.3 WWh

=6.9Kg of CO, (Eq.6.2)
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7. Project planning

To successfully carry out all the required tasks of this project, the author designed a Gantt chart
(Figure 7.1.) to work efficiently and in an organized way. Each period of this diagram represent a

week.

As it can be seen, the author worked on the thesis intermittently, starting his research in February
2019 and his formation in the Al world in July and August of 2019. He developed the BCl system
during the summers of the succeeding years (2020 and 2021) and the last quarter of his double
degree (from February 2022 to May 2022).

Most of the activities were completed on time; only activities 3, 5, 10, and 11 were completed
beyond the proposed dates, which was not problematic since the project was finished one week
before expected. Notice that activity 10 took two weeks more to complete because many more
models not mentioned in the thesis were evaluated; only the best performing architectures were

cited in the report. The following table will document the hours worked on each task:

Table 7.1.- Hours worked in each activity. Table created by the author.

Activity 01: Research (Reading BCI and Neurology books and papers). 300
Activity 02: Formation in Al. 180
Activity 03: Finding a proper dataset. 50
Activity 04: Create an application for collecting a dataset. 10
Activity 05: Data visualization. 75
Activity 06: Understanding the data (ERS/ERD, PSD, among others). 100
Activity 07: FIR filter design. 70
Activity 08: Data preprocessing. 30
Activity 09: Finding suitable features to extract. 90
Activity 10: Training, testing, and tuning multiple Al models. 180
Activity 11: Analyzing the results to choose the best architectures. 25
Activity 12: Implement the real-time BCI. 50
Activity 13: Write the report. 275

Thus, the total time dedicated to this project is 1435 hours, which is sufficient to cover the workload
of a 48 ECTS thesis.
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Figure 7.1.- Gantt chart to plan and track all the activities. Figure created by the author.
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Conclusions

In this work, the author successfully implemented a BCl system that can translate EEG signals
containing imaginations of hand movements coming from the motor cortex activity into commands
for controlling a robotic manipulator. The project highlights that BCls will revolutionize the lifestyle of
individuals with movement disabilities, enabling them to be more independent and integrated into

society.

The first step taken was to understand the data to decide on further actions to consider. The power
spectral density revealed that electrodes Fpl and Fp2 constantly captured eye-blinking signals as they
contained higher amplitudes at lower frequencies relative to other electrodes; additionally, it was
confirmed that the higher the frequency, the lower the magnitude of the signals. Furthermore, to
reduce the spatial smearing effect, the common average referencing has shown to localize the

sources of the EEG signals.

The ERD/ERS maps were extremely useful for comprehending the frequential behavior of each
imagery over time. From the six subjects analyzed, only Subject C had a map that mostly reassembled
the theoretical one, having clear ERD followed by an ERS in the Beta band and an ERS in the Mu band.
To the author’s surprise, the rest of the subjects lacked any ERD. Moreover, most participants only
had ERS activity in the Beta and not the Mu band. For the previously stated reasons, only ERS from
the Beta band was considered for the study. Only three participants (Subjects C, E, and F) proved to
have good-quality recordings; hence, the other subjects were discarded for training the artificial

intelligence models.

Before training the model, the data was preprocessed to enhance the overall performance. The ICA is
the perfect solution to remove artifacts, such as eye-blinking, muscular or cardiac activity, without
altering the crucial information of the signals. Furthermore, the data must be segmented correctly

based on the duration of the imagery activity displayed in the ERD/ERS maps.

Moreover, a finite impulse response filter was carefully designed to maintain the Beta band's ERS for
all the selected subjects (15 Hz — 26 Hz). The filter's parameters were justified so that there are
proper transition bands and no ripples in the passband. In addition, a Hamming window effectively
increased the attenuation of the undesired secondary lobes that appear on the Bode. Also, as the
filter is intended for a real-time application, the order chosen was 150, so the delay is not noticeable
(372.5 ms).
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The next step was to train two models for classifying three classes: left imagery, right imagery, and a
resting state. The hyperparameters of each architecture were chosen with the help of tuning and

optimizing methods, which significantly enhanced the accuracy and precision.

On the one hand, model LR, which classified left and right-hand imageries, was trained with various
Machine Learning models with the CSP as features. The random forest algorithm outperformed the
other models with an overall accuracy of 83%, reaching 88% in Subject C; these great results
demonstrate that the model generalizes the data and decently handles the inter and intra-individual
variability. The CSP undoubtedly does an excellent job discriminating between the left and right-hand

classes.

On the other hand, model IR, which distinguishes between an imagery event and the resting state of
the subject, has shown to perform better with the STFT features in a convolutional neural network
than with statistical features in other Machine Learning models; the obtained accuracy was 78%. In
addition, the precision was 90%, which is a good indicator that the model hardly has false positives;
this is important so that the robotic manipulator does not get triggered without any valid imagery

from the user.

Both models worked cooperatively (see the diagram drawn in Figure 4.2.) to do a real-time BCl. For
testing this live analysis, an unseen session from Subject C was scrolled inside a 0.9 second time
window, constantly filtering and classifying the signals overlapping with the window. The results were
outstanding and much more robust than expected: the overall system can detect the three classes

with few erroneous classifications.
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Future work

Unfortunately, the author could not gain access to an EEG device; however, based on the excellent
results achieved, this system can be fully operable for distinguishing the three categories by following
the methodology described. Hence, after acquiring the device, the whole MI-BCI system will be

implemented and tested (hardware and software).

Furthermore, a new line of research into different algorithms and features that could enable a
multiclass classification will be started, for instance, detecting left/right hand and feet imaginations
or categorizing the imagery of finger movements. To do so, the users must employ EEGs with much

more electrodes in order to improve spatial resolution.

Indeed, all these processes can be applied in an ECoG instead of an EEG to improve the signals’
quality, reduce the smearing effect, increase the spatial resolution, and gain information at higher
frequencies hence enabling the classification of many more classes. Despite being an implantable
device, they are the most viable way for the paralytic community to use a BCI. As a matter of fact, this
thesis is just a first approach to the BCl world to the author, as he aims to end up working with ECoG

in his succeeding career.
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Budget

In this section, the author will hypothesize the costs that would be needed to professionally develop
this project. Thanks to this economic analysis, the reader can see the expenses usually spent on BCI

projects, considering the personnel and material costs.
Engineering cost

First and foremost, this work requires a Biomedical Engineer, an Electronics Engineer, or a Data
Scientist, which is the most valuable asset of the project. Supposing that the employee is a junior
Electronics Engineer and that the average salaries of these engineers in Spain are typically around 30
thousand euros a year (considering 217 working days in a year and 8 hours per day) without including

the 33% regarding the social security, the hourly cost of the engineer would be of:

Hourlv cost = 30000 € + 30000€-0.33 23 €
Y T 217 days -8 hd":;s - hour (Eq.0.1)

Since the total duration of the project is 1435 hours (justified in Table 7.1.), including research and

implementation, the personnel cost is 33 005 €.

Material cost

The following table lists the costs of all the software and hardware used in the project, the total cost

of the materials and licenses is 7 270 €.

Table 0.1.- Material and licenses costs. Table created by the author.

Asus ROG Strix GL553V (Laptop) 1050 €
Arduino MEGA 2560 45 €
EEG-1200 JE-921A 5890 €
Books 250 €
Microsoft Office License 35¢€
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Total budget

The total expenses are calculated by summing the engineering and materials costs (taking into
account the 21% IVA), which gives a total cost of 48 732 € (Table 0.2):

Table 0.2.- The total expenses of the project. Table created by the author.

Materials 7270 €
Engineering 33005 €
Total 40275 €
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Annexes

These annexes will recollect the most important codes used in the thesis; the scripts are commented and organized (in classes and functions) so that

the reader can understand them more easily.

Al. Annex 1: Left vs right-hand imagery (Organized in classes) [Left_vs_Right.py]

LEFT VS RIGHT-HAND IMAGERY.

In this script, numerous classes used for preprocessing, processing, and classifying left vs right-hand
imageries

will be coded.

