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Abstract 

Motor Imagery-based Brain-Computer Interfaces (MI-BCI) are a promise to revolutionize the way 

humans interact with machinery or software, performing actions by just thinking about them. 

Patients suffering from critical movement disabilities, such as amyotrophic lateral sclerosis (ALS) or 

tetraplegia, could use this technology to control a wheelchair, robotic prostheses, or any other device 

that could let them interact independently with their surroundings.  

The focus of this project is to aid communities affected by these disorders with the development of a 

method that is capable of detecting, as accurately as possible, the intention to execute movements 

(without them occurring) in the upper extremities of the body. This will be done through signals 

acquired with an electroencephalogram (EEG), their conditioning and processing, and their 

subsequent classification with artificial intelligence models. In addition, a digital signal filter will be 

designed to keep the most characteristic frequency bands of each individual and increase accuracy 

significantly. 

After extracting discriminative statistical, frequential, and spatial features, it was possible to obtain an 

88% accuracy on validation data when it came to detecting whether a participant was imagining a 

left-hand or a right-hand movement. Furthermore, a Convolutional Neural Network (CNN) was used 

to distinguish if the participant was imagining a movement or not, which achieved a 78% accuracy 

and a 90% precision. These results will be verified by implementing a real-time simulation with the 

usage of a robotic arm.   
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Resumen 

Las interfaces cerebro-computadora basadas en imaginaciones motoras (MI-BCI) son una promesa 

para revolucionar la forma en que los humanos interactúan con las máquinas o el software, 

realizando acciones con tan solo pensar en ellas. Los pacientes que sufren discapacidades críticas del 

movimiento, como la esclerosis lateral amiotrófica (ALS) o la tetraplejía, podrían usar esta tecnología 

para controlar una silla de ruedas, prótesis robóticas o cualquier otro dispositivo que les permita 

interactuar de manera independiente con su entorno. 

El objetivo de este proyecto es ayudar a las comunidades afectadas por estos trastornos con el 

desarrollo de un método que sea capaz de detectar, con la mayor precisión posible, la intención de 

ejecutar movimientos (sin que se produzcan) en las extremidades superiores del cuerpo. Esto se hará 

mediante señales adquiridas con un electroencefalograma (EEG), su acondicionamiento y 

procesamiento, y su posterior clasificación con modelos de inteligencia artificial. Además, se diseñará 

un filtro de señal digital para mantener las bandas de frecuencia más características de cada 

individuo y aumentar significativamente la exactitud del sistema. 

Después de extraer características estadísticas, frecuenciales y espaciales discriminatorias, fue 

posible obtener una exactitud del 88% en los datos de validación a la hora de detectar si un 

participante estaba imaginando un movimiento con la mano izquierda o con la derecha. Además, se 

utilizó una red neural convolucional (CNN) para distinguir si el participante estaba imaginando un 

movimiento o no, lo que logró un 78% de exactitud y un 90% de precisión. Estos resultados se 

verificarán implementando una simulación en tiempo real con el uso de un brazo robótico. 
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Resum 

Les interfícies cervell-ordinador basades en imaginacions motores (MI-BCI) són una promesa per a 

revolucionar la manera com els humans interactuen amb les màquines o el programari, realitzant 

accions només amb el pensament. Els pacients que pateixen discapacitats de moviment crítiques, 

com l'esclerosi lateral amiotròfica (ALS) o la tetraplegia, podrien utilitzar aquesta tecnologia per 

controlar una cadira de rodes, pròtesis robòtiques o qualsevol altre dispositiu que els permeti 

interactuar de manera independent amb el seu entorn. 

L'objectiu d'aquest projecte és ajudar les comunitats afectades per aquests trastorns amb el 

desenvolupament d'un mètode que sigui capaç de detectar, amb la màxima precisió possible, la 

intenció d'executar moviments (sense que es produeixin) en les extremitats superiors del cos. Això es 

farà mitjançant senyals adquirits amb un electroencefalograma (EEG), el seu condicionament i 

processament, i la seva posterior classificació amb models d'intel·ligència artificial. A més, es 

dissenyarà un filtre de senyal digital per mantenir les bandes de freqüència més característiques de 

cada individu i augmentar significativament l’exactitud del sistema. 

Després d'extreure les característiques estadístiques, freqüencials i espacials més discriminatòries, va 

ser possible obtenir una exactitud del 88% en les dades de validació a l'hora de detectar si un 

participant estava imaginant un moviment de la mà esquerra o de la dreta. A més, es va utilitzar una 

xarxa neuronal convolucional (CNN) per distingir si el participant estava imaginant un moviment o no, 

la qual cosa va aconseguir una exactitud del 78% i una precisió del 90%. Aquests resultats es 

verificaran mitjançant la implementació d'una simulació en temps real amb l'ús d'un braç robòtic. 
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Glossary 

BCI: Brain-Computer Interface.  

MI: Motor Imagery.  

MI-BCI: Motor Imagery-based Brain-Computer Interface 

EEG: Electroencephalogram. 

MEG: Magnetoencephalography. 

fMRI: functional Magnetic Resonance Imaging. 

fNIRS: functional Near-Infrared Spectroscopy. 

ECoG: Electrocorticogram. 

ALS: Amyotrophic Lateral Sclerosis. 

SCI: Spinal Cord Injury. 

AI: Artificial Intelligence. 

FIR: Finite Impulse Response. 

IIR: Infinite Impulse Response. 

SMA: Supplementary Motor Area.  

SMR: Sensorimotor Rhythm. 

ERS: Event-Related Synchronization. 

ERD: Event-Related Desynchronization. 

ERDS: Event-Related Desynchronization  and Synchronization. 

ERP: Event-Related Potentials. 

EPSP: Excitatory Postsynaptic Potentials. 

IPSP: Inhibitory Postsynaptic Potentials. 
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SNR: Signal-to-Noise Ratio. 

ADC: Analog-to-Digital Converter. 

BW: Bandwidth. 

CMRR: Common-Mode Rejection Ratio. 

PSD: Power Spectral Density.  

SSVEP: Steady-State Visually Evoked Potential. 

eGUI: experimental Graphical User Interface. 

ICA: Independent Component Analysis. 

CSP: Common Spatial Patterns. 

STFT: Short-Time Fourier Transform. 

DFT: Discrete Fourier Transform. 

PDF: Probability Density Function.  

LDA: Linear Discriminant Analysis. 

SVM: Support Vector Machines. 

RF: Random Forest. 

ANN: Artificial Neural Network. 

CNN: Convolutional Neural Network. 

SGD: Stochastic Gradient Descent. 

TN: True Negative. 

TP: True Positive. 

FN: False Negative. 

FP: False Positive.  
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1. Preface 

1.1. Origin of the project 

The brain is constantly controlling all movements that an individual is planning to carry out; however, 

it is impossible to execute them if the peripheral nervous pathways are damaged. This project started 

to find out how to keep using the signaling generated by the motor cortex to extract useful 

information and perform an activity (control a wheelchair, etc.), thus enhancing the life quality of 

people with paralysis.     

1.2. Motivation 

Not being able to move nor interact with one’s surroundings can devastate the life of patients 

suffering from disabilities such as quadriplegia. Based on personal experiences from paralytic 

interviewees [1], the hardest difficulties they face are “the loss of independence and the struggle to 

overcome physical barriers in their environment.”. After learning from those testimonials and 

empathizing with their stories, the author of this thesis wanted to alleviate their situation. 

Furthermore, the foundation and milestones of Neuralink, a neurotechnology company, increased 

the enthusiasms of the author in the area of Brain-Computer Interfaces, which made him see it as a 

viable option for aiding people with spinal cord injuries.  

1.3. Previous requirements 

For achieving the objectives of this thesis, the author must have advanced knowledge in the following 

fields: 

• Biomedical Engineering: To understand the functioning of the biomedical devices used to 

collect data from the brain (electroencephalogram). To comprehend the physiology of the 

motor cortex. To get familiarized with different techniques used to preprocess biomedical 

signals.  

• Electronics and Automatic Control Engineering: To correctly implement a digital signal 

processing algorithm. To understand and design digital filters and interpret Bode magnitude 

and phase plots.  
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• Artificial Intelligence: To understand Machine and Deep Learning architectures for creating, 

designing, and optimizing different classification models. 

Hence, this 48 ECTS project covers the competencies of the Bachelor’s degree in Biomedical 

Engineering and the Bachelor’s degree in Industrial Electronics and Automatic Control Engineering. 

Some of the subjects that were useful for developing this thesis are:  

• Statistics (ES – 820002, EIA and BIO). 

• Digital Electronics (ELDI – 820224, EIA).  

• Analogue Electronics (EAEIA – 820222, EIA). 

• Control Techniques (TCEIA – 820230, EIA). 

• Industrial Computer Science (IIEIA – 820226, EIA).   

• Biology (BB  – 820021, BIO). 

• Physiology (FIB – 820026, BIO). 

• Biomedical Signal Processing (PSB – 820027, BIO).  

• Sensors and Signal Conditioners (SCSB – 820030, BIO). 

• Monitoring, Diagnostic and Therapeutic Equipment (EMDTB – 820025, BIO). 

• Biostatistical Learning (AB – 295601, BIO). 
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2. Introduction 

Spinal cord injuries (SCIs) occur when there is significant damage to the nerve pathways that 

interconnect the brain with peripheral nervous systems, impeding the correct transmission of neural 

impulses [2].  If the harm is severe, SCIs can produce a complete movement loss, resulting in 

paraplegia or tetraplegia.  According to the World Health Organization (WHO), there are from 250 

thousand  to 500 thousand new patients worldwide suffering from SCIs yearly who often need 

constant assistance from familiars, friends, or caretakers [3]. These concerning numbers make it 

essential to seek a technology that could allow them to be more independent. 

A Brain-Computer Interface (BCI), also known as Brain-Machine Interface, is a system that could 

efficiently aid these patients. It brings together hardware and software for capturing, preprocessing, 

extracting, and interpreting valuable features from brain signals with the purpose of controlling a 

device, for instance, a robotic prosthesis [4]. In other words, BCIs provide a direct communication 

pathway between the brain and a computer regardless of the presence of a SCI or a 

neurodegenerative disease such as amyotrophic lateral sclerosis (ALS) [5].   

Numerous experiments have been implemented to prove the reliability and accuracy of BCIs when it 

comes to detecting the movement intentions of an individual, known as motor imagery BCI (MI-BCI). 

One relevant example is Elon Musk's company Neuralink, which has implanted an array of 1024 

miniaturized electrodes into the motor cortex of a monkey and demonstrated that the animal was 

able to precisely play “Pong” by just imagining hand gestures [6]. However, implanted BCIs are 

impossible to implement in a final degree thesis due to their high complexity and the nonexistent 

publicly available signal data. Furthermore, this advanced technology is extremely dangerous since it 

needs surgery and hardly gets FDA approval. 

As an alternative, an electroencephalogram (EEG) can be used since the electrodes are superficially 

attached to the person’s scalp. Nevertheless, non-intrusive BCIs present drawbacks that must be 

addressed for proper system operation. First and foremost, the signals captured from an EEG have an 

amplitude of microvolts, which make it highly noise susceptible, especially if there are no active 

electrodes [7]. Secondly, it is challenging to find the source of the neural activity if there is not a 

sufficient number of electrodes [4]. Thirdly, owing to the poor conductivity of the skull, there is a 

substantial spatial resolution loss [8]. Lastly, since the electrodes are manually placed, their position 

and quantity of hydrogel used can slightly vary from session to session, which can affect the results of 

the BCI [4]. Sophisticated mathematical techniques must be carried out to solve these complications, 

thus considerably increasing the performance of the system.  
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2.1. Objectives of the project 

The main purpose of this project is to implement a non-invasive MI-BCI, with data captured from an 

EEG, and design a multitude of algorithms and methods that will be capable to distinguish whether 

the user has the intention (just by thinking of it) to move the right or the left hand. From the outputs, 

it is intended to control a robotic arm in real-time. 

EEG signals must be understood in the context of MI to painstakingly choose which signal processing 

procedures are more suitable for better extraction of pertinent features. These characteristics will act 

as inputs to train various Artificial Intelligence (AI) models that will be evaluated with certain metrics 

to discriminate which one performs the best. An appropriate tuning and optimization of AI models 

are of great importance in this work.  

Parallelly, finite impulse response (FIR) filters will be carefully studied and analyzed to exclude 

insignificant spectral information. Hence, this project also aims to design a digital filter in a real-time 

operation, considering the pros and cons when working with higher or lower order filters.              

Due to the inability of the author to gain access to a high-quality EEG unit with a sufficient number of 

electrodes, all the objectives proposed will be fulfilled using a large dataset that includes numerous 

sessions of patients performing MI tasks with an EEG [9].  
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3. Definitions and basic concepts 

In this section, there will be a summary of important notions necessary to understand basic theory 

and all the procedures done to accomplish the goals of this thesis. Initially, there will be an 

explanation of the nervous system to explain how the brain works. Subsequently, the 

electroencephalography technique is described to comprehend how the signals are collected with 

the best quality possible. The chapter will end by introducing BCIs.  

3.1. Brain physiology 

3.1.1. The neurons 

The nervous system is essential for the correct functioning of the human body thanks to its ability to 

rapidly control, regulate, sense and communicate a wide range of biological processes, such as 

maintaining homeostasis or activating muscular fibers [10]. All of this is achieved mainly with 

specialized cells that respond to the signals of the extracellular space: the neurons. 

 

Figure 3.1.- The structure of a neuron. Figure extracted from [11]. 
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These cells constitute the functional part of the nervous system as they can transmit information to 

other neurons/cells by producing action potentials and conducting them through its membrane. In 

this manner, other interconnected neurons may be triggered or inhibited, causing a cascade of neural 

impulses to achieve the desired action [12]. 

Neurons have distinct parts (Figure 3.1.) that characterize them and play indispensable roles in the 

well-functioning of the cell. The cell body, or soma, contains the nucleus and most organelles, such as 

the mitochondria. It is the control center of the neuron, where the metabolism and the nerve 

impulses are regulated, and most proteins are synthesized. The dendrites are responsible for 

receiving information from outside the neuron and transmitting it to the cell body. Notice that these 

structures usually have many branches and subbranches (dendritic spines) because a nerve cell can 

communicate with thousands of other neurons. The axon is the elongated component of the neuron 

that carries the triggered impulses from the soma to the axon terminal, where many 

neurotransmitters are produced, stored in vesicles, and released [11][13].  

It is important to mention that the axon terminals meet with the dendrites of other neurons in the 

synaptic cleft. The synapse is a gap of approximately 20 nm in which chemical molecules 

(neurotransmitters) travel from the presynaptic to the postsynaptic neuron (target cell) to excite or 

inhibit it.       

 

Figure 3.2.- Transmission of neurotransmitters between two neurons through the synapse. Figure extracted 

from [14]. 



Motor imagery-based brain-computer interface by implementing a frequency band selection. 

 

  7 

There can be up to ten thousand neurons types, which can be classified based on their structure or 

function  [11]. In Figure 3.3. it is possible to distinguish the different morphologies that these cells can 

have: unipolar, pseudounipolar, bipolar, and multipolar. Regarding its functionality, there are 

sensory neurons, which are activated by stimuli from the environment; motor neurons, which send 

commands to move muscles or secrete substances from glands; and interneurons, which transmit 

nerve impulses exclusively to other neurons. 

 

Figure 3.3.- The different structure types of neurons. Figure extracted from [15].  

The glia are another group of crucial cells in the nervous system that are in charge of providing the 

structure of the nerves together with supporting, isolating, protecting, and nurturing the neurons. For 

instance, some neuroglia such as the oligodendrocytes and Schwann cells are in charge of sheathing 

regions of the axon with myelin. By doing so, the uncovered parts, known as the nodes of Ranvier 

(Figure 3.1.), enable a faster and further propagation of the action potential  [16].  Other glia cells are 

astrocytes, ependymal cells, and microglia. 

3.1.2. The action potential 

The membrane of a neuron plays a fundamental in encapsulating most cell substances and 

interchanging ions with the extracellular fluids to achieve polarization. In the lipidic bilayer of the 

membranes, which insulates the cells thanks to its hydrophobic properties, there are plentiful 

incrusted proteins that act as channels or pumps to enable passive or active transportation of ions, 

especially potassium (K+), sodium (Na+), calcium (Ca2+), and chloride (Cl-).   
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When the cell is not excited, there is a higher concentration of K+ ions inside than outside the cell; the 

opposite effect happens with Na+ and Cl- ions. This result is achieved thanks to mechanisms such as 

the sodium-potassium pump that ejects three Na+ ions per two K+ ions injected inside the cell. The 

procedure requires energy since there is a natural tendency for K+  ions to leave the cell through the 

potassium channels due to the diffusion gradient caused by a concentration imbalance. 

Consequently, the interior of the cell becomes negatively charged relative to the extracellular fluid 

with a voltage drop that typically ranges from -60 to -70 mV, called the resting potential [13][17]. 

In contrast with other cells, neurons can change their resting potential and trigger an electric impulse 

that travels through their membrane. The process starts when neurotransmitters released from the 

presynaptic neurons interact with proteins found in the dendrites of the target cell, allowing the 

activation of ionic channels and a slight change in the membrane potential. All the potential changes, 

which can be excitatory or inhibitory, arrive at the axon hillock and will be summed up to check if the 

voltage level surpasses the threshold (usually between -50 and -55 mV) for generating the action 

potential. If the charge summed comes from different synapses, there is a spatial summation, and if 

it is added from a train of fast pulses from the same synapse, there is a temporal summation 

[11][13][18].  

 

Figure 3.4.- This figure illustrates how an action potential may be triggered in the axon hillock. And also shows 

how the  potentials are summed. Figure extracted from [13]. 
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When the threshold gets exceeded, a massive opening of the activation gate of voltage-gated 

sodium channels quickly depolarizes the neuron, making the inside positive relative to the outside. 

This spike is counteracted rapidly by the closure of the inactivation gate of the sodium channels and 

the opening of voltage-gated potassium channels. Notice that sodium channels, as well as other 

ones, have two controllable gates. On the one hand, the activation gate is usually closed and only 

opens when the neuron is excited. On the other hand, the inactivation gate is always opened and 

only closes for a brief period after the action potential.  

While the inactivation gates of the sodium channels remain closed before naturally opening again, 

an absolute refractory period occurs to transmit the potential just in one direction. Subsequently, 

the potassium channels close, and the membrane potential hyperpolarizes, which means that the 

voltage gets lower than the resting potential, making it harder to fire another impulse (relative 

refractory period). In this way, the action potential travels until the axon terminal, where it activates 

voltage-gated calcium channels that enable the entrance of Ca2+ ions to liberate neurotransmitters 

deposited in vesicles to the synaptic cleft. Eventually, the neuron reaches the resting potential again 

[11][13][19][20].  

The following illustrations summarizes all the concepts explained visually so that the reader can 

understand the process with more clarity: 

 

Figure 3.5.- The action potential. This figure illustrates the procedure in which an action potential occurs. Figure 

extracted from  [11]. 
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Figure 3.6.- The action potential propagation. The behavior of the voltage-gated sodium and potassium 

channels when stimulated electrically. Figure extracted from [13].           
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3.1.3. Brain structures 

The brain is the center of control of the organism, where millions of neurons organize themselves 

into dense and complex networks to get specialized in multiple tasks. This organ is responsible for 

processing stimuli, executing voluntary and involuntary actions, developing feelings and 

consciousness, among many others. It is distributed in four major subgroups: the brainstem, the 

cerebellum, the diencephalon, and the cerebrum [11][13][21]. 

 

Figure 3.7.- Major portions of the brain. Figure extracted from [22]. 

The brainstem is the intermediary between the spinal cord and the other brain structures. It controls 

the information that enters and exits the brain, and, additionally, it is in charge of many physiological 

processes such as respiration, heartbeat, digestion, sternutation, swallowing, etc. This region is 

subdivided by the medulla oblongata, the pons, and the midbrain [23].    

The cerebellum is located behind the brainstem and below the diencephalon. It is needed to process 

the commands going to muscles as well as the information coming from them; therefore, it 

synchronizes movements and upholds the body posture and balance [24]. 

The diencephalon is positioned underneath the two hemispheres of the cerebrum, at the brain's 

core. Fundamentally, it consists of the thalamus and the hypothalamus. The former is indispensable 

in transmitting and relaying sensory stimuli to the cortex [25]. The latter principally manages the 

production and secretion of hormones [26].  
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Last but not least, the cerebrum, also known to as the telencephalon, is the largest and uppermost 

part of the brain. It starts around the diencephalon, where the limbic system is found, which involves 

emotions, behavior, memory, arousal, fear, learning, space perception, navigation, among others 

[13].  Furthermore, the telencephalon presents two hemispheres that are connected by the corpus 

callosum. On the surface of the cerebrum, the brain’s cortex is present, in which rugosities and 

sulcus are abundant. This superficial layer has a greyish color due to the limited myelin surrounding 

their neurons. Beneath this layer, there is a white matter that mainly connects the different parts of 

the cortex. The whiteish color derives from the myelin sheaths that enable a faster and further nerve 

impulse [27]. The cerebral cortex possesses four lobes on each halve of the brain [13]: 

• Frontal lobe: This region, located in the front of the cerebrum, allows the planning of future 

events and actions, permits self-recognition, and defines the personality and social skills of 

the individual. With the help of the limbic system, it also controls sentiments and 

attentiveness. Additionally, the Broca area of this lobe has a relation with language 

expression. Lastly, the posterior zone of the lobe englobes the premotor cortex, 

the supplementary motor area (SMA), and the primary motor cortex, which altogether 

contribute to the preparation and execution of simple or complex movements [28].    

• Parietal lobe: This segment, situated after the central sulcus, behind the frontal lobe, is 

capable of processing tactile feelings from all the body (in the primary somatosensorial 

cortex), feeling physical pain, detecting the position of the articulations, learning and reading 

Braille language, and focusing on complex stimuli or tasks. Intelligence, especially in 

mathematics, is also related to this lobe.  

• Temporal lobe: It is found in the laterals of the telencephalon, and it receives and deals with 

sounds. This region enables the person to recognize objects, human faces or voices, animals, 

or plants and comprehend speeches (in the Wernicke area ). In addition, it is extremely 

important for maintaining equilibrium.        

• Occipital lobe:  The lobe is placed at the back of the brain. Its principal function is to handle 

visual information and perceive motion.  

After understanding how the brain functions, it is clear that the motor cortex is decisive for detecting 

the imagery of left or right-hand movements, which is the purpose of this work. Several studies have 

shown that motor imagery is linked to the same cortical regions as motor execution, especially in the 

primary motor cortex [29]–[32]. The specific muscles controlled in this area can be represented 

through the motor homunculus [33] (Figure 3.8.), thus mapping the source of each motor activity. 

Notice the enormous hand size, highlighting its abundant neural activity in comparison with other 

parts of the body. Furthermore, it is interesting to mention that, as happens to the somatosensorial 

cortex, the left hemisphere manages the right side of the body and vice versa [34]; this will be 

proven in upcoming sections of the thesis.  
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Figure 3.9.- The upper illustration contains a distribution 
of the different lobes of the brain. The lower one 

highlights some of the functions of the cortex. Figure 
extracted from [13]. 

 

Figure 3.8.- The cortical homunculus. It highlights the relevance of the different parts of the body in the motor and 
somatosensory cortex. Figure extracted from [33]. 
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3.2. Electroencephalogram (EEG) 

The electroencephalogram (EEG) is a non-invasive device used to record the brain's neural activity, 

especially from the cortex, and provide relevant information for carrying out several applications, like 

diagnosing medical disorders, evaluating cognitive states, or operating a BCI.  

Initially, the biosignals, which are in the orders of microvolts, are captured from an array of 

electrodes placed meticulously in the patient’s scalp. Subsequently, they must be conditioned, with 

an amplification and filtration stage, to increase the signal-to-noise ratio (SNR), enhance the signal 

quality, and utilize the appropriate input range of the analog-to-digital converter (ADC) for 

maximizing the resolution. 

3.2.1. The source of the EEG signal 

Pyramidal neurons are widely spread around the cerebral cortex and provide the principal signal of 

interest acquired with the EEG. These elongated cells, which have a pyramidically shaped soma and a 

multipolar morphology, are critical for the functioning of many cognitive processes [35]. 

 

Figure 3.10.- Different parts of the pyramidal neuron. Figure extracted from [36]. 
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Their multiple dendritic trees interact with other neurons that may trigger excitatory postsynaptic 

potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs), which will change the ionic charge of 

the cell and its surroundings. If it is excitatory, the extracellular fluid in the active synaptic areas will 

become more negative since the neuron depolarizes. As a result, this local exterior area is negative 

relative to other extracellular zones of the neuron. If it is inhibitory, the same effect occurs, but with 

inversed polarity because the neuron hyperpolarizes. In other words, either potential will initiate an 

extracellular charge imbalance, producing a dipole [37]. 

In the following image, there are two neurons forming dipoles. The left neuron could have gained 

that polarity either by EPSPs in the top dendrites (apical dendrites) or by IPSPs in dendrites close to 

the pyramidal body (basal dendrites). Regarding the right neuron, the polarity could have been 

achieved by IPSPs in apical dendrites or EPSPs in basal dendrites. The circles around each neuron 

represent an electrode, with the sensed signal deflection drawn inside it. 

 

Figure 3.11.- Dipoles formed in pyramidal neurons. Figure extracted from [37]. 

However, it is impossible to measure the deflection of just one neuron’s dipole with an EEG; the 

signal would be undetectable due to its low amplitude and the attenuation with other biological 

tissues. Hence, the EEG will perceive the cumulative dipole effect of numerous neurons. For optimal 

detection, neurons should be parallel, fire synchronously, and possess the same polarity. Otherwise, 

the net sum of all the dipoles will tend to be null [37][38].    
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Once the dipoles originate, there is a transmission of electric and magnetic fields through the brain 

tissue in a process known as volume conduction [39]. This effect provokes a repulsion of ions with 

the same charge until they reach and accumulate at the edges of the conductive volume (the brain). 

Now, the signal must overcome multiple layers that will act as conductive volumes separated by 

insulators (operating as dielectrics), such as the dura, the skull, the scalp, the electrolytic gel, and the 

electrode. Therefore, for going from one layer to the other, the potentials will be transmitted 

capacitively (capacitive conduction), thus arriving at the electrode [37]. 

 

Figure 3.12.- Capacitive and volume conduction. Propagation of a signal from the pyramidal cells to the 

electrode. Figure extracted from [37]. 

All this process of signal propagation presents clear limitations. Firstly, a dipole emanates an electric 

field in most directions (Figure 3.13.), thus gradually spreading the scalp's charge in the surrounding 

areas located above the intracranial source. This behavior, referred to as spatial smearing, is 

aggravated by the volume conduction of the tissues (especially the skull) and is the principal reason 

for the EEG's low spatial resolution [40]. Another problem is the interaction of groups of dipoles 

positioned in different parts of the brain, which may alter the expected reading from the desired 

source [41]. Lastly, the capacitive effect and the soft tissues of the stacked layers attenuate cortical 

activity with frequencies higher than 30 Hz, restricting the bandwidth (BW) of the signals [42].  
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These issues can be mitigated if, instead of an EEG, an electrocorticogram (ECoG) is used. These 

devices serve the same function as an EEG, but they are implanted surgically inside the skull. Since 

their electrodes are in direct touch with the cerebrum, this apparatus enhances the spatial 

resolution, reduces sources interactions, and significantly increases the BW [43]. Nevertheless, the 

invasiveness of the ECoG makes this technology risky to use and less appealing to the user. 

 

Figure 3.13.- Magnetic field (dashed line) and electric field (solid line) of the dipole produced in a pyramidal cell. 

Notice that the electric field emanates to all directions. Figure extracted from [44]. 

 

Figure 3.14.- ECoG with 64 channels. Picture A shows the electrodes of the device. Illustration B displays how 

the device is implanted.  Figure extracted from [43]. 
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3.2.2. Technical characteristics  

The internal electronics of an EEG device must be designed adequately to acquire relevant signals 

with the maximum quality possible. Therefore, the user must understand key technical 

characteristics that differentiate a first-class EEG from a mediocre one. In this section, there will be a 

brief introduction of meaningful features that should not be overlooked, especially if the application 

is a MI-BCI. Most of this information will be extracted from an article written by Bitbrain [45], a 

neurotechnology company that, among other things, develops competent EEG equipment.  

3.2.2.1. Sampling frequency and filters 

The sampling rate is the number of samples that an ADC is capable of capturing in a certain time 

lapse, usually expressed in Hertz (Hz). While working with any signal that requires a digitalization 

process, it is extremely important to take into consideration the Nyquist-Shannon theorem, which 

states that the sampling frequency of the converter must be equal or superior to the double of the 

highest frequential component of the signal:    

𝒇𝒔 ≥ 𝟐 · 𝒇𝑴𝑨𝑿 (Eq. 3.1) 

Where 𝒇𝒔 is the sampling frequency and 𝒇𝑴𝑨𝑿 is the maximum frequency of the signal. If this 

condition is not met, it is impossible to reconstruct the analog signal again due to an undesired effect 

referred to as aliasing. The following graphic illustrates this phenomenon, where the sampling 

frequency (black dots) is smaller than twice the frequency of the signal (red); hence, the 

reconstructed signal (blue) does not match with the original one (red).  

 

Figure 3.15.- Aliasing effect produced by choosing a wrong sampling rate. Figure extracted from [46]. 

Since most EEG signals cannot reach frequencies greater than 80 Hz, the sampling rate should be at 

least 160 Hz. However, the sampling frequency is usually set to a higher value for better rebuilding, 

typically 256 Hz. If the rate is too large, the system will have to process much more data points that 

may not be necessary.   
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Lastly, it is important to remark that the EEG will have a low-pass filter, or anti-aliasing filter, to 

restrict the maximum frequency of the signal and satisfy the Nyquist criterion. Additionally, there is a 

high-pass filter to eliminate the DC component, thus erasing the offset and avoiding a possible 

saturation of the electronic components.   

