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Abstract

Over the past two years, SARS-CoV-2 has spread around the world, affecting people
differently. Both quantity and duration of antibody levels can vary widely between indi-
viduals. However, the factors that determine which immune response people will generate
to COVID-19 are still unclear.

In this thesis, different clustering technologies are explored with the purpose of identifying
different patterns of serological response caused by COVID-19 infection. Two unsupervised
learning methods are applied, K-means and kmlShape. The latter can be conceived as an
improved version of the K-means algorithm, specially designed to work with longitudinal
data.

Finally, the clusters obtained with both methods are reported and the characteristics of
the patients grouped in each cluster are statistically described. Different relationships
have been found between the immune response of each group and individual factors such
as age, gender, diseases and drugs. Different immune response groups can also determine
COVID-19 reinfections.
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Resum

En els dos últims anys, el SARS-CoV-2 s’ha estès per tot el món, afectant a les persones
de forma diferent. Tant la quantitat com la durada dels nivells d’anticossos poden variar
molt entre els individus. No obstant, els factors que determinen quina resposta immune
generaran les persones davant el COVID-19 encara no estan clars.

En aquesta tesi s’exploren diferents tecnologies de clustering amb la finalitat d’identificar
els diferents patrons de resposta serològica provocada per la infecció de COVID-19. A més,
s’apliquen dos mètodes d’aprenentatge no supervisats, K-means i kmlShape. Aquest darrer
es pot concebre com una versió millorada de l’algorisme K-means, dissenyat especialment
per treballar amb dades longitudinals.

Finalment, es presenten els clústers obtinguts amb els dos mètodes i es descriuen es-
tad́ısticament les caracteŕıstiques dels pacients agrupats en cada clúster. S’han trobat
diferents relacions entre la resposta immune de cada grup i factors dels individus com
l’edat, el gènere, les malalties i els fàrmacs. Els diferents grups de resposta immune també
poden determinar les reinfeccions de COVID-19.
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Resumen

En los dos últimos años, el SARS-CoV-2 se ha extendido por todo el mundo, afectando a
las personas de forma diferente. Tanto la cantidad como la duración de los niveles de an-
ticuerpos pueden variar mucho entre individuos. Sin embargo, los factores que determinan
qué respuesta inmune generarán las personas ante el COVID-19 aún no están claros.

En esta tesis se exploran diferentes tecnoloǵıas de clustering con el fin de identificar los
diferentes patrones de respuesta serológica provocados por la infección de COVID-19.
Además, se aplican dos métodos de aprendizaje no supervisado, K-means y kmlShape.
Este último puede concebirse como una versión mejorada del algoritmo K-means, espe-
cialmente diseñado para trabajar con datos longitudinales.

Finalmente, se presentan los clústeres obtenidos con ambos métodos y se describen es-
tad́ısticamente las caracteŕısticas de los pacientes agrupados en cada clúster. Se han en-
contrado diferentes relaciones entre la respuesta inmune de cada grupo y factores de los
individuos como la edad, el género, las enfermedades y los fármacos. Los diferentes grupos
de respuesta inmune también pueden determinar las reinfecciones de COVID-19.
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1 Introduction

1.1 Context and justification

Coronavirus disease 2019 (COVID-19) is an emerging disease that has globally affected 470
million people and already caused 6 million deaths. The first case of this predominantly
respiratory viral disease was first reported in Wuhan, Hubei Province, China, in late
December 2019, then Severe Acute Respiratory Syndrome coronavirus 2 infection (SARS-
CoV-2) rapidly disseminated across the world in a short time. World Health Organization
(WHO) declared it as a global pandemic on March 11, 2020 [1]. Since being declared a
global pandemic, COVID-19 has overwhelmed most health systems and devastated many
countries around the world in the context of new variants of SARS-CoV-2. [2, 3].

Nowadays, it is possible to make use of technologies to better manage the pandemic [4].
One of the most cutting-edge technologies in today’s world is machine learning, based on
algorithms used to analyse and draw inferences from patterns in data. So much so, that it
has countless applications in predictive medicine with the fight against COVID-19 being
one of the most crucial [5]. In this context, clustering is a machine learning technique
widely used today, which makes it possible to group sets in which the objects in the same
group are similar to each other, but different from those in the other groups.

SARS-CoV-2 is a virus that possesses 4 structural proteins whose structure can be seen
in Appendix A. When a person has the COVID-19 their immune system acts against all
the SARS-CoV-2 proteins by generating antibodies. This project arises from the need to
identify different types of evolution of antibody levels, and describe the characteristics of
the individuals having each type of evolution. Such knowledge would allow recommenda-
tions to be made, under the hypothesis that a reduction in the level of antibody levels
may increase the risk of reinfection. Therefore, research into different clustering methods
that group patients according to their immune responses is necessary.