@author: Ali Abdul Ameer Abbas

numpy np
matplotlib.pyplot plt
mne
pymatreader
scipy.stats
SENES pd

mne .decoding CSP

sklearn.pipeline Pipeline
sklearn.discriminant analysis LinearDiscriminantAnalysis
sklearn.model selection ShuffleSplit, cross val score
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sklearn.svm SVC

sklearn.neighbors KNeighborsClassifier

sklearn.naive bayes GaussianNB

sklearn.ensemble RandomForestClassifier
sklearn.discriminant analysis QuadraticDiscriminantAnalysis

sklearn.model selection learning curve

sklearn.metrics plot confusion matrix, confusion matrix, precision score, recall score, auc
roc_curve

sklearn.model selection RandomizedSearchCV

scipy.stats
pywt

PreprocessDataset

This class will preprocess a file containing EEG recordings.
It assigns a common reference, apply an ICA, filter the data. It also segments and annotates the
data.

~_init (self, path, montage 'standard 1020', show plots False, bad chan

Initialize the class by reading and reconstructing the signals.
INPUTS:

montage --> The reference selected.

path --> The path of the file.
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bad channels --> Bad channels to eliminate.
show plots --> To show the plots of the EEG recording.

self.struct pymatreader.read mat(path, ignore fields=['previous' variable names
self.struct self.struct['o"’

self.chann self.struct|'chnames'
self.chann self.chann 1

mne.create info(ch names self.chann
sfreq float(self.struct|'sampFreq' ch types='eeg'
montage= montage, verbose=None

self.data np.array(self.struct| 'data’
self.data self.data 1
self.data V = self.data*le-6

self.raw mne.io.RawArray(self.data V.transpose self.info, copy "both"
self.raw.info[ 'bads' bad chan

show plots
self.raw.plot(title 'Raw signal'

channel reference(self, ref 'average'
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Set a reference to the data.
INPUTS:

ref --> Reference.

OUTPUTS:
raw --> Referenced data.

self.raw = self.raw.set eeg reference(ref, projection

self.raw

MNE bandpass filter(self, HP = 15, LP = 26, filt type

'firwin', show plots
skip by annotation='edge'

Apply a BP FIR filter.

INPUTS:
LP,HP --> Low Pass filter, High Pass filter.
filt type --> filter type.

show plots --> To show the plots of the EEG recording.
OUTPUTS:

raw --> Filtered data.

self.raw.filter(HP, LP, fir design filt type

skip by annotation "edge’

show plots

self.raw.plot(title 'Filtered Raw'
self.raw.plot psd

self.raw
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apply ICA(self, n components 10, ICA exclude 0 show plots False

Apply the ICA for removing eye blinking, EMG signals, EKG signals, among other artifacts.

INPUTS:
n components --> Number of components of the ICA.
ICA exclude --> Array used to eliminate components from teh signals.
show plots --> To show the plots of the EEG recording.
OUTPUTS:
raw ica --> Data after ICA.

self.ica = mne.preprocessing.ICA(n_components n_components, random state
method="'fastica'

filt raw self.raw.copy
filt raw.filter(l freg=1., h freg=None
self.ica.fit(filt raw

show plots
self.ica.plot components(outlines 'skirt', colorbar=True, contours
self.ica.plot sources(self.raw

self.ica.exclude ICA exclude

self.raw ica self.ica.apply(self.raw.copy exclude = self.ica.exclude
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show plots
self.raw.plot
self.raw ica.plot

self.raw ica

type pos(self, sfreq 200.0

Gets the marker position.
Just left and right positions, NO PASS marker
Only takes into account the right and left class, not the passive class.

INPUTS:
sfreq --> Sampling frequency.
OUTPUTS:
mark --> markers.
pos --> position of the marker.
time --> time of the marker.

self.markers np.array(self.struct| 'marker' transpose

mark
pos
time

desc "left', 'right’

range(len(self.markers) -1
self.markers|i 0] self.markers|[i+1 self.markers|[i+1
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mark.append(desc|[self.markers[i+1]-1
pos.append( (i+2
time.append( (i+2)/sfreq

mark, pos, time

add annotations(self, duration 1
This function uses the tye pos function to annotate the markers.
INPUTS:

duration -->Its the duration of the annotation.

self.mark, self.pos, self.time self.type pos

self.annotations mne.Annotations(self.time, duration, self.mark
self.raw.set annotations(self.annotations

create epochs(self, raw ica, tmin= 2.1, tmax= 3, show plots False
Segment and label all the data.
INPUTS:
raw ica --> Preprocessed data.
tmin, tmax --> times for segmenting the data.
show plots --> To show the plots of the EEG recording.
OUTPUTS:
epochs.get data() --> get the epochs.
labels --> get the labels.

self.events mne.events from annotations(self.raw
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self.picks mne.pick types(self.raw.info, meg=False, eeg=True, stim=False, eog=False
exclude="'bads'

self.epochs mne.Epochs(self.raw ica, self.events[0], event id self.events|1
preload True, tmin=tmin, tmax=tmax, baseline=None, picks
self.picks
self.labels self.epochs.events
show plots

self.epochs.plot

self.epochs.get data self.labels

plot electrodes and psd(self

Plot the position of the electrodes and the psd.

fig self.raw.plot psd(dB=False, xscale='linear', estimate='power'

fig.suptitle('Power spectral density (PSD)' fontsize = 30
plt.show

fig self.raw.plot psd(dB=True, xscale='linear', average False

fig.suptitle('Power spectral density (PSD) (dB)', fontsize 30
plt.show
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fig plt.figure

ax2d fig.add subplot (121

ax3d fig.add subplot (122, projection='3d'

self.raw.plot sensors(show names = True, axes ax2d
self.raw.plot sensors(show names False, axes ax3d, kind

np.linspace(0, 2 np.pi, 200

np.linspace(0, np.pi, 200

0.1 np.outer(np.cos(u np.sin(v

0.1 np.outer(np.sin(u np.sin(v

0.15 np.outer(np.ones(np.size(u np.cos(v
ax3d.plot surface(x, y, z,alpha 0.8, color="'navajowhite'
plt.show

ProcessDataset

This class will process a file containing EEG recordings.
It is a subclass of the PreprocessDataset class.
Mainly, this class will perform the CSP.
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~_init (self, class pre, epochs, labels

Initialize the class by getting the labels and epochs.
INPUTS:
class pre --> Introduce any class of PreprocessDataset so that important information (info,
chnames, ...) are defined.
. epochs --> Epochs obtained from the PreprocessingDataset class. This epochs should combine
multiple subjects.
labels --> Labels obtained from the PreprocessingDataset class. This epochs should combine
multiple subjects.

struct class pre.struct
chann class pre.chann
info class pre.info
data class pre.data
data V = class pre.data V
raw class pre.raw

raw ica= class pre.raw ica
ica class pre.ica
markers= class pre.markers
mark class pre.mark
time class pre.time
pos class pre.pos

epochs epochs
labels labels

epochs subj class pre.epochs.get data

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est

134



Motor imagery-based brain-computer interface by implementing a frequency band selection.

self.labels subj class pre.labels

create CSP(self, reg 'oas', n_components 10, show plot False

Create the CSP to obtain spatial featuers.
INPUTS:
reg --> reg function. reg may be 'auto', 'empirical', 'diagonal fixed',
'ledoit wolf', 'oas', 'shrunk', 'pca', 'factor analysis', 'shrinkage'
n_components --> Number of components.
show plot --> Compute the CSP for the Subject selected and display the CSP.
Notice that the CSP plotted are only from the selected subject
OUTPUTS:
csp --> The CSP.

self.csp CSP(n_components= n_components, reg reg, rank 'info'

show plot
csp _subj CSP(n_components= n_components, reg reg, rank 'info'

csp subj.fit transform(self.epochs subj, self.labels subj

csp_subj.plot patterns(self.info, ch type='eeg', units='Patterns (AU)', size=1.5

self.csp
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Model LR
Model Left/Right. Class to organize the AI models with the best reults used to distinguis between
Left and Right-hand imageries.

ML classification(self, csp, epochs train, labels train, epochs test, labels test, classif

Uses ML classifiers in conjunction with CSP to train and test the motor imageries.