3.2.2.2. Resolution 

The ADC carries out the digitalization process of the analog signal, translating voltage intervals into 

binary code. For narrowing the intervals and having a more defined output two factors must be taken 

into consideration.  

First and foremost, the number of bits available in the converter. This parameter specifies the 

resolution of the ADC and, therefore, how many unique binary outputs there are, which can be 

calculated using the following formula: 

𝑵 = 𝟐𝒃 (Eq. 3.2) 

Where 𝑵 is the number of quantization levels and 𝒃 the bits of the ADC. Good quality EEGs usually 

have a 24 bits ADC, providing around 16 million quantization levels; however, 16 bits is also 

acceptable.  

The other important aspect is the overall voltage measurement range that can be introduced to the 

ADC, which will define the resolution of the acquisition system expressed in volts. Hence, the voltage 

resolution is described as following: 

𝑸 =
𝑭𝑺

𝟐𝒃
 (Eq. 3.3) 

Where 𝑸 is the resolution (in volts), 𝑭𝑺 is the full scale voltage range, and 𝒃 the bits of the ADC. 

 

Figure 3.16.- Difference between a 16 bit and a 13 bit resolution ADC with FS = 10 V. Figure extracted from [45]. 
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3.2.2.3. Input impedance 

When the signal is introduced into the amplifying stage of the EEG, it is of the utmost importance to 

have the highest input impedance possible. By doing so, the signal of interest is conserved without 

significant attenuations from other resistive sources of the system, such as the electrode/skin 

impedance and the wire resistance, since most of the voltage drop will occur on the high input 

impedance of the amplifiers. Furthermore, this parameter contributes to the maximization of the 

SNR, tolerating better the electrical noise [37].  

According to [47], the skin impedance can reach up to 1 MΩ; therefore, an appropriate input 

impedance should be not less than one hundred times bigger (100 MΩ).    

3.2.2.4. Common-mode rejection ratio (CMRR) 

While performing an EEG session, the user may attract unwanted interferences, predominantly from 

the 50/60 Hz powerline, that can be amplified altogether with the brain’s signals. These artifacts are 

introduced at both of the input terminals of the amplifier, establishing an inconvenient common 

mode voltage. The common-mode rejection ratio (CMRR) is a property that defines the ability of the 

amplifier to reject this common mode voltage and magnify the differential mode voltage, as shown in 

the following illustration: 

 

Figure 3.17.- The effect of the CMRR in an amplifier. The green signal represents the differential voltage, which 

is amplified. The blue signal represents the common voltage, which is attenuated.  Figure extracted 

from [45]. 

The CMRR can be computed with following formula, expressed in decibels (dB) [48]:   

𝑪𝑴𝑹𝑹 (𝒅𝑩) = 𝟐𝟎 · 𝐥𝐨𝐠𝟏𝟎 (
𝑨𝒅

|𝑨𝒄𝒎|
) (𝒅𝑩) (Eq. 3.4) 
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Where 𝑨𝒅 is the differential gain and 𝑨𝒄𝒎 is the common-mode gain. In addition, the CMRR also 

varies depending on the frequency range, decreasing at higher frequencies [49].   

Ideally, the CMRR should have an infinite value at all the BW. A CMRR of at least 100 dB (at the 

powerline frequency) is considered suitable for a commercial EEG.  

3.2.3. Electrode configurations 

EEG electrodes are primarily responsible for capturing signals from the brain for subsequent 

conditioning. They are usually made of metals with no reactivity (gold, platinum, silver/silver chloride, 

etc.) placed on a conductive gel, previously applied to the skin to reduce the electrode-scalp 

impedance [50].  

As it has been remarked during this thesis, EEGs present poor spatial resolution and require advanced 

signal processing techniques to enhance the signal quality by focalizing the potential fields right 

above their electrocortical sources, reducing as much as possible the spatial smearing effect. These 

procedures need a considerable number of electrodes placed all around the scalp; therefore, the 

more electrodes available, the better the localization of the brain's signals will be. Furthermore, an 

adequate number and placement of electrodes are crucial when it comes to detecting and erasing 

problematic artifacts such as blinking, muscular contractions, or cardiac activity [51]. 

For that reason, there are worldwide accepted standardizations that define how the electrodes 

should be placed, depending on how many electrodes the EEG has. The international 10-20 system is 

used for 21 electrodes, where there is a 10% or a 20% separation between two adjacent electrodes 

relative to the total distance of the skull. The electrodes are generally named after the brain lobes 

located beneath them: F and Fp electrodes are above the frontal lobe, T above the temporal, P above 

the parietal, and O in the occipital. C electrodes are in the center of the scalp, where the motor 

cortex is found. A electrodes are attached to the earlobes for reference. The numbers' parity 

indicates the side of the head where they are encountered; even numbers are found on the right 

hemisphere and odd ones on the left hemisphere. The letter z specify that electrode are placed on 

the midline sagittal plane of the skull. Other international standards, such as the  10-10 or the 10-5 

system, follow the same structure as the 10-20 but use more electrodes [50][52].  

It is essential to place the electrodes in the same position between sessions, especially for BCI 

applications. Thus, the electrodes can be settled with the help of a head cap that will guide the user 

on the exact location where the electrodes need to be [53]. Additionally, these accessories will 

decrease the risk of gel dispersion on the scalp, which can be an issue if the hydrogel contacts other 

electrodes.  
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Figure 3.18.- Electrode name and placement standardization. Left image: the international 10-20 system. Right image: the international 10-10 system. Figure extracted 

from [50]. 
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Figure 3.19.- The exact position of each electrode in the international 10-20 system. Sagittal plane (A), coronal 

plane (B), and horizontal plane (C). Figure extracted from [50]. 

 

Figure 3.20.- Neuroelectrics EEG head cap. Figure extracted from [53].  
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3.2.4. EEG frequency bands 

The brain is constantly generating waves due to the synchronized firing of cortical neurons, which 

produces rhythmic patterns that can be detected with an EEG. These neural oscillations reveal 

characteristic information about the individual’s mental state. Brainwaves can be separated into five 

major frequency bands, which will be rapidly overviewed.  

The slowest one is the Delta band (0.5 Hz – 4 Hz) which is mainly present in the occipital regions of 

the EEG when the user is sleeping; in this band, the brain intensifies the healing and restoring process 

of the body’s tissues. The next one is the Theta band (4 Hz – 8 Hz) which appears when the person is 

sleepy. Alfa activity (8 Hz – 13 Hz) happens when the person is feeling relaxed and calmed. When the 

individual starts focusing on a subject, Beta waves (13 Hz – 30 Hz) are abundant. Lastly, the fastest 

oscillations take place in the Gama band (> 30 Hz ), which involves high concentration and problem-

solving [50][54][55].  

 

Figure 3.21.- A brief description of the brainwaves. Figure extracted from [56].  
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3.3. Brain-Computer Interfaces (BCIs) 

A Brain-Computer Interface (BCI), as its name suggests, is a system that enables direct 

communication between the brain and a computer to accomplish the desired goal. In other words, 

by using BCIs, it is possible to detect and interpret cerebral impulses in real-time without minding if 

the neural activities reach or not the spinal cord or other peripheral nerves [57]. This technology 

often requires a cycle of six steps in order to make it function correctly, which are described below 

[58]: 

1) Signal acquisition of brain activity: The brain’s signals are captured with an appropriate 

device. The most usual techniques for the acquisition are electroencephalography (EEG), 

electrocorticography (ECoG), magnetoencephalography (MEG), functional magnetic 

resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). 

2) Preprocessing: The acquired signals are refined to attenuate undesired attributes and 

enhance their quality.       

3) Feature extraction: The relevant information of the signals (contained inside a time window) 

is extracted. This step may require a transformation process of the raw data to obtain other 

values that still describe the initial signals.    

4) Classification: The features are introduced into a classification algorithm that can distinguish 

the class type of the original signals, for instance, if the user has imagined a right or a left-

hand movement.  

5) Application Interface: The classifier's output is translated into a command to control 

another device or software.  

6) Feedback: The user is constantly identifying how the target device/software is behaving and 

changes his the mental activity to regulate the overall system.   

 

Figure 3.22.- The closed loop system of a BCI. Figure extracted from [59]. 
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3.3.1. Classification of BCIs 

BCIs can be categorized depending on various factors that define the nature of the system. In this 

subsection, the four major BCI classification criteria will be introduced. First and foremost, the BCI 

can be classified based on how the brain’s signal is produced, which can be active, reactive, 

or passive. The first one implies that the user is the main responsible for performing an intentional 

mental task for controlling the system, such as imagining the movement of an arm. On the other 

hand, the reactive BCI needs an external intervention to stimuli the brain in a certain way, evoking a 

cerebral reaction that can be subsequently detected. If the BCI does not require any action or 

reaction from the user and only analyzes the brain’s activity, it is a passive approach.  

Secondly, it can be grouped concerning the period in which the user can interact with the BCI. A 

synchronous BCI does not enable continuous cooperation with the system; the user must wait for an 

indication to perform the intended mental activity. On the flip side, if the user can carry out the task 

at any moment that he wishes, it is an asynchronous BCI. Synchronous BCIs are commonly employed 

for creating and evaluating datasets that are posteriorly used to design and implement asynchronous 

BCIs. It is important to note that asynchronous BCIs need to identify the passive mental state 

occurring when the user is not performing any action [60]. 

The third categorization distinguishes between hybrid and non-hybrid BCIs. It is a hybrid BCI if at 

least one of the following conditions are met; otherwise, it is non-hybrid: 

• The system also uses information of other biosignals, mainly from muscular activity. 

• The system uses different BCI techniques simultaneously, for example, a combination of 

active and reactive BCI.  

Finally, as it has been mentioned through the work, the signal acquisition device used in the BCI can 

be invasive or non-invasive. The former involves direct implantation of the equipment inside the 

skull, requiring medical intervention. The latter does not require any surgical procedure.   

 

Figure 3.23.- Classification of BCIs. Figure created by the author.  
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3.3.2. Motor Imagery BCIs (MI-BCI) 

Motor imagery (MI) occurs when someone has the intention to perform a voluntary muscular 

movement but at no moment executes the action; therefore, the individual only imagines the motor 

activity that wants to perform. Many researchers have proven that MI tasks can stimulate the motor 

cortex in similar ways as an actual motor execution, producing brainwave oscillations known as 

sensorimotor rhythms (SMRs) [61][62].       

SMRs have two frequency bands that must be considered: the Mu band (8 Hz – 13 Hz), which reflects 

alpha fluctuations located in the sensorimotor region of the brain, and the Beta band (13 Hz – 30 Hz). 

Both have shown that they are relevant for identifying the activity of neural groups while imagining 

or performing a movement [63]. The spectral information of these bands is essential for the MI-BCI 

system to perceive event-related synchronizations (ERS), occurring when neurons produce 

oscillations that increase in amplitude after the imagery task, and event-related desynchronizations 

(ERD), in which there is an amplitude decrease after the MI. As their name suggests, ERS and ERD 

are event-related potentials (ERP), defined as a cerebral response in front of a produced event, in 

this case, the MI.   

At first, when the user is resting, no ERS nor ERD is encountered, the motor cortex remains neutral. 

When the user starts imagining or executing a motor movement, an ERD starts forming in the Mu 

and the Beta band to indicate the brain’s preparation and readiness to act. Under this condition, the 

mental activity increases while the rhythmic activity attenuates as neurons work independently and 

asynchronously. The ERD is followed by an ERS predominantly in the Beta band, representing 

reduced excitability in the sensorimotor areas of the brain even though there is a rise in the 

frequential amplitude. In the end, Mu and Beta bands return to the resting state [64][65]. This 

procedure can be visualized in Figure 3.24., representing the mental activity at different frequencies 

(Y-axis) and through the time (X-axis) after a motor event.  

It is important to note that ERS and ERD may appear in a slightly different bandwidth depending on 

the subject [66]; this complicates the implementation of a generic MI-BCI. Hence, for the correct 

functioning of the system, this thesis proposes to adjust the BCI so that there is always an 

appropriate frequency band selection, filtering out irrelevant spectral information.  

Furthermore, it is optimal to mentally train the user to enhance his motor and MI skills for having 

better results and more pronounced ERS/ERD (Figure 3.24.). This improvement can be achieved with 

hours of practice or neurofeedback [67][68].   
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Figure 3.24.- Time-frequency spectrogram of ERS and ERD appearing after a motor event. The graph was 

created after averaging multiple motor events from adult volunteers, and it also demonstrates 

that, after practicing the motor task, there is an improvement in the ERPs. The X-axis represents 

the time (1 second per division), the Y-axis represents the frequency (5 Hz per division), and the Z-

axis represents the relative power change of the mental activity (red tonalities show an increase 

and blue tonalities a decrease). Figure extracted from [69]. 

Since MI ERD and ERS occur in the motor cortex, they can be measured with the C3 and C4 EEG 

electrodes (10-20 system). For instance, while imagining hand movements, the C3 electrode, located 

on top of the left hemisphere, detects the imagery of the right hand; conversely,  the C4 electrode, 

positioned above the right half of the brain, detects the imagery of the left hand. However, the 

remaining electrodes must not be ignored as they are necessary to carry out all the signal processing 

techniques needed for extracting the best features possible, used to classify the different MI actions.        

 

Figure 3.25.- Mental activity while performing or thinking a left or right-hand movement. Notice that the 

activated hemisphere reflects the contralateral side of the body. Figure extracted from [70]. 
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3.3.3. Steady-state visually evoked potentials BCIs (SSVEP-BCI) 

Besides MI, which is an active BCI technique, it is possible to use another approach that can 

potentially aid people with SCI, ALS, or any other movement dysfunctionality. This alternative 

method is a reactive BCI based on steady-state visually evoked potentials (SSVEP-BCI). An evoked 

potential is a reaction from the brain after sensory stimulation, which can be traced and processed to 

evaluate the cerebral response of the organism [71].   

Regarding the SSVEPs, the evoked potentials are produced due to a visual excitement coming from 

an object flickering at an established frequency. The cerebral response appears in the occipital lobe, 

where it is possible to detect oscillations with a frequency equal to or harmonic to that of the blinking 

visual stimuli. Despite not having a general agreement, many studies indicate that the stimulant 

should not have frequencies below 3 Hz nor above 40 Hz [58].  

In most BCIs based on SSVEPs, the person sits in front of a screen displaying animated figures flashing 

at different frequencies and is asked to focus visually at any of them. In this way, the BCI can 

recognize the stared object since the brain is triggered differently for each figure [72]. One example 

that could be used for controlling a wheelchair is a monitor showing a black background with four 

separated pink squares appearing and disappearing with a frequency of 9 Hz, 12 Hz, 15 Hz, and 17 Hz, 

respectively. Depending on the square that the participant concentrates on, the wheelchair acts 

differently:  

• 9 Hz: it turns right. 

• 12 Hz: it rotates left. 

• 15 Hz: it goes forward. 

• 17 Hz: it stops.  

The processing carried out in the SSVEP-BCI is more straightforward than the MI-BCI since the 

frequencies of interest are clearly highlighted in the power spectrum. Moreover, it presents much 

lower inter and intra-individual variability as the visual stimuli produces a more robust response from 

the brain than the MI. Additionally, there is a lower influence of artifacts, such as eye-blinking, since 

the occipital lobe is located at the back of the head [58].   

Nevertheless, despite all the benefits described, this thesis does not pursue a SSVEP-BCI approach. To 

begin with, the system always requires an external device (for example, a monitor or virtual reality 

glasses) that the user must always focus on, hindering his ability to interact with his environment. 

Furthermore, this technology does not take into account individuals with visual disabilities. In 

addition, many SSVEP-BCI participants complained of having fatigue after a time of seeing flickering 

lights [4].  
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Figure 3.26.- SSVEP-BCI. The user focuses on a flickering light and, based on its frequency, sends a command to 

an external device. Figure extracted from [73]. 

 

Figure 3.27.- SSVEP-BCI user staring at a blinking pink square. Figure extracted from [74].  
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4. Methodology 

4.1. Overview of all the procedures carried out 

Implementing a MI-BCI is not a simple task as it requires meticulous processes to treat the signals 

properly for extracting the most discriminant information from them. In this chapter, there will be a 

clear explanation of the followed methodology to ensure the fulfillment of the thesis' objectives. 

As the author had no access to a high-quality EEG device, he worked on one of the most extensive 

publicly available MI datasets for designing and training the MI-BCI classifier. The dataset, described 

in the following subsection, contains EEG recording sessions where different participants had to 

imagine left and right-hand movements. Each applicants' data is analyzed to understand the signals, 

visualizing the effect of ERS and ERD in a spectrogram. By seeing the most relevant frequency bands 

from each subject, the signals were bandpass filtered digitally to exclude unnecessary information 

that may disturb the artificial intelligence (AI) models. Subsequently, the data was prepared for 

training the classifiers, including artifact removal (eye-blinking) and feature extraction with advanced 

methods.  

From there, two AI models were designed; the first one to classify the hands imagery (left and right-

hand) (Model LR) and the second to distinguish between an imagery event and the resting state of  

the user (Model IR). It must be highlighted that the AI models will be trained with data from multiple 

subjects; hence, the inter-subject variability in the ERS/ERD frequency bands must be taken into 

account. Before choosing the cut-off frequencies and the window’s length that will be used for the 

model, each participant must undergo a calibration process to understand his frequential information 

in order to implement a broader band pass filter that covers the essential spectral behavior of all the 

subjects collectively (see Figure 4.3.).   

Once the models were trained and evaluated, the MI-BCI was implemented on an hour MI session 

(from the dataset) unseen by the AI models. That was done by coding an algorithm that simulates a 

real-time signal acquisition, where the signals of the session are introduced inside a time window the 

same way that they would do if the data were obtained live from an EEG. Afterward, the signals are 

filtered, and the features are extracted. Notice that this real-time execution requires a proper digital 

filter design, avoiding significant delay between the mental imagery and its detection. Next, the 

correspondent features are introduced to Model IR. If the prediction is a resting state, no action will 

be taken. Otherwise, if it is an imagery prediction, the appropriate features will be introduced to 

Model LR, which will classify if the signal present in the time window is a left or right-hand imagery. 

By doing so, it is possible to control a robotic arm  directly from the mental activity of the subject.  
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Figure 4.1.- This diagram shows an overview of all the processes that must be carried out for designing the MI-BCI. Figure created by the author.   
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Figure 4.2.- This diagram shows how to implement the real-time simulation and implementation of the MI-BCI. Figure created by the author. 
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Figure 4.3.- This diagram shows how to understand the data and implement the models based on inter-subject variability. Figure created by the author. 
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4.2. Software used 

Everything was coded in Python, using libraries that ease all the processes previously mentioned. The 

following list indicates the most important ones, detailing the main functionalities used: 

• MNE: Library specialized in treating brain signals captured with an EEG, a MEG, ECoG, or any 

other device. It includes many functions that enable optimal preprocessing and processing of 

EEG signals. Furthermore, it has many visualization tools that help to understand the data. 

• NumPy: It provides data structures that allows the analysis and exchange of data between 

different algorithms. It mainly uses multidimensional vectors and arrays. 

• Pandas: Used to organize the data into tables, also referred to as DataFrames. By doing so, 

the data is more organized and manageable.   

• SciPy: Scientific library used to carry out simple and advanced statistical and mathematical 

operations, for example, the short-time Fourier transform. It is widely used for designing 

digital filters.  

• PyWavelets: Scientific library used to carry out wavelet transforms. 

• Matplotlib: It is a data visualization library used for the creation and customization of various 

types of graphics. 

• Scikit-learn: This library, focused on Machine Learning, includes classifiers, data preparation 

tools, evaluation metrics, and other features. It also enables the creation of pipelines, 

allowing sequential execution of steps, for example, normalizing the data and then 

introducing it inside a Random Forest model.     

• TensorFlow: It is mainly used for designing deep neural networks, convolutional neural 

networks, and other deep learning architectures. It also possesses plentiful normalization, 

optimization, and regularization tools. 

• Pickle: It is useful for saving and loading the AI models. 

• Pymatreader: Since the dataset’s file has a MATLAB format, this library adapts it to an 

appropriate Python structure. 

• Streamlit: It is employed for designing local web applications and graphical user interfaces.    

• PySerial: It enables a serial communication between Python and Arduino. 
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4.3. The dataset 

4.3.1. How to create a dataset? 

Even though the EEG recordings used in the project were available online, the author wanted to 

design an intuitive application (using the Python library Streamlit) to guide future participants on the 

tasks they must perform to collect information for a MI-BCI dataset.  

 

Figure 4.4.- Application created by the author that could be used to collect a dataset.  

Before recording a session, the instructor must register the applicant’s identification and the session 

number. Afterward,  he must ensure that the participant is ready, looking at the application’s 

interface and with all the EEG electrodes placed correctly; if everything is fine, he presses the start 

button, and the EEG starts capturing the signals. Simultaneously, one of the three figures turns green 

randomly for one second, indicating that the applicant must carry out one of the following tasks: 

• Left: Imagine a left-hand movement. 

• Right: Imagine a right-hand movement. 

• Pass: Remain in a resting state without any motor imagery.  
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The task must be carried out until the figure changes to the original color. If no action is marked, the 

applicant must be in a passive state, waiting for another random figure to turn green. This process is 

repeated cyclically and only finishes when the instructor presses the stop button. Once the session is 

over, a CSV file is generated with all the markers needed to identify the time intervals in which the 

participant performed one of the described tasks; this is useful for segmenting the data. Notice that 

there is an indicator for each sample of the signal. The markers are labeled as follows:  

• Number 0: No task was asked to the participant.  

• Number 1: The participant imagined a left-hand movement. 

• Number 2: The participant remained in a resting state without any motor imagery.  

• Number 3: The participant imagined a right-hand movement. 

 

Figure 4.5.- The different tasks turning green. Figure extracted from the author’s application. 
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4.3.2. The dataset used 

In October 2018, some researchers from the Mersin University (Turkey) published one of the largest 

MI-BCI datasets freely available online [9], summing a total of sixty hours of EEG recordings and sixty 

thousand mental imageries from thirteen subjects. All the participants (60% males and 40% females 

between the ages of twenty and thirty-five ) were healthy students without any psychiatric disorder 

diagnosed; they are nicknamed as “Subject X”, being X a letter from A to M. 

The protocol followed by the participants was strictly supervised by the instructor, avoiding any 

problems while recording the data. They had to sit in front of a screen that displays an experimental 

graphical user interface (eGUI) that guides the user in the imagery task that he must carry out during 

the session, in a similar way to that explained in the previous subsection. At the beginning of the 

session, the participant had two and a half minutes to relax and focus solely on the experimental 

process. Subsequently, there are three intervals of fifteen minutes (separated by break times of two 

minutes) in which the eGUI showed which imagery must be done. During this time, the eGUI selects 

one random action for one second  (in which the user must remain to do the imagery), followed by a 

pause of approximately two seconds (in which the user must return to the resting state); this is 

repeated periodically until the break time. The EEG recorded the session uninterruptedly until the 

termination of the last fifteen-minute interval, lasting around one hour.  

The medical device used to acquire all the signals was the EEG-1200 JE-921A EEG system from the 

company Nihon Kohden. Its datasheet [75] mentions that it works with a CMRR of 105 dB (at 60 Hz), 

an input impedance of 100 MΩ,  a 16 bit ADC, and a sampling frequency that reaches up to 1000 Hz. 

These parameters are more than adequate for a MI-BCI application (see section 3.2.2.). The EEG is 

carefully placed (with the help of a head set) on the participant’s scalp using the international 10-20 

system, cleaning beforehand the area where the electrodes are placed to reduce the skin’s 

impedance. In addition, multiple impedance checks are performed to ensure that all the 

electrode/skin impedances are below 10 kΩ. The sessions were acquired using a 200 Hz sampling 

rate, using a bandpass filter with cutoff frequencies of 0.53 Hz and 70 Hz. In this way, it is possible to 

remove the DC component and avoid the aliasing effect (meeting the Nyquist-Shannon theorem). 

Furthermore, there is a Notch filter in the 50 Hz to attenuate the powerline interferences.  

The database contains four different paradigms; however, this thesis will only work with one of them: 

the classical (CLA) paradigm. It consists of the imagery of left and right-hand movements and the 

resting state; hence, this paradigm is almost identical to the one designed by the author in section 

4.3.1. The following table shows all the participants that took part in this paradigm, detailing the 

subject’s nickname, the file name of each recording, and the date of execution of the session. Notice 

that, in the case that the participants had more than one session, the dates are different; this is 

important to assess the intra-variability effects.         
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Table 4.1.- Table showing all the participants, sessions, and dates in the CLA paradigm.  

Nickname 
Number of 

sessions 
File 

Date 

(dd/mm/yyyy) 

Subject A 1 CLASubjectA1601083StLRHand.mat 08/01/2016 

Subject B 3 

CLASubjectB1510193StLRHand.mat 19/10/2015 

CLASubjectB1510203StLRHand.mat 20/10/2015 

CLASubjectB1512153StLRHand.mat 15/12/2015 

Subject C 3 

CLASubjectC1511263StLRHand.mat 26/11/2015 

CLASubjectC1512163StLRHand.mat 16/12/2015 

CLASubjectC1512233StLRHand.mat 23/12/2015 

Subject D 1 CLASubjectD1511253StLRHand.mat 25/11/2015 

Subject E 3 

CLASubjectE1512253StLRHand.mat 25/12/2015 

CLASubjectE1601193StLRHand.mat 19/01/2016 

CLASubjectE1601223StLRHand.mat 22/01/2015 

Subject F 3 

CLASubjectF1509163StLRHand.mat 16/09/2015 

CLASubjectF1509173StLRHand.mat 17/09/2015 

CLASubjectF1509283StLRHand.mat 28/09/2015 

Inside each file of the CLA paradigm, multiple markers are helpful to understand all the events that 

occurred during the session. From them, the signals can be segmented and annotated, which are 

essential steps to understand the data for posterior training and testing of the AI models that will 

classify the imageries. The markers mean the following:   

Table 4.2.- Marker’s meaning in the sessions. 

Marker 

Identification 

Number 

Meaning 

0 No task was asked to the participant. 

1 The participant imagined a left-hand movement. 

2 The participant imagined a right-hand movement. 

3 The participant remained in a resting state. 

91 The session break time. 

92 The end of the session. 

99 The initial relaxation of the participant. 
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4.4. Understanding the data 

The first step taken in every signal processing project is to understand the data as much as possible, 

carrying out different visualization methods necessary to take further actions to enhance the overall 

performance of the AI models.  

4.4.1. Data importation 

In the explanatory paper that described the dataset (mentioned in subsection 4.3.2.), the authors 

indicate that all the files were saved as MATLAB files (with the extension “.mat”).  Thus, for importing 

one participant’s session of an EEG recording, it is required to convert the data into a Python-

compatible format, avoiding any information leakage. This can be achieved with the library 

Pymatreader. It is important to note that inside each MATLAB file all the data is saved as a structure 

array (struct), which can save collections of associated information into organized containers (known 

as fields). The following struct named “o” is an example of a EEG recording session:   

 

Figure 4.6.- MATLAB’s struct, corresponding to an EEG recording from a participant. Figure from the author.  

As it can be seen, there are containers that, besides providing the EEG signal data, also give relevant 

information such as the ID, the sampling frequency (200 Hz), the number of samples, the channel 

names, and the markers (explained in Table 4.2.). Notice that the marker's length and the number of 

samplings each channel has (shown in the data container) are the same, with 667,400 samples. 

Moreover, it is possible to see that there are 22 channels; however, one of them (the X3 channel) will 

not be considered as it was used exclusively for signal acquisition purposes.       

After the data is imported in Python, the EEG signals’ data should be passed to microvolts multiplying 

by  1·10-6, this is done because MNE library works by default in volts. Furthermore, all that struct 

containers must be saved into a MNE data type known as info, which is used to define basic 

information of the EEG recording.  
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Additionally, it is crucial to define the EEG configuration used, which is the international 10-20 

system. By doing so, all the electrodes’ positions and the distances between them are introduced to 

the program, enabling any spatial signal processing. The following illustrations show 2D and 3D head 

models with the electrodes drawn on them: 

 

Figure 4.7.- Electrodes’ position and distances in the international 10-20 system used in the project. The left 

image shows a 2D electrode configuration. The right image represents a 3D head (the brownish sphere) with 

the precise position of the electrodes drawn (X and Y-axis with a scale of 0.025 meters per division, and the Z-

axis with 0.05 meters per division). The NAISON corresponds to the nose. Figures designed by the author. 

The last step before visualizing the EEG signal for the first time is to set an appropriate common reference to the 

electrodes. According to the dataset explanatory paper [9], the acquisition system (EEG-1200 JE-921A)  

references all the electrodes to the value obtained from the following formula:  

𝑪𝒐𝒎𝒎𝒐𝒏𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 = 𝟎. 𝟓𝟓 · (𝑪𝟑 + 𝑪𝟒) (𝑽) (Eq. 4.1) 

Where C3 and C4 are the voltage value in those electrodes. However, many researchers recommend re-

referencing all the channels to the average value of all the electrodes (common average referencing (CAR)) 

[76][77]. This technique reduces considerably noisy sources that may be problematic. It also acts as a spatial 

filter by reducing the presence of shared activity between electrodes [78]. Therefore, this method was 

implemented to improve the signals’ quality by applying the following formula: 

𝒙𝒊
𝑪𝑨𝑹(𝒕) = 𝒙𝒊(𝒕) −

𝟏

𝑪
∑𝒙𝒋(𝒕)

𝑪

𝒋=𝟏

 (𝑽) (Eq. 4.2) 

Where 𝑪 is the number of the total electrodes used, 𝒙𝒊 is the value of the electrode i, 𝒙𝒊
𝑪𝑨𝑹 , is the value of the 

electrode i after the CAR, and 𝒙𝒋 the value of the electrode j.  After this, the EEG signal can be visualized: 
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Figure 4.8.- EEG visualization of the raw signals of each electrode of the EEG. The bar below enables one to scroll the window and visualize the whole EEG session. At 

the top left, there is a purple bar that indicates the amplitude scale of the signals (53.24 μV). The X-axis shows the time in seconds. Figure created by the 

author. 
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4.4.2. Power spectral density (PSD) 

When working with signals, it is highly recommended to check their spectral information as it 

contains valuable information about their nature.  After carrying out a discrete Fourier transform 

(DFT), which decomposes the discrete signals into a spectrum of frequencies, it is possible to apply 

numerous spectral calculations to better interpret the data, for instance, the power spectral density 

(PSD).  