This thesis is born from the ProHEpiC-19 project, which was intended to describe the
kinetics of IgM (N) and IgG (N, S) antibodies against SARS-CoV-2 and to assess the
relationship between the immune response and the COVID-19 severity [6]. This was done
from an analysis with statistical methods on 17 months of serological responses from
more than 800 healthcare workers (HCWs) from Barcelona. Instead of the time period
analysed in [6], in our project, a 21-month analysis only of the evolution of IgG (N)
antibody levels after infection will be performed using a database containing the results
of serological tests performed on these HCWs. Furthermore, in our work unsupervised
machine learning techniques that work especially with longitudinal data are introduced,
providing a potentially better analysis of the immune response of infected individuals than
conventional methods, which do not take into account the time variable.

1.2 Objectives

The project aims to study longitudinal clustering methods to obtain groups identifying
distinct serological response patterns. This study involves both transversal and longitu-
dinal clustering techniques. Moreover, a description of the individuals included in each
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cluster using descriptive statistics is necessary to understand which type of patients is
gathered in each group. The project main goals are:

• Analyze the evolution of SARS-CoV-2 antibody levels in individuals after infection.

• Obtain the most suitable method to cluster patients according to their immune
responses, from the comparison of conventional and longitudinal clustering methods
including validity indices.

• Perform a description of the type of patients gathered in each cluster in order to
understand the individual factors that trigger the immune response of each group.

All these objectives will be performed with data from real Electronic Health Records
(EHR), including demographic information, diseases, drugs, and serological tests results
from Barcelona HCWs.

1.3 Methods and procedures

The methods and procedures followed in this project, which will be detailed later on in
the Methodology section, are succinctly depicted in Figure 1.1:

Figure 1.1: Project methodology

The complete work plan, including the internal tasks of each work package as well as the
Gantt chart can be found in Appendix B.
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1.4 Document structure

This thesis memory is made up of 6 different sections. The first chapter consists of an
introduction to the thesis, in which the justification for carrying out the project and
its objectives are explained. State-of-the-art in chapter 2 includes relevant and recent
research that has been done on the subject matter as well as the technologies used in these
kinds of projects. Chapter 3 consists of the methodology of the work, an explanation of
everything that has been done and all the relevant methods that were used. Subsequently,
chapter 4 presents the results obtained and the decisions that have been taken. The budget
Chapter shows the estimation of the cost of the work dedicated to the thesis. Finally, the
conclusions of the thesis are stated and future points of interest for further research in
this field are described in chapter 6.
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2 State of the art of the technology used or applied

in this thesis

This section focuses on presenting the most relevant research that has been carried out
on our subject matter.Subsection 2.1 mentions several techniques and methods used to
cluster longitudinal data. Subsequently, section 2.2 presents different studies applied to
COVID-19 which use this type of techniques to work with longitudinal data.

2.1 Technologies available for clustering data

Longitudinal studies can be used to measure the evolution of certain phenomena in fields
such as health science, biology, economics, sociology or marketing. In contrast to cross
sectional, in which subjects are observed at a single moment, longitudinal studies employ
continuous or repeated measures to follow particular individuals over prolonged periods
of time [7]. Temporal variations in an outcome of interest can be directly observed and
studied by following subjects over time. One way to find different trajectory patterns in
the data is through clustering, where individuals are separated into homogeneous groups.
Although there are several ways to cluster longitudinal data, the methods can be mainly
classified into two approaches: non-parametric and model-based methods.

Non-parametric clustering

Non-parametric methods operate by making no assumptions on how the data was gen-
erated. Therefore, non-parametric methods aim to define the similarity between subjects
and clusters without making assumption on the data. To this end, the three fundamental
points to these methods are the clustering algorithm, the similarity or dissimilarity mea-
sure and the number of clusters [8]. Within the non-parametric, most clustering algorithms
can generally be grouped as either partitioning or hierarchical.

Partitional clustering aim to split n observations into k >= 2 distinct clusters, without
an object being able to belong to two or more different clusters. The K-means algorithm
is probably the partition algorithm most widely used, and it can use different similarity
measures to calculate how similar two observations are. Currently, the R package KmL
allows working with the K-means algorithm specially adapted for longitudinal data [9].
This, makes use of the most traditional distances such as Euclidean and Manhattan
distances, the latter being more robust to outliers. However, these two distances do not
work well when the time series are shifted or delayed as they compare point to point. For
this, the KmL package also makes available Dynamic Time Warping (DTW) [10], a metric
that allows to calculate the similarity considering a time lag of the trajectories described
in section 3.2.1.
Another approach to longitudinal partitional algorithms is to provide clusters on the
basis of trajectory shape, handling distortions in amplitude and phase. For this purpose,
the two most commonly used algorithms are kmlShape and k-Shape. The kmlShape is an
extension of KmL which uses the Fréchet distance as the similarity measure. This distance
treats each trajectory as a curve in order to identify clusters based on the shape [11]. On
the other hand, k-Shape is based in a procedure similar to the one used by K-means but
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using cross-correlation as the measure of similarity [12]. Nevertheless, cross-correlation
is not often adopted as a time series distance because inefficient implementation of this
measure can result in a very slow process.