INPUTS:
csp --> Introduce the CSP.
epochs train, labels train --> Introduce the epochs and labels for training the models.
epochs test, labels test --> Introduce the epochs and labels for testing the models.
classif --> The classifier used. (LDA, RF, SVM, KNN, NB, QDA)

OUTPUTS:
clf --> return the model.

scores

labels = labels train
epochs data train = epochs train

epochs test = epochs test
labels test = labels test
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csp = csp

cv = ShuffleSplit(10, test size=0.2
cv_split

random state=None
self.cv.split(self.epochs data train

LinearDiscriminantAnalysis
SVC(kernel ='rbf', gamma
KNeighborsClassifier(n neighbors
GaussianNB

0.00001, C 10000
25, weights

'uniform

RandomForestClassifier(n estimators

100
min samples split 16
min samples leaf = 4
max features 'sqrt'
max_depth = 8

bootstrap = True

QuadraticDiscriminantAnalysis

classif
self.clf

classif
self.clf

classif
self.clf

classif
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Pipeline 'CSP', self.csp "LDA'

IQDAI

Pipeline "CSP', self.csp "QDA"

'SVM'

Pipeline 'CSP', self.csp 'SVM'

'KNN*

self.lda

self.qda

self.svm
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self.clf Pipeline "CSP'

INBI
Pipeline

classif

self.clf 'CSP', self

self.clf Pipeline 'CSP', self

self.scores cross val score(self.clf

self.clf.fit(self.epochs data train

self.testing score

print('\nAccuracy:
print('Precision: ', precision score(s
self.clf.predict(self.epochs test

print('Recall: '

self.class balance

self.class balance

print("Classification accuracy: %f +-
np.std(self.scores

labelsize=20
labelsize=20
'"font.size'

rc('xtick'
rc('ytick!'
rcParams .update
rc('axes'

plt
plt
plt
plt

16
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self.csp

self.clf.score(self.epochs test

recall score(self.labels test

np.mean(self.labels
max(self.class balance

'"KNN', self.knn

csp ‘NB', self.NB

csp 'RF', self.RF

self.epochs data train, self.labels, cv=self.cv

self.labels

self.labels test

', self.testing score

elf.labels test

self.clf.predict(self.epochs test

self.labels|[0
1. self.class balance
%f / Chance level: %f" np.mean(self.scores

self.class balance

titlesize=30, labelsize=25
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plot confusion matrix(self.clf, self.epochs test, self.labels test
plt.show

self.clf

test model(self, epochs test, labels test, show plot False
The only purpose of this function is to test the models for each subject.
It assess accuracy, precision, and recall.
Also plots the confusion matrix.
Always run this method after the ML classification function.
INPUTS:
epochs test --> Epochs to test.
labels test --> Labels to have the ground truth.
show plot --> To show the confunsion matrix.

self.testing score self.clf.score(epochs test, labels test
print('Accuracy: ', self.testing score
print('Precision: ', precision score(labels test self.clf.predict(epochs test

print('Recall: ', recall score(labels test self.clf.predict(epochs test

show plot

plt.rc('xtick', labelsize=20
plt.rc('ytick', labelsize=20
plt.rcParams.update({'font.size': 16
plt.rc('axes', titlesize=30, labelsize=25

plot confusion matrix(self.clf, epochs test, labels test
plt.show
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A2. Annex 2: Left vs right-hand imagery (Executable) [Main_Left_vs_Right.py]

oo~NOOULE WN -

Main script for training and testing the AI models for the Left vs Right-hand Imagery.

@author: Ali Abdul Ameer Abbas

numpy np
matplotlib.pyplot plt
pickle

Left vs Right PreprocessDataset, ProcessDataset, Model

. plt.rc('xtick', labelsize=20
. plt.rc('ytick', labelsize=20
. plt.rc('axes', titlesize=30, labelsize=25

. pathl C '../Data/CLA/CLASubjectC1512233StLRHand.mat"'
. path2 C '../Data/CLA/CLASubjectC1512163StLRHand.mat"'
. path3 C '../Data/CLA/CLASubjectC1511263StLRHand.mat"'
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../Data/CLA/CLASubjectB1510193StLRHand.
../Data/CLA/CLASubjectB1510203StLRHand.
../Data/CLA/CLASubjectB1512153StLRHand.

. ./Data/CLA/CLASubjectE1512253StLRHand.
../Data/CLA/CLASubjectE1601193StLRHand.
. ./Data/CLA/CLASubjectE1601223StLRHand.

../Data/CLA/CLASubjectF1509163StLRHand.
. ./Data/CLA/CLASubjectF1509173StLRHand.
../Data/CLA/CLASubjectF1509283StLRHand.

PreprocessDataset
PreprocessDataset
PreprocessDataset

PreprocessDataset
PreprocessDataset
PreprocessDataset

PreprocessDataset

PreprocessDataset
PreprocessDataset
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pathl C
path2 C
path3 C

pathl E
path2 E
path3 E

pathl F
path2 F
path3 F

show plots=True
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channel reference
channel reference
channel reference

channel reference
channel reference
channel reference

channel reference

channel reference
channel reference

MNE bandpass filter

MNE bandpass filter
MNE bandpass filter

MNE bandpass filter
MNE bandpass filter
MNE bandpass filter

MNE bandpass filter
MNE bandpass filter
MNE bandpass filter

add annotations
add_annotations
add annotations
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show plots=True
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. SUbjE 1.add annotations
. SubjE 2.add annotations
. SubjE 3.add annotations

. SubjF 1.add annotations
SubjF 2.add annotations
SubjF 3.add annotations

ica C 1 = SubjC 1.apply ICA(ICA exclude show plots=True
ica C 2 = SubjC 2.apply ICA(ICA exclude
ica C 3 = SubjC 3.apply ICA(ICA exclude

ica E 1 = SubjE 1.apply ICA(ICA exclude
ica E 2 = SubjE 2.apply ICA(ICA exclude
ica E 3 = SubjE 3.apply ICA(ICA exclude

ica F 1 = SubjF 1.apply ICA(ICA exclude
ica F 2 = SubjF 2.apply ICA(ICA exclude
ica F 3 = SubjF 3.apply ICA(ICA exclude

epochl C, labell C SubjC 1.create epochs . 3, show plots=True
epoch2 C, label2 C SubjC 2.create epochs . 3
epoch3 C, label3 C SubjC 3.create epochs . 3

epochl E, labell E SubjE 1.create epochs
epoch2 E, label2 E SubjE 2.create epochs
epoch3 E, label3 E SubjE 3.create epochs

epochl F, labell F SubjF 1.create epochs
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epoch2 F, label2 F SubjF 2.create epochs(ica F 2, tmin 1.3, tmax
epoch3 F, label3 F SubjF 3.create epochs(ica F 3, tmin 1.4, tmax

SubjC 1.plot electrodes and psd

epochs train np.concatenate( (epochl C, epoch2 C, epochl E,epoch2 E, epochl F,epoch2 F
labels np.concatenate((labell C, label2 C, labell E, label2 E, labell F,label2 F
epochs test np.concatenate( (epoch3 C, epoch3 E, epoch3 F

label test np.concatenate((label3 C, label3 E, label3 F

Train feats ProcessDataset (SubjC 1, epochs train, labels
Test feats ProcessDataset (SubjC 1, epochs test, label test

csp = Train feats.create CSP(show plot = True

Subj ATl Model LR

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est

144



Motor imagery-based brain-computer interface by implementing a frequency band selection.

clf = Subj ALL.ML classification(csp, epochs train, labels, epochs test, label test, classif 'RF'

print('\nAll Subjects:'

Subj All.test model(epochs test, label test, show plot = True
print('\nSubject C:'

Subj All.test model(epoch3 C, label3 C
print('\nSubject E:'

Subj All.test model(epoch3 E, label3 E
print('\nSubject F:'

Subj All.test model(epoch3 F, label3 F

open('LeftRight Classification More Data all.pkl', 'wb'
pickle.dump(clf,f
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A3. Annex 3: Imagery vs Resting state (Organized in classes) [Imagery_vs_Resting.py]

IMAGERY VS NON-IMAGERY.