The PSD indicates the strength or power of the signals by looking at their squared amplitudes in the 

frequency domain, which is a useful indicator to assess the relevance of the different frequency 

bands [79][80]. The units used to quantify the spectral power in the EEG signals are squared 

microvolts divided per Hertz (μV2/Hz). The MNE library calculates the PSD with the Welch’s segment 

averaging estimator [81] and displays the power spectrum of each channel as shown below: 

 

Figure 4.9.- PSD of the signals of each EEG channel used. Each color represents a channel (see the top-right 2D 

head model). X-axis shows the frequency in Hz (20 Hz per division) and the Y-axis shows the μV2/Hz (1000  

μV2/Hz per division). Figure created by the author. 

At first sight, it seems that the graph does not provide significant information because the low 

frequencies have pronounced power in comparison with higher frequencies. Therefore, to enhance 

the visualization, it is convenient to work in dB as it allows the researcher to perceive small values as 

well as large ones. That is achieved by passing the Y-axis from linear to logarithmical, using the 

following formula:    
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𝒀𝒅𝑩 = 𝟏𝟎 · 𝒍𝒐𝒈(𝒀𝒍𝒊𝒏) (𝒅𝑩) (Eq. 4.3) 

Where 𝒀𝒅𝑩 is the result in dB and 𝒀𝒍𝒊𝒏 is the linear value. As it can be seen in the following 

illustration, now it is simpler to interpret the results:  

 

Figure 4.10.- PSD of the signals of each EEG channel used, in dB. Each color represents a channel (see the top-

right 2D head model). X-axis shows the frequency in Hz (20 Hz per division) and the Y-axis shows the μV2/Hz in 

dB (20 dB per division). Figure created by the author. 

Thanks to this spectral analysis, it is possible to confirm the effect of the EEG’s Notch filter at the 50 

Hz component, corresponding to the power line frequency, is remarkably attenuated; this is 

important to check out, as the signals might be contaminated with undesired electromagnetic 

interferences. 

Additionally, there is high power near the DC component, which is a normal behavior in EEG signals. 

Furthermore, notice that the frontal channels, especially Fp1 and Fp2 (in green), have more 

amplitude at frequencies between 0.1 Hz and 10 Hz; this can be associated with the blinking artifact, 

which is a low-frequency response.    

Finally, it can be seen that, after the 10 Hz, the power of all the electrodes is constantly decreasing as 

the frequency increases. Later than 40 Hz, almost all the channels are below -10 dB.  

 



Motor imagery-based brain-computer interface by implementing a frequency band selection. 

 

  45 

 

4.4.3. Event related synchronization and desynchronization (ERS/ERD)  

As it has been remarked in subsection 3.3.2., plotting the ERD and ERS maps is extremely helpful to 

understand the frequential behavior of the left and right-hand imagery over time. With this 

information, the relevant frequency bands can be detected in order to posteriorly design the cut-off 

frequencies of the band-pass filter, attenuating insignificant bands from the spectrum for better 

performance.  

Furthermore, it is possible to check the most recurrent reaction time (of each participant) after the 

eGUI’s indications to perform imageries. In addition, the time window length is estimated based on 

the time in which the ERD/ERS activity lasted in the map. These procedures are necessary to later 

segment the data for training the AI models. 

The ERDS maps were drawn following instructions described in scientific papers and the MNE 

documentation [82][83][84]. They are computed by clustering and averaging the time-frequency 

representations of all the periods that contain an imagery event (i.e., right-hand imagery). These 

periods start one second before the instruction to perform the MI task (represented as a dashed line) 

and end four seconds later. It is important to remember that, as most of the MI events occur in the 

motor cortex, the ERDS will be plotted in the central electrodes of the EEG (C3, C4, and Cz).   

The blue tonalities of the maps represent a low activity (normally an ERD) and the red ones a higher 

activity (usually an ERS). The darker the color is, the more mental responsiveness there is. Therefore, 

it is optimal to detect ERS and ERD with this property as it means that the participant has an 

outstanding ability to control the MI tasks.      

In this section, the ERDS graphics will be generated for each participant (from Subject A to F) using 

their first EEG recording session for representing the ERDS in the right and left-hand imageries. With 

this, the author can assess whether the participants’ cortical activity behaves as expected or not. This 

phase is critical to discard subjects without any clear mental pattern or with uncommon events; as it 

has already been explained, MI tasks are not easy to perform at the beginning and, on most 

occasions, require hours of practice before mastering them.       

Finally, there will be a brief commentary on how to treat the sessions of the participants depending 

on their ERS/ERD activity. 
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4.4.3.1. ERD/ERS (Subject A)  

Subject A presents remarkably noisy maps; no clear patterns are defining the ERS and the ERD. Both 

left and right-hand imageries have very high activity in frequencies above the Beta band, which is 

unusual and hardly corresponds to an ERS. Moreover, slightly above the Mu band of the left-hand 

imagery at the C4 channel (2.2 s – 3.5 s), there is a mild activity that could indicate a MI event. 

However, if this was true, this same pattern should appear for the right hand at the C3 electrode; 

instead, it is repeated at the C4 (0.5 s – 1.8 s), which is unexpected. For these reasons, this 

participant will be discarded from the study.        

 

Figure 4.11.- Subject A. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs 

represent the time-frequency response occurring while imagining a left-hand movement, and the lower ones 

the right-hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-

axis represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low 

activity and red for high activity). The dashed line represents the indication to perform the imagery task. The 

circles represent areas of interest. Figure created by the author. 
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4.4.3.2. ERD/ERS (Subject B) 

The overall activity of subject B in electrodes C3, C4, and Cz is not substantial; nevertheless, there is a 

visible change in the Beta and Mu bands after the event occurs. For the left-hand imagery, channel 

C4 seems to have an ERS between 20 Hz and 25 Hz (1.5 s – 2.8 s), and, at the same time, an ERS 

appears at the Mu band (10 Hz – 13 Hz); this happens while channel C3 records neutral activity. 

Conversely, the right-hand imagery has a similar effect in the C3 electrode, but more powerfully (20 

Hz – 26 Hz, 2 s – 3 s; 10 Hz – 15 Hz, 2 s – 2.8 s); meanwhile, channel C4 remains with low activity. This 

response indicates a MI detection, especially after seeing that the activated brain hemisphere reflects 

the contralateral side of the body. However, as the ERS have low amplitudes, this might indicate that 

from all the trials, only a few of them were indeed imageries. After evaluating Subject B, it was 

concluded that it perform poorly due to the reason mention before. Therefore, this subject will not 

be further considered in the study. 

 

Figure 4.12. Subject B. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent 

the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-

hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis 

represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity 

and red for high activity). The dashed line represents the indication to perform the imagery task. The circles 

represent areas of interest. Figure created by the author. 
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4.4.3.3. ERD/ERS (Subject C) 

Of all the candidates, subject C is the one that has the most perceptible ERD and ERS patterns, 

approaching the theoretical behavior that these maps should have. For the left-hand imagery, there 

is a dominant activity in channel C4, where an ERD in the Beta band (17 Hz – 26 Hz, 0.1 s – 1 s) is 

followed by an ERS in the Beta (15 Hz – 21 Hz, 1.8 s – 2.8 s) and the Mu band (10 Hz – 13 Hz, 2 s – 3 s). 

Notice that a similar pattern occurs in electrode C3 but with much less power. For the right hand, 

channel C3 shows the same pattern as the C4 electrode of the left-hand imagery, with ERDs and ERSs 

in the same frequency bands and times. Thus, this participant will be considered in the study.           

 

Figure 4.13. Subject C. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent 

the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-

hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis 

represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity 

and red for high activity). The dashed line represents the indication to perform the imagery task. The circles 

represent areas of interest. Figure created by the author. 
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4.4.3.4. ERD/ERS (Subject D) 

There are no clear ERD/ERS patterns in the left-hand imagery of participant D. Electrodes C3 and C4 

show a similar activity distribution. Moreover, electrode Cz is more weighty than both of them, which 

more likely indicates that left-hand imagery is hardly appreciable. The right-hand imagery presents an 

ERS in the Beta band (15 Hz – 21 Hz, 1.2 s – 2.5 s) and neutral activity in the C4 electrode. 

Nonetheless, due to the problematic detection of the left-hand imagery, this subject will be 

discarded from the study.    

 

Figure 4.14. Subject D. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent 

the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-

hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis 

represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity 

and red for high activity). The dashed line represents the indication to perform the imagery task. The circles 

represent areas of interest. Figure created by the author. 
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4.4.3.5. ERD/ERS (Subject E) 

Subject E has an ERS in the Beta band at the C4 electrode of the left-hand imagery (18 Hz – 23 Hz, 2.3 

s – 3.2 s) and the C3 electrode of the right-hand imagery (18 Hz – 24 Hz, 2 s – 3 s); the remaining 

channels remain neutral. Even though the ERDS maps do not present any ERD or activity at the Mu 

band, the ERS described at the beginning of the paragraph could signify a MI; consequently, this 

subject will be considered in the study.  

 

Figure 4.15. Subject E. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent 

the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-

hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis 

represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity 

and red for high activity). The dashed line represents the indication to perform the imagery task. The circles 

represent areas of interest. Figure created by the author. 
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4.4.3.6. ERD/ERS (Subject F) 

The left-hand imagery of Subject F has high activity in the upper Beta band in all the electrodes 

represented, which is strange as it should only appear at the C4 channel. Furthermore, there is an 

ERS at the Mu band exclusively at C3. Regarding the right-hand imagery, C3 has the most significant 

intensity in the Beta band while C4 is lower, which is expected. However, the Mu band is visible at C4 

instead of being active at the C3 electrode. Despite the odd behavior of these responses, the high 

intensities in the ERS bands could potentially indicate hand imageries; hence, this subject will be 

considered in the study.    

 

Figure 4.16. Subject F. ERD and ERS plots of the C3, C4, and Cz channels of the EEG. The upper graphs represent 

the time-frequency response occurring while imagining a left-hand movement, and the lower ones the right-

hand movement. For each plot, the X-axis represents the time in seconds (1 s per division) and the Y-axis 

represents the frequency in Hz (5 Hz per division). The colors represent the mental activity (blue for low activity 

and red for high activity). The dashed line represents the indication to perform the imagery task. The circles 

represent areas of interest. Figure created by the author. 
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4.4.3.7. ERD/ERS commentary 

After analyzing all the ERDS maps, many aspects must be pointed out before segmenting the data 

and training the BCI’s AI models. 

First and foremost, from all the dataset’s subjects, three participants were discarded from the study 

as they had abnormal behaviors that could preclude the distinction between the left and right-hand 

imagery. That could be caused due to the lack of experience while carrying out MI tasks, which could 

be mastered by practicing this mental chore for hours. The only subjects with fair quality recordings 

are subjects C, E, and F.  

Secondly, only Subject C presented ERD, while the remaining participants jumped from a neutral 

state to an ERS directly. Hence, from all the time-frequency representations, only the ERS will be 

considered for training the AI models. Furthermore, it has been seen that the activity in the Mu band 

was not present in all the subjects, and, when it did, its intensity was noticeably lower than the ERS 

appearing in the Beta band. That is to say that the band-pass filter that will be implemented should 

maintain the ERS of the Beta band. Moreover, the time window length used for segmenting the data 

should be sufficient to cover the ERS activity so that the model can process it correctly.  

Finally, it is necessary to assess the inter-subject variability in order to know how to train and 

implement the BCI. As it can be seen in Figure 4.3., after obtaining the ERS/ERD maps, the researcher 

must decide which time window length and cut-off frequencies should be used for each participant 

to highlight the ERS. Subsequently, all the subjects will be compared to check if their ERS have 

similarities. The following table will compare the selected subjects to determine the most 

appropriate frequency band for the final model: 

Table 4.3.- Inter-subject variability evaluation. Table created by the author. 

Subject 
Time window 

length 
Frequency band 

Frequency band of the 

final model 

C 0.9 s 15 Hz – 21 Hz 

15 Hz – 26 Hz E 0.9 s 18 Hz – 24 Hz  

F 0.9 s 20 Hz – 26 Hz 

To conclude, subjects C, E, and F will be trained in the same AI model with a window length of 0.9 

seconds and a band pass filter with lower and higher cut-off frequencies of 15 Hz and 26 Hz, 

respectively.  
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4.5. Digital filtering 

After deciding which frequency bands are suitable, a bandpass digital filter must be designed to 

remove undesired frequencies; this is an important step in this MI-BCI design as a well-designed filter 

can eradicate noise, interference, artifacts, or mental activities that are not related to MI. Indeed, 

after several trials, the author found out that there is a substantial accuracy and precision increase in 

the AI predictions after having a more selective BW. There are two main types of digital filters: the 

finite impulse response (FIR) and the infinite impulse response (IIR) filters [85][86][87]. 

FIR filters have a non-recursive nature and lack feedback. That is to say that, assuming causality, it 

only uses the present and a finite number of past samples of the input. Furthermore, designing its 

parameters is relatively straightforward, making it more controllable. Their main advantage is that 

they are inherently stable since their transfer function presents all the poles at the origin of the Z-

plane. Another crucial characteristic of these filters is that they have a linear phase response in the 

desired BW; this is of great interest to avoid significant distortions after filtering the signal. However, 

these filters present some drawbacks that must be considered. Firstly, the designer must be careful 

while choosing the order of the filter as the system will have less computational efficiency, requiring 

high memory. In addition, this will produce a considerable delay that may affect real-time 

applications such as the one implemented in this thesis. Therefore, before choosing the filter's order, 

one must weigh the benefits of having a highly selective filter and the disadvantages described. In the 

discrete-time domain, the output of a sample can be calculated by the convolution of the filter h(k), 

as shown below:  

𝒚(𝒏) = ∑ 𝒉(𝒌) · 𝒙(𝒏 − 𝒌);      𝒊𝒇 𝒄𝒂𝒖𝒔𝒂𝒍:  𝒉(𝒏) = 𝟎, 𝒏 < 𝟎,𝒏 ≥ 𝑴

𝑴−𝟏

𝒌=𝟎

 (Eq. 4.4) 

Where 𝒚(𝒏) is the output in an instant n, M is the order of the filter, and 𝒙(𝒏) is the input. The FIR 

filters have the following transfer function in the Z domain, where 𝒃𝒌 are the filter’s coefficients: 

𝑯(𝒛) = ∑ 𝒃𝒌 · 𝒛−𝒌 =
𝟏

𝒛𝑴
∑ 𝒃𝒌 · 𝒛𝑴−𝒌

𝑴

𝒌=𝟎

𝑴

𝒌=𝟎

 (Eq. 4.5) 

To calculate the group delay of a FIR filter, the subsequent formula can be used, where M is the 

order, and 𝒇𝒔 the sampling frequency [88]: 

𝑫𝒆𝒍𝒂𝒚 =
𝑴 − 𝟏

𝟐 · 𝒇𝒔
 (𝒔𝒆𝒄𝒐𝒏𝒅𝒔) (Eq. 4.6) 
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On the flip side, the IIR filters are recursive and present feedback; therefore, they consider the 

present and all past samples of the input as well as the past outputs. These filters have better 

computational efficiency and require less memory storage compared to the FIR filters. Moreover, 

they do not have such a high delay time compared to the FIR filters. Another benefit of these filters is 

that they can straightforwardly be converted from digital to analog as they can be based on 

renowned analog filter configurations, such as the Butterworth, the Bessel, the Chebyshev, the 

Cauer, and many other types of filters. Nevertheless, some weaknesses can affect the performance of 

IIR filters. The most relevant one is that they can hardly achieve a linear phase response, which may 

produce a distorted output signal. In addition, these filters have poles that must be placed carefully 

to avoid instabilities; consequently, these filters are less flexible than FIR ones and harder to 

implement. In the discrete-time domain, the output of a sample can be calculated by the convolution 

of the filter h(k), as shown below:  

𝒚(𝒏) = ∑ 𝒉(𝒌) · 𝒙(𝒏 − 𝒌);      𝒊𝒇 𝒄𝒂𝒖𝒔𝒂𝒍:  𝒉(𝒏) = 𝟎, 𝒏 < 𝟎

∞

𝒌=𝟎

 (Eq. 4.7) 

Where 𝒚(𝒏) is the output in an instant n, and 𝒙(𝒏) is the input. The IIR filters have the following 

transfer function in the Z domain, where 𝒃𝒌  and 𝒂𝒌   are the filter’s coefficients: 

𝑯(𝒛) =
∑ 𝒃𝒌 · 𝒛−𝒌𝑴

𝒌=𝟎

∑ 𝒂𝒌 · 𝒛−𝒌𝑵
𝒌=𝟎

 (Eq. 4.8) 

    

 

Figure 4.17.- Block diagrams of FIR and IIR filters. Figure extracted from [89]. 
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Now that both types of filters are understood, it can be seen that the FIR filters have clear benefits 

that prevail over the IIR filters. Having a linear phase and avoiding instability scenarios is of great 

interest while implementing a suitable band-pass filter, especially in MI-BCI applications. 

Furthermore, if carefully designed, the computational efficiency and time delay reduces significantly. 

Thus, an FIR filter will be developed in this thesis. 

Some considerations must be taken into account before designing the filter [90]: 

1) Filter type: In this BCI application, the filter will be a bandpass, having an upper and a lower 

cut-off frequency. Additionally, it must be decided which passband ripple is accepted. For 

biomedical applications, it should be minimized. Moreover, one must consider which 

transition band is desired. Remember that the narrower the transition band, the more 

selective the filter is. Lastly, it is important to ensure that the stopband ripple does not 

considerably affect the output.  

 

Figure 4.18.- Overview of the characteristics of a filter. Figure extracted from [90]. 

2)  Window type: For avoiding abrupt changes in the tails of the filter's impulse response, it is 

preferable to operate with a window function. The Bode of an FIR filter presents a principal 

lobe (which is the most important) and many undesired sidelobes. By smoothing the 

extremes of the impulse response with a window (Hamming, Blackman, Hann, etc.), the 

sidelobes attenuate even more, which is optimal. The tradeoff is that the principal lobe width 

augments and filter selectivity can be affected. To solve this problem, one can increase the 

window's length (see next point). 
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The following graphics show the filter's impulse response with a rectangular (upper figure) 

and a Hamming window (lower figure). Notice how the extremes are softer in the Hamming 

window:     

 

Figure 4.19.- Effect of the filter window in the impulse response of the filter. Rectangular window 

(upper figure) and Hamming window (lower figure).  Figure created by the author. 

The following Bode charts highlight the effect of using different window types with the same 

filter characteristics. The rectangular window (upper figure) has a narrower primary lobe in 

contrast with the Hamming window (lower figure), which seems to have doubled in width. 

Nevertheless, the Hamming windows have much more attenuated sidelobes in comparison 
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to the rectangular window. Notice that the phase is linear, which is one of the main 

characteristics of a FIR filter:     

 

Figure 4.20.- Effect of the filter window in the magnitude and phase Bode charts of the filter. Rectangular 

window (upper figure) and Hamming window (lower figure). Figure created by the author. 

3) Window length: The window length defines the number of lobes present in the Bode as well 

as the filter’s order. Remember that the higher the order, the more selective the filter is. 

However, the filter’s order must not be too large since the delay will increase. One way of 
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calculating this parameter is by looking at Table 4.4. and establish the width of the first lobe 

as the normalized passband.  

Table 4.4.- Primary Lobe width and the peak of the secondary lobes of the different window types. Information 

extracted from [90]. 

Window 

Type 

Approximate Width 

of Main Lobe 

Peak Sidelobe 

Amplitude (dB) 

Rectangular 
𝟒 · 𝜋

𝑴 + 𝟏
 -13 

Bartlett 
𝟖 · 𝜋

𝑴
 -25 

Hanning 
𝟖 · 𝜋

𝑴
 -31 

Hamming 
𝟖 · 𝜋

𝑴
 -41 

Blackman 
𝟏𝟐 · 𝜋

𝑴
 -57 

For instance, if the cutoff frequencies are 15 Hz and 26 Hz, and the sampling frequency is 200 

Hz, the normalized passband can be calculated as: 

𝑷𝑩𝒏 = 𝒘𝟐𝒏 − 𝒘𝟏𝒏 = 𝟐 · 𝝅 ·
𝒇𝟐 − 𝒇𝟏

𝒇𝒔

= 𝟐 · 𝝅 ·
𝟐𝟔 − 𝟏𝟓

𝟐𝟎𝟎
= 𝟎. 𝟏𝟏 · 𝝅 𝒓𝒂𝒅/𝒔 (Eq. 4.9) 

If a Hamming window is used, it is possible to calculate the minimum length of the filter from 

Table 4.4.: 

𝑷𝑩𝒏 =
𝟖 · 𝝅

𝑴
→ 𝑴 =

𝟖 · 𝝅

𝑷𝑩𝒏
=

𝟖 · 𝝅

𝟎. 𝟏𝟏 · 𝝅
≈ 𝟕𝟑 𝒔𝒂𝒎𝒑𝒍𝒆𝒔 (Eq. 4.10) 

Thus, the length must be at least 73 samples, for example, 150 samples. The delay is then 

calculated: 

𝑫𝒆𝒍𝒂𝒚 =
𝑴 − 𝟏

𝟐 · 𝒇𝒔
= 

𝟏𝟓𝟎 − 𝟏

𝟐 · 𝟐𝟎𝟎
= 𝟑𝟕𝟐. 𝟓 𝒎𝒔 (≈ 𝟕𝟓 𝒔𝒂𝒎𝒑𝒍𝒆𝒔) (Eq. 4.11) 

Which is more than acceptable for a MI-BCI. This can be easily checked by plotting the effect 

of an all-pass FIR filter of order 150:   
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Figure 4.21.- Illustrative example to show the delay of a 150 order FIR filter. The filter is an all-pass so 

that it is easier to see the delay effect. Figure created by the author. 

The filters that will be used in the project will have a window length of 150 samples and will employ 

a Hamming window, with a delay of 372.5 ms (75 samples). Notice that these filters can be applied 

for filtering signals in real-time. As an example, the following figures show the PSD (compare it to 

Figure 4.10.) and the EEG session of a filter with a bandwidth between 15 Hz and 26 Hz on Subject C:  

 

Figure 4.22.- PSD of the signals of each EEG channel used in dB after filtering the data. Each color represents a 

channel. X-axis shows the frequency in Hz (20 Hz per division) and the Y-axis shows the μV2/Hz in dB (10 dB per 

division). The dashed lines represent the cutoff frequencies. Figure created by the author. 
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Figure 4.23.- EEG visualization of the filtered signals of each electrode of the EEG. The scale of the signals if (14.02 μV). The X-axis shows the time in seconds. Figure 

created by the author.
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4.6. Preprocessing 

In the previous subsections, two different preprocessing techniques have been carried out. The first 

one is the common average reference, which filters the data spatially to reduce the undesired 

smearing effect as it localizes with better precision the cortical sources responsible for the mental 

activity. The second one is the  band-pass FIR filter, which maintains the specified frequency band 

and wipes out problematic regions of the spectrum. 

Besides applying the two previous methods, other steps should be taken in order to clean the signals 

from artifacts and prepare the data to improve the overall quality of the extracted features. 

Therefore, two more helpful preprocessing procedures are going to be discussed in this subsection: 

the independent component analysis (ICA) and the data segmentation and annotation.    

4.6.1. Independent component analysis (ICA) 

As its name indicates, the independent component analysis (ICA) is a preprocessing tool capable of 

detecting and separating a defined number of statistically independent elements that composes a 

signal without having prior knowledge of the signal’s content (blind source separation) [91]. As the 

EEG contains multiple electrodes that are distributed strategically around the scalp, the sources of 

these components can be localized. This technique is suitable for detecting and eliminating artifacts, 

such as the eye-blinks or the electromyographic activity of facial muscles, without altering the 

valuable signal [4]. 

The ICA seeks a linear transformation to reduce as much as possible the statistical dependence of the 

signal’s components [92][93][94]. Consider that the EEG acquires signals of n samples from M 

electrodes; these signals can be arranged as a matrix X = [x1[n], x2[n], …, xM[n]]T, where T denotes the 

transpose operator. This matrix can be obtained from a linear combination of M’ components of the 

signals, arranged as a matrix S = [s1[n], s2[n], …, sM’ [n]]T. The mixing matrix A, which is the one linking 

together both matrixes, has a size of (M,M’). Therefore, any EEG signals signal can be obtained as 

follows: 

𝑿(𝑴,𝒏) = 𝑨(𝑴,𝑴′) · 𝑺(𝑴′,𝒏) (Eq. 4.12) 

The objective of the analysis is to find the S matrix so that the components are identified; hence, 

matrix S must be isolated:    

𝑺 = 𝑨−𝟏 · 𝑨 · 𝑺 = 𝑨−𝟏 · 𝑿 (Eq. 4.13) 
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However, the inverse matrix of A (A-1) is unknown, and its value can be approximated with different 

mathematical and statistical methods. Therefore, the ICA estimates the most fitting matrix W (≈A-1) 

that maximizes the non-Gaussianity and the independence of the components. Once this matrix is 

calculated, the components can be computed: 

𝑺′ = 𝑾 · 𝑨 · 𝑺 = 𝑾 · 𝑿 ≈ 𝑺 (Eq. 4.14) 

Now that the approximated components are determined, it is possible to reconstruct the signal by 

zeroing the rows that correspond to undesired artifacts: 

𝑿𝒘𝒊𝒕𝒉𝒐𝒖𝒕_𝒂𝒓𝒕𝒊𝒇𝒂𝒄𝒕𝒔 = 𝑾−𝟏 · 𝑺𝒘𝒊𝒕𝒉𝒐𝒖𝒕_𝒂𝒓𝒕𝒊𝒇𝒂𝒄𝒕𝒔
′  (Eq. 4.15) 

To exemplify it, a process to remove eye-blinking from Subject C will be described below to 

demonstrate the utility of this algorithm when it comes to eliminating artifacts that could deteriorate 

the classifier’s performance.  

The first step is to choose the number of components to estimate, which cannot surpass the number 

of EEG electrodes, for instance, ten elements. The MNE library allows performing the ICA visually so 

that it is possible to localize the sources of its components on a topographical map, as can be seen in 

Figure 4.24. 

From all the components, ICA000 and ICA002 seem to have a strong activity in the frontal area, which 

could signify a blinking. In order to confirm this, the component signals are plotted in  Figure 4.25., 

where it can be seen that ICA000 and ICA002 indeed corresponded to a blinking. Nevertheless, only 

ICA000 will be eliminated to reconstruct the signal since ICA002 has higher frequency signals 

attached to it that could come from a mental source.   

Figure 4.26. and Figure 4.27. show the before and after effects of employing the ICA, respectively. 

The red marks indicate the presence of a blink, which is manifested with abnormal high amplitude, 

especially in electrodes Fp1 and Fp2. The green ovals indicate the previous positions of the blinks, 

which disappeared from the signal thanks to the ICA. Furthermore, notice that the rest of the 

recording remains unchanged. 

This same analysis could have been performed to remove other artifacts, such as muscular activity.  
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Figure 4.24.-  Subject C. Topographical maps displaying the sources of 10 independent components computed with the ICA algorithm. Figure created by the 

author. 
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Figure 4.25.-  Subject C. The signals of the 10 independent components computed with the ICA algorithm. Figure created by the author. 
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Figure 4.26.-  Subject C. Raw data before applying the ICA. At channels Fp1 and Fp2 it is possible to see clear eye-blinking (red). Figure created by the author.  
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Figure 4.27.- Subject C. Raw data after applying the ICA (same signals as the previous figure). The eye-blinking disappeared from all channels (green). Figure 

created by the author.  
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4.6.2. Data segmentation and annotation 

While the participants were carrying out the trials, they constantly followed the indications of the 

eGUI, which saved all the taken actions inside a marker vector (described in Table 4.2.). There are 

around six hundred left and right-hand imagery events in each EEG session used to train the AI 

models. In the following figure, it is possible to see some of the markers that appeared throughout 

the recording. The blue and the orange bands represent the indication to execute left and right-hand 

imagery, respectively. 

 

Figure 4.28.-  EEG visualization of the filtered signals with the markers overlayed. Blue indicates a left-

hand indication. Orange indicates a right-hand indication. The bar below shows all the 

markers that appeared during the session. Figure created by the author. 

One might think that the mental activity starts right after the marker; however, that is not the case, 

as there is a reaction time from the subject that introduces a delay between the indication and the 

actual MI task. This retard can be estimated by looking at the ERS/ERD maps when the Beta band ERS 

begins. Furthermore, the length of each segment must be sufficient to grasp all the ERS (see the time 

window length column in Table 4.3.). The MNE library refers to each segment as an epoch.  

After segmenting all the data, it is important to label each epoch. Without these annotations, the AI 

models proposed would not be able to distinguish the classes. The next figure shows a clustering of 

all the segmented data, ignoring other parts of the signal. Numbers 1 and 2 represent left and right-

hand imagery epochs, respectively. 
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Figure 4.29.- Clustering of all the segmented and annotated data. Numbers 1 (black) and 2 (red) represent left and right-hand imagery epochs, respectively. 

The X-axis represents the number of epochs in the session. Figure created by the author.  
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4.7. Signal processing and feature extraction 

The last step before training the AI models is to extract the most characteristic features that define 

the nature of the signals in the most distinctive way. By understanding the different techniques 

available to do so, it is possible to increase the overall performance of the MI-BCI considerably. The 

common spatial patterns (CSP) and the statistical features are used to train Machine Learning 

models, and the short-time Fourier transform to train the Deep Learning models. Notice that the two 

first methods also reduce the size of the input data (dimensionality reduction).     

4.7.1. Common spatial patterns (CSP)  

The common spatial patterns (CSP) technique is one of the most practical feature extraction methods 

for MI applications, enabling a more effective differentiation between two classes, such as the left 

and the right-hand imagery. With the CSP algorithm, it is possible to find a set of spatial filters that 

will highlight or de-emphasize the activity of various areas of the brain in order to maximize the 

variance of one class while minimizing the other one’s variance. Consequently, both categories are 

more distinguishable [95].  

This algorithm must be trained with labeled epochs (segmented and annotated trials) to find the 

optimal spatial filters weights with the highest inter-class variance. Therefore, it is a supervised 

technique that applies a transformation to the data to find the most suitable spatial features of the 

signals [96].   

Fundamentally, the CSP can be obtained after the diagonalization of two covariance matrices, one for 

each hand imagery [97][98][99]. Being X a matrix that represents windowed EEG signals with M 

channels and N samples, the normalized covariance matrix is calculated as follows:  

𝑪 =
𝑿 · 𝑿𝑻

𝒕𝒓𝒂𝒄𝒆(𝑿 · 𝑿𝑻)
 (Eq. 4.16) 

Where T indicates the transposed matrix and trace() is an operation that sums up all the diagonal 

elements of the matrix. This calculation is done for all the left and right-hand epochs separately. 

Subsequently, the computed normalized covariance matrix is averaged for each class, and, by 

summing them, the compound covariance is obtained: 

𝑪𝒄 = 𝑪𝑳
̅̅ ̅ + 𝑪𝑹

̅̅ ̅̅  (Eq. 4.17) 
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Where 𝑪𝑳
̅̅ ̅̅  and 𝑪𝑹

̅̅ ̅̅  are the average covariance matrices for the left and right-hand imagery classes, 

respectively.  

The next step for diagonalizing the matrices is to find the eigenvectors and eigenvalues of  Cc, which 

can be obtained with the following formulas [100]: 

𝑨 · 𝒗⃗⃗ = 𝝀 · 𝒗⃗⃗  (Eq. 4.18) 

𝑨 · 𝒗⃗⃗ − 𝝀 · 𝑰 · 𝒗⃗⃗ = 𝟎 (Eq. 4.19) 

(𝑨 − 𝝀 · 𝑰) · 𝒗⃗⃗ = 𝟎 (Eq. 4.20) 

𝒅𝒆𝒕(𝑨 − 𝝀 · 𝑰) = 𝟎 (Eq. 4.21) 

Where A represents a matrix, 𝒗⃗⃗  the eigenvectors, 𝝀 the eigenvalues, I the identity matrix, and det() the 

determinant of a matrix. Therefore, Cc can be represented with its eigenvectors (Uc) and eigenvalues 

(𝝀𝒄) matrices: 

𝑪𝒄 = 𝑼𝒄 · 𝝀𝒄 · 𝑼𝒄
𝑻 (Eq. 4.22) 

For diagonalizing the matrix it is necessary to calculate the whitening matrix P: 

𝑷 =
𝑼𝒄

𝑻

√𝝀𝒄

 (Eq. 4.23) 

Subsequently, the spatial coefficient matrices SL and SR can be obtained for each class:  

𝑺𝑳 = 𝑷 · 𝑪𝑳
̅̅ ̅ · 𝑷𝑻 (Eq. 4.24) 

𝑺𝑹 = 𝑷 · 𝑪𝑹
̅̅ ̅̅ · 𝑷𝑻 (Eq. 4.25) 

In this way, the spatial coefficient matrices have common eigenvectors B: 

𝑺𝑳 = 𝑩 · 𝝀𝑳 · 𝑩𝑻 (Eq. 4.26) 

𝑺𝑹 = 𝑩 · 𝝀𝑹 · 𝑩𝑻 (Eq. 4.27) 

𝝀𝑳 + 𝝀𝑹 = 𝑰 (Eq. 4.28) 
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Notice that the sum of the eigenvalues matrices gives the identity matrix; hence, the result of adding 

up two matching eigenvalues will be one. This interesting property will ensure that the larger an 

eigenvalue is in one class, the smaller it is for the other. Therefore, the eigenvectors are weighed up 

contrariwise for each group. By finding the highest (or lowest) eigenvalues 𝝀𝑹 and 𝝀𝑳, it is possible to 

determine which are the most discriminative eigenvectors that will ensure a better classification.   

For transforming the input matrix X into the output matrix Z, a projection matrix W must be 

computed, as shown in the following equations:  

𝑾 = (𝑩𝑻 · 𝑷)
𝑻

 (Eq. 4.29) 

𝒁 = 𝑾 · 𝑿 (Eq. 4.30) 

Note that the columns of the inverse matrix of W (W-1) correspond common spatial patterns, which 

are time-invariant vectors. 

The subsequent illustration shows the effect of applying the most discriminative CSP. In the 

beginning, the left and right-hand imagery classes have similar variances. After calculating the CSP 

and filtering the signal with the patterns corresponding to the highest eigenvalues of each imagery (in 

this case, CSP1 and CSP2), the inter-class variance is maximized: 

 

Figure 4.30.-  Effect of applying the most discriminative CSP. The signals are more differentiable after using CSP1 

and CSP2. Figure extracted from [95]. 
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Finally, for extracting the features from the CSP and reducing the size of the data, the next formula is 

calculated: 

𝒇𝒑 = 𝒍𝒐𝒈𝟏𝟎 (
𝒗𝒂𝒓(𝒁𝒑)

∑ 𝒗𝒂𝒓(𝒁𝒊)
𝟐𝒎
𝒊=𝟏

) ,𝒘𝒉𝒆𝒓𝒆 𝒑 = 𝟏, 𝟐,… , 𝟐𝒎 (Eq. 4.31) 

Where 𝑓𝑝 are the feature vectors, var() correspond to the variance, and 2m depends on the number 

of filters selected. The subindexes 𝑝 and 𝑖 represent the rows of the output matrix Z. 

After applying all the previous calculations with the aid of the MNE library, the CSP were obtained. 

Figure 4.31. illustrates the CSP gotten from Subject C, showing how each behaves on a topographic 

map. Notice that CSP0 and CSP3 present emphasized patterns in electrodes C4 and C3, respectively; 

this is a clear indicator that the CSP algorithm can detect left and right-hand imageries correctly. After 

several trials, it was concluded that having 10 CSP provided better classification results.  

   

 

Figure 4.31.-  Ten CSP for Subject C. The color bar indicates the weights of the patterns while applying the 

filters. Figure created by the author. 
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4.7.2. Short-time Fourier transform (STFT) 

One of the AI models proposed in future sections involves using a convolutional neural network, 

which is usually trained with images; therefore, the EEG signals must undergo a process to describe 

their contents in a two-dimensional manner. For doing this, the spectrogram of the signals can be 

computed, a processing tool that enables a time-frequency analysis of the acquired data. 

The short-time Fourier transform (STFT) is employed to compute the spectrograph. This 

mathematical technique divides the signal into multiple time segments with the help of a shifting 

time window, which is usually a Hamming to avoid spectral leakage and preserve continuousness. 

Furthermore, an ensuing window does not begin from the final position of the current window as 

there is an overlap to not lose the spectral information due to the Hamming window. After having all 

the segmented signals, a discrete Fourier transform (DFT) is calculated for each of them; as a result, 

the frequential information is obtained over time [101][102]. 

There is a tradeoff that must be addressed regarding the resolution of the spectrum. The larger the 

window length used in the STFT is, the better the frequential resolution and the more flawed the 

temporal resolution is. The contrary effect happens when the window gets shorter. Consequently, 

one must choose wisely the length of the window and the amount of overlap allowed [103].     

The following equation describes how to carry out a STFT [101]: 

𝑺(𝒎, 𝒌) = ∑ 𝒔(𝒏 + 𝒎 · 𝑵′) · 𝒘(𝒏) · 𝒆−𝒋·
𝟐·𝝅
𝑵

·𝒏·𝒌

𝑵−𝟏

𝒏=𝟎

 (Eq. 4.32) 

Where 𝒌 is a number going from 0 to N-1, 𝑺(𝒎, 𝒌) specifies the time-frequency spectrograms for an 

index 𝑚, 𝑵 is the window length, 𝑵′ is the window’s shifting step, and 𝒘(𝒏) involves the window 

function used. As the coefficients obtained from the previous equation are complex numbers, the 

magnitude of 𝑆(𝑚, 𝑘) must be calculated to obtain the spectrogram.  

However, performing this operation for all the electrodes can be computationally expensive and 

could not allow a real-time analysis. Hence, only the central EEG electrodes (C3, C4, and Cz) will be 

chosen, as they are the most relevant for capturing the MI. For instance, the following spectrograms 

correspond to a right-hand imagery epoch, where clear activity can be seen in C3 as expected.   
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Figure 4.32.-  Spectrograms created from the STFT. The effect of a right-hand imagery in time and frequency for 

the electrodes C3, C4, and Cz. X-axis indicates the time (0.1 seconds per division), Y-axis indicates 

the frequency (5 Hz per division) and the color bar indicates the magnitude. Figure created by the 

author. 
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4.7.3. Statistical Features 

There are statistical parameters of the signal that can be useful for detecting the imageries or the 

passive state. Mainly they will be applied only to the central EEG electrodes (C3, C4, and Cz) as they 

are the ones of more importance in hand imagery tasks. In this subsection, they will be listed and 

concisely explained. 

4.7.3.1. Probability density function (PDF) 

The probability density function (PDF) determines the likelihood that a particular sample has of 

becoming an outcome. In other words, the Y-axis corresponds to the density of probability, showing 

the odds of obtaining values found on the X-axis. In the case of EEG signals, this probabilistic 

distribution can be estimated by looking at the chances of having a specific voltage value. The 

following image shows the PDF estimation for a certain epoch at the channels C3, C4, and Cz:  

 

Figure 4.33.-  Probabilistic density function for a certain epoch of Subject C. Channels C3, C4, and Cz. X-axis 

indicates the voltage (2·10-6 V per division). Y-axis indicates the probabilistic density. Figure created 

by the author. 

Plentiful statistical parameters can be found by analyzing the PDF, for instance, the mean, the 

variance, the skewness, or the Kurtosis.  
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4.7.3.2. Kurtosis 

Kurtosis is a statistical parameter that defines the peakedness and the tailedness of a distribution 

relative to the normal distribution [104]. This coefficient can be calculated using the following 

formula: 

𝑺𝒌𝒓 =
𝟏

𝒏 − 𝟏
·
∑ (𝑿𝒊 − 𝑿̅)𝟒𝒏

𝒊=𝟏

𝑺𝟒
 (Eq. 4.33) 

Where 𝑋̅ is the mean of the samples, 𝑛 is the total number of samples, and  𝑆 is the sample standard 

deviation. If the result is greater than 3, the distribution is Leptokurtic; if it is smaller than 3, it is 

Platykurtic; and if it is equal to 3, it is Mesokurtic or normal. Normally, three units are subtracted to 

speak relative to zero. Therefore, a positive Kurtosis would indicate that the distribution is denser 

around the mean compared to the normal distribution; the opposite happens if the Kurtosis is 

negative [105]. 

 

Figure 4.34.-  A representation of Leptokurtic, Platykurtic, and normal distributions. Figure extracted from [106]. 

4.7.3.3. Skewness 

The skewness defines the symmetry of the distribution and can quantify any distortion or asymmetry 

by comparing the distribution relative to the normal one [104]. It is calculated as follows: 

𝑺𝒔𝒌 =
𝟏

𝒏 − 𝟏
·
∑ (𝑿𝒊 − 𝑿̅)𝟑𝒏

𝒊=𝟏

𝑺𝟑
 (Eq. 4.34) 
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Where 𝑿̅ is the mean of the samples, 𝒏 is the total number of samples, and  𝑺 is the sample standard 

deviation. The skewness can be positive, negative, or symmetrical. 

 

Figure 4.35.- A representation of the effect of skewness. Figure extracted from [106]. 

4.7.3.4. Energy 

The energy of a discrete signal is defined by the sum of the squared samples. Hence, the energy of a 

signal 𝑥(𝑛) can be calculated with the subsequent formula [106]: 

𝑬 = ∑ |𝒙(𝒏)|𝟐
∞

𝒏=−∞

 (Eq. 4.35) 

4.7.3.5. Wavelet-based Entropy  

The entropy measures the randomness of a signal, and it is one of the most characteristic features 

that can be obtained from EEG data. Besides the general definition of entropy, two more variations 

will be computed: the Shannon entropy and the Log Energy-entropy. All of them will be quantified 

after applying a Morlet wavelet transform, as indicated in [107] and [108].    

A wavelet transform is based on a decomposition of the temporal and frequential contents of a signal 

by stretching, compressing, and shifting a waveform known as a wavelet. The coefficients that 

describe the segmented data can be obtained thanks to the PyWavelets library.   

The formulas that define the entropies are presented below: 
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𝑯𝑬𝒏 = −∑𝒑𝒊 · 𝒍𝒐𝒈𝟐(𝒑𝒊)

𝑴

𝒊=𝟏

 (Eq. 4.36) 

𝑯𝑺𝒉𝒂𝒏𝒏𝒐𝒏𝑬𝒏 = −∑𝒑𝒊
𝟐 · (𝒍𝒐𝒈𝟐(𝒑𝒊))

𝟐
𝑴

𝒊=𝟏

 (Eq. 4.37) 

𝑯𝒍𝒐𝒈𝑬𝒏 = −∑(𝒍𝒐𝒈𝟐(𝒑𝒊))
𝟐

𝑴

𝒊=𝟏

 (Eq. 4.38) 

Where 𝒑𝒊 can be obtained as: 

𝒑𝒊 =
|𝑾(𝒂𝒊, 𝒕)|

∑ 𝑾(𝒂𝒋, 𝒕)
𝑴
𝒋=𝟏

 (Eq. 4.39) 

Assuming that 𝑾(𝒂𝒊, 𝒕) (𝑖 =1, 2, …, M ) is a set of wavelet coefficients defined as a matrix of size 

(M,N), being M the scales of the transform and N the time points.  

𝑾𝑴𝒙𝑵 = [

𝒘𝒂𝟏
,𝟏 ⋯ 𝒘𝒂𝟏

,𝑵
⋮ ⋱ ⋮

𝒘𝒂𝑴
,𝟏 ⋯ 𝒘𝒂𝑴

,𝑵
] (Eq. 4.40) 

 

Figure 4.36.- Example of a Morlet wavelet being elongated and shifted. Figure extracted from [109]. 
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4.8. Artificial Intelligence models 

The last step for implementing the MI-BCI is to train AI models that will classify the three classes (left, 

right, and rest) accurately and precisely. The end goal is to find two different AI architectures, one for 

distinguishing between left and right-hand imageries and the other for differentiating imageries from 

the resting state (see Figure 4.2.). For doing so, manifold Machine and Deep Learning methods will be 

tested to see which are the most suitable. In this subsection, the most relevant models will be 

presented and described.  

4.8.1. Train and test data distribution 

From all the segmented data, 80 % will be used to train the models and the remaining 20 % to 

test them; this ratio will ensure a correct evaluation of the models. It is important to clarify that the 

data will be shuffled randomly. For the Machine Learning architectures, a K-fold Cross-validation will 

be used to have a more accurate estimate of the model's prediction performance. This resampling 

method divides the data into K groups, training the model with (K-1) groups and testing it with the 

remaining fold. This process is repeated for all K possible combinations, and the performance is then 

averaged from each iteration's result.      

 

Figure 4.37.- K-fold cross-validation. Figure extracted from [110]. 

Furthermore, remember that one session from each participant will be used for implementing a real-

time application; therefore, that session will not be employed for training the offline models.     
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4.8.2. Right vs Left imagery 

The left and right-hand imagery classification will be tested mainly with Machine Learning methods. 

Among all the implemented architectures, the best results have been obtained with the following 

ones: 

• Linear Discriminant Analysis (LDA). 

• Support Vector Machines (SVM). 

• Random Forest (RF). 

Each of the previous classifiers will be trained with the Common Spatial Patterns (CSP). 

4.8.3. Imagery vs Resting state 

The imagery and resting-state classification will be checked out with the previously mentioned 

Machine Learning models (Right vs Left imagery), but instead of using CSP they will employ the 

statistical features. Bear in mind that, before inserting the features inside the Machine Learning 

models, the statistical characteristics must be scaled, for instance, with a Standard Scaler. 

Furthermore, a Deep learning technique based on Convolutional Neural Networks (CNN) will also be 

analyzed; this classifier will use the features extracted from the Short-Time Fourier Transform (STFT).   

4.8.4. Model tuning  

The model’s hyperparameters were selected with the help of appropriate tuning techniques in order 

to enhance the classifier’s performance. This optimization is achieved with tools available in the AI 

libraries of Python (Scikit-learn and TensorFlow), such as the Random Grid Search and the Bayesian 

Optimization; with them, one can assess the effects of choosing different hyperparameters.  

4.8.5. Performance metrics  

Knowing how to evaluate the AI models is crucial in order to see if they perform correctly while 

implemented. One might think that the accuracy, which indicates the correct prediction over the 

total predictions, is the only metric that matters, but this depends on the application. Accuracy is 

relevant for gaining an insight into the overall behavior of the model; however, this metric doesn’t 

take into account how well each class is predicted. For instance, in the case of this project, it is 

particularly important to minimize false MI detections, and it is more acceptable not detecting a MI 

when it is actually happening; this cannot be measured with accuracy.   
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Most evaluation metrics can be obtained from the confusion matrix, which contrasts the ground 

truth labels with the predicted classes of the model. Hence, it is easier to visualize the True Positives 

(TP), the True Negatives (TN), the False Positives (FP), and the False Negatives (TN) of the model.   

Table 4.5.- The structure of a confusion matrix. Table created by the author. 

Confusion Matrix 
Predicted 

No hand imagery Hand imagery 

Ground truth 

No hand imagery TN FP 

Hand imagery FN TP 

Besides accuracy, the most relevant metrics for classification models are: 

• Precision: It indicates the ratio of true positives and total positives predicted. It is a measure 

of the exactness of the model.  

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 (Eq. 4.41) 

• Recall/Sensitivity: It specifies how well the model predicts true positives over actual positive 

cases. It is a measure of the completeness of the model. 

𝒓𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (Eq. 4.42) 

• F1 Score: As there is a tradeoff while choosing precision and recall, the F1 Score combines 

them by applying a harmonic mean.  

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 = 𝟐 ·
(𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 · 𝒓𝒆𝒄𝒂𝒍𝒍)

(𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍)
 (Eq. 4.43) 

• Specificity: It stipulates how well the model predicts true negatives over actual negative 

cases. 

𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 (Eq. 4.44) 
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4.8.6. Linear Discriminant Analysis (LDA) 

Linear discriminant analysis (LDA) is a supervised classification technique widely used in Machine 

Learning that focuses on maximizing the separability between classes. This objective is done by 

applying a dimensionality reduction and finding a suitable linear combination of the features. 

Therefore, the categories are projected into a new axis where they will appear more distinguishable 

[111]. For doing so, two criteria must be taken into account: 

1) Maximize the mean between the categories. 

2) Minimize the variation, also known as scatter,  of each category. 

To simultaneously reflect the previous points, the LDA algorithm optimizes them by working with the 

following ratio (considering two categories): 

𝑹 =
(𝝁𝟏 − 𝝁𝟐)

𝟐 

𝝈𝟏
𝟐 + 𝝈𝟐

𝟐
 (Eq. 4.45) 

Where 𝝁 is the mean, 𝝈𝟐 is the scatter, and the subindices indicate the class. The subsequent 

illustration show how this method functions:  

 

Figure 4.38.- LDA. Projection of the red and green class to another axis where they can be better separated. 

Figure extracted from [112]. 
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4.8.7. Support Vector Machines (SVM) 

The aim of support vector machines (SVM) is to separate the data using hyperplanes, which act as 

thresholds for classifying the data. Therefore, the classes can be differentiated depending on where 

the data point falls on the hyperplane. Note that the hyperplane dimensionality depends on the 

number of features. For instance, two characteristics requires a one-dimensional hyperplane (line), 

and three features requires a plane [113].  

Moreover, it is crucial to have a large margin, which indicates the shortest distance between the 

observations and the hyperplane. The hyperplane should be positioned with an equal distance 

between the classes to encounter the highest margin. However, if there are outliers, the margins will 

be reduced substantially, leading to a faulty classifier. For that reason, with the help of iterative 

methods such as Cross Validation, one can find the best margins by allowing outliers (soft margins). 

Hence, it is possible to find new data points for each category, known as support vectors, that will be 

considered for finding a better margin. SVM algorithms require a step which enables them to move 

the data to higher dimensions with tools known as kernels. By doing so, the model’s performance 

increases considerably [114]. 

 

Figure 4.39.- SVM. Margins with and without outliers. The top case shows how small the margins are. The 

bottom case enlarges the margins by finding the support vectors that gave the best margin, found 

with cross validation. Figure extracted from [114]. 
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Figure 4.40.- SVM. Hyperplane (blue) and margins (green) drawn. Notice that there are outliers and that the 

margins are equally distanced. Figure extracted from [115]. 

4.8.8. Decision Trees and Random Forest (RF) 

As its name suggests, a decision tree classifier is a Machine Learning algorithm with a tree-like 

branching structure that allows data classification. It performs a recursive splitting of the dataset 

using decision nodes, which contain certain conditions. If they are satisfied, it activates the left path; 

otherwise, it triggers the right one. This process occurs until a leaf node is reached, which will contain 

a class label that will indicate the prediction of the decision tree. The best splits can be found after 

maximizing the entropy gain while training the model. 

The drawback of this algorithm is that they are highly sensitive to the training data, resulting in higher 

variance. Hence, the random forest (RF) technique is used to tackle this problem, which combines 

multiple decisions trees simultaneously. The first step for training these algorithms is to create 

various random datasets from the original one; this process is called bootstrapping, employed to 

ensure that the trees are trained with different data. Note that this technique creates datasets with 

the same amount of rows as the original one, allowing the repetitions of samples. The next step is to 

arbitrarily pick out a subset of features to train each bootstrapped dataset independently; this 

process is named random feature selection. The last step is to build a decision tree for each dataset. 

Finally, an aggregation algorithm is applied to combine all the predictions from each decision tree 

and decide on a single output. If bootstrap and aggregation are combined, the procedure is called 

bagging. Everything explained is summarized in the following image:  
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Figure 4.41.- RF. The dataset is divided into four datasets by using bootstrap and two random features. For each 

dataset, a decision tree is created. The output of the RF is established by aggregating the results of 

each decision tree. Figure extracted from [116]. 

4.8.9. Artificial Neural Networks (ANN) 

Inspired by the biological concepts of the nervous system, artificial neural networks (ANN) are a 

subbranch of Machine Learning and the nucleus of Deep Learning algorithms that consists of the 

interconnection of nodes, known as neurons, that receive and transmit information. The end goal is 

to train the ANN to activate or inhibit the neurons for finding complex patterns used for carrying out 

prediction tasks [117].  

They are composed of multiple layers with multiple neurons each; the first and last layers are 

referred to as the input and output, respectively. The remaining ones are the hidden layers; their 

behavior is so complex that it is nearly impossible for a human to interpret what the model is actually 

doing; hence, neural networks are known to be black-box systems. If there are manifold hidden 

layers, the ANN is a deep neural network. 

Basically, the inputs of one neuron come from the weighted sum of the signals coming from all the 

neurons of the previous layer, which are real numbers parametrized in each neuron. Then, the 

neuron processes the result by adding a bias and applying an activation function, such as the Sigmoid 

or the ReLU. It is strongly recommended to introduce nonlinearity to the system with the activation 

function for the correct functioning of the ANN for solving nonlinear problems. The outcome of this 

operation defines the value of the neuron. Finally, this calculated parameter will be multiplied by an 
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associated weight and introduced to all the neurons of the following layer. The values of the neurons 

are initialized with the data in the input layer, and the model's results depend on the neurons 

activated in the outcome layer. 

The end goal of ANNs is to find the most appropriate bias and weights that can minimize a 

loss/cost function, which measures how well the algorithm predicts an expected value. This can be 

achieved by training the AI model, thanks to a process known as back-propagation. Hence, during 

the training session, the data flows forward and backward for a pre-established number of cycles.      

 

Figure 4.42.- A neuron of an ANN. All the operation needed to have an output. Figure extracted from [118]. 

 

Figure 4.43.- The layers of a deep neural network. Figure extracted from [117]. 

The main difficulty occurring while working with ANN, especially when they are deep, is the 

undesired effect of overfitting, where the model performs excellently in the training dataset and 
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poorly while testing it. Hence, the models memorize patterns from the training data and are less 

capable of generalizing the predictions. Many regularization techniques can help to reduce the effect 

of overfitting.  

One method is establishing a dropout ratio to randomly drop several connections of the ANN in each 

iteration of the training session; this makes the model more likely to generalize a solution.  Another 

one is to apply an early stopping, which enables the user to select an optimal number of iterations 

required (forward and back-propagation) for training the model before it overfits.  

 

Figure 4.44.- A comparison between an underfitted, an optimum, and an overfitted model. Figure extracted 

from [119]. 

4.8.10. Convolutional Neural Networks (CNN) 

A convolutional neural network (CNN) is a type of Deep Learning algorithm that is widely used for 

classifying, segmenting, or detecting objects from an image, which can be described as a matrix [120]. 

The process starts when multiple filters, known as kernels or masks, are applied to the matrix. These 

kernels are smaller than the picture (usually of size 3x3) and run over all the image by executing a 

convolution, which is a mathematical operation that enables the image transformation with these 

steps [121]: 

1) Flip the kernel horizontally and vertically. This step is done only once. 

2) Put the kernel over a section of the image. 

3) Calculate the dot product (multiply the values of the mask with their corresponding image’s 

values; then sum the results to obtain the output value in that position). 

4) Shift the kernels to the next position of the image. This parameter can be defined with the 

stride, which indicates how many positions the mask shifts in each iteration. 

5) Repeat the process until all the positions are covered.  
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Figure 4.45.- Application of convolution to an image (green with black numbers) with a kernel (yellow with red 

numbers). The result of the convolution is shown in the pink matrix. Figure extracted from [122]. 

Notice that due to the mask size the edges of the image are eliminated from the output result. This 

issue can be solved by zero-padding the images. In this way, the output can have the same size as the 

input image.   

After the convolution layer, an activation function (ReLU, etc.) is applied to introduce non-linearity to 

the system. The next step is to carry out pooling operations, such as the maximum or the average 

pooling, to reduce the sizes of the matrices and the computational cost. Furthermore, it decreases 

the risk of overfitting the system and makes the model more tolerant in front of slight distortions and 

variations.   

The convolutional and pooling layers can be computed sequentially multiple times to extract features 

from the images. Once all the characteristics are obtained, the matrices are converted into a single 

dimension in the flatten layer. Subsequently, a fully connected ANN is used for classifying the image.   

While training the CNN model, the back-propagation allows finding suitable weights, bias, and 

kernels for enhancing the architecture’s performance by reducing the loss function [123].  
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Figure 4.46.- Overview of the CNN architecture for classifying the image of a zebra. Figure extracted from [124].
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5. Results 

After training all the models mentioned in the previous section, the performance of the AI models 

must be evaluated to choose the most appropriate ones for real-time implementation. It is important 

to remark that each model was trained by using the data of Subjects C, E, and F. Bear in mind that 

the right vs left imagery models will be assessed in two separate ways:   

• Mixing all the testing data of each subject for obtaining general estimation models. 

• Treating the inter-subject testing data independently to see how the models performs for 

each participant.  

In the case of the imagery vs non-imagery models, only the general estimation will be considered.  

5.1. Chosen AI models 

The hyperparameter used for the Machine Learning models are the following: 

• LDA: A singular value decomposition (SVD) solver and no shrinkage.  

• SVM: A radial basis function (RBF) kernel, a gamma of 0.00001, and a C parameter of 10000. 

• RF: 100 number of estimators, a Gini criterion for measuring the quality of a split, a 

maximum depth of 11, a minimum number of samples to split an internal node of 5, a 

minimum number of samples to be considered as a leaf node of 4, and square root (sqrt) 

function to calculate the maximum number of features.   

The structure of the CNN is shown in Figure 5.1. Firstly, there is a 2D convolutional layer with 120 

filters, a 3x3 kernel, a ReLU activation function, and an input size of (3,91,181); this is followed by a 

MaxPooling layer of size two and a dropout of 20%. The second convolutional layer has 240 filters, a 

3x3 kernel, and a ReLU activation function, followed by a MaxPooling of size one and a dropout of 

20%.  

Afterward, a flatten layer prepares the data for entering inside two dense layers with 164 and 128 

neurons, respectively. Both have a dropout of 20% and a ReLU activation function. The model ends 

with a one neuron layer with a Sigmoid activation function.  

Regarding the CNN's hyperparameters, there is a learning rate of 0.0001 with a decay rate of 

0.0001/300 and a momentum of 0.8; these parameters are introduced inside a Stochastic Gradient 

Descent (SGD) optimizer. The loss will be evaluated with the binary cross-entropy.    
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Figure 5.1.- The structure of the CNN. Figure created by the author. 

5.1.1. Right vs Left-hand imagery 

As can be seen in Table 5.1, all three models present similar results, being the RF architecture slightly 

better than the others with an overall accuracy of 83%, reaching 88% in Subject C. Moreover, the 

precision and the recall reveal that all the models are more likely to detect left-hand imageries than 

right-hand ones. Therefore, the RF will be the chosen model for distinguishing left and right-hand 

imageries. 

5.1.2. Imagery vs non-imagery 

As has been previously remarked, it is extremely important to avoid false positives so that a MI is not 

wrongly detected. Hence, accuracy and precision should be assessed conjunctively to find an optimal 

solution.  

By using the statistical features, the RF has the best accuracy (77%) and precision (85%) relative to 

LDA and SVM. It is possible to obtain the statistical features that are more capable of better 

explaining and defining the behavior of the model; this can be done with the Shapley values (Figure 

5.2.). The most relevant features are the energy, the entropy, and the log energy-entropy. 
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Figure 5.2.- Shapley values for interpreting the model’s classes. Blue is for the resting state and red for the 

imagery class. The X-axis represents the average impact of the features on the model (0.01 SHAP 

values per division). Figure created by the author. 