In this script, numerous classes used for preprocessing, processing, and classifying imageries vs resting
states

will be coded.

@author: Ali Abdul Ameer Abbas

numpy np

matplotlib.pyplot plt

mne

pymatreader

scipy.stats

pandas pd
mne.decoding CSP

sklearn.pipeline Pipeline

sklearn.discriminant analysis LinearDiscriminantAnalysis
sklearn.model selection ShuffleSplit, cross val score
sklearn.svm SvC

sklearn.neighbors KNeighborsClassifier

sklearn.naive bayes GaussianNB

sklearn.ensemble RandomForestClassifier
sklearn.discriminant analysis QuadraticDiscriminantAnalysis

sklearn.model selection learning curve
sklearn.metrics plot confusion matrix, confusion matrix, precision score, recall score, auc

roc curve
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sklearn.model selection RandomizedSearchCV
sklearn.preprocessing StandardScaler, MinMaxScaler

tensorflow tf

tensorflow.keras.layers Dense, Input, GlobalMaxPoolinglD, Dropout, Activation
TimeDistributed, LSTM, concatenate

tensorflow. keras. layers ConvlD, Conv2D, MaxPooling2D, MaxPoolinglD, Embedding, Reshape
Flatten

tensorflow. keras.models Model, Sequential

tensorflow. keras.callbacks EarlyStopping

tensorflow. keras.optimizers Adam, SGD, RMSprop

keras regularizers

keras.layers.normalization BatchNormalization

scipy.signal stft
scipy.stats norm

pywt

PreprocessDatasetPass

This class will preprocess a file containing EEG recordings.

It assigns a common reference, apply an ICA, filter the data. It also segments and annotates the
data.

It is used for Imagery vs Non-imagery.

~_init (self, path, montage 'standard 1020', show plots False, bad chan

Intialize the class by reading and reconstructing the signals.
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INPUTS:
montage --> The reference selected.
path --> The path of the file.
bad channels --> Bad channels to eliminate.
show plots --> To show the plots of the EEG recording.

self.struct pymatreader.read mat(path, ignore fields=|['previous' variable names
self.struct self.struct['o’

self.chann self.struct/|'chnames'
self.chann self.chann 1

mne.create info(ch names self.chann
sfreq float(self.struct|'sampFreq’ ch types='eeg'
montage= montage, verbose=None

self.data np.array(self.struct| 'data’
self.data self.data 1
self.data V = self.data*1le-6

self.raw mne.io.RawArray(self.data V.transpose self.info, copy "both"
self.raw.info/[ 'bads" bad chan

show plots
self.raw.plot(title 'Raw signal'
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channel reference(self, ref 'average’

Set a reference to the data.
INPUTS:
ref --> Reference.

OUTPUTS:
raw --> Referenced data.

self.raw = self.raw.set eeg reference(ref, projection
self.raw

MNE bandpass filter(self, HP 15, LP = 26, filt type ‘firwin', show plots
skip by annotation='edge'

Apply a BP FIR filter.

INPUTS:

LP,HP --> Low Pass filter, High Pass filter.

filt type --> filter type.

show plots --> To show the plots of the EEG recording.
OUTPUTS:

raw --> Filtered data.

self.raw.filter(HP, LP, fir design = filt type, skip by annotation 'edge’

show plots
self.raw.plot(title 'Filtered Raw'
self.raw.plot psd
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self.raw

apply ICA(self, n_components 10, ICA exclude 0 show plots False

Apply the ICA for removing eye blinking, EMG signals, EKG signals, among other artifacts.

INPUTS:
n_components --> Number of components of the ICA.
ICA exclude --> Array used to eliminate components from teh signals.
show plots --> To show the plots of the EEG recording.
OUTPUTS:
raw ica --> Data after ICA.

self.ica mne.preprocessing.ICA(n _components n_components, random state
method="'fastica’'

filt raw = self.raw.copy
filt raw.filter(l freg=1., h freg=None
self.ica.fit(filt raw

show plots
self.ica.plot components(outlines 'skirt', colorbar=True, contours
self.ica.plot sources(self.raw

self.ica.exclude ICA exclude
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self.raw ica self.ica.apply(self.raw.copy exclude self.ica.exclude

show plots
self.raw.plot
self.raw ica.plot

self.raw ica

type pos pas(self, sfreq 200.0

Gets the marker position.

Just left and right positions, NO PASS marker

I takes into account the right, left, and pass class.

INPUTS:
sfreq --> Sampling frequency.
OUTPUTS:
mark --> markers.
pos --> position of the marker.
time --> time of the marker.

self.markers np.array(self.struct[ 'marker' transpose

mark
pos
time

desc 'left', 'right', 'pass'
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range(len(self.markers) -1
self.markers|1i 0] self.markers[i+1 self.markers|[i+1

mark.append(desc|[self.markers[i+1]-1
pos.append( (i+2
time.append((i+2)/sfreq

mark, pos, time

multi annotations(self, marks, time, window time 1.0
This method is used in order to obtain all the possible pairs of annotation possible
for a future distinctions between Left/Right classes relative to Pass classes.
INPUTS:
marks, time --> The EEG markers and the times thereof.
window time --> Length of the annotation window.
OUTPUTS:
annotations left right, annotations left pass, annotations right pass --> Annotations for
each pair.

mark left right
time left right
mar range(len(marks
marks|[mar 'pass’
mark left right.append(marks|[mar
time left right.append(time[mar
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mark left pass
time left pass
mar range(len(marks
marks|[mar ‘right'
mark left pass.append(marks[mar
time left pass.append(time[mar

mark right pass
time right pass
mar range(len(marks
marks[mar ‘left’
mark right pass.append(marks|[mar
time right pass.append(time[mar

self.annotations left right = mne.Annotations(time left right, window time, mark left right
self.annotations left pass mne.Annotations(time left pass, window time, mark left pass
self.annotations right pass = mne.Annotations(time right pass, window time, mark right pass

self.annotations left right, self.annotations left pass, self.annotations right pass

add annotations and epochs(self, tmin= 2.1, tmax= 3, duration 1

This function uses the tye pos pas function to annotate the markers obtained from all the
combinations

of the multi annotations function. In other words, it stacks together Left and Right imageries,
and

244 differentiate them from the Pass imagery. Furthermore, it creates epochs and balances the data.

246. INPUTS:
247 . tmin, tmax --> Times for segmenting the data.
248. duration -->Its the duration of the annotation.
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OUTPUTS:
All epochs --> Get the epochs.
labels --> Get the labels.

self.mark, self.pos, self.time self.type pos pas

self.annotations 1 r, self.annotations 1 p, self.annotations r p
self.multi annotations(self.mark, self.time, window time 1.0

self.raw.set annotations(self.annotations 1 r

self.events mne.events from annotations(self.raw
self.picks mne.pick channels(self.raw.info["ch names" “c3*, "Cz", "C4"

epochs mne.Epochs (self.raw, self.events[0 self.events|[1 tmin, tmax
picks=self.picks, baseline=None, preload=True

Left Right epochs data self.epochs.get data

raw.set annotations(self.annotations 1 p

events mne.events from annotations(self.raw
picks mne.pick channels(self.raw.info["ch names" “c3", "Cz", "C4"
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epochsl mne.Epochs (self.raw, self.events[0 self.events|[1 tmin, tmax
picks=self.picks, baseline=None, preload=True

epochs2 mne.Epochs (self.raw, self.events[0 self.events|[1 tmin-tmin, tmax-tmin
picks=self.picks, baseline=None, preload=True

e pl epochsl| 'pass'].get data
e p2 epochs2| 'pass'].get data

self.Pass epochs data np.concatenate((e pl,e p2

self.All epochs np.concatenate((self.Left Right epochs data,self.Pass epochs data

labelsl np.array([1 i range(len(self.Left Right epochs data
labels2 np.array([2 i range(len(self.Pass epochs data
self.labels np.concatenate((labelsl, labels2

self.All epochs, self.labels

ProcessDatasetPass

This class will process a file containing EEG recordings.
It is a subclass of the PreprocessDataset class.
Mainly, this class will perform the statistical features and the STFT.
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~_init (self, class pre, epochs, labels

Initialize the class by getting the labels and epochs.
INPUTS:
class pre --> Introduce any class of PreprocessDataset so that important information (info,
chnames, ...) are defined.
epochs --> Epochs obtained from the PreprocessingDataset class. This epochs should combine
multiple subjects.
. labels --> Labels obtained from the PreprocessingDataset class. This epochs should combine
multiple subjects.

self.struct class pre.struct
self.chann class _pre.chann
self.info class pre.info
self.data class pre.data
self.data V = class pre.data V
self.raw class pre.raw
self.markers= class pre.markers
self.mark class pre.mark
self.time class pre.time
self.pos class pre.pos

self.epochs epochs
self.labels labels

self.epochs subj class pre.epochs.get data
self.labels subj class pre.labels

energy (self, signal
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Used for calculating the Energy of the signal.
INPUTS:

signal --> Signal used to obtain the energy.
OUTPUTS:

energy value --> Energy of the signal.

energy value

X signal
energy value
energy value

all entropy(self, pdf

Calculate the Entropies of the signals.
INPUTS:
pdf ---> The Probability density function.

RETURNS:
entropy, shannon_entropy, log energy entropy

self.shannon entropy 0.0
self.entropy = 0.0

self.log energy entropy 0.0
self.pdf pdf

freq self.pdf

self.entropy freq np.log2(freq

self.shannon entropy freq 2 np.log2(freq
self.log energy entropy np.log2(freq 2
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self.entropy self.entropy
self.shannon entropy self.shannon entropy
self.log energy entropy self.log energy entropy

self.entropy,self.shannon entropy, self.log energy entropy

feature extracter(self
Extract the Features of channels C3, Cz, and C4.
OUTPUTS:
skw _epoch dic, krt epoch dic, energy epoch dic,
entropy epoch dic, shannon entropy epoch dic, log energy entropy epoch dic --> dictionaries
of all the features.

Ch "C3" IICZII IIC4|I

self.skw epoch dic chl0 chl1l
self.krt epoch dic chl0 chl1
self.energy epoch dic ch[0 ch[1l
self.entropy epoch dic ch[0 ch[1l
self.shannon _entropy epoch dic ch[0O
self.log energy entropy epoch dic ch[0

epoch self.epochs

data = epoch

self.pdf all
1 range( (data.shapel0
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gau scipy.stats.gaussian kde(datali

dist space np.linspace( min(datali max(datali 100
gau_total np.sum(gau(dist space

pdf gau(dist space)/gau total

self.pdf all.append(pdf

self.skw epoch
i range( (data.shapel[0
self.skw epoch.append(scipy.stats.skew(datali axis=0, bias=True

self.krt _epoch
i range( (data.shape|0
self.krt epoch.append(scipy.stats.kurtosis(datali], axis=0, fisher=True, bias=True
nan_policy='propagate'

self.energy epoch
i range( (data.shape|0
energy value self.energy(datali
self.energy epoch.append(energy value

self.Pi all

range( (data.shapel[0
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coef, = pywt.cwt(datali np.arange(7,20,0.5 ‘morl’

M,N coef.shape

E]
j range(M
Ej.append(sum(abs(coef|]j

Etot=sum(Ej

pi
i Ej
pi.append(i/Etot
self.Pi all.append(pi
self.Pi all np.array(self.Pi all

self.entropy epoch

self.shannon entropy epoch

self.log energy entropy epoch
i range( (data.shape|0

entr, shan, log en self.all entropy(self.pdf all[i
self.entropy epoch.append(entr

self.shannon entropy epoch.append(shan
self.log energy entropy epoch.append(log en

. self.skw epoch dic[ch[0]].append(self.skw epoch[0
self.skw epoch dic[ch|[1 append (self.skw epoch|[1 self.skw epoch dic

O
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ch[2 append (self.skw epoch[2
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self.krt epoch dic[ch[0 append(self.krt epoch[0
krt _epoch dic[ch[1 append(self.krt epoch[1 self.krt epoch dic[ch[2 append (self.krt epoch[2
self.energy epoch dic[ch[0 append(self.energy epoch[0
energy epoch dic[ch[1 append(self.energy epoch[1
energy epoch dic[ch[2 append(self.energy epoch|2
self.shannon _entropy epoch dic[ch[0 append(self.shannon _entropy epoch[0
shannon entropy epoch dic[ch[1l append(self.shannon entropy epoch[1
shannon_entropy epoch dic[ch[2]].append(self.shannon entropy epoch[2
self.log energy entropy epoch dic[ch[0 append(self.log energy entropy epoch|[0
log energy entropy epoch dic[ch|[1 append(self.log energy entropy epoch[1
log energy entropy epoch dic[ch[2 append(self.log energy entropy epoch[2
self.entropy epoch dic[ch[0 append(self.entropy epoch[0
entropy epoch dic[ch[1 append(self.entropy epochl[1l
entropy epoch dic[ch[2 append(self.entropy epoch|[2

self.skw epoch dic, self.krt epoch dic, self.energy epoch dic, self.entropy epoch dic

shannon entropy epoch dic, self.log energy entropy epoch dic

feature ex(self, skw, krt, energy, entropy, shannon, log
Method for organizing the features of all the epochs.
INPUTS:
skw, krt, energy, entropy, shannon, log --> dictionaries of each feature.
OUTPUTS:
big feat --> Organized features.

big feat
ch 'c3','c4', 'cz!

j range(len(skw['C3"'

small feat
i range(len(ch
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new small feat skwlch[i j krt[ch[i j energy(ch[i ' entropy(ch[1i
shannon[ch[i ] loglch[i ]
small feat.extend(new small feat
big feat.append(small feat
big feat

ShortTimeFourierTransform(self, fs=200.0, window='hann',6 nperseg=181, noverlap=180
Obtain the STFT features.
INPUTS:
fs --> Sampling frequency.
window --> Window type.
nperseg --> Samples per segment.
noverlap --> Overlap allowance.
OUTPUT:
coef --> STFT Coeficients

frec, tim, self.coef stft(self.epochs, fs fs, window = window, nperseg nperseg, noverlap
noverlap
self.coef= np.abs(self.coef

self.coef

Model IR

Model Imagery/Resting. Class to organize the AI models with the best results used to distinguish

between an Imagery
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and an Imagery.

ML classification(self, epochs train, labels train, epochs test, labels test, classif 'RF'

Uses ML classifiers in conjunction with the statistical features to train and test the motor
imageries.

INPUTS:
epochs train, labels train --> Introduce the statistical features and labels for training

.the models.

epochs test, labels test --> Introduce the statistical features and labels for testing the
models.
classif --> The classifier used. (LDA, RF, SVM, KNN, NB, QDA)
OUTPUTS:
clf --> return the model.

scores

labels = labels train
epochs data train = epochs train

epochs test = epochs test
labels test = labels test

cv = ShuffleSplit(10, test size=0.2, random state=None
cv_split self.cv.split(self.epochs data train
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LinearDiscriminantAnalysis
SVC(kernel

GaussianNB
QuadraticDiscriminantAnalysis

RandomForestClassifier(n _estimators

self.scale

classif
self.clf

classif
self.clf

classif
self.clf

classif
self.clf

classif

164

"LDA"

Pipeline

IQDAI
Pipeline

'SVM'
Pipeline

"KNN'
Pipeline

INBI

‘rbf'
KNeighborsClassifier(n neighbors

0.00001, C 10000
25, weights

gamma
'uniform!'