However, the CNN outperforms the RF architecture as it has a 78% accuracy and a precision of 90%, 

which is reasonable for the BCI. Therefore, the CNN will be the chosen model for distinguishing 

imageries and resting states. 

Figure 5.3. shows how the architecture performed in each iteration; visualizing this type of graph is 

crucial in order to ensure that there is no overfitting by finding the suitable number of epochs that 

minimizes the testing loss.   
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AI models results 

General                         

(All Subjects) 
Subject C Subject E Subject F 

LDA SVM RF CNN LDA SVM RF CNN LDA SVM RF CNN LDA SVM RF CNN 

Right vs 

Left-

hand 

imagery 

CSP 

Accuracy 82% 82% 83%  87% 88% 88%  78% 79% 79%  80% 79% 81%  

Precision 87% 88% 87%  92% 93% 94%  87% 87% 84%  84% 83% 83%  

Recall 75% 75% 77%  82% 82% 80%  67% 68% 72%  74% 75% 79%  

Imagery 

vs non-

imagery 

Statistical 

Features 

Accuracy 74% 76% 77%  

Precision 83% 83% 85%  

Recall 59% 63% 63%  

STFT 

Accuracy    78% 

Precision    90% 

Recall    72% 

Table 5.1.- A summary of the AI model results. Table created by the author. 

 



  Final Report 

94   

 

Figure 5.3.- The training and the testing of the CNN model. Train accuracy (orange), train loss (blue), test accuracy (red), test loss (green). The X-axis represents the 

epochs (50 epochs per division) and the Y-axis represents the accuracy and the loss (0.1 units per division). Figure created by the author. 
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5.2. Real-time implementation 

Once the best models are chosen, they will be used to classify an entire EEG session that was unseen 

while training them. Therefore, the models will simulate an online categorization of the data, 

mimicking the behavior that would be obtained from a live collection of EEG data. 

To carry it out, the EEG session will be introduced sequentially inside a window with a size of 180 

samples (0.9 seconds since the sampling rate is 200 Hz). The data inside the window is filtered with 

the designed FIR filter; bear in mind that there will be a delay of 75 samples (justified in the Digital 

filtering section). Subsequently, the STFT features are extracted, and the CNN model will classify 

whether the segment is an imagery or a resting state. If an imagery is detected, the CSP are obtained, 

and the RF model will distinguish between left and right-hand imageries. If a resting condition is 

detected, the BCI will ignore the segment (see the diagram drawn in Figure 4.2.). Afterward, the data 

is shifted 20 samples (0.1 seconds) into the window, and the cycle starts again (Figure 5.4.).   

In order to avoid noisy classifications, the model must predict four consecutive right or left-hand 

imageries to efficiently decide if a movement is really performed or not. For instance, if the model 

has been predicting a resting state for 10 seconds and at 10.1 seconds detects a right-hand 

movement continued by a passive state, this would be considered a noisy classification.   

 

Figure 5.4.- A visual explanation of how the data slides inside the window (red). Figure created by the author. 
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In the following pages, a set of images will highlight some of the predictions from an unseen session 

of Subject C, showing cases in which the models perform flawlessly and others where there are some 

faults (see the captions of each illustration to have a detailed explanation). Overall, the BCI detects 

the imageries precisely, outputting most of the time the correct hand movement.  

On the one hand, the red and green color bands indicate the eGUI’s instruction to imagine a right or 

left-hand movement, respectively. On the flip side, the orange and blue colors bands denote the right 

and left-hand imageries predictions, correspondingly. Notice that there will always be a short delay 

between the eGUI’s indication and the prediction; this is caused due to the FIR filter and the subject's 

response time after seeing the stimuli.  

The last step is to move a MeArm robotic manipulator left or right, depending on the prediction; this 

is achieved by establishing serial communication between Python and Arduino. In other words, a 

servomotor is activated based on the model’s outputs. The servomotor is connected to Pin 9 of the 

Arduino Mega 2560. The set up is shown in the following illustration:  

 

Figure 5.5.- Setting up the MeArm robotic manipulator. Figure created by the author. 
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Figure 5.6.- Predictions of an unseen session (Subject C). All the classes were correctly classified (green circles), and the resting state was successfully detected. Red 

band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. 

Figure created by the author. 
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Figure 5.7.- Predictions of an unseen session (Subject C). All the classes were correctly classified (green circles). Notice that sometimes the prediction is delayed a little 

bit more, which is normal. Moreover, a prediction can be repeated consecutively, indicating that the mental activity is maintained. Red band: Indication to 

perform a right imagery. Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the 

author. 
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Figure 5.8.- Predictions of an unseen session (Subject C). All the classes were correctly classified (green circles), and the resting state was successfully detected. Red 

band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. 

Figure created by the author. 
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Figure 5.9.- Predictions of an unseen session (Subject C). Almost all the classes were correctly classified (green circles), and the resting state was successfully detected. 

However, there is one right imagery detected as left and one left detected as right (red circles). Red band: Indication to perform a right imagery. Green 

band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the author.  
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Figure 5.10.- Predictions of an unseen session (Subject C). Almost all the classes were correctly classified (green circles). However, there is one left imagery detected as 

right and another left imagery that was not detected at all (red circles). Red band: Indication to perform a right imagery. Green band: Indication to perform 

a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the author. 
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Figure 5.11.- Predictions of an unseen session (Subject C). Almost all the classes were not detected at all, the model considered them as a resting state (red circles); only 

two were correctly categorized (green circles). Red band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. Orange 

band: right prediction. Blue band: left prediction. Figure created by the author.  
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Figure 5.12.- Predictions of an unseen session (Subject C). This case shows how well the model predicts a resting state, being passive when there is no indication to 

perform left or right-hand imageries (blue circle). Red band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. 

Orange band: right prediction. Blue band: left prediction. Figure created by the author. 
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Figure 5.13.- Predictions of an unseen session (Subject C). This case shows how well the model predicts a resting state, being passive when there is no indication to 

perform left or right-hand imageries (blue circle). Red band: Indication to perform a right imagery. Green band: Indication to perform a left imagery. 

Orange band: right prediction. Blue band: left prediction. Figure created by the author. 
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Figure 5.14.- Predictions of an unseen session (Subject C). This case shows that sometimes an imagery state is detected even though the patient is in a resting state (red 

circles). These cases are not abundant since the precision of the imagery vs non-imagery model is high. Red band: Indication to perform a right imagery. 

Green band: Indication to perform a left imagery. Orange band: right prediction. Blue band: left prediction. Figure created by the author. 
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6. Environmental analysis 

Climate change is a dangerous threat that can devastate the environment and the organisms living in 

it. For that reason, one must be constantly aware of the environmental impact that any project will 

cause, knowing all the consequences of the actions taken.  

All the hardware employed in this project, including the Arduino and the EEG that the researchers in 

[9] used for creating the dataset (JE-921A EEG), has been chosen carefully to respect the 

environment. Each of the selected components is certified with quality stamps, more precisely 

complying with the EU directive 2011/65/EU (RoHS compliant) [125][126]. With the RoHS, the use of 

toxic and harmful substances for the environment found on the device's electronics is limited 

(chromium, mercury, cadmium, etc.). 

Furthermore, one must not overlook the equivalent carbon emissions due to the GPU’s power 

consumption while extracting features and optimizing, tuning, and training the AI models. 

Approximately, in this thesis, the computer executed the previous operations for 120 hours. The GPU 

used is an NVIDIA GeForce GTX 1080, which has a power consumption of 180 W [127]; hence, the 

energy consumption can be calculated as follows:  

𝑮𝑷𝑼 𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝟏𝟖𝟎 𝑾 · 𝟏𝟐𝟎 𝒉 = 𝟐𝟏. 𝟔 𝒌𝑾𝒉  (Eq. 6.1) 

According to the Catalan Office of Climate Change [128], the estimated carbon produced based on 

the local power grid (Catalonia) is 0.321 kg eq. CO2/kWh; therefore, the equivalent CO2 generated 

due to the Machine and Deep Learning models is 6.9 Kg of CO2: 

𝑬𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝑪𝑶𝟐 = 𝟐𝟏. 𝟔 𝒌𝑾𝒉 · 𝟎. 𝟑𝟐𝟏
𝑲𝒈 𝒆𝒒. 𝑪𝑶𝟐

𝒌𝑾𝒉
= 𝟔. 𝟗 𝑲𝒈 𝒐𝒇 𝑪𝑶𝟐  (Eq. 6.2) 
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7. Project planning 

To successfully carry out all the required tasks of this project, the author designed a Gantt chart 

(Figure 7.1.) to work efficiently and in an organized way. Each period of this diagram represent a 

week.  

As it can be seen, the author worked on the thesis intermittently, starting his research in February 

2019 and his formation in the AI world in July and August of 2019. He developed the BCI system 

during the summers of the succeeding years (2020 and 2021) and the last quarter of his double 

degree (from February 2022 to May 2022).    

Most of the activities were completed on time; only activities 3, 5, 10, and 11 were completed 

beyond the proposed dates, which was not problematic since the project was finished one week 

before expected. Notice that activity 10 took two weeks more to complete because many more 

models not mentioned in the thesis were evaluated; only the best performing architectures were 

cited in the report.  The following table will document the hours worked on each task: 

Table 7.1.- Hours worked in each activity. Table created by the author. 

Task Hours 

Activity 01: Research (Reading BCI and Neurology books and papers). 300 

Activity 02: Formation in AI. 180 

Activity 03: Finding a proper dataset. 50 

Activity 04: Create an application for collecting a dataset. 10 

Activity 05: Data visualization. 75 

Activity 06: Understanding the data (ERS/ERD, PSD, among others). 100 

Activity 07: FIR filter design. 70 

Activity 08: Data preprocessing. 30 

Activity 09: Finding suitable features to extract. 90 

Activity 10: Training, testing, and tuning multiple AI models. 180 

Activity 11: Analyzing the results to choose the best architectures. 25 

Activity 12: Implement the real-time BCI. 50 

Activity 13: Write the report. 275 

TOTAL 1435 

 

Thus, the total time dedicated to this project is 1 435 hours, which is sufficient to cover the workload 

of a 48 ECTS thesis.  
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Figure 7.1.-  Gantt chart to plan and track all the activities. Figure created by the author. 

 

  

% Complete (beyond plan)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Activity 01: Research (Reading BCI and 

Neurology books and papers).
1 16 1 16 100%

Activity 02: Formation in AI. 5 8 5 8 100%

Activity 03: Finding a proper dataset. 13 1 13 2 100%

Activity 04: Create an application for collecting 

a dataset.
14 1 14 1 100%

Activity 05: Data visualization. 14 3 15 3 100%

Activity 06: Understanding the data (ERS/ERD, 

PSD, among others).
17 4 17 3 100%

Activity 07: FIR filter design. 21 3 21 3 100%

Activity 08: Data preprocessing. 22 4 22 3 100%

Activity 09: Finding suitable features to extract. 25 4 25 4 100%

Activity 10: Training, testing, and tuning 

multiple AI models.
29 6 29 8 100%

Activity 11: Analyzing the results to choose the 

best architectures.
35 2 37 1 100%

Activity 12: Implement the real-time BCI. 37 2 37 2 100%

Activity 13: Write the report. 33 12 33 11 100%

Apr-22ACTIVITY
PLAN 

START

PLAN 

DURATION

ACTUAL 

START

ACTUAL 

DURATION

PERCENT 

COMPLETE

Plan Duration Actual Start % Complete Actual (beyond plan)

Feb-19 Jul-19 Aug-19 Jul-20 Aug-20

PERIODS (Weeks)

May-22Jul-21 Aug-21 Feb-22 Mar-22
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Conclusions 

In this work, the author successfully implemented a BCI system that can translate EEG signals 

containing imaginations of hand movements coming from the motor cortex activity into commands 

for controlling a robotic manipulator. The project highlights that BCIs will revolutionize the lifestyle of 

individuals with movement disabilities, enabling them to be more independent and integrated into 

society.  

The first step taken was to understand the data to decide on further actions to consider. The power 

spectral density revealed that electrodes Fp1 and Fp2 constantly captured eye-blinking signals as they 

contained higher amplitudes at lower frequencies relative to other electrodes; additionally, it was 

confirmed that the higher the frequency, the lower the magnitude of the signals. Furthermore, to 

reduce the spatial smearing effect, the common average referencing has shown to localize the 

sources of the EEG signals. 

The ERD/ERS maps were extremely useful for comprehending the frequential behavior of each 

imagery over time. From the six subjects analyzed, only Subject C had a map that mostly reassembled 

the theoretical one, having clear ERD followed by an ERS in the Beta band and an ERS in the Mu band. 

To the author’s surprise, the rest of the subjects lacked any ERD. Moreover, most participants only 

had ERS activity in the Beta and not the Mu band. For the previously stated reasons, only ERS from 

the Beta band was considered for the study. Only three participants (Subjects C, E, and F) proved to 

have good-quality recordings; hence, the other subjects were discarded for training the artificial 

intelligence models.  

Before training the model, the data was preprocessed to enhance the overall performance. The ICA is 

the perfect solution to remove artifacts, such as eye-blinking, muscular or cardiac activity, without 

altering the crucial information of the signals. Furthermore,  the data must be segmented correctly 

based on the duration of the imagery activity displayed in the ERD/ERS maps. 

Moreover, a finite impulse response filter was carefully designed to maintain the Beta band's ERS for 

all the selected subjects (15 Hz – 26 Hz). The filter's parameters were justified so that there are 

proper transition bands and no ripples in the passband. In addition, a Hamming window effectively 

increased the attenuation of the undesired secondary lobes that appear on the Bode. Also, as the 

filter is intended for a real-time application, the order chosen was 150, so the delay is not noticeable 

(372.5 ms).   
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The next step was to train two models for classifying three classes: left imagery, right imagery, and a 

resting state. The hyperparameters of each architecture were chosen with the help of tuning and 

optimizing methods, which significantly enhanced the accuracy and precision.    

On the one hand, model LR, which classified left and right-hand imageries, was trained with various 

Machine Learning models with the CSP as features. The random forest algorithm outperformed the 

other models with an overall accuracy of  83%, reaching 88% in Subject C; these great results 

demonstrate that the model generalizes the data and decently handles the inter and intra-individual 

variability. The CSP undoubtedly does an excellent job discriminating between the left and right-hand 

classes.  

On the other hand, model IR, which distinguishes between an imagery event and the resting state of 

the subject, has shown to perform better with the STFT features in a convolutional neural network 

than with statistical features in other Machine Learning models; the obtained accuracy was 78%. In 

addition, the precision was 90%, which is a good indicator that the model hardly has false positives; 

this is important so that the robotic manipulator does not get triggered without any valid imagery 

from the user. 

Both models worked cooperatively (see the diagram drawn in Figure 4.2.) to do a real-time BCI. For 

testing this live analysis, an unseen session from Subject C was scrolled inside a 0.9 second time 

window, constantly filtering and classifying the signals overlapping with the window. The results were 

outstanding and much more robust than expected: the overall system can detect the three classes 

with few erroneous classifications.   
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Future work 

Unfortunately, the author could not gain access to an EEG device; however, based on the excellent 

results achieved, this system can be fully operable for distinguishing the three categories by following 

the methodology described. Hence, after acquiring the device, the whole MI-BCI system will be 

implemented and tested (hardware and software).       

Furthermore, a new line of research into different algorithms and features that could enable a 

multiclass classification will be started, for instance, detecting left/right hand and feet imaginations 

or categorizing the imagery of finger movements. To do so, the users must employ EEGs with much 

more electrodes in order to improve spatial resolution.     

Indeed, all these processes can be applied in an ECoG instead of an EEG to improve the signals’ 

quality, reduce the smearing effect, increase the spatial resolution, and gain information at higher 

frequencies hence enabling the classification of many more classes. Despite being an implantable 

device, they are the most viable way for the paralytic community to use a BCI. As a matter of fact, this 

thesis is just a first approach to the BCI world to the author, as he aims to end up working with ECoG 

in his succeeding career. 
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Budget 

In this section, the author will hypothesize the costs that would be needed to professionally develop 

this project. Thanks to this economic analysis, the reader can see the expenses usually spent on BCI 

projects, considering the personnel and material costs.  

Engineering cost 

First and foremost, this work requires a Biomedical Engineer, an Electronics Engineer, or a Data 

Scientist, which is the most valuable asset of the project. Supposing that the employee is a junior 

Electronics Engineer and that the average salaries of these engineers in Spain are typically around 30 

thousand euros a year (considering 217 working days in a year and 8 hours per day) without including 

the 33% regarding the social security, the hourly cost of the engineer would be of:  

   𝑯𝒐𝒖𝒓𝒍𝒚 𝒄𝒐𝒔𝒕 =
𝟑𝟎𝟎𝟎𝟎 € + 𝟑𝟎𝟎𝟎𝟎 € · 𝟎.𝟑𝟑

𝟐𝟏𝟕 𝒅𝒂𝒚𝒔 · 𝟖 
𝒉𝒐𝒖𝒓𝒔

𝒅𝒂𝒚

=  𝟐𝟑
€

𝐡𝐨𝐮𝐫
 (Eq. 0.1) 

Since the total duration of the project is 1435 hours (justified in Table 7.1.), including research and 

implementation, the personnel cost is 33 005 €. 

Material cost 

The following table lists the costs of all the software and hardware used in the project, the total cost 

of the materials and licenses is 7 270  €. 

Table 0.1.- Material and licenses costs. Table created by the author. 

Material/License Cost 

Asus ROG Strix GL553V (Laptop) 1050 € 

Arduino MEGA 2560 45 € 

EEG-1200 JE-921A  5890 € 

Books 250 € 

Microsoft Office License 35 € 

TOTAL 7270 € 
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Total budget 

The total expenses are calculated by summing the engineering and materials costs (taking into 

account the 21% IVA), which gives a total cost of 48 732 € (Table 0.2): 

Table 0.2.- The total expenses of the project. Table created by the author. 

Materials/License Cost 

Materials 7270 € 

Engineering 33005 € 

Total 40275 € 

TOTAL (+21% IVA) 48732 € 
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Annexes  

These annexes will recollect the most important codes used in the thesis; the scripts are commented and organized (in classes and functions) so that 

the reader can understand them more easily.   

A1. Annex 1: Left vs right-hand imagery (Organized in classes) [Left_vs_Right.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. LEFT VS RIGHT-HAND IMAGERY. 
4. In this script, numerous classes used for preprocessing, processing, and classifying left vs right-hand 

imageries 
5. will be coded. 
6.  
7.  
8. @author: Ali Abdul Ameer Abbas 
9. """ 
10.  
11. import numpy as np 
12. import matplotlib.pyplot as plt 
13. import mne 
14. import pymatreader 
15. import scipy.stats 
16. import pandas as pd 
17. from mne.decoding import CSP 
18.  
19. from sklearn.pipeline import Pipeline 
20. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # LDA 
21. from sklearn.model_selection import ShuffleSplit, cross_val_score 
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22. from sklearn.svm import SVC                         # SVM      
23. from sklearn.neighbors import KNeighborsClassifier  # KNN 
24. from sklearn.naive_bayes import GaussianNB          # Naive Bayesian 
25. from sklearn.ensemble import RandomForestClassifier # Random Forest 
26. from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis #QDA                         # 

QDA  
27. from sklearn.model_selection import learning_curve 
28. from sklearn.metrics import plot_confusion_matrix, confusion_matrix, precision_score, recall_score, auc, 

roc_curve 
29. from sklearn.model_selection import RandomizedSearchCV 
30.  
31.  
32. from scipy.stats import norm 
33. import pywt 
34.  
35.  
36.  
37. #%%         
38. class PreprocessDataset: 
39.     """ 
40.     This class will preprocess a file containing EEG recordings.  
41.     It assigns a common reference, apply an ICA, filter the data. It also segments and annotates the 

data.    
42.             
43.     """ 
44.      
45.     def __init__(self, path, montage = 'standard_1020', show_plots = False, bad_chan = []): 
46.          
47.         """ 
48.         Initialize the class by reading and reconstructing the signals. 
49.         INPUTS: 
50.             montage --> The reference selected. 
51.             path --> The path of the file. 
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52.             bad_channels --> Bad channels to eliminate. 
53.             show_plots --> To show the plots of the EEG recording.  
54.         """ 
55.         # Convert the matlab files into a python compatible file. 
56.         self.struct = pymatreader.read_mat(path, ignore_fields=['previous'], variable_names = 'o') 
57.         self.struct = self.struct['o'] 
58.          
59.          
60.         self.chann = self.struct['chnames'] # Save the channels names. 
61.         self.chann = self.chann[:-1]        # Eliminate the X3 channel, which is only used for the data 

adquisition. 
62.          
63.         #Set important properties for the dataset.  
64.         self.info  = mne.create_info(ch_names = self.chann,  
65.                                sfreq = float(self.struct['sampFreq']),ch_types='eeg', 
66.                                montage= montage, verbose=None) 
67.          
68.         #Create the data variable. 
69.         self.data   = np.array(self.struct['data']) 
70.         self.data   = self.data[:,:-1] 
71.         self.data_V = self.data*1e-6        # mne reads units are in Volts, convert it to uV. 
72.          
73.         # Create the raw instance for working with the data in the MNE library. 
74.         self.raw   = mne.io.RawArray(self.data_V.transpose(),self.info, copy = "both") 
75.         self.raw.info['bads'] = bad_chan # exclude bad channels 
76.          
77.         # Show the raw data if show_plot is true. 
78.         if show_plots: 
79.             self.raw.plot(title = 'Raw signal') 
80.  
81.     def channel_reference(self, ref = 'average' ): 
82.          
83.         """ 
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84.         Set a reference to the data.  
85.         INPUTS: 
86.             ref --> Reference. 
87.          
88.         OUTPUTS:  
89.             raw --> Referenced data.    
90.         """ 
91.          
92.         self.raw = self.raw.set_eeg_reference(ref, projection= False) 
93.          
94.         return(self.raw) 
95.          
96.     def MNE_bandpass_filter(self, HP = 15, LP = 26, filt_type = 'firwin', show_plots = False, 

skip_by_annotation='edge'): 
97.          
98.         """ 
99.         Apply a BP FIR filter.  
100.          
101.         INPUTS: 
102.             LP,HP --> Low Pass filter, High Pass filter. 
103.             filt_type --> filter type. 
104.             show_plots --> To show the plots of the EEG recording.  
105.         OUTPUTS:  
106.             raw --> Filtered data. 
107.         """ 
108.         self.raw.filter(HP, LP, fir_design = filt_type, skip_by_annotation = 'edge')         
109.          
110.         if show_plots: 
111.             self.raw.plot(title = 'Filtered Raw') 
112.             self.raw.plot_psd() 
113.              
114.              
115.         return(self.raw) 
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116.          
117.      
118.     def apply_ICA(self, n_components = 10, ICA_exclude = [0], show_plots = False):  
119.          
120.         """ 
121.         Apply the ICA for removing eye blinking, EMG signals, EKG signals, among other artifacts. 
122.          
123.         INPUTS: 
124.             n_components --> Number of components of the ICA. 
125.             ICA_exclude --> Array used to eliminate components from teh signals. 
126.             show_plots --> To show the plots of the EEG recording.  
127.         OUTPUTS:  
128.             raw_ica --> Data after ICA. 
129.         """ 
130.         # Apply ICA for blink removal  
131.         self.ica = mne.preprocessing.ICA(n_components = n_components, random_state = 0,  

method='fastica') 
132.          
133.         # The MNE documentation recommends to HP filter the ICA at 1 Hz.  
134.         filt_raw = self.raw.copy()                 # Create a copy of teh data 
135.         filt_raw.filter(l_freq=1., h_freq=None)    # HP filter at 1 Hz  
136.         self.ica.fit(filt_raw)                     # Find the ICA parameters.  
137.  
138.         # Plot the ICA components to detect artifacts.    
139.         if show_plots: 
140.             self.ica.plot_components(outlines = 'skirt', colorbar=True, contours = 0) 
141.             self.ica.plot_sources(self.raw)  
142.          
143.         # Once the bad components are detected, we procede to remove them. 
144.         self.ica.exclude = ICA_exclude 
145.  
146.         self.raw_ica = self.ica.apply(self.raw.copy(), exclude = self.ica.exclude) 
147.          
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148.         # Plot the results.  
149.         if show_plots: 
150.             self.raw.plot() 
151.             self.raw_ica.plot()   
152.          
153.         return self.raw_ica 
154.      
155.     def type_pos(self, sfreq = 200.0): 
156.         """ 
157.         Gets the marker position.  
158.         Just left and right positions, NO PASS marker 
159.         Only takes into account the right and left class, not the passive class. 
160.          
161.         INPUTS: 
162.             sfreq --> Sampling frequency. 
163.         OUTPUTS:  
164.             mark --> markers. 
165.             pos --> position of the marker. 
166.             time --> time of the marker.         
167.         """ 
168.         self.markers =  np.array(self.struct['marker']).transpose() # Include the markers 
169.          
170.         # Intitialize the output arrays.  
171.         mark = [] 
172.         pos  = [] 
173.         time = [] 
174.          
175.         desc = ['left', 'right'] # for assigning the movements--> left = 1, right = 2, pass = 3 
176.          
177.         #Evaluate the markers in order to find the position and time of each marker, as well as ¡ts 

type. 
178.         for i in range(len(self.markers)-1): 
179.             if self.markers[i]==0 and self.markers[i+1] != 0 and (self.markers[i+1] in [1,2]): 
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180.                  
181.                 mark.append(desc[self.markers[i+1]-1]) 
182.                 pos.append((i+2)) 
183.                 time.append((i+2)/sfreq) 
184.             else: 
185.                 continue 
186.              
187.         return mark, pos, time  
188.      
189.     def add_annotations(self, duration = 1): 
190.         """ 
191.         This function uses the tye_pos function to annotate the markers. 
192.         INPUTS: 
193.             duration -->Its the duration of the annotation. 
194.         """             
195.          
196.         [self.mark, self.pos, self.time] = self.type_pos()                 # Use the typo pos function.  
197.  
198.         self.annotations = mne.Annotations(self.time, duration, self.mark) # Annotate the markers. 
199.         self.raw.set_annotations(self.annotations)                         # Set the annotation.  
200.       
201.     def create_epochs(self, raw_ica, tmin= 2.1, tmax= 3, show_plots = False):     
202.         """' 
203.         Segment and label all the data.  
204.         INPUTS: 
205.             raw_ica --> Preprocessed data. 
206.             tmin, tmax --> times for segmenting the data. 
207.             show_plots --> To show the plots of the EEG recording.  
208.         OUTPUTS: 
209.             epochs.get_data() --> get the epochs. 
210.             labels --> get the labels. 
211.         """ 
212.         self.events = mne.events_from_annotations(self.raw) # extract the events from the annotations. 
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213.          
214.         self.picks = mne.pick_types(self.raw.info, meg=False, eeg=True, stim=False, eog=False, 
215.                                exclude='bads')  # Exclude the bad events. 
216.          
217.         # Save the epochs inside a variable. 
218.         self.epochs = mne.Epochs(self.raw_ica, self.events[0], event_id = self.events[1], 
219.                                  preload = True, tmin=tmin, tmax=tmax, baseline=None, picks = 

self.picks) 
220.         # Save the labels inside a variable. 
221.         self.labels = self.epochs.events[:, -1] 
222.          
223.         # Plot the segmented data. 
224.         if show_plots: 
225.             self.epochs.plot() 
226.          
227.         return(self.epochs.get_data(), self.labels) 
228.      
229.     def plot_electrodes_and_psd(self): 
230.         """ 
231.         Plot the position of the electrodes and the psd. 
232.         """ 
233.      
234.         fig = self.raw.plot_psd(dB=False, xscale='linear', estimate='power')  # show the power spectrum 

density  
235.         fig.suptitle('Power spectral density (PSD)',  fontsize = 30) 
236.         plt.show() 
237.          
238.         fig = self.raw.plot_psd(dB=True, xscale='linear', average = False )  # show the power spectrum 

density  
239.         fig.suptitle('Power spectral density (PSD) (dB)', fontsize = 30) 
240.         plt.show() 
241.          
242.          
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243.          
244.          
245.         fig = plt.figure() 
246.         ax2d = fig.add_subplot(121) 
247.         ax3d = fig.add_subplot(122, projection='3d') 
248.         self.raw.plot_sensors(show_names = True, axes = ax2d) 
249.         self.raw.plot_sensors(show_names = False, axes = ax3d, kind = '3d') 
250.         # Make a sphere to project the 3d electrodes 
251.         u = np.linspace(0, 2 * np.pi, 200) 
252.         v = np.linspace(0, np.pi, 200) 
253.         x = 0.1 * np.outer(np.cos(u), np.sin(v)) 
254.         y = 0.1 * np.outer(np.sin(u), np.sin(v)) 
255.         z = 0.15 * np.outer(np.ones(np.size(u)), np.cos(v)) 
256.         ax3d.plot_surface(x, y, z,alpha = 0.8, color='navajowhite') 
257.         plt.show() 
258.          
259.  
260.        
261.          
262.          
263.  
264. #%%     
265.  
266. # Now a class for processing the data will be created. Mainly, this class will perform the CSP, the 

statistical features, and the STFT. 
267.      
268. class ProcessDataset(): 
269.     """ 
270.     This class will process a file containing EEG recordings.  
271.     It is a subclass of the PreprocessDataset class. 
272.     Mainly, this class will perform the CSP.    
273.      
274.         
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275.     """ 
276.      
277.     def __init__(self, class_pre, epochs, labels): 
278.                  
279.         """ 
280.         Initialize the class by getting the labels and epochs. 
281.         INPUTS: 
282.             class_pre --> Introduce any class of PreprocessDataset so that important information (info, 

chnames, ...) are defined.  
283.             epochs --> Epochs obtained from the PreprocessingDataset class. This epochs should combine 

multiple subjects. 
284.             labels --> Labels obtained from the PreprocessingDataset class. This epochs should combine 

multiple subjects. 
285.         """ 
286.         # Define important parameters for the class: 
287.   
288.         self.struct = class_pre.struct 
289.         self.chann  = class_pre.chann 
290.         self.info   = class_pre.info 
291.         self.data   = class_pre.data 
292.         self.data_V = class_pre.data_V 
293.         self.raw    = class_pre.raw 
294.         self.raw_ica= class_pre.raw_ica 
295.         self.ica    = class_pre.ica 
296.         self.markers= class_pre.markers 
297.         self.mark   = class_pre.mark 
298.         self.time   = class_pre.time 
299.         self.pos    = class_pre.pos 
300.          
301.         self.epochs = epochs 
302.         self.labels = labels       
303.         #Only done to plot the CSP. 
304.         self.epochs_subj = class_pre.epochs.get_data() 
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305.         self.labels_subj = class_pre.labels  
306.          
307.          
308.     # This method is for the CSP.      
309.     def create_CSP(self, reg = 'oas', n_components = 10, show_plot = False): 
310.          
311.         """ 
312.         Create the CSP to obtain spatial featuers.  
313.         INPUTS:  
314.             reg --> reg function. reg may be 'auto', 'empirical', 'diagonal_fixed',  
315.                     'ledoit_wolf', 'oas', 'shrunk', 'pca', 'factor_analysis', 'shrinkage' 
316.             n_components --> Number of components. 
317.             show_plot --> Compute the CSP for the Subject selected and display the CSP. 
318.                           Notice that the CSP plotted are only from the selected subject 
319.         OUTPUTS: 
320.             csp --> The CSP. 
321.         """ 
322.         # Create the CSP structure. 
323.         self.csp = CSP(n_components= n_components, reg = reg, rank = 'info') # Very important to set 

rank to info, otherwise a rank problem may occur 
324.          
325.         # Plot the CSP. 
326.         if show_plot:  
327.             #IMPORTANT, set_baseline, must be 0 
328.             csp_subj = CSP(n_components= n_components, reg = reg, rank = 'info') # Very important to 

set rank to info, otherwise a rank problem may occur.   
329.             csp_subj.fit_transform(self.epochs_subj, self.labels_subj) 
330.      
331.             csp_subj.plot_patterns(self.info, ch_type='eeg', units='Patterns (AU)', size=1.5) 
332.              
333.         return(self.csp)          
334.  
335.      
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336.   
337.  
338. #%%  
339.  
340. class Model_LR: 
341.     """ 
342.     Model Left/Right. Class to organize the AI models with the best reults used to distinguis between 

Left and Right-hand imageries. 
343.     """ 
344.      
345.     def ML_classification(self, csp, epochs_train, labels_train, epochs_test, labels_test, classif = 

'RF'): 
346.         """ 
347.         Uses ML classifiers in conjunction with CSP to train and test the motor imageries. 
348.          
349.         INPUTS: 
350.             csp --> Introduce the CSP. 
351.             epochs_train, labels_train --> Introduce the epochs and labels for training the models. 
352.             epochs_test, labels_test --> Introduce the epochs and labels for testing the models. 
353.             classif --> The classifier used. (LDA, RF, SVM, KNN, NB, QDA) 
354.         OUTPUTS: 
355.             clf --> return the model. 
356.         """ 
357.          
358.         # Initialize a score array. 
359.         self.scores = [] 
360.          
361.         self.labels = labels_train  
362.         self.epochs_data_train = epochs_train 
363.          
364.         self.epochs_test = epochs_test 
365.         self.labels_test = labels_test 
366.          
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367.         self.csp = csp 
368.         # set the validation and test data  
369.         self.cv = ShuffleSplit(10, test_size=0.2, random_state=None) 
370.         self.cv_split = self.cv.split(self.epochs_data_train) 
371.  
372.         # Assemble a classifier 
373.             
374.         self.lda = LinearDiscriminantAnalysis() 
375.         self.svm = SVC(kernel ='rbf', gamma = 0.00001, C = 10000) 
376.         self.knn = KNeighborsClassifier(n_neighbors = 25, weights = 'uniform') 
377.         self.NB  = GaussianNB() 
378.         self.RF  = RandomForestClassifier(n_estimators = 100,  
379.                                      min_samples_split = 16,  
380.                                      min_samples_leaf = 4,  
381.                                      max_features = 'sqrt',  
382.                                      max_depth = 8,  
383.                                      bootstrap = True) 
384.         self.qda = QuadraticDiscriminantAnalysis() 
385.  
386.          
387.  
388.  
389.         # Use scikit-learn Pipeline with cross_val_score function 
390.         if classif == 'LDA': 
391.             self.clf = Pipeline([('CSP', self.csp), ('LDA', self.lda)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
392.         elif classif == 'QDA': 
393.             self.clf = Pipeline([('CSP', self.csp), ('QDA', self.qda)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
394.         elif classif == 'SVM': 
395.             self.clf = Pipeline([('CSP', self.csp), ('SVM', self.svm)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
396.         elif classif == 'KNN': 
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397.             self.clf = Pipeline([('CSP', self.csp), ('KNN', self.knn)]) # Pipeline firstly extracts 
features from CSP and then does the LDA classification 

398.         elif classif == 'NB': 
399.             self.clf = Pipeline([('CSP', self.csp), ('NB', self.NB)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
400.         else: 
401.             self.clf = Pipeline([('CSP', self.csp), ('RF', self.RF)]) 
402.  
403.         self.scores = cross_val_score(self.clf, self.epochs_data_train, self.labels, cv=self.cv, 

n_jobs=1) 
404.          
405.         self.clf.fit(self.epochs_data_train[:], self.labels[:])  # We fit the model for making it 

usable  
406.          
407.          
408.         self.testing_score = self.clf.score(self.epochs_test, self.labels_test) #Testing Data (Never 

seen before) 
409.         print('\nAccuracy: ', self.testing_score) 
410.         print('Precision: ', precision_score(self.labels_test[:], 

self.clf.predict(self.epochs_test[:],))) # It gives more importance that the pass class is detected 
correctly. TruePositive/(TruePositives+FalsePositives) 

411.         print('Recall: ', recall_score(self.labels_test[:], self.clf.predict(self.epochs_test,)))  
412.  
413.         # Printing the results 
414.         self.class_balance = np.mean(self.labels == self.labels[0]) 
415.         self.class_balance = max(self.class_balance, 1. - self.class_balance) 
416.         print("Classification accuracy: %f +- %f / Chance level: %f" % (np.mean(self.scores), 

np.std(self.scores), 
417.                                                                   self.class_balance)) 
418.         plt.rc('xtick', labelsize=20)  
419.         plt.rc('ytick', labelsize=20) 
420.         plt.rcParams.update({'font.size': 16}) 
421.         plt.rc('axes', titlesize=30, labelsize=25) 
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422.          
423.         plot_confusion_matrix(self.clf, self.epochs_test, self.labels_test) 
424.         plt.show() 
425.          
426.         return self.clf 
427.      
428.     def test_model(self, epochs_test, labels_test, show_plot = False): 
429.         """ 
430.         The only purpose of this function is to test the models for each subject. 
431.         It assess accuracy, precision, and recall. 
432.         Also plots the confusion matrix. 
433.         Always run this method after the ML_classification function. 
434.         INPUTS: 
435.             epochs_test --> Epochs to test. 
436.             labels_test --> Labels to have the ground truth. 
437.             show_plot --> To show the confunsion matrix. 
438.         """ 
439.          
440.         self.testing_score = self.clf.score(epochs_test, labels_test) #Testing Data (Never seen before) 
441.         print('Accuracy: ', self.testing_score) 
442.         print('Precision: ', precision_score(labels_test[:], self.clf.predict(epochs_test[:],))) # It 

gives more importance that the pass class is detected correctly. 
TruePositive/(TruePositives+FalsePositives) 

443.         print('Recall: ', recall_score(labels_test[:], self.clf.predict(epochs_test,)))  
444.          
445.         if show_plot: 
446.             plt.rc('xtick', labelsize=20)  
447.             plt.rc('ytick', labelsize=20) 
448.             plt.rcParams.update({'font.size': 16}) 
449.             plt.rc('axes', titlesize=30, labelsize=25) 
450.          
451.             plot_confusion_matrix(self.clf, epochs_test, labels_test) 
452.             plt.show() 
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A2. Annex 2: Left vs right-hand imagery (Executable) [Main_Left_vs_Right.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. Main script for training and testing the AI models for the Left vs Right-hand Imagery. 
4.  
5. @author: Ali Abdul Ameer Abbas 
6. """ 
7.  
8. # Import basic libraries 
9. import numpy as np 
10. import matplotlib.pyplot as plt 
11. import pickle 
12.  
13. # Import the modules that were created in Left_vs_Right.py 
14. from Left_vs_Right import PreprocessDataset, ProcessDataset, Model_LR 
15.  
16. #%% Plot configuration. 
17. plt.rc('xtick', labelsize=20)  
18. plt.rc('ytick', labelsize=20) 
19. plt.rc('axes', titlesize=30, labelsize=25) 
20.  
21. #%% 
22. # Firstly, we must define the paths of dataset' files.  
23.  
24. path1_C = '../Data/CLA/CLASubjectC1512233StLRHand.mat'  
25. path2_C = '../Data/CLA/CLASubjectC1512163StLRHand.mat'  
26. path3_C = '../Data/CLA/CLASubjectC1511263StLRHand.mat' 
27.  
28.  
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29. path1_B = '../Data/CLA/CLASubjectB1510193StLRHand.mat'  
30. path2_B = '../Data/CLA/CLASubjectB1510203StLRHand.mat'  
31. path3_B = '../Data/CLA/CLASubjectB1512153StLRHand.mat' 
32.  
33.  
34. path1_E = '../Data/CLA/CLASubjectE1512253StLRHand.mat'  
35. path2_E = '../Data/CLA/CLASubjectE1601193StLRHand.mat'  
36. path3_E = '../Data/CLA/CLASubjectE1601223StLRHand.mat' 
37.  
38.  
39. path1_F = '../Data/CLA/CLASubjectF1509163StLRHand.mat'  
40. path2_F = '../Data/CLA/CLASubjectF1509173StLRHand.mat'  
41. path3_F = '../Data/CLA/CLASubjectF1509283StLRHand.mat' 
42.  
43. fs= 200 # Define the sampling frequency. 
44.  
45. #%%     
46. # Apply the preprocessing class to the data. 
47.  
48. #Initialize the classes for each subject. 
49.  
50. SubjC_1 = PreprocessDataset(path = path1_C, show_plots=True) 
51. SubjC_2 = PreprocessDataset(path = path2_C) 
52. SubjC_3 = PreprocessDataset(path = path3_C) 
53.  
54. SubjE_1 = PreprocessDataset(path = path1_E) 
55. SubjE_2 = PreprocessDataset(path = path2_E) 
56. SubjE_3 = PreprocessDataset(path = path3_E) 
57.  
58. SubjF_1 = PreprocessDataset(path = path1_F) 
59. SubjF_2 = PreprocessDataset(path = path2_F) 
60. SubjF_3 = PreprocessDataset(path = path3_F) 
61.  
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62. # Set the reference. 
63. SubjC_1.channel_reference()  
64. SubjC_2.channel_reference()  
65. SubjC_3.channel_reference()  
66.  
67. SubjE_1.channel_reference() 
68. SubjE_2.channel_reference()  
69. SubjE_3.channel_reference() 
70.  
71. SubjF_1.channel_reference()   
72. SubjF_2.channel_reference()  
73. SubjF_3.channel_reference() 
74.  
75. # Filter the data. 
76.  
77. SubjC_1.MNE_bandpass_filter(HP = 15, LP = 26, show_plots=True)  
78. SubjC_2.MNE_bandpass_filter(HP = 15, LP = 26)  
79. SubjC_3.MNE_bandpass_filter(HP = 15, LP = 26)  
80.  
81. SubjE_1.MNE_bandpass_filter(HP = 15, LP = 26) 
82. SubjE_2.MNE_bandpass_filter(HP = 15, LP = 26)  
83. SubjE_3.MNE_bandpass_filter(HP = 15, LP = 26) 
84.  
85. SubjF_1.MNE_bandpass_filter(HP = 15, LP = 26)   
86. SubjF_2.MNE_bandpass_filter(HP = 15, LP = 26)  
87. SubjF_3.MNE_bandpass_filter(HP = 15, LP = 26) 
88.  
89. # Add annotations. 
90.  
91. SubjC_1.add_annotations()  
92. SubjC_2.add_annotations()  
93. SubjC_3.add_annotations()  
94.  
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95. SubjE_1.add_annotations() 
96. SubjE_2.add_annotations()  
97. SubjE_3.add_annotations() 
98.  
99. SubjF_1.add_annotations()   
100. SubjF_2.add_annotations()  
101. SubjF_3.add_annotations() 
102.      
103. # Apply ICA. 
104.  
105. ica_C_1 = SubjC_1.apply_ICA(ICA_exclude = [], show_plots=True)  
106. ica_C_2 = SubjC_2.apply_ICA(ICA_exclude = [])   
107. ica_C_3 = SubjC_3.apply_ICA(ICA_exclude = [])   
108.  
109. ica_E_1 = SubjE_1.apply_ICA(ICA_exclude = [])  
110. ica_E_2 = SubjE_2.apply_ICA(ICA_exclude = [])   
111. ica_E_3 = SubjE_3.apply_ICA(ICA_exclude = [])  
112.  
113. ica_F_1 = SubjF_1.apply_ICA(ICA_exclude = [])    
114. ica_F_2 = SubjF_2.apply_ICA(ICA_exclude = [])   
115. ica_F_3 = SubjF_3.apply_ICA(ICA_exclude = [])     
116.      
117. # Create Epochs. 
118.  
119. [epoch1_C, label1_C] = SubjC_1.create_epochs(ica_C_1, tmin = 2.1, tmax = 3, show_plots=True)  
120. [epoch2_C, label2_C] = SubjC_2.create_epochs(ica_C_2, tmin = 2.1, tmax = 3) 
121. [epoch3_C, label3_C] = SubjC_3.create_epochs(ica_C_3, tmin = 2.1, tmax = 3)  
122.  
123. [epoch1_E, label1_E] = SubjE_1.create_epochs(ica_E_1, tmin = 2.2, tmax = 3.1) 
124. [epoch2_E, label2_E] = SubjE_2.create_epochs(ica_E_2, tmin = 2, tmax = 2.9)  
125. [epoch3_E, label3_E] = SubjE_3.create_epochs(ica_E_3, tmin = 2.2, tmax = 3.1) 
126.  
127. [epoch1_F, label1_F] = SubjF_1.create_epochs(ica_F_1, tmin = 1, tmax = 1.9)  
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128. [epoch2_F, label2_F] = SubjF_2.create_epochs(ica_F_2, tmin = 1.3, tmax = 2.2)  
129. [epoch3_F, label3_F] = SubjF_3.create_epochs(ica_F_3, tmin = 1.4, tmax = 2.3) 
130.  
131. # Plot the elctrode positions and the PSD in dB and not dB. 
132. SubjC_1.plot_electrodes_and_psd() 
133.  
134. # Now, the data of all the subjects will be concatenated, and separated in training and testing. 
135.  
136. epochs_train = np.concatenate((epoch1_C, epoch2_C, epoch1_E,epoch2_E, epoch1_F,epoch2_F))  # Epochs for 

training. 
137. labels = np.concatenate((label1_C, label2_C, label1_E, label2_E, label1_F,label2_F))       # Labels for 

training. 
138. epochs_test = np.concatenate((epoch3_C, epoch3_E, epoch3_F))                               # Epochs for 

testing. 
139. label_test = np.concatenate((label3_C, label3_E, label3_F))                                # Labels for 

testing. 
140.  
141.  
142.  
143. #%% Obtain features. 
144.         
145. Train_feats = ProcessDataset(SubjC_1, epochs_train, labels)  # Create a class to process the data.       
146. Test_feats = ProcessDataset(SubjC_1, epochs_test, label_test)  # Create a class to process the data. 
147.  
148. # Obteain the CSP object. 
149. csp = Train_feats.create_CSP(show_plot = True)# Create the CSP 
150.  
151.  
152.  
153.  
154. #%% Train and test the models 
155.  
156. Subj_All = Model_LR() 
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157.  
158. # Test and train all the subject at once. 
159. clf = Subj_All.ML_classification(csp, epochs_train, labels, epochs_test, label_test, classif = 'RF') 
160.  
161. print('\nAll Subjects:') 
162. # Test Subject C. 
163. Subj_All.test_model(epochs_test, label_test, show_plot = True) 
164. print('\nSubject C:') 
165. # Test Subject C. 
166. Subj_All.test_model(epoch3_C, label3_C ) 
167. print('\nSubject E:') 
168. # Test Subject E. 
169. Subj_All.test_model(epoch3_E, label3_E ) 
170. print('\nSubject F:') 
171. # Test Subject F. 
172. Subj_All.test_model(epoch3_F, label3_F ) 
173.  
174. # Save the model. 
175.  
176. with open('LeftRight_Classification_More_Data_all.pkl','wb') as f: 
177.      pickle.dump(clf,f) 
178.  
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A3. Annex 3: Imagery vs Resting state (Organized in classes) [Imagery_vs_Resting.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. IMAGERY VS NON-IMAGERY. 
4. In this script, numerous classes used for preprocessing, processing, and classifying imageries vs resting 

states 
5. will be coded. 
6.  
7.  
8. @author: Ali Abdul Ameer Abbas 
9. """ 
10.  
11. import numpy as np 
12. import matplotlib.pyplot as plt 
13. import mne 
14. import pymatreader 
15. import scipy.stats 
16. import pandas as pd 
17. from mne.decoding import CSP 
18.  
19. from sklearn.pipeline import Pipeline 
20. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # LDA 
21. from sklearn.model_selection import ShuffleSplit, cross_val_score 
22. from sklearn.svm import SVC                         # SVM      
23. from sklearn.neighbors import KNeighborsClassifier  # KNN 
24. from sklearn.naive_bayes import GaussianNB          # Naive Bayesian 
25. from sklearn.ensemble import RandomForestClassifier # Random Forest 
26. from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis #QDA                         # 

QDA  
27. from sklearn.model_selection import learning_curve 
28. from sklearn.metrics import plot_confusion_matrix, confusion_matrix, precision_score, recall_score, auc, 

roc_curve 
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29. from sklearn.model_selection import RandomizedSearchCV 
30. from sklearn.preprocessing     import StandardScaler, MinMaxScaler 
31.  
32. import tensorflow as tf 
33. from tensorflow.keras.layers import Dense, Input, GlobalMaxPooling1D, Dropout, Activation, 

TimeDistributed, LSTM, concatenate 
34. from tensorflow.keras.layers import Conv1D, Conv2D, MaxPooling2D, MaxPooling1D, Embedding, Reshape, 

Flatten 
35. from tensorflow.keras.models import Model, Sequential 
36. from tensorflow.keras.callbacks import EarlyStopping 
37. from tensorflow.keras.optimizers import Adam, SGD, RMSprop 
38. from keras import regularizers 
39. from keras.layers.normalization import BatchNormalization 
40.  
41. from scipy.signal import stft 
42. from scipy.stats import norm 
43. import pywt 
44.  
45. #%% 
46.          
47. class PreprocessDatasetPass: 
48.     """ 
49.     This class will preprocess a file containing EEG recordings.  
50.     It assigns a common reference, apply an ICA, filter the data. It also segments and annotates the 

data. 
51.     It is used for Imagery vs Non-imagery. 
52.             
53.     """ 
54.      
55.     def __init__(self, path, montage = 'standard_1020', show_plots = False, bad_chan = []): 
56.          
57.         """ 
58.         Intialize the class by reading and reconstructing the signals. 
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59.         INPUTS: 
60.             montage --> The reference selected. 
61.             path --> The path of the file. 
62.             bad_channels --> Bad channels to eliminate. 
63.             show_plots --> To show the plots of the EEG recording.  
64.         """ 
65.         # Convert the MATLAB files into a python compatible file. 
66.         self.struct = pymatreader.read_mat(path, ignore_fields=['previous'], variable_names = 'o') 
67.         self.struct = self.struct['o'] 
68.          
69.          
70.         self.chann = self.struct['chnames'] # Save the channels names. 
71.         self.chann = self.chann[:-1]        # Eliminate the X3 channel, which is only used for the data 

acquisition. 
72.          
73.         #Set important properties for the dataset.  
74.         self.info  = mne.create_info(ch_names = self.chann,  
75.                                sfreq = float(self.struct['sampFreq']),ch_types='eeg', 
76.                                montage= montage, verbose=None) 
77.          
78.         #Create the data variable. 
79.         self.data   = np.array(self.struct['data']) 
80.         self.data   = self.data[:,:-1] 
81.         self.data_V = self.data*1e-6        # mne reads units are in Volts, convert it to uV. 
82.          
83.         # Create the raw instance for working with the data in the MNE library. 
84.         self.raw   = mne.io.RawArray(self.data_V.transpose(),self.info, copy = "both") 
85.         self.raw.info['bads'] = bad_chan # exclude bad channels 
86.          
87.         # Show the raw data if show_plot is true. 
88.         if show_plots: 
89.             self.raw.plot(title = 'Raw signal') 
90.  
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91.     def channel_reference(self, ref = 'average' ): 
92.          
93.         """ 
94.         Set a reference to the data.  
95.         INPUTS: 
96.             ref --> Reference. 
97.          
98.         OUTPUTS:  
99.             raw --> Referenced data.    
100.         """ 
101.          
102.         self.raw = self.raw.set_eeg_reference(ref, projection= False) 
103.          
104.         return(self.raw) 
105.          
106.     def MNE_bandpass_filter(self, HP = 15, LP = 26, filt_type = 'firwin', show_plots = False, 

skip_by_annotation='edge'): 
107.          
108.         """ 
109.         Apply a BP FIR filter.  
110.          
111.         INPUTS: 
112.             LP,HP --> Low Pass filter, High Pass filter. 
113.             filt_type --> filter type. 
114.             show_plots --> To show the plots of the EEG recording.  
115.         OUTPUTS:  
116.             raw --> Filtered data. 
117.         """ 
118.         self.raw.filter(HP, LP, fir_design = filt_type, skip_by_annotation = 'edge')         
119.          
120.         if show_plots: 
121.             self.raw.plot(title = 'Filtered Raw') 
122.             self.raw.plot_psd() 
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123.              
124.              
125.         return(self.raw) 
126.          
127.      
128.     def apply_ICA(self, n_components = 10, ICA_exclude = [0], show_plots = False):  
129.          
130.         """ 
131.         Apply the ICA for removing eye blinking, EMG signals, EKG signals, among other artifacts. 
132.          
133.         INPUTS: 
134.             n_components --> Number of components of the ICA. 
135.             ICA_exclude --> Array used to eliminate components from teh signals. 
136.             show_plots --> To show the plots of the EEG recording.  
137.         OUTPUTS:  
138.             raw_ica --> Data after ICA. 
139.         """ 
140.         # Apply ICA for blink removal  
141.         self.ica = mne.preprocessing.ICA(n_components = n_components, random_state = 0,  

method='fastica') 
142.          
143.         # The MNE documentation recommends to HP filter the ICA at 1 Hz.  
144.         filt_raw = self.raw.copy()                 # Create a copy of teh data 
145.         filt_raw.filter(l_freq=1., h_freq=None)    # HP filter at 1 Hz  
146.         self.ica.fit(filt_raw)                     # Find the ICA parameters.  
147.  
148.         # Plot the ICA components to detect artifacts.    
149.         if show_plots: 
150.             self.ica.plot_components(outlines = 'skirt', colorbar=True, contours = 0) 
151.             self.ica.plot_sources(self.raw)  
152.          
153.         # Once the bad components are detected, we procede to remove them. 
154.         self.ica.exclude = ICA_exclude 
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155.  
156.         self.raw_ica = self.ica.apply(self.raw.copy(), exclude = self.ica.exclude) 
157.          
158.         # Plot the results.  
159.         if show_plots: 
160.             self.raw.plot() 
161.             self.raw_ica.plot()   
162.          
163.         return self.raw_ica 
164.      
165.     def type_pos_pas(self, sfreq = 200.0): 
166.         """ 
167.         Gets the marker position.  
168.         Just left and right positions, NO PASS marker 
169.         I takes into account the right, left, and pass class. 
170.          
171.         INPUTS: 
172.             sfreq --> Sampling frequency. 
173.         OUTPUTS:  
174.             mark --> markers. 
175.             pos --> position of the marker. 
176.             time --> time of the marker.         
177.         """ 
178.         self.markers =  np.array(self.struct['marker']).transpose() # Include the markers 
179.          
180.         # Initialize the output arrays.  
181.         mark = [] 
182.         pos  = [] 
183.         time = [] 
184.          
185.         desc = ['left', 'right', 'pass'] # for assigning the movements--> left = 1, right = 2, pass = 3 
186.          
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187.         #Evaluate the markers in order to find the position and time of each marker, as well as ¡ts 
type. 

188.         for i in range(len(self.markers)-1): 
189.             if self.markers[i]==0 and self.markers[i+1] != 0 and (self.markers[i+1] in [1,2,3]): 
190.                  
191.                 mark.append(desc[self.markers[i+1]-1]) 
192.                 pos.append((i+2)) 
193.                 time.append((i+2)/sfreq) 
194.             else: 
195.                 continue 
196.              
197.         return mark, pos, time  
198.      
199.     def multi_annotations(self, marks, time, window_time = 1.0): 
200.         """ 
201.         This method is used in order to obtain all the possible pairs of annotation possible 
202.         for a future distinctions between Left/Right classes relative to Pass classes. 
203.         INPUTS:  
204.             marks, time --> The EEG markers and the times thereof.   
205.             window_time --> Length of the annotation window. 
206.         OUTPUTS: 
207.             annotations_left_right, annotations_left_pass, annotations_right_pass --> Annotations for 

each pair. 
208.         """ 
209.         # Create annotations for Left and Right. 
210.         mark_left_right = [] 
211.         time_left_right = [] 
212.         for mar in range(len(marks)): 
213.            if marks[mar] != 'pass': 
214.                mark_left_right.append(marks[mar])  
215.                time_left_right.append(time[mar])  
216.           
217.         # Create annotations for Left and Pass. 
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218.         mark_left_pass = [] 
219.         time_left_pass = [] 
220.         for mar in range(len(marks)): 
221.            if marks[mar] != 'right': 
222.                mark_left_pass.append(marks[mar])  
223.                time_left_pass.append(time[mar])  
224.          
225.         # Create annotations for Right and Pass. 
226.         mark_right_pass = [] 
227.         time_right_pass = [] 
228.         for mar in range(len(marks)): 
229.            if marks[mar] != 'left': 
230.                mark_right_pass.append(marks[mar])  
231.                time_right_pass.append(time[mar])  
232.          
233.         # Save the annotations in a variable. 
234.         self.annotations_left_right = mne.Annotations(time_left_right, window_time, mark_left_right) 
235.         self.annotations_left_pass  = mne.Annotations(time_left_pass, window_time,  mark_left_pass) 
236.         self.annotations_right_pass = mne.Annotations(time_right_pass, window_time, mark_right_pass)      
237.          
238.         return self.annotations_left_right, self.annotations_left_pass, self.annotations_right_pass 
239.      
240.     def add_annotations_and_epochs(self, tmin= 2.1, tmax= 3,  duration = 1): 
241.         """ 
242.         This function uses the tye_pos_pas function to annotate the markers obtained from all the 

combinations 
243.         of the multi_annotations function. In other words, it stacks together Left and Right imageries, 

and 
244.         differentiate them from the Pass imagery. Furthermore, it creates epochs and balances the data.  
245.          
246.         INPUTS: 
247.             tmin, tmax --> Times for segmenting the data. 
248.             duration -->Its the duration of the annotation. 
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249.         OUTPUTS: 
250.             All_epochs --> Get the epochs. 
251.             labels --> Get the labels. 
252.         """             
253.          
254.         # Use the typo_pos_pas function to obbtain markers.  
255.         [self.mark, self.pos, self.time] = self.type_pos_pas()                  
256.         # Use the multiannotation function.  
257.         [self.annotations_l_r, self.annotations_l_p, self.annotations_r_p] = 

self.multi_annotations(self.mark, self.time, window_time = 1.0) 
258.          
259.         # The following lines will join Left and Right movements. 
260.         self.raw.set_annotations(self.annotations_l_r)                         # Set the Left/Right 

annotation.  
261.         self.events = mne.events_from_annotations(self.raw) 
262.         self.picks = mne.pick_channels(self.raw.info["ch_names"], ["C3", "Cz", "C4"]) # Only channels 

C3, C4 and Cz will be considered. 
263.          
264.         # Concatenate all Left and right epochs  
265.         self.epochs = mne.Epochs(self.raw, self.events[0], self.events[1], tmin, tmax, 
266.                             picks=self.picks, baseline=None, preload=True) 
267.         # Save the imagery data in a variable. 
268.         self.Left_Right_epochs_data = self.epochs.get_data() 
269.          
270.          
271.         # To balance the data, new Pass classes will be created by finding moments in which there are 

no imageries. 
272.         self.raw.set_annotations(self.annotations_l_p) # Find the Pass classes, for instance, in Left 

vs Pass. 
273.         self.events = mne.events_from_annotations(self.raw) 
274.         self.picks = mne.pick_channels(self.raw.info["ch_names"], ["C3", "Cz", "C4"]) # Only channels 