100
min samples split 16

min samples leaf = 4

max features 'sqrt'
max_depth = 8

bootstrap = True

StandardScaler

scale self.lda

scale

self.qda

scale self.svm

scale self.knn
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self.clf Pipeline 'scale', self.scale 'NB', self.NB

self.clf Pipeline 'scale', self.scale '‘RF', self.RF

self.scores cross val score(self.clf, self.epochs data train, self.labels, cv=self.cv

self.clf.fit(self.epochs data train self.labels

self.testing score self.clf.score(self.epochs test, self.labels test

print('Accuracy: ', self.testing score
print('Precision: ', precision score(self.labels test

.self clf.predict(self.epochs test

print('Recall: ', recall score(self.labels test self.clf.predict(self.epochs test

self.class balance np.mean(self.labels self.labels|[0

self.class balance = max(self.class balance, 1. self.class balance

print("Classification accuracy: Sf +- %f / Chance level: %f" np.mean(self.scores
np.std(self.scores

self.class balance

plt.rc('xtick', labelsize=20

plt.rc('ytick', labelsize=20

plt.rcParams.update({'font.size': 16

plt.rc('axes', titlesize=30, labelsize=25

plot confusion matrix(self.clf, self.epochs test, self.labels test
plt.show
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self.clf

CNN classification(self, Coef train, labels, Coef test, label test, input shape 3,91,181
filterl 120, filter2 240, densel 164, dense2 128, kern size 3,3
padding ‘same', activationl ‘relu', activation2 ‘sigmoid', drop = 0.2
pool sizel = 2, pool size2 1, lr = 0.0001, dec 300, mom = 0.8
bch size = 40, epo = 260

Uses CNN classifiers in conjunction with STFT to train and test imageries vs the resting state.
This CNN has 2 CNN layers and 3 dense layers.

INPUTS:
Coef train, labels --> Introduce the STFT Coeficients and labels for training the models.
Coef test, label test --> Introduce the STFT Coeficients and labels for testing the models.
input shape --> Shape inserted on the first layer of teh CNN.
filterl, filter2 --> Filter size of layers 1 and 2 of the CNN.
densel, dense2 --> Size of Dense layers 1 and 2 of the CNN.
ker size --> Kernel size.
padding --> Padding type.
activationl --> Activation function of all the layers except the last one.
activation2 --> Activation function of the last layer.
drop --> Dropout ratio.
pool sizel, pool size2 --> Pools size of layers 1 and to of the CNN.
lr --> Learning rate.
dec --> Denominator for the decay rate DECAY = 1lr/dec.
mom --> Momentum.
bch size --> Batch Size.
epo --> Epochs of the CNN (Iterations).
QUTPUTS:
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model --> Return the model.
scale -> Returns the scaler.

tf.config.list physical devices('GPU'

self.model Sequential

self.model.add(Conv2D(filters = filterl, kernel size
activationl, input shape input shape

self.model.add(MaxPooling2D(pool size pool sizel
self.model.add(Dropout(drop

self. model.add(Conv2D(filters filter2, kernel size
activation activationl

self.model.add(MaxPooling2D(pool size pool size2

self.model.add(Dropout(drop

self.model.add(Flatten

self.model.add(Dense(densel, activation activationl
self.model.add(Dropout(drop

self.model.add(Dense(dense2, activation activationl
self.model.add(Dropout(drop
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self.model.add(Dense(1l, activation activation2

learning rate = lr
decay rate = learning rate/dec
momentum mom

self.opt SGD(learning rate=learning rate, momentum=momentum, decay=decay rate
nesterov=False

self.model.compile(loss="'binary crossentropy', optimizer= self.opt, metrics=['accuracy'

self.model.summary

X train = Coef train
y train = labels-1

X test Coef test

y test label test-1

5 X train re = X train.reshape(X train.shape|[0
X train.shape[1l]*X train.shape[2]*X train.shape[3
self.scaler = MinMaxScaler(feature range=(0,1
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self.X train norm = self.scaler.fit transform(X train re
self.X train norm
self.X train norm.reshape(X train.shape[0],X train.shape[l],X train.shape[2],X train.shape[3

X test re = X test.reshape(X test.shape[0], X test.shape[l]*X test.shape[2]*X test.shapel3
self.X test norm = self.scaler.transform(X test re
self.X test norm = self.X test norm.reshape(X test.shape[0

X test.shape[l],X test.shape[2],X test.shape[3

history = self.model.fit(self.X train norm, y train, batch size = bch size, epochs = epo
validation data=(self.X test norm, y test

history df pd.DataFrame(self.model.history.history).rename(columns={"loss":"train loss"
"accuracy":"train accuracy"

history df.plot(figsize=(8,8

plt.grid(True

plt.xlabel('Epochs'

plt.ylabel('Accuracy'

plt.show

self.predictions self.model.predict(self.X test norm 0.5).astype("int32"
self.testing score self.model.evaluate(self.X test norm, y test

print('Accuracy: ', self.testing score
print(recall score(y test, self.predictions

print(precision score(y test, self.predictions

self.model, self.scaler
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A4. Annex 4: Imagery vs Resting state (Executable) [Main_Imagery_vs_Resting.py]

Ooo~NOOULE WN -

Main script for training and testing the AI models for the Imagery vs Resting state.

@author: Ali Abdul Ameer Abbas

numpy np
matplotlib.pyplot plt

scipy.signal stft
pickle

Imagery vs Resting PreprocessDatasetPass

. plt.rc('xtick', labelsize=20
. plt.rc('ytick', labelsize=20
. plt.rc('axes', titlesize=30, labelsize=25

../Data/CLA/CLASubjectC1512233StLRHand.
. ./Data/CLA/CLASubjectC1512163StLRHand.
../Data/CLA/CLASubjectC1511263StLRHand.

../Data/CLA/CLASubjectB1510193StLRHand.
../Data/CLA/CLASubjectB1510203StLRHand.
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ProcessDatasetPass

O

Model IR
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. SubjC 1
. SubjC 2
. SubjC 3

. SubjE 1
. SubjE 2
. SubjE 3

. SubjF 1
. SubjF 2
. SubjF 3

../Data/CLA/CLASubjectB1512153StLRHand.

. ./Data/CLA/CLASubjectE1512253StLRHand.
../Data/CLA/CLASubjectE1601193StLRHand.
../Data/CLA/CLASubjectE1601223StLRHand.

../Data/CLA/CLASubjectF1509163StLRHand.
. ./Data/CLA/CLASubjectF1509173StLRHand.
../Data/CLA/CLASubjectF1509283StLRHand.

PreprocessDatasetPass
PreprocessDatasetPass
PreprocessDatasetPass

PreprocessDatasetPass
PreprocessDatasetPass
PreprocessDatasetPass

PreprocessDatasetPass
PreprocessDatasetPass
PreprocessDatasetPass

. SubjC 1.channel reference
. SubjC 2.channel reference
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pathl C
path2 C
path3 C

pathl E
path2 E
path3 E

pathl F
path2 F
path3 F

show plots=True
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channel reference

channel reference
channel reference
channel reference

channel reference
channel reference
channel reference

MNE bandpass filter
MNE bandpass filter
MNE bandpass filter

MNE bandpass filter
MNE bandpass filter
MNE bandpass filter

MNE bandpass filter
MNE bandpass filter
MNE bandpass filter

epochl C, labell C
epoch2 C, label2 C
epoch3 C, label3 C

epochl E, labell E
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26, show plots=True
26
26

26
26
26

26
26
26

add _annotations and epochs(tmin
add annotations and epochs(tmin
add _annotations and epochs (tmin

add annotations and epochs(tmin
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epoch2 E, label2 E SubjE 2.add annotations and epochs(tmin 2
epoch3 E, label3 E SubjE 3.add annotations and epochs(tmin 2.2, tmax
epochl F, labell F SubjF 1.add annotations and epochs(tmin 1, tmax
epoch2 F, label2 F SubjF 2.add annotations and epochs(tmin 1.3, tmax
epoch3 F, label3 F SubjF 3.add annotations and epochs(tmin 1.4, tmax

A1l epochs np.concatenate((epochl C, epoch2 C, epochl E,epoch2 E, epochl F, epoch2 F

labels np.concatenate((labell C, label2 C, labell E, label2 E, labell F, label2 F

All epochs test np.concatenate((epoch3 C, epoch3 E, epoch3 F
label test np.concatenate((label3 C, label3 E, label3 F

Train feats ProcessDatasetPass(SubjC 1, All epochs, labels
Test feats ProcessDatasetPass(SubjC 1, All epochs test, label test

C skw, C krt, C energy, C entropy, C shannon, C log Train feats.feature extracter
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D skw, D