C3, C4 and Cz will be considered. 
275.          
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276.         epochs1 = mne.Epochs(self.raw, self.events[0], self.events[1], tmin, tmax, 
277.                             picks=self.picks, baseline=None, preload=True) 
278.          
279.         epochs2 = mne.Epochs(self.raw, self.events[0], self.events[1], tmin-tmin, tmax-tmin, # This is 

done to create new Pass classes. 
280.                             picks=self.picks, baseline=None, preload=True) 
281.          
282.         e_p1 = epochs1['pass'].get_data() 
283.         e_p2 = epochs2['pass'].get_data() 
284.         # Save the pass data in a variable. 
285.         self.Pass_epochs_data = np.concatenate((e_p1,e_p2)) 
286.          
287.         # concatenate all the data. 
288.         self.All_epochs = np.concatenate((self.Left_Right_epochs_data,self.Pass_epochs_data)) 
289.          
290.         # Set labels (Left/Right --> 1; Pass --> 2) 
291.         labels1 = np.array([1 for i in range(len(self.Left_Right_epochs_data))]) 
292.         labels2 = np.array([2 for i in range(len(self.Pass_epochs_data))]) 
293.         self.labels = np.concatenate((labels1,labels2)) 
294.          
295.         return self.All_epochs, self.labels 
296.      
297.  
298. #%%     
299. class ProcessDatasetPass(): 
300.     """ 
301.     This class will process a file containing EEG recordings.  
302.     It is a subclass of the PreprocessDataset class. 
303.     Mainly, this class will perform the statistical features and the STFT.    
304.      
305.         
306.     """ 
307.      
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308.     def __init__(self, class_pre, epochs, labels): 
309.                  
310.         """ 
311.         Initialize the class by getting the labels and epochs. 
312.         INPUTS: 
313.             class_pre --> Introduce any class of PreprocessDataset so that important information (info, 

chnames, ...) are defined.  
314.             epochs --> Epochs obtained from the PreprocessingDataset class. This epochs should combine 

multiple subjects. 
315.             labels --> Labels obtained from the PreprocessingDataset class. This epochs should combine 

multiple subjects. 
316.         """ 
317.         # Define important parameters for the class: 
318.   
319.         self.struct = class_pre.struct 
320.         self.chann  = class_pre.chann 
321.         self.info   = class_pre.info 
322.         self.data   = class_pre.data 
323.         self.data_V = class_pre.data_V 
324.         self.raw    = class_pre.raw 
325.         self.markers= class_pre.markers 
326.         self.mark   = class_pre.mark 
327.         self.time   = class_pre.time 
328.         self.pos    = class_pre.pos 
329.          
330.         self.epochs = epochs 
331.         self.labels = labels       
332.         #Only done to plot the CSP. 
333.         self.epochs_subj = class_pre.epochs.get_data() 
334.         self.labels_subj = class_pre.labels  
335.      
336.     # The following methods are used for extracting the statistical features. 
337.     def energy(self, signal): 
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338.         """ 
339.         Used for calculating the Energy of the signal. 
340.         INPUTS: 
341.             signal --> Signal used to obtain the energy. 
342.         OUTPUTS: 
343.             energy_value --> Energy of the signal. 
344.              
345.         """ 
346.          
347.         energy_value = 0.0 
348.          
349.         for x in signal: 
350.             energy_value += (x)**2  # Apply the Energy formula.   
351.         return energy_value 
352.      
353.     def all_entropy(self, pdf): 
354.         """ 
355.         Calculate the Entropies of the signals. 
356.         INPUTS: 
357.             pdf  ---> The Probability density function.  
358.          
359.         RETURNS:  
360.             entropy, shannon_entropy, log_energy_entropy 
361.         """ 
362.         self.shannon_entropy = 0.0 
363.         self.entropy = 0.0 
364.         self.log_energy_entropy = 0.0 
365.         self.pdf = pdf 
366.          
367.         for freq in self.pdf: 
368.             self.entropy += freq * np.log2(freq) 
369.             self.shannon_entropy += (freq)**2 * (np.log2(freq)**2) 
370.             self.log_energy_entropy += (np.log2(freq))**2 
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371.              
372.         self.entropy = -self.entropy     
373.         self.shannon_entropy = -self.shannon_entropy 
374.         self.log_energy_entropy = -self.log_energy_entropy 
375.          
376.         return self.entropy,self.shannon_entropy, self.log_energy_entropy 
377.      
378.     def feature_extracter(self): 
379.         """ 
380.         Extract the Features of channels C3, Cz, and C4. 
381.         OUTPUTS: 
382.             skw_epoch_dic, krt_epoch_dic, energy_epoch_dic,  
383.             entropy_epoch_dic, shannon_entropy_epoch_dic, log_energy_entropy_epoch_dic --> dictionaries 

of all the features. 
384.              
385.         """ 
386.         ch = ["C3", "Cz", "C4"] # Define the channels. 
387.          
388.         # Initialize the dictianaries for each feature. 
389.         self.skw_epoch_dic = {ch[0]: [], ch[1]: [], ch[2]: []} 
390.         self.krt_epoch_dic = {ch[0]: [], ch[1]: [], ch[2]: []} 
391.         self.energy_epoch_dic = {ch[0]: [], ch[1]: [], ch[2]: []} 
392.         self.entropy_epoch_dic = {ch[0]: [], ch[1]: [], ch[2]: []} 
393.         self.shannon_entropy_epoch_dic = {ch[0]: [], ch[1]: [], ch[2]: []} 
394.         self.log_energy_entropy_epoch_dic = {ch[0]: [], ch[1]: [], ch[2]: []} 
395.          
396.         # Calculate the features for each epoch.  
397.         for epoch in self.epochs: 
398.              
399.             data = epoch 
400.              
401.             self.pdf_all = [] # Initialize a list for saving the PDF of each epoch.    
402.             for i in range((data.shape[0])): 
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403.                 # A channel is selected from an epoch ['C3' --> 0, 'C4' --> 1, 'Cz' --> 2] 
404.                 gau = scipy.stats.gaussian_kde(data[i]) 
405.                   
406.                 # Values in which the gausian will be evaluated 
407.                 dist_space = np.linspace( min(data[i]), max(data[i]), 100 ) 
408.                 gau_total = np.sum(gau(dist_space))# Normalize, this is the integral under the curve. 
409.                 pdf = gau(dist_space)/gau_total 
410.                 self.pdf_all.append(pdf) 
411.                  
412.                  
413.             self.skw_epoch = [] # Initialize a list for saving the Skewness of each epoch.   
414.             for i in range((data.shape[0])): 
415.                 self.skw_epoch.append(scipy.stats.skew(data[i], axis=0, bias=True)) # Calculate skw. 
416.                  
417.                  
418.             self.krt_epoch = [] # Initialize a list for saving the Kurtosis of each epoch.     
419.             for i in range((data.shape[0])): 
420.                 self.krt_epoch.append(scipy.stats.kurtosis(data[i], axis=0, fisher=True, bias=True, 

nan_policy='propagate')) # Calculate krt. 
421.              
422.  
423.             self.energy_epoch = [] # Initialize a list for saving the Energy of each epoch.   
424.             for i in range((data.shape[0])): 
425.                 energy_value = self.energy(data[i]) # Call the Energy method. 
426.                 self.energy_epoch.append(energy_value)     
427.              
428.          
429.          
430.             self.Pi_all = [] # here we save the values for each channel 
431.              
432.             # Wavelets are needed in order to perform the Shannon Energy, for instance. 
433.             for i in range((data.shape[0])): 
434.                 
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435.                 coef,_= pywt.cwt(data[i],  np.arange(7,20,0.5), 'morl') # Apply the Wavelet transform 
436.                  
437.                 # Now, the following formulas are used: 
438.                     #'https://dsp.stackexchange.com/questions/13055/how-to-calculate-cwt-shannon-

entropy' 
439.                 [M,N] = coef.shape; # M --> scale number, N --> time segments 
440.                 Ej = [] 
441.                 for j in range(M): 
442.                     Ej.append(sum(abs(coef[j,:]))); 
443.                      
444.                 Etot=sum(Ej); 
445.                  
446.                 pi = [] 
447.                 for i in Ej: 
448.                     pi.append(i/Etot) 
449.                 self.Pi_all.append(pi) 
450.             self.Pi_all = np.array(self.Pi_all)    
451.      
452.             # Save the entropies in lists. 
453.             self.entropy_epoch = [] 
454.             self.shannon_entropy_epoch = [] 
455.             self.log_energy_entropy_epoch = [] 
456.             for i in range((data.shape[0])): 
457.                 # S = -sum(pk * log(pk)) --> pk is the Probability Density Function  
458.                 entr, shan, log_en = self.all_entropy(self.pdf_all[i]) # Call the all_entropy method. 
459.                  
460.                 self.entropy_epoch.append(entr) 
461.                 self.shannon_entropy_epoch.append(shan) 
462.                 self.log_energy_entropy_epoch.append(log_en)     
463.              
464.             # Save all the calues in dictionaries.  
465.             self.skw_epoch_dic[ch[0]].append(self.skw_epoch[0]), 

self.skw_epoch_dic[ch[1]].append(self.skw_epoch[1]), self.skw_epoch_dic[ch[2]].append(self.skw_epoch[2])  
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466.             self.krt_epoch_dic[ch[0]].append(self.krt_epoch[0]), 
self.krt_epoch_dic[ch[1]].append(self.krt_epoch[1]), self.krt_epoch_dic[ch[2]].append(self.krt_epoch[2])  

467.             self.energy_epoch_dic[ch[0]].append(self.energy_epoch[0]), 
self.energy_epoch_dic[ch[1]].append(self.energy_epoch[1]), 
self.energy_epoch_dic[ch[2]].append(self.energy_epoch[2]) 

468.             self.shannon_entropy_epoch_dic[ch[0]].append(self.shannon_entropy_epoch[0]), 
self.shannon_entropy_epoch_dic[ch[1]].append(self.shannon_entropy_epoch[1]), 
self.shannon_entropy_epoch_dic[ch[2]].append(self.shannon_entropy_epoch[2]) 

469.             self.log_energy_entropy_epoch_dic[ch[0]].append(self.log_energy_entropy_epoch[0]), 
self.log_energy_entropy_epoch_dic[ch[1]].append(self.log_energy_entropy_epoch[1]), 
self.log_energy_entropy_epoch_dic[ch[2]].append(self.log_energy_entropy_epoch[2]) 

470.             self.entropy_epoch_dic[ch[0]].append(self.entropy_epoch[0]), 
self.entropy_epoch_dic[ch[1]].append(self.entropy_epoch[1]), 
self.entropy_epoch_dic[ch[2]].append(self.entropy_epoch[2])  

471.              
472.         return self.skw_epoch_dic, self.krt_epoch_dic, self.energy_epoch_dic, self.entropy_epoch_dic, 

self.shannon_entropy_epoch_dic, self.log_energy_entropy_epoch_dic 
473.      
474.     def feature_ex(self, skw, krt, energy, entropy, shannon, log): 
475.         """ 
476.         Method for organizing the features of all the epochs. 
477.         INPUTS: 
478.             skw, krt, energy, entropy, shannon, log --> dictionaries of each feature. 
479.         OUTPUTS: 
480.             big_feat --> Organized features. 
481.         """ 
482.          
483.         big_feat = []  # Initialize the big_feat list.  
484.         ch = ['C3','C4', 'Cz'] # Define the channels. 
485.         # Organize the Features. 
486.         for j in range(len(skw['C3'])): 
487.             small_feat = [] 
488.             for i in range(len(ch)): 
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489.                  
490.                 new_small_feat = [skw[ch[i]][j], krt[ch[i]][j], energy[ch[i]][j], entropy[ch[i]][j], 

shannon[ch[i]][j], log[ch[i]][j]] 
491.                 small_feat.extend(new_small_feat) 
492.             big_feat.append(small_feat) 
493.         return big_feat   
494.      
495.     # Define the STFT features. 
496.     def ShortTimeFourierTransform(self, fs=200.0, window='hann',nperseg=181, noverlap=180): 
497.         """ 
498.         Obtain the  STFT features. 
499.         INPUTS: 
500.             fs --> Sampling frequency. 
501.             window --> Window type. 
502.             nperseg --> Samples per segment. 
503.             noverlap --> Overlap allowance. 
504.         OUTPUT: 
505.             coef --> STFT Coeficients 
506.         """ 
507.         # Compute the STFT. 
508.         frec, tim, self.coef = stft(self.epochs, fs = fs, window = window, nperseg = nperseg, noverlap 

= noverlap) 
509.         self.coef= np.abs(self.coef) # Get the absolute value. 
510.          
511.         return self.coef 
512.      
513.  
514.  
515. #%% 
516. class Model_IR: 
517.     """ 
518.     Model Imagery/Resting. Class to organize the AI models with the best results used to distinguish 

between an Imagery  
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519.     and an Imagery. 
520.     """ 
521.      
522.     def ML_classification(self, epochs_train, labels_train, epochs_test, labels_test, classif = 'RF'): 
523.         """ 
524.         Uses ML classifiers in conjunction with the statistical_features to train and test the motor 

imageries. 
525.          
526.         INPUTS: 
527.             epochs_train, labels_train --> Introduce the statistical features and labels for training 

the models. 
528.             epochs_test, labels_test --> Introduce the statistical features  and labels for testing the 

models. 
529.             classif --> The classifier used. (LDA, RF, SVM, KNN, NB, QDA) 
530.         OUTPUTS: 
531.             clf --> return the model. 
532.         """ 
533.          
534.         # Initialize a score array. 
535.         self.scores = [] 
536.          
537.         self.labels = labels_train  
538.         self.epochs_data_train = epochs_train 
539.          
540.         self.epochs_test = epochs_test 
541.         self.labels_test = labels_test 
542.          
543.         # set the validation and test data  
544.         self.cv = ShuffleSplit(10, test_size=0.2, random_state=None) 
545.         self.cv_split = self.cv.split(self.epochs_data_train) 
546.          
547.         # Assemble a classifier 
548.             
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549.         self.lda = LinearDiscriminantAnalysis() 
550.         self.svm = SVC(kernel ='rbf', gamma = 0.00001, C = 10000) 
551.         self.knn = KNeighborsClassifier(n_neighbors = 25, weights = 'uniform') 
552.         self.NB  = GaussianNB() 
553.         self.qda = QuadraticDiscriminantAnalysis() 
554.         self.RF  = RandomForestClassifier(n_estimators = 100,  
555.                                  min_samples_split = 16,  
556.                                  min_samples_leaf = 4,  
557.                                  max_features = 'sqrt',  
558.                                  max_depth = 8,  
559.                                  bootstrap = True) 
560.          
561.          
562.         # Define a normalizer. 
563.          
564.         self.scale = StandardScaler() 
565.          
566.          
567.         # Use scikit-learn Pipeline with cross_val_score function 
568.         if classif == 'LDA': 
569.             self.clf = Pipeline([('scale', self.scale), ('LDA', self.lda)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
570.         elif classif == 'QDA': 
571.             self.clf = Pipeline([('scale', self.scale), ('QDA', self.qda)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
572.         elif classif == 'SVM': 
573.             self.clf = Pipeline([('scale', self.scale), ('SVM', self.svm)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
574.         elif classif == 'KNN': 
575.             self.clf = Pipeline([('scale', self.scale), ('KNN', self.knn)]) # Pipeline firstly extracts 

features from CSP and then does the LDA classification 
576.         elif classif == 'NB': 



Motor imagery-based brain-computer interface by implementing a frequency band selection. 

 

  165 

577.             self.clf = Pipeline([('scale', self.scale), ('NB', self.NB)]) # Pipeline firstly extracts 
features from CSP and then does the LDA classification 

578.         else: 
579.             self.clf = Pipeline([('scale', self.scale), ('RF', self.RF)]) 
580.        
581.          
582.         self.scores = cross_val_score(self.clf, self.epochs_data_train, self.labels, cv=self.cv, 

n_jobs=1) 
583.          
584.         self.clf.fit(self.epochs_data_train[:], self.labels[:])  # We fit the model to make it usable  
585.          
586.          
587.         self.testing_score = self.clf.score(self.epochs_test, self.labels_test) #Testing Data (Never 

seen before) 
588.         print('Accuracy: ', self.testing_score) 
589.         print('Precision: ', precision_score(self.labels_test[:], 

self.clf.predict(self.epochs_test[:],))) # It gives more importance that the pass class is detected 
correctly. TruePositive/(TruePositives+FalsePositives) 

590.         print('Recall: ', recall_score(self.labels_test[:], self.clf.predict(self.epochs_test,)))  
591.          
592.         # Printing the results 
593.         self.class_balance = np.mean(self.labels == self.labels[0]) 
594.         self.class_balance = max(self.class_balance, 1. - self.class_balance) 
595.         print("Classification accuracy: %f +- %f / Chance level: %f" % (np.mean(self.scores), 

np.std(self.scores), 
596.                                                               self.class_balance)) 
597.         plt.rc('xtick', labelsize=20)  
598.         plt.rc('ytick', labelsize=20) 
599.         plt.rcParams.update({'font.size': 16}) 
600.         plt.rc('axes', titlesize=30, labelsize=25) 
601.          
602.         plot_confusion_matrix(self.clf, self.epochs_test, self.labels_test) 
603.         plt.show() 
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604.          
605.         return self.clf 
606.  
607.          
608.  
609.     def CNN_classification(self, Coef_train, labels, Coef_test, label_test, input_shape = (3,91,181), 
610.                           filter1 = 120, filter2 = 240, dense1 = 164, dense2 = 128, kern_size = (3,3), 
611.                           padding = 'same', activation1 = 'relu', activation2 = 'sigmoid', drop = 0.2, 
612.                           pool_size1 = 2, pool_size2 = 1, lr = 0.0001, dec = 300, mom = 0.8, 
613.                           bch_size = 40, epo = 260): 
614.         """ 
615.          
616.         Uses CNN classifiers in conjunction with STFT to train and test imageries vs the resting state. 
617.         This CNN has 2 CNN layers and 3 dense layers. 
618.          
619.         INPUTS: 
620.             Coef_train, labels --> Introduce the STFT Coeficients and labels for training the models. 
621.             Coef_test, label_test --> Introduce the STFT Coeficients and labels for testing the models. 
622.             input_shape --> Shape inserted on the first layer of teh CNN. 
623.             filter1, filter2 --> Filter size of layers 1 and 2 of the CNN. 
624.             dense1, dense2 --> Size of Dense layers 1 and 2 of the CNN. 
625.             ker_size --> Kernel size. 
626.             padding --> Padding type. 
627.             activation1 --> Activation function of all the layers except the last one. 
628.             activation2 --> Activation function of the last layer. 
629.             drop --> Dropout ratio. 
630.             pool_size1, pool_size2 --> Pools size of layers 1 and to of the CNN.  
631.             lr --> Learning rate. 
632.             dec --> Denominator for the decay rate DECAY = lr/dec. 
633.             mom --> Momentum. 
634.             bch_size --> Batch Size. 
635.             epo --> Epochs of the CNN (Iterations). 
636.         OUTPUTS: 
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637.             model --> Return the model. 
638.             scale -> Returns the scaler. 
639.  
640.         """              
641.         # Activate the GPU. 
642.         tf.config.list_physical_devices('GPU') 
643.          
644.         # Initialize the model. 
645.         self.model = Sequential() 
646.          
647.         # First layer of the CNN. 
648.         self.model.add(Conv2D(filters = filter1, kernel_size = kern_size, padding = padding, activation 

= activation1,input_shape = input_shape)) #INPUTS_SIZE =(NUMBER OF SAMPLES IN EACH EPOCH, NUMBER OF 
CHANNELS 

649.         self.model.add(MaxPooling2D(pool_size = pool_size1)) 
650.         self.model.add(Dropout(drop)) 
651.          
652.         # Second layer of the CNN. 
653.         self. model.add(Conv2D(filters = filter2, kernel_size = kern_size, padding = padding, 

activation = activation1)) #INPUTS_SIZE =(NUMBER OF SAMPLES IN EACH EPOCH, NUMBER OF CHANNELS 
654.         self.model.add(MaxPooling2D(pool_size = pool_size2)) 
655.         self.model.add(Dropout(drop)) 
656.          
657.         # Flatten layer. 
658.         self.model.add(Flatten()) 
659.       
660.         # First Dense layer. 
661.         self.model.add(Dense(dense1, activation = activation1)) 
662.         self.model.add(Dropout(drop)) 
663.          
664.         # Second Dense layer. 
665.         self.model.add(Dense(dense2, activation = activation1)) 
666.         self.model.add(Dropout(drop)) 
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667.          
668.         # Last Dense layer. 
669.         self.model.add(Dense(1, activation = activation2)) 
670.          
671.         # Define some parameters (learning rate, decay rate, and momentum). 
672.         learning_rate = lr  
673.         decay_rate = learning_rate/dec 
674.         momentum = mom 
675.          
676.         # Create the optimizer.  
677.         self.opt = SGD(learning_rate=learning_rate, momentum=momentum, decay=decay_rate, 

nesterov=False) 
678.         #self.pt = RMSprop(learning_rate=learning_rate, momentum=0.2, decay=decay_rate) 
679.         #self.opt = Adam(learning_rate=learning_rate, decay=decay_rate) 
680.          
681.         #Compile the model. 
682.         self.model.compile(loss='binary_crossentropy', optimizer= self.opt, metrics=['accuracy'])  
683.          
684.         self.model.summary() # Show a summary. 
685.          
686.         # Separate the data into test and train. 
687.         X_train = Coef_train 
688.         y_train = labels-1 
689.         X_test = Coef_test 
690.         y_test = label_test-1 
691.          
692.          
693.         # It's important to normalize the data and also reshape it in order to correctly fit the model. 
694.         # Reshape it according to --> (NUMBER OP EPOCHS, NUMBER OF SAMPLES IN EACH EPOCH, NUMBER OF 

CHANNELS) 
695.         X_train_re = X_train.reshape(X_train.shape[0], 

X_train.shape[1]*X_train.shape[2]*X_train.shape[3]) 
696.         self.scaler = MinMaxScaler(feature_range=(0,1)) 
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697.         self.X_train_norm = self.scaler.fit_transform(X_train_re) 
698.         self.X_train_norm = 

self.X_train_norm.reshape(X_train.shape[0],X_train.shape[1],X_train.shape[2],X_train.shape[3]) 
699.          
700.         X_test_re = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2]*X_test.shape[3]) 
701.         self.X_test_norm = self.scaler.transform(X_test_re) 
702.         self.X_test_norm = self.X_test_norm.reshape(X_test.shape[0], 

X_test.shape[1],X_test.shape[2],X_test.shape[3]) 
703.          
704.         # Fit the model. 
705.         history = self.model.fit(self.X_train_norm, y_train, batch_size = bch_size, epochs = epo, 

validation_data=(self.X_test_norm, y_test)) 
706.          
707.         # Plot the historical behavior of the model along the iterations. 
708.         history_df = pd.DataFrame(self.model.history.history).rename(columns={"loss":"train_loss", 

"accuracy":"train_accuracy"}) 
709.         history_df.plot(figsize=(8,8)) 
710.         plt.grid(True) 
711.         plt.xlabel('Epochs') 
712.         plt.ylabel('Accuracy') 
713.         plt.show() 
714.          
715.         # Test teh model. 
716.         self.predictions = (self.model.predict(self.X_test_norm) > 0.5).astype("int32") 
717.         self.testing_score = self.model.evaluate(self.X_test_norm, y_test) #Testing Data (Never seen 

before) 
718.         print('Accuracy: ', self.testing_score) 
719.         print(recall_score(y_test, self.predictions)) # It gives more importance that the pass class is 

detected correctly. TruePositive/(TruePositives+FalsePositives) 
720.         print(precision_score(y_test, self.predictions))  
721.  
722.         return self.model, self.scaler 

723.              
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A4. Annex 4: Imagery vs Resting state (Executable) [Main_Imagery_vs_Resting.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. Main script for training and testing the AI models for the Imagery vs Resting state. 
4.  
5. @author: Ali Abdul Ameer Abbas 
6. """ 
7.  
8. # Import basic libraries 
9. import numpy as np 
10. import matplotlib.pyplot as plt 
11. from scipy.signal import stft 
12. import pickle 
13.  
14. # Import the modules that were created in Imagery_vs_Resting.py 
15. from Imagery_vs_Resting import PreprocessDatasetPass, ProcessDatasetPass, Model_IR 
16.  
17. #%% Plot configuration. 
18. plt.rc('xtick', labelsize=20)  
19. plt.rc('ytick', labelsize=20) 
20. plt.rc('axes', titlesize=30, labelsize=25) 
21.  
22. #%% 
23. # Firstly, we must define the paths of dataset' files.  
24.  
25. path1_C = '../Data/CLA/CLASubjectC1512233StLRHand.mat'  
26. path2_C = '../Data/CLA/CLASubjectC1512163StLRHand.mat'  
27. path3_C = '../Data/CLA/CLASubjectC1511263StLRHand.mat' 
28.  
29.  
30. path1_B = '../Data/CLA/CLASubjectB1510193StLRHand.mat'  
31. path2_B = '../Data/CLA/CLASubjectB1510203StLRHand.mat'  
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32. path3_B = '../Data/CLA/CLASubjectB1512153StLRHand.mat' 
33.  
34.  
35. path1_E = '../Data/CLA/CLASubjectE1512253StLRHand.mat'  
36. path2_E = '../Data/CLA/CLASubjectE1601193StLRHand.mat'  
37. path3_E = '../Data/CLA/CLASubjectE1601223StLRHand.mat' 
38.  
39.  
40. path1_F = '../Data/CLA/CLASubjectF1509163StLRHand.mat'  
41. path2_F = '../Data/CLA/CLASubjectF1509173StLRHand.mat'  
42. path3_F = '../Data/CLA/CLASubjectF1509283StLRHand.mat' 
43.  
44. fs= 200 # Define the sampling frequency. 
45.  
46. #%%   
47.  
48. #Initialize the classes for each subject. 
49.  
50. SubjC_1 = PreprocessDatasetPass(path = path1_C, show_plots=True) 
51. SubjC_2 = PreprocessDatasetPass(path = path2_C) 
52. SubjC_3 = PreprocessDatasetPass(path = path3_C) 
53.  
54. SubjE_1 = PreprocessDatasetPass(path = path1_E) 
55. SubjE_2 = PreprocessDatasetPass(path = path2_E) 
56. SubjE_3 = PreprocessDatasetPass(path = path3_E) 
57.  
58. SubjF_1 = PreprocessDatasetPass(path = path1_F) 
59. SubjF_2 = PreprocessDatasetPass(path = path2_F) 
60. SubjF_3 = PreprocessDatasetPass(path = path3_F) 
61.  
62. # Set the reference. 
63. SubjC_1.channel_reference()  
64. SubjC_2.channel_reference()  
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65. SubjC_3.channel_reference()  
66.  
67. SubjE_1.channel_reference() 
68. SubjE_2.channel_reference()  
69. SubjE_3.channel_reference() 
70.  
71. SubjF_1.channel_reference()   
72. SubjF_2.channel_reference()  
73. SubjF_3.channel_reference() 
74.  
75. # Filter the data. 
76.  
77. SubjC_1.MNE_bandpass_filter(HP = 15, LP = 26, show_plots=True)  
78. SubjC_2.MNE_bandpass_filter(HP = 15, LP = 26)  
79. SubjC_3.MNE_bandpass_filter(HP = 15, LP = 26)  
80.  
81. SubjE_1.MNE_bandpass_filter(HP = 15, LP = 26) 
82. SubjE_2.MNE_bandpass_filter(HP = 15, LP = 26)  
83. SubjE_3.MNE_bandpass_filter(HP = 15, LP = 26) 
84.  
85. SubjF_1.MNE_bandpass_filter(HP = 15, LP = 26)   
86. SubjF_2.MNE_bandpass_filter(HP = 15, LP = 26)  
87. SubjF_3.MNE_bandpass_filter(HP = 15, LP = 26) 
88.  
89. # Add annotations and create epochs.  
90.      
91. # Create Epochs. 
92.  
93. [epoch1_C, label1_C] = SubjC_1.add_annotations_and_epochs(tmin = 2.1, tmax = 3)  
94. [epoch2_C, label2_C] = SubjC_2.add_annotations_and_epochs(tmin = 2.1, tmax = 3) 
95. [epoch3_C, label3_C] = SubjC_3.add_annotations_and_epochs(tmin = 2.1, tmax = 3)  
96.  
97. [epoch1_E, label1_E] = SubjE_1.add_annotations_and_epochs(tmin = 2.2, tmax = 3.1) 
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98. [epoch2_E, label2_E] = SubjE_2.add_annotations_and_epochs(tmin = 2, tmax = 2.9)  
99. [epoch3_E, label3_E] = SubjE_3.add_annotations_and_epochs(tmin = 2.2, tmax = 3.1) 
100.  
101. [epoch1_F, label1_F] = SubjF_1.add_annotations_and_epochs(tmin = 1, tmax = 1.9)  
102. [epoch2_F, label2_F] = SubjF_2.add_annotations_and_epochs(tmin = 1.3, tmax = 2.2)  
103. [epoch3_F, label3_F] = SubjF_3.add_annotations_and_epochs(tmin = 1.4, tmax = 2.3) 
104.  
105.  
106. # Now, the data of all the subjects will be concatenated, and separated in training and testing. 
107.  
108. # All_epochs = np.concatenate((epoch1_C, epoch2_C)) # Epochs for training. 
109. # labels = np.concatenate((label1_C, label2_C))     # Labels for training. 
110. # All_epochs_test = epoch3_C                        # Epochs for testing. 
111. # label_test = label3_C                             # Labels for testing.      
112.  
113.  
114. All_epochs = np.concatenate((epoch1_C, epoch2_C, epoch1_E,epoch2_E, epoch1_F, epoch2_F))  # Epochs for 

training. 
115. labels = np.concatenate((label1_C, label2_C, label1_E, label2_E, label1_F, label2_F))     # Labels for 

training. 
116. All_epochs_test = np.concatenate((epoch3_C, epoch3_E, epoch3_F))                # Epochs for testing. 
117. label_test = np.concatenate((label3_C, label3_E, label3_F))                     # Labels for testing.  
118.  
119. #%% Obtain features. 
120.         
121. Train_feats = ProcessDatasetPass(SubjC_1, All_epochs, labels)  # Create a class to process the data.       
122. Test_feats = ProcessDatasetPass(SubjC_1, All_epochs_test, label_test)  # Create a class to process the 

data. 
123.  
124.  
125. # Obtain the Statistical features. 
126. C_skw, C_krt, C_energy, C_entropy, C_shannon, C_log = Train_feats.feature_extracter() # All epochs 

train. 
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127. D_skw, D_krt, D_energy, D_entropy, D_shannon, D_log= Test_feats.feature_extracter()   # All epochs 
test. 