FEAT
FEAT n

FEAT tes
FEAT tes

Coef tra

Coef tes

i
frec

plt
plt
plt
plt
plt
plt
plt
plt
plt
plt

- krt

Train feats.feature ex(C skw, C krt

p.array (FEAT

t

t np.array (FEAT test

in

t

range(3
tim, Zx =stft(All epochs[-1,1i
figure

pcolormesh(tim, frec, np.abs(Zx
title('STFT Magnitude {}'.format
ylim([5,30

ylabel('Frequency [Hz]', fontsize
xlabel('Time [sec]', fontsize=20
xticks(fontsize=16

yticks (fontsize=16

colorbar

show
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D energy, D entropy, D shannon

Test feats.feature ex(D skw, D krt

Train feats.ShortTimeFourierTransform(fs=200.0, window='hann',6 nperseg=181

Test feats.ShortTimeFourierTransform(fs=200.0, window='hann',6 nperseg=181

D log= Test feats.feature extracter

C energy, C entropy, C shannon, C log

D energy, D entropy, D shannon, D log

noverlap=180

noverlap=180

fs=200.0, window='hann', nperseg=181, noverlap=180

shading="'gouraud' 0,vmax=0.8e-6

IIC3II IICZII ||C4||

cmap="'jet',vmin
i fontsize=30

20
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Subj train = Model IR

clf = Subj train.ML classification(FEAT, labels, FEAT test, label test, classif 'RF'

open('RightlLeft vs Pass Classification all.pkl', 'wb'
pickle.dump(clf, f

model, scaler = Subj train.CNN classification(Coef train, labels, Coef test, label test

model.save('Pass vs Left Right with DL all.h5'

open('Pass vs Left Right with DL Scaler all.pkl',6 'wb'
pickle.dump(scaler, f
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A5. Annex 5: Sliding Window and serial communication (Executable) [Main_Sliding_Window.py]

In this script, the trained AI models will be tested on one entire session of Subject C, by sliding
the session inside a Window. Both AI models will work cooperatively to classify each signal the same
way as it would do on a real-time implementation.

@author: Ali Abdul Ameer Abbas

Ooo~NOOULE WN -

pickle

pywt

numpy np

matplotlib.pyplot plt

mne

pymatreader

scipy.stats

tensorflow tf
scipy.signal firwin, lfilter
scipy.signal stft

serial

time

Left vs Right PreprocessDataset, ProcessDataset
Imagery vs Resting PreprocessDatasetPass, ProcessDatasetPass

'xtick', labelsize=20
'ytick', labelsize=20
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. plt.rc('axes', titlesize=30, labelsize=25

. path '../Data/CLA/CLASubjectC1511263StLRHand.mat"

. Subject C PreprocessDataset (path

. Subject C.channel reference

open('LeftRight Classification More Data all.pkl',6 'rb'
clf4d pickle.load(f

. DL model Pass detection = tf.keras.models.load model('Pass vs Left Right with DL all.h5'

open('Pass vs Left Right with DL Scaler all.pkl', 'rb' f
Pass scaler = pickle.load(f

. AciscoAll = Subject C.raw.get data

. picks mne.pick channels(Subject C.raw.info["ch names" "c3", "Cz", "C4"
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. Acisco = Subject C.raw.get data(picks=picks

bandpass firwin(ntaps, lowcut, highcut, fs 200, window "hann'

nyq 0.5 fs
taps firwin(ntaps lowcut, highcut nyg=nyq, pass zero=False
window=window, scale=False

taps

. filt length 150
. lowcut 15
. highcut 26

. delay np.ceil((filt length-1)/2

. FIR Coeficients bandpass firwin(filt length, lowcut,6 highcut, fs 200, window='hamming'
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w, mag scipy.signal.freqz(FIR Coeficients, 1, fs=200

figure

title('Impulse Response of the FIR filter', fontsize="30"
xlabel('Samples', fontsize=20

ylabel('Amplitude', fontsize=20

plot (FIR Coeficients

show

axs plt.subplots(2

suptitle('FIR filter BODE', fontsize=30

0] .plot(w, 20*np.loglO(np.abs(mag

0].set xlabel('Frequency (Hz)', fontsize=20
0] .set ylabel('Magnitude (dB)', fontsize=20

1] .plot(w, np.unwrap(np.angle(mag,deg=False
1] .set xlabel('Frequency (Hz)', fontsize=20
1] .set ylabel('Phase (rad)', fontsize=20

show

axs plt.subplots(2
suptitle('Before and after filtering', fontsize=30
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Acisco int (2500%200) :int (2500%200+180+delay
plot(ACA[O][1

set xlabel('Samples', fontsize=20

set ylabel('Amplitude', fontsize=20

set xlabel('Samples', fontsize=20

set ylabel('Amplitude', fontsize=20
Lfilter(FIR Coeficients, 1.0, ACA

plot (ACA[O][1

arduino.close

arduino serial.Serial ('COM3', timeout=None, baudrate=9600
time.sleep(2

print('Arduino not connected’

times 0
prediction markers
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prediction times

start time 170
stop time = 500
step 0.1

i np.arange(start time, stop time, step
vala i

ACA All AciscoAll int(vala*200):int(vala*200+181+delay

ACA All 1filter(FIR Coeficients, 1.0, ACA All
ACA All np.array (ACA All int (delay

ACA Acisco int(vala*200):int(vala*200+181+delay
ACA = 1filter(FIR Coeficients, 1.0, ACA
ACA np.array (ACA int (delay

frec, tim, Zx =stft(ACA, fs=200.0, window='hann',K nperseg=181, noverlap=180
FEAT np.abs (Zx

pred
int( (DL model Pass detection.predict(Pass scaler.transform(np.array(FEAT).reshape(1l,3%91%181 reshape(1l
3,91,181 0.2).astype("int32" 1
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pred 1
i times[0

pred2 = list(clf4.predict(np.array(ACA All

pred2 prob clf4.predict proba(np.array(ACA All
print(clf4.predict(np.array(ACA All clf4.predict proba(np.array(ACA All

arduino.write((str(pred2[0 ‘\n') .encode

times[0]+0.5

arduino.write(('Reset'+'\n').encode

pred?2 1

print(round(i, 1 'Left prediction'
prediction markers.append('Left prediction'
prediction times.append(i

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est




Motor imagery-based brain-computer interface by implementing a frequency band selection.

pred2 p

print(round(i, 1 'Right prediction'
prediction markers.append('Right prediction'
prediction times.append(i

times [0 i

arduino.close
print(‘'Data sent.'

prediction markers np.array(prediction markers
prediction times np.array(prediction times

new prediction markers

new prediction times
segment

times prediction times[0

i, timer enumerate(prediction times

timer times 0.5

len(segment
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segment label prediction markers[segment
segment time prediction times|[segment

left count np.char.count(segment label, 'Left prediction').sum
right count np.char.count
segment label, 'Right prediction').sum
left count right count right count 4
new prediction markers.append('Left prediction'

new prediction times.append(list(segment time) [0

left count right count left count 4

new prediction markers.append('Right prediction'

new prediction times.append(list(segment time) [0

segment
segment

segment.append (i
times timer

mark, pos, timer Subject C.type pos
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mark.extend(new prediction_markers
timer.extend(new prediction times

annotations mne.Annotations(timer, 1.0, mark
Subject C.raw.set annotations(annotations
Subject C.raw.plot(duration=1000.0,start=500.0
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A6. Annex 6: Arduino receiving inputs for moving the MeArm (Executable) [Arduino_serial_com.ino]

/*

This code enables a Serial communication with Python in order to control
a MeArm robotic manipulator. When 4 consecutive predictions are the same,
the robotic manipulator moves.