128.  
129. FEAT = Train_feats.feature_ex(C_skw, C_krt, C_energy, C_entropy, C_shannon, C_log)  
130. FEAT = np.array(FEAT) # Training features. 
131.  
132. FEAT_test = Test_feats.feature_ex(D_skw, D_krt, D_energy, D_entropy, D_shannon, D_log) 
133. FEAT_test = np.array(FEAT_test) # Testing features.         
134.  
135.  
136.  
137. # Obtain the STFT coefficients. 
138. # Train coefs. 
139. Coef_train = Train_feats.ShortTimeFourierTransform(fs=200.0, window='hann',nperseg=181, noverlap=180) 
140.  
141. # Test coefs. 
142. Coef_test = Test_feats.ShortTimeFourierTransform(fs=200.0, window='hann',nperseg=181, noverlap=180) 
143.  
144. # Plot a random STFT spectrogram  
145. for i in range(3): 
146.     frec, tim, Zx =stft(All_epochs[-1,i], fs=200.0, window='hann',nperseg=181, noverlap=180) 
147.      
148.     plt.figure() 
149.     plt.pcolormesh(tim, frec, np.abs(Zx), shading='gouraud', cmap='jet',vmin=-0,vmax=0.8e-6) 
150.     plt.title('STFT Magnitude {}'.format(["C3", "Cz", "C4"][i]), fontsize=30) 
151.     plt.ylim([5,30]) 
152.     plt.ylabel('Frequency [Hz]', fontsize=20) 
153.     plt.xlabel('Time [sec]', fontsize=20) 
154.     plt.xticks(fontsize=16) 
155.     plt.yticks(fontsize=16) 
156.     plt.colorbar() 
157.     plt.show() 
158.      
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159. #%% 
160. Subj_train = Model_IR() 
161. ## Train the ML model with Statistical Features. 
162. clf = Subj_train.ML_classification(FEAT, labels, FEAT_test, label_test, classif = 'RF') 
163.  
164. # Save the ML model: 
165.  
166. with open('RightLeft_vs_Pass_Classification_all.pkl','wb') as f: 
167.     pickle.dump(clf,f) 
168.  
169. #%% Train the CNN model with STFT. 
170. model, scaler = Subj_train.CNN_classification(Coef_train, labels, Coef_test, label_test)  
171.  
172. # Save the CNN model: 
173.  
174. model.save('Pass_vs_Left_Right_with_DL_all.h5') 
175.  
176. # #MinMaxScaler 
177. with open('Pass_vs_Left_Right_with_DL_Scaler_all.pkl','wb') as f: 
178.     pickle.dump(scaler,f)   

179.      
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A5. Annex 5: Sliding Window and serial communication (Executable) [Main_Sliding_Window.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. In this script, the trained AI models will be tested on one entire session of Subject C, by sliding  
4. the session inside a Window. Both AI models will work cooperatively to classify each signal the same 
5. way as it would do on a real-time implementation. 
6.   
7.  
8. @author: Ali Abdul Ameer Abbas 
9. """ 
10.  
11. # Import important libraries. 
12. import pickle 
13. import pywt 
14. import numpy as np 
15. import matplotlib.pyplot as plt 
16. import mne 
17. import pymatreader 
18. import scipy.stats 
19. import tensorflow as tf 
20. from scipy.signal import firwin, lfilter 
21. from scipy.signal import stft 
22. import serial 
23. import time  
24.  
25. # Import the modules that were created in Left_vs_Right.py and Imagery_vs_Resting.py 
26. from Left_vs_Right import PreprocessDataset, ProcessDataset 
27. from Imagery_vs_Resting import PreprocessDatasetPass, ProcessDatasetPass 
28.  
29. #%% Plot configuration. 
30. plt.rc('xtick', labelsize=20)  
31. plt.rc('ytick', labelsize=20) 
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32. plt.rc('axes', titlesize=30, labelsize=25) 
33.  
34. #%% load and preprocess data 
35.  
36. path = '../Data/CLA/CLASubjectC1511263StLRHand.mat' # Only an unseen session of Subject C will be used. 
37.  
38. #Initialize the class 
39.  
40. Subject_C = PreprocessDataset(path) 
41.  
42. # Set the reference. 
43. Subject_C.channel_reference()  
44.  
45. #%% Proceed on loading the models created in the other scripts: 
46.      
47. # Load the Left vs Right imagery chosen Model. 
48.  
49. with open('LeftRight_Classification_More_Data_all.pkl', 'rb') as f: 
50.     clf4 = pickle.load(f) 
51.      
52. # Load the Imagery vs Resting state chosen Model. 
53. DL_model_Pass_detection = tf.keras.models.load_model('Pass_vs_Left_Right_with_DL_all.h5') 
54. # Load CNN's Scaler. 
55. with open('Pass_vs_Left_Right_with_DL_Scaler_all.pkl', 'rb') as f: 
56.     Pass_scaler = pickle.load(f) 
57.  
58.  
59. #%% Get the data from the signals. 
60. # Get the data for all channels. 
61. AciscoAll = Subject_C.raw.get_data() 
62.  
63. # Get the data for the C3, Cz, and C4 channels. Useful for the statistical features and STFT analysis. 
64. picks = mne.pick_channels(Subject_C.raw.info["ch_names"], ["C3", "Cz", "C4"]) 
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65. Acisco = Subject_C.raw.get_data(picks=picks) 
66.  
67.  
68. #%% Define and design the FIR filter used in the real-time simulation. 
69. #Article in how to design a FIR filter:  
70. #https://www.allaboutcircuits.com/technical-articles/design-examples-of-fir-filters-using-window-method/ 
71.  
72. def bandpass_firwin(ntaps, lowcut, highcut, fs = 200, window = 'hann'): 
73.     ''' 
74.     This function enables the user to define the parameters for BP FIR filter. 
75.      
76.     INPUTS: 
77.         ntaps --> Length of the filter. 
78.         lowcut --> Low frequency. 
79.         highcut --> High frequency. 
80.         fs --> Sampling frequency, 
81.         window --> Window type. (Hanning, Hamming, etc.) 
82.     OUTPUTS: 
83.         taps --> Filter coefficients. 
84.     ''' 
85.     nyq = 0.5 * fs 
86.     taps = firwin(ntaps, [lowcut, highcut], nyq=nyq, pass_zero=False, 
87.                   window=window, scale=False) 
88.     return taps 
89.  
90. # Design the filter. 
91. filt_length = 150 # It says the order of the filter.  
92. lowcut = 15       # Low frequency. 
93. highcut = 26      # High frequency. 
94.  
95. delay = np.ceil((filt_length-1)/2) # the delay of the filter (in samples) is calculated as following. 
96.  
97. FIR_Coeficients = bandpass_firwin(filt_length,lowcut,highcut, fs = 200, window='hamming')  
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98.  
99. # Compute the frequency response of the digital filter. 
100. w, mag = scipy.signal.freqz(FIR_Coeficients, 1, fs=200) # The numerator are the coefficients and the 

denominator is 1 (no poles).  
101.  
102. # Plot the filter's impulse response. 
103.  
104. plt.figure() 
105. plt.title('Impulse Response of the FIR filter', fontsize="30") 
106. plt.xlabel('Samples', fontsize=20) 
107. plt.ylabel('Amplitude', fontsize=20) 
108. plt.plot(FIR_Coeficients) 
109. plt.show() 
110.  
111. # Plot the Bode. 
112.  
113. fig, axs = plt.subplots(2) 
114. fig.suptitle('FIR filter BODE', fontsize=30) 
115. axs[0].plot(w, 20*np.log10(np.abs(mag)))   # Bode magnitude plot 
116. axs[0].set_xlabel('Frequency (Hz)', fontsize=20) 
117. axs[0].set_ylabel('Magnitude (dB)', fontsize=20) 
118. #axs[0].grid(True) 
119. axs[1].plot(w, np.unwrap(np.angle(mag,deg=False)))   # Bode phase plot 
120. axs[1].set_xlabel('Frequency (Hz)', fontsize=20) 
121. axs[1].set_ylabel('Phase (rad)', fontsize=20) 
122. #axs[1].grid(True) 
123. plt.show() 
124.  
125. # Plot an example of the filter's effect. 
126.  
127.  
128. fig, axs = plt.subplots(2) 
129. fig.suptitle('Before and after filtering', fontsize=30) 
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130.  
131. ACA = [Acisco[:, int(2500*200):int(2500*200+180+delay)]] 
132. axs[0].plot(ACA[0][1]) 
133. axs[0].set_xlabel('Samples', fontsize=20) 
134. axs[0].set_ylabel('Amplitude', fontsize=20) 
135. axs[1].set_xlabel('Samples', fontsize=20) 
136. axs[1].set_ylabel('Amplitude', fontsize=20) 
137. ACA = lfilter(FIR_Coeficients, 1.0, ACA) 
138. axs[1].plot(ACA[0][1]) 
139.  
140. #%% Create a sliding window for inserting the datapoints and classifying each window 
141. # by using the saved RF model with CSP (Left vs Right --> clf4)  
142. # and the CNN with STFT (Imagery vs Resting --> DL_model_Pass_detection, Pass_scaler). 
143.  
144. # Define the serial communication with Arduino. 
145.  
146. # Ensure that the Arduino port is initially closed. Otherwise, errors may occur. 
147. try: 
148.     arduino.close() 
149. except: 
150.     pass 
151.  
152. # Open the Serial Communication with Arduino. 
153. try: 
154.     arduino = serial.Serial('COM3', timeout=None, baudrate=9600) 
155.     time.sleep(2) 
156. except: 
157.     print('Arduino not connected') 
158.  
159. # Initialize parameters. 
160.  
161. times = [0] 
162. prediction_markers = [] # Save the predictions. 
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163. prediction_times = []   # Save the times of the prediction, 
164.  
165. # Define the times of the session to analyze. 
166. start_time = 170 # Seconds. 
167. stop_time = 500  # Seconds. 
168. step = 0.1       # Seconds. Step of the window at each iteration (Always 0.1).  
169.    
170. # Start the analysis and save the data in the vectors. 
171.  
172. for i in np.arange(start_time, stop_time, step): 
173.     vala = i 
174.     # Encapsulate the data in the time window. 
175.     # Remember that the sampling frequency is 200. Since the window has size 0.9, there are 180 samples 

(0.9*200). 
176.     ACA_All = [AciscoAll[:, int(vala*200):int(vala*200+181+delay)]]   # Keep the data that is insede 

the time window.   
177.     ACA_All = lfilter(FIR_Coeficients, 1.0, ACA_All)                  # Filter the data  
178.     ACA_All = np.array(ACA_All)[:,:,int(delay):]                      # Remove the delay for inserting 

the data to the models. 
179.     # Do the same but just for channels C3, Cz, and C4.  
180.     ACA = [Acisco[:, int(vala*200):int(vala*200+181+delay)]] 
181.     ACA = lfilter(FIR_Coeficients, 1.0, ACA) 
182.     ACA = np.array(ACA)[:,:,int(delay):]  
183.      
184.     # Extract the STFT features. 
185.     frec, tim, Zx =stft(ACA, fs=200.0, window='hann',nperseg=181, noverlap=180) 
186.     FEAT = np.abs(Zx) 
187.      
188.     # Predict if the window is in an Imagery or Resting state. 
189.     pred = 

[int((DL_model_Pass_detection.predict(Pass_scaler.transform(np.array(FEAT).reshape(1,3*91*181)).reshape(1
,3,91,181))> 0.2).astype("int32"))+1] 

190.      
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191.     # If the prediction is an imagery, apply the Left vs Right prediction (pred2) 
192.     if pred == [1]: 
193.         if i > (times[0]): 
194.             # Print the prediction and the probability of the prediction 
195.             pred2 = list(clf4.predict(np.array(ACA_All))) 
196.             pred2_prob = clf4.predict_proba(np.array(ACA_All)) 
197.             print(clf4.predict(np.array(ACA_All)), clf4.predict_proba(np.array(ACA_All))) 
198.              
199.             # Send the pred2 variable to Arduino in order to move the Robotic Manipulator (Left or 

Right). 
200.             try: 
201.                 arduino.write((str(pred2[0])+'\n').encode()) 
202.                 #print('Data sent.') 
203.             except: 
204.                 pass 
205.  
206.              
207.             # The following lines are used for later plotting the results in a graph. 
208.             if times[0]+0.5 < i:   #If there is a difference of 0.5 sec between predictions, it is 

considered another imagery.  
209.                 print('-----------------') 
210.                 # Send a reset indication to Arduino in order to reset the Left and Right Counters (see 

Arduino code). 
211.                 try: 
212.                     arduino.write(('Reset'+'\n').encode()) 
213.      
214.                 except: 
215.                     pass 
216.             
217.             if pred2 == [1]: # If Left is detected. 
218.                 print(round(i, 1), 'Left prediction') 
219.                 prediction_markers.append('Left prediction') # Add the prediction to the list. 
220.                 prediction_times.append(i)                   # Add the prediction time to the list. 
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221.                  
222.             if pred2 == [2]: # If Right is detected. 
223.                 print(round(i, 1), 'Right prediction') 
224.                 prediction_markers.append('Right prediction') # Add the prediction to the list. 
225.                 prediction_times.append(i)                    # Add the prediction time to the list. 
226.                  
227.             times[0] = i # Update the time.  
228.  
229. # Close the Serial communication. 
230. try: 
231.     arduino.close() 
232.     print('Data sent.') 
233. except: 
234.     pass 
235.  
236. # Convert the lists to numpy arrays. 
237. prediction_markers = np.array(prediction_markers) 
238. prediction_times = np.array(prediction_times) 
239.  
240. # Now, create a loop in which each imagery be separated their time and length. 
241. # Initialize the needed variables. 
242. new_prediction_markers = [] 
243. new_prediction_times = [] 
244. segment = []                # It will separate different imageries events. 
245. times = prediction_times[0] 
246.  
247. # Create a loop for organizing the lists. 
248. for i, timer in enumerate(prediction_times): 
249.     # If there is a difference of 0.5 sec between predictions, it is considered another imagery.  
250.     if timer > times + 0.5: 
251.         # To be more robust, consider a correct imagery when the model has predicted a class 4 times 

consecutively. 
252.         if len(segment) >= 4:   
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253.             segment_label = prediction_markers[segment] 
254.             segment_time = prediction_times[segment] 
255.  
256.             left_count = np.char.count(segment_label, 'Left prediction').sum() 
257.             right_count = np.char.count( 
258.                 segment_label, 'Right prediction').sum() 
259.             # If Left prediction are more abundant thanright ones, consider Left. 
260.             if left_count > right_count and right_count <= 4: 
261.                  
262.                 new_prediction_markers.append('Left prediction') 
263.                 new_prediction_times.append(list(segment_time)[0]) 
264.                  
265.             # If Right prediction are more abundant than left ones, consider Right. 
266.             elif left_count < right_count and left_count <= 4: 
267.                  
268.                 new_prediction_markers.append('Right prediction') 
269.                 new_prediction_times.append(list(segment_time)[0]) 
270.                  
271.             else: 
272.                 pass 
273.  
274.             segment = [] 
275.         else: 
276.             segment = [] 
277.     else: 
278.         segment.append(i) 
279.     times = timer 
280.  
281. # Now plot the results. 
282.  
283. # Put the ground truth markers as well as the newly generated prediction markers. 
284.  
285. [mark, pos, timer] = Subject_C.type_pos() # Obtain the ground truth markers. 
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286.  
287. mark.extend(new_prediction_markers) # Add the new markers. 
288. timer.extend(new_prediction_times)   # Add the new markers' times. 
289.  
290. # Set annotations. 
291.  
292. annotations = mne.Annotations(timer, 1.0, mark) 
293. Subject_C.raw.set_annotations(annotations) 
294. Subject_C.raw.plot(duration=1000.0,start=500.0) 
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A6. Annex 6: Arduino receiving inputs for moving the MeArm (Executable) [Arduino_serial_com.ino] 

1. /* 
2. This code enables a Serial communication with Python in order to control  
3. a MeArm robotic manipulator. When 4 consecutive predictions are the same, 
4. the robotic manipulator moves. 
5.  
6. @author: Ali Abdul Ameer Abbas 
7. */ 
8.  
9. #include <Servo.h> // Import the library for the Servo motors. 
10. Servo baseMotor;   // Define the servo. 
11. // Initialize counters. 
12. int count_left = 0;  
13. int count_right = 0; 
14. // Define the input Byte from Python. 
15. String InputBytes; 
16.  
17. // Set up the code. 
18. void setup() { 
19.   Serial.begin(9600); 
20.   baseMotor.attach(9); // Define the pin of the servomotor. 
21.   baseMotor.write(60); // Move the MeArm to the neutral position (60 degrees). 
22. } 
23.  
24. // Initialize the Loop. 
25. void loop() { 
26.   // Check if the Serial port is available. 
27.   if (Serial.available()>0){ 
28.     // Read the input byte. 
29.     InputBytes = Serial.readStringUntil('\n');  
30.     Serial.flush();  
31.     // If the Byte is "1" and there are 4 consecutive "1". 
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32.     // Move the MeArm to the Left. 
33.     if (InputBytes == "1"){ 
34.       count_left += 1; // Sum the Left counter for counting the consecutives. 
35.       count_right = 0; // Reset the Right counter. 
36.       if (count_left == 4){ 
37.         baseMotor.write(120); // Move the MeArm base to 120 degrees. 
38.         delay(100); 
39.       } 
40.     } 
41.     // If the Byte is "2" and there are 4 consecutive "2". 
42.     // Move the MeArm to the Left. 
43.     if (InputBytes == "2"){ 
44.       count_left = 0;   // Sum the Right counter for counting the consecutives. 
45.       count_right += 1; // Reset the Left counter. 
46.       if (count_right == 4){ 
47.         baseMotor.write(0);  // Move the MeArm base to 0 degrees. 
48.         delay(100);  
49.       } 
50.     // If the Byte is "Reset", reset the counters.   
51.     if (InputBytes == "Reset"){ 
52.       count_left = 0; 
53.       count_right= 0; 
54.       }   
55.     }    
56.   }  
57. } 
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A7. Annex 7: ERDS maps generator (Executable) [ERDS_maps.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. In this code the ERDS maps will be visualized for determining a suitable frequency and time for 

segmenting  
4. and filtering the data. 
5.  
6. @author: Ali Abdul Ameer Abbas (with the help of the MNE documentation)  
7. """ 
8.  
9.  
10. import numpy as np 
11. import matplotlib.pyplot as plt 
12. import mne 
13. from mne.datasets import eegbci 
14. from mne.io import concatenate_raws, read_raw_edf 
15. from mne.time_frequency import tfr_multitaper 
16. from mne.stats import permutation_cluster_1samp_test as pcluster_test 
17. from mne.viz.utils import center_cmap 
18. import pymatreader 
19.  
20. #%% load and preprocess data #################################################### 
21. #path = '../Data/CLA/CLASubjectA1601083StLRHand.mat'  
22. path = '../Data/CLA/CLASubjectC1512233StLRHand.mat'  
23. #path = '../Data/CLA/CLASubjectC1512163StLRHand.mat'  
24. #path = '../Data/CLA/CLASubjectC1511263StLRHand.mat' 
25. #path = '../Data/CLA/CLASubjectE1512253StLRHand.mat' 
26. #path = '../Data/CLA/CLASubjectF1509163StLRHand.mat' 
27.  
28. struct = pymatreader.read_mat(path, ignore_fields=['previous'], variable_names = 'o') 
29. struct = struct['o'] 
30.  
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31.  
32. chann = struct['chnames'] 
33. chann = chann[:-1] # pop th X3 channel, which is only used for the data adquisition.  
34. info = mne.create_info(ch_names = chann,  
35.                                sfreq = float(struct['sampFreq']),ch_types='eeg', montage='standard_1020', 

verbose=None) 
36.  
37. data = np.array(struct['data']) 
38. data = data[:,:-1] 
39. data_V = data*1e-6 # mne reads units are in Volts 
40.  
41. raw = mne.io.RawArray(data_V.transpose(),info, copy = "both") 
42.  
43. raw = raw.set_eeg_reference('average', projection= False) 
44.  
45. def type_pos(markers, sfreq = 200.0 ): 
46.     """ 
47.         Gets the marker position.  
48.         Just left and right positions, NO PASS marker 
49.         Only takes into account the right and left class, not the passive class. 
50.          
51.         INPUTS: 
52.             markers --> Markers. 
53.             sfreq --> Sampling frequency. 
54.         OUTPUTS:  
55.             mark --> markers. 
56.             pos --> position of the marker. 
57.             time --> time of the marker.         
58.     """ 
59.     mark = [] 
60.     pos = [] 
61.     time = [] 
62.     desc = ['left', 'right'] # for assigning the movements--> left =1, right = 2, pass = 3 
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63.     for i in range(len(markers)-1): 
64.         if markers[i]==0 and markers[i+1] != 0 and (markers[i+1] in [1,2]): 
65.              
66.             mark.append(desc[markers[i+1]-1]) 
67.             pos.append((i+2)) 
68.             time.append((i+2)/sfreq) 
69.         else: 
70.            continue 
71.     return mark, pos, time 
72.  
73. markers =  np.array(struct['marker']).transpose() 
74. [mark, pos, time] = type_pos(markers) 
75.  
76. annotations = mne.Annotations(time, 3.0, mark) # this is the annotation of every class 
77. raw.set_annotations(annotations) 
78.  
79. events, _ = mne.events_from_annotations(raw) 
80.  
81. picks = mne.pick_channels(raw.info["ch_names"], ["C3", "Cz", "C4"]) 
82.  
83. #%% Get the epoch data ################################################################## 
84. tmin, tmax = -1, 4  # define epochs around events (in s) 
85. event_ids = dict(left=1, right=2)  # map event IDs to tasks 
86.  
87. epochs = mne.Epochs(raw, events, event_ids, tmin - 0.5, tmax + 0.5, 
88.                     picks=picks, baseline=None, preload=True) 
89.  
90. #%% compute ERDS maps ################################################################## 
91. freqs = np.arange(2, 36, 1)  # frequencies from 2-35Hz 
92. n_cycles = freqs  # use constant t/f resolution 
93. vmin, vmax = -1, 1.5  # set min and max ERDS values in plot 
94. baseline = [-1, 0]  # baseline interval (in s) 
95. cmap = center_cmap(plt.cm.jet, vmin, vmax)  # zero maps to white 
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96. kwargs = dict(n_permutations=100, step_down_p=0.05, seed=1, 
97.               buffer_size=None)  # for cluster test 
98.  
99. # Run TF decomposition overall epochs 
100. tfr = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, 
101.                      use_fft=True, return_itc=False, average=False, 
102.                      decim=2) 
103.  
104. tfr.crop(tmin, tmax) 
105. tfr.apply_baseline(baseline, mode="percent") 
106.  
107. for event in event_ids: 
108.     # select desired epochs for visualization 
109.     tfr_ev = tfr[event] 
110.     fig, axes = plt.subplots(1, 4, figsize=(12, 4), 
111.                              gridspec_kw={"width_ratios": [10, 10, 10, 1]}) 
112.     for ch, ax in enumerate(axes[:-1]):  # for each channel 
113.         # positive clusters 
114.         _, c1, p1, _ = pcluster_test(tfr_ev.data[:, ch, ...], tail=1, **kwargs) 
115.         # negative clusters 
116.         _, c2, p2, _ = pcluster_test(tfr_ev.data[:, ch, ...], tail=-1, 
117.                                      **kwargs) 
118.  
119.         # note that we keep clusters with p <= 0.05 from the combined clusters 
120.         # of two independent tests; in this example, we do not correct for 
121.         # these two comparisons 
122.         c = np.stack(c1 + c2, axis=2)  # combined clusters 
123.         p = np.concatenate((p1, p2))  # combined p-values 
124.         mask = c[..., p <= 0.05].any(axis=-1) 
125.  
126.         # plot TFR (ERDS map with masking) 
127.         tfr_ev.average().plot([ch], vmin=vmin, vmax=vmax, cmap=(cmap, False), 
128.                               axes=ax, colorbar=False, show=False, mask=mask, 
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129.                               mask_style="mask") 
130.  
131.         ax.set_title(epochs.ch_names[ch], fontsize=10) 
132.         ax.axvline(0, linewidth=1, color="black", linestyle=":")  # event 
133.          
134.         if not ax.is_first_col(): 
135.             ax.set_ylabel("") 
136.             ax.set_yticklabels("") 
137.              
138.     fig.colorbar(axes[0].images[-1], cax=axes[-1]) 
139.     fig.suptitle("ERDS ({})".format(event)) 
140.     fig.show() 

141.      
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A8. Annex 8: Streamlit application for collecting the dataset (Executable) [dataset_collector_BCI.py] 

1. # -*- coding: utf-8 -*- 
2. """ 
3. In this script, an eGUI will be created to guide each participant in the motor imagery 
4. movements that they must do in order to collect data for the dataset appropriately. 
5. The application will be created thanks to the streamlit library.  
6.  
7. @author: Ali Abdul Ameer Abbas 
8. """ 
9.  
10. # Import libraries. 
11. from random import randint 
12. import streamlit as st 
13. from PIL import Image 
14. import pandas as pd 
15. import time 
16.  
17. # Set the page configurations and layout. 
18.  
19. st.set_page_config( 
20.      page_title="EEG Imagery", 

21.      page_icon="🧊", 
22.      layout="wide", 
23.      initial_sidebar_state="expanded", 
24.      menu_items={ 
25.          'Get Help': 'https://www.extremelycoolapp.com/help', 
26.          'Report a bug': "https://www.extremelycoolapp.com/bug", 
27.          'About': "Motor Imagery" 
28.      } 
29. ) 
30.  
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31. primaryColor="#F63366" 
32. backgroundColor="#FFFFFF" 
33. secondaryBackgroundColor="#F0F2F6" 
34. textColor="#111111" 
35. font="sans serif" 
36.  
37. st.markdown( 
38.          f""" 
39.          <style> 
40.          .stApp {{ 
41.              background: url("https://png.pngtree.com/thumb_back/fw800/background/20190830/pngtree-color-

network-with-dots-on-white-background-image_310198.jpg"); 
42.  
43.          }} 
44.          </style> 
45.          """, 
46.          unsafe_allow_html=True 
47.  
48.      ) 
49.  
50. # Add a title, subheader, and other texts. 
51.  
52. st.title("Motor Imagery BCI", anchor=None) 
53. st.subheader("Ali Abdul Ameer Abbas") 
54.  
55. patient = st.text_input('Participant Identification', 'Unkown') 
56. trial = st.text_input('Trial', 'Unkown') 
57.  
58. # Separate the page into three columns and add photos. 
59. col1, col2, col3 = st.columns(3) 
60. with col1: 
61.     st.markdown("<h1 style='text-align: center; color: black;'>LEFT</h1>", unsafe_allow_html=True) 
62. with col2: 
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63.     st.markdown("<h1 style='text-align: center; color: black;'>PASS</h1>", unsafe_allow_html=True) 
64. with col3: 
65.     st.markdown("<h1 style='text-align: center; color: black;'>RIGHT</h1>", unsafe_allow_html=True) 
66.  
67. placeholder_image_1 = col1.empty() 
68. placeholder_image_2 = col2.empty() 
69. placeholder_image_3 = col3.empty() 
70.  
71. with col1: 
72.     img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_IZQUIERDA.png") 
73.     placeholder_image_1.image(img3) 
74. with col2: 
75.     img3 = Image.open("FOTOS_ALAWI/NADA.jpg") 
76.     placeholder_image_2.image(img3) 
77. with col3: 
78.     img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_DERECHA.png") 
79.     placeholder_image_3.image(img3) 
80.  
81. # Define some parameters, useful for saving the events in a csv file. 
82. segundos = 3                # Time of green display of an action. 
83. fs = 200                    # Sampling frequency. 
84. repetitions = segundos * fs # Samples due to the seconds waited.   
85. storage_vector = []         # Vector for saving the markers in a csv file. 
86.  
87. # Set the Start and Stop buttons, with the help of a flag. 
88. flag = 0 
89. if st.button('START',key="14"): 
90.     flag = 1 
91.  
92. if st.button("STOP",key="2"): 
93.     flag = 0  
94.  
95. # Randomly activate an activity (Left-hand imagery, Right-hand imagery, Pass) 
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96.  
97. while(flag == 1): 
98.     for _ in range(10): 
99.         number = randint(1, 3) 
100.          
101.     with col1: 
102.         if number == 1: 
103.              
104.             img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_IZQUIERDA_VERDE.png") 
105.             placeholder_image_1.image(img3) 
106.             time.sleep(segundos) 
107.             storage_vector.extend([1] * repetitions) 
108.             img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_IZQUIERDA.png") 
109.             placeholder_image_1.image(img3) 
110.             time.sleep(segundos) 
111.             storage_vector.extend([0] * repetitions) 
112.  
113.         else: 
114.             img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_IZQUIERDA.png") 
115.             placeholder_image_1.image(img3) 
116.  
117.  
118.     with col2: 
119.         if number == 2: 
120.             img3 = Image.open("FOTOS_ALAWI/NADA_VERDE.jpeg") 
121.             placeholder_image_2.image(img3) 
122.             time.sleep(segundos) 
123.             storage_vector.extend([2] * repetitions) 
124.             img3 = Image.open("FOTOS_ALAWI/NADA.jpg") 
125.             placeholder_image_2.image(img3) 
126.             time.sleep(segundos) 
127.             storage_vector.extend([0] * repetitions) 
128.  
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129.         else: 
130.             img3 = Image.open("FOTOS_ALAWI/NADA.jpg") 
131.             placeholder_image_2.image(img3) 
132.  
133.  
134.     with col3: 
135.         if number == 3: 
136.             img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_DERECHA_VERDE.png") 
137.             placeholder_image_3.image(img3) 
138.             time.sleep(segundos) 
139.             storage_vector.extend([3] * repetitions) 
140.             img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_DERECHA.png") 
141.             placeholder_image_3.image(img3) 
142.             time.sleep(segundos) 
143.             storage_vector.extend([0] * repetitions) 
144.         else: 
145.             img3 = Image.open("FOTOS_ALAWI/MANO_VACIA_DERECHA.png") 
146.             placeholder_image_3.image(img3) 
147.      
148.     # Save the markers in a csv file. 
149.     df = pd.DataFrame(storage_vector)  
150.     print(df) 
151.     # saving the dataframe  
152.     df.to_csv(f'{patient}_{trial}_Record.csv'
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