@author: Ali Abdul Ameer Abbas
*/

Ooo~NOOULE WN -

. Servo baseMotor

count left
count right

. String InputBytes

setup
Serial.begin (9600
baseMotor.attach(9
baseMotor.write (60

loop
if (Serial.available 0

InputBytes Serial.readStringUntil('\n'
Serial. flush

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est

186



Motor imagery-based brain-computer interface by implementing a frequency band selection.

if (InputBytes "l
count left 1
count_right 0
if (count left 4

baseMotor.write(120
delay (100

if (InputBytes "2
count left 0

count_right 1

if (count right 4
baseMotor.write(0
delay (100

if (InputBytes "Reset™
count left = 0
count right= 0
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A7. Annex 7: ERDS maps generator (Executable) [ERDS_maps.py]

In this code the ERDS maps will be visualized for determining a suitable frequency and time for

segmenting
and filtering the data.

@author: Ali Abdul Ameer Abbas (with the help of the MNE documentation)

numpy np
matplotlib.pyplot plt
mne

mne.datasets eegbci

mne.io concatenate raws, read raw edf

mne.time frequency tfr multitaper
mne.stats permutation cluster lsamp test pcluster test

mne.viz.utils center_cmap
pymatreader

'../Data/CLA/CLASubjectC1512233StLRHand.mat"

. struct pymatreader.read mat(path, ignore fields=['previous' variable names ‘o'

. struct struct['o'
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. chann struct/|'chnames'
. chann chann 1
. info = mne.create info(ch names chann
sfreq float(struct|'sampFreq' ch types='eeg', montage='standard 1020
verbose=None

. data np.array(struct/['data’
. data = data 1
. data V = data*le-6

. raw = mne.io.RawArray(data V.transpose info, copy "both"

. raw raw.set eeg reference('average', projection= False

type pos(markers, sfreq 200.0
Gets the marker position.
Just left and right positions, NO PASS marker
Only takes into account the right and left class, not the passive class.

INPUTS:
markers --> Markers.
sfreq --> Sampling frequency.
OUTPUTS:
mark --> markers.
pos --> position of the marker.
time --> time of the marker.
mark
pos
time
desc 'left', 'right'
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range(len(markers) -1
markers|1i (0] markers|[1i+1 markers[i+1

mark.append(desc[markers[i+1]-1
pos.append( (i+2
time.append((i+2)/sfreq

mark, pos, time

. markers np.array(struct[ 'marker' transpose
mark, pos, time type pos(markers

. annotations mne.Annotations(time, 3.0, mark
. raw.set annotations(annotations

. events, mne.events from annotations(raw

. picks mne.pick channels(raw.info["ch names" "c3", "Cz"
. tmin, tmax 1, 4

. event ids = dict(left=1, right=2

. epochs mne.Epochs(raw, events, event ids, tmin 0.5, tmax
picks=picks, baseline=None, preload=True

. fregs np.arange(2, 36, 1

. n_cycles freqgs

. vmin, vmax 1, 1.5

. baseline 1, 0

. cmap center cmap(plt.cm.jet, vmin, vmax
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96. kwargs dict(n permutations=100, step down p=0.05, seed=1
buffer size=None

tfr = tfr multitaper(epochs, freqs=freqs, n cycles=n cycles
use fft=True, return itc=False, average=False
decim=2

tfr.crop(tmin, tmax
tfr.apply baseline(baseline, mode="percent"

event event ids

tfr ev = tfrlevent
fig, axes plt.subplots(1l, 4, figsize=(12, 4
gridspec kw={"width ratios" 10, 10, 10
ch, ax enumerate(axes 1

cl, pl, = pcluster test(tfr ev.data ch tail=1

c2, p2, = pcluster test(tfr ev.data ch tail=-1
kwargs

stack(cl Cc2, axis=2
concatenate((pl, p2
C p 0.05] .any(axis=-1

average plot([ch vmin=vmin, vmax=vmax, cmap=(cmap, False

axes=ax, colorbar=False, show=False, mask=mask
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mask style="mask"

ax.set title(epochs.ch names[ch], fontsize=10
ax.axvline(0, linewidth=1, color="black", linestyle=":"

ax.is first col
ax.set ylabel(""
ax.set yticklabels(""

colorbar(axes[0].images|[ -1 cax=axes|[-1
suptitle("ERDS ({})".format(event
show

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est

192



Motor imagery-based brain-computer interface by implementing a frequency band selection.

A8. Annex 8: Streamlit application for collecting the dataset (Executable) [dataset_collector_BCl.py]

In this script, an eGUI will be created to guide each participant in the motor imagery
movements that they must do in order to collect data for the dataset appropriately.
The application will be created thanks to the streamlit library.

@author: Ali Abdul Ameer Abbas

Ooo~NOOULE WN -

random randint
streamlit st

PIL Image
pandas pd
time

. st.set page config

page title="EEG Imagery"

page icon="("

layout="wide"

initial sidebar state="expanded"

menu_items
'Get Help': 'https://www.extremelycoolapp.com/help'
'Report a bug': "https://www.extremelycoolapp.com/bug"
"About': "Motor Imagery"
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. primaryColor="#F63366"

. backgroundColor="#FFFFFF"

. secondaryBackgroundColor="#FOF2F6"
. textColor="#111111"

. font="sans serif"

. st.markdown
fll nn
<style>
.stApp {{
background: url("https://png.pngtree.com/thumb back/fw800/background/20190830/pngtree-color-
network-with-dots-on-white-background-image 310198.jpg");

}}
</style>

unsafe allow html=True

. st.title("Motor Imagery BCI", anchor=None
. st.subheader("Ali Abdul Ameer Abbas"

. patient st.text input('Participant Identification', ‘'Unkown'
. trial st.text input('Trial', 'Unkown'

. coll, col2, col3 = st.columns(3
coll
st.markdown("<hl style='text-align: center; color: black;'>LEFT</h1>", unsafe allow html=True

col2
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st.markdown("<hl style='text-align: center; color: black; '>PASS</h1>", unsafe allow html=True
col3

st.markdown("<hl style='text-align: center; color: black;'>RIGHT</h1>", unsafe allow html=True

. placeholder image 1 coll.empty
. placeholder image 2 col2.empty
. placeholder image 3 col3.empty

coll

img3 = Image.open("FOTOS ALAWI/MANO VACIA IZQUIERDA.png"
placeholder image 1.image(img3

col2

img3 Image.open("FOTOS ALAWI/NADA.jpg"

placeholder image 2.image(img3

col3
img3 Image.open("FOTOS ALAWI/MANO VACIA DERECHA.png"
placeholder image 3.image(img3

. segundos

. fs = 200

. repetitions segundos fs
. storage vector

: flag (0
st.button('START', key="14"
flag 1

st.button("STOP", key="2"
flag 0
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1
» range(10
number randint(1l, 3

coll
number 1

img3 Image.open("FOTOS ALAWI/MANO VACIA IZQUIERDA VERDE.png"
placeholder image 1.image(img3

time.sleep(segundos

storage vector.extend([1 repetitions

img3 Image.open("FOTOS ALAWI/MANO VACIA IZQUIERDA.png"
placeholder image 1.image(img3

time.sleep(segundos

storage vector.extend( [0 repetitions

img3 Image.open("FOTOS ALAWI/MANO VACIA IZQUIERDA.png"
placeholder image 1.image(img3

col2
number p
img3 Image.open("FOTOS ALAWI/NADA VERDE. jpeg"
placeholder image 2.image(img3
time.sleep(segundos
storage vector.extend([2 repetitions
img3 Image.open("FOTOS ALAWI/NADA. jpg"
placeholder image 2.image(img3
time.sleep(segundos
storage vector.extend([0 repetitions
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Motor imagery-based brain-computer interface by implementing a frequency band selection.

img3 Image.open("FOTOS ALAWI/NADA. jpg"
placeholder image 2.image(img3

col3

number 3

img3 Image.open("FOTOS ALAWI/MANO VACIA DERECHA VERDE.png"
placeholder image 3.image(img3

time.sleep(segundos

storage vector.extend([3 repetitions

img3 Image.open("FOTOS ALAWI/MANO VACIA DERECHA.png"
placeholder image 3.image(img3

time.sleep(segundos

storage vector.extend( [0 repetitions

img3 Image.open("FOTOS ALAWI/MANO VACIA DERECHA.png"
placeholder image 3.image(img3

df pd.DataFrame(storage vector
print(df

df .to csv(f'{patient} {trial} Record.csv'
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