Hierarchical clustering is mainly based on creating cluster trees where the root node
of the tree is a group containing all elements and the leaves are groups each of which
contains one different object of the total. Unlike partitioning algorithms, these algorithms
do not need to know the number of clusters beforehand, however, the problem they suffer
comes when choosing where to cut the tree to find the best partition [13]. Hierarchical
algorithms can be categorized as divisive (top-down) or agglomerative (bottom-up). The
former starts with all objects belonging to a single cluster and then are split up until
finally reaching a cluster per object. In contrast, agglomerative methods start by treating
each observation as a cluster of its own and then iteratively agglomerates pairs of clusters
until reaching one containing all elements [8]. To determine how close two groups are,
popular distances can be used as Euclidean distance or DTW. Nevertheless, in this type
of clustering distance measures are not mandatory, being possible to use other clustering
methods normally density-based or graph-based, as a subroutine for constructing the
hierarchy [14]. Compared to partitional methods, hierarchical ones are less commonly
used for longitudinal data mainly due to their computational complexity [13].

Model-based clustering

Unlike non-parametric methods, model-based approaches assume that the data are gen-
erated from a finite mixture of distributions [15], each representing a different cluster.
The parameters of each distribution are obtained by maximizing likelihood [13]. Among
the model-based methods, the best known and most widely used is the Gaussian Mix-
ture Model (GMM) explained mathematically in [16]. This method is mainly based on
determining the different clusters where each of them is represented by a Gaussian distri-
bution. In addition, the algorithm determines a mean and a variance for each cluster and
a probability of belonging or not to that cluster for each observation.

Clustering validity

Once the partition is generated, it is important to evaluate the goodness-of-fit of the
algorithm. For this purpose, clustering validity is used, which can be classified as internal
or external depending on whether or not they use external information [17]. As clustering
is an unsupervised method, there is usually no ground-truth that can be used as an
external validity of the goodness of the algorithm. In this case, internal validity mainly
consists of solving the problem of finding the ideal number of clusters for our data set.
Although this problem currently has no optimal solution [18], several internal validity
indices have been proposed, which can help to decide the optimum number after running
the algorithm several times with different number of clusters and finally comparing the
results. The most commonly used indices in non-parametric clustering are Silhouette [19],
Davies-Bouldin [20] and Calinski-Harabasz [21]. On the other hand, for evaluating how
well a model fits the data it was generated from and find the optimal number of clusters
in model-based clustering, Bayesian information criterion (BIC) is often used which is
closely related to Akaike information criterion (AIC), both studied in [22].
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On the other hand, when there is a ground-truth, it is possible to validate which objects
are well clustered and which are not. External validity indices are based on this knowledge
to find an efficient method, where the Rand index [23] and the Jaccard coefficient [24] are
the most well-known. In addition to the above-mentioned indices, a large list of internal
and external indices applied to longitudinal data can be found in [13]. However, despite
the numerous existing techniques in cluster validity, there is currently no unanimously
accepted method.

2.2 Related work

Out of all the studies carried out with some relation to this thesis, there is a wide range
of publications that group countries according to the evolution of various COVID-19
indicators. An example of country clustering was studied in [25], where 206 countries were
grouped according to incidence and mortality rates. In this study, K-means with Euclidean
distance was the method used to cluster the countries according to the evolution of these
two rates. In addition, the elbow method was used to find the optimal number of clusters.

The evolution of different protein levels can be determined with the clinical course of
COVID-19, which can be mild, moderate or severe. A supervised clustering was done
in [26], where K-means with DTW was used to group COVID-19 individuals into three
different clusters based on the longitudinal measurement of C-reactive protein levels,
absolute neutrophil counts and absolute lymphocyte counts. The results showed distinct
reactivity intensities and patterns for each cluster.

Hierarchical clustering also has applications in the field of COVID-19. This method was
used in [27], where individuals were hierarchically clustered according to their antibody
reactivity levels to different antigens. Before clustering, the optimal number of clusters
was extracted using gap statistics validity [28].

Finally, in the following thesis [13] several longitudinal clustering techniques, both non-
parametric and model-based, were studied and applied to real data in order to cluster
countries according to 6 mobility trends (changes in the number of visits to different places
such as parks or pharmacies) during the lockdown period. In addition, ten internal and ten
external validity indices were implemented on artificial data with the purpose of finding
the index that more often suggested the correct number of clusters. With this objective,
it was observed that the index that provided the best results was the Calinski-Harabasz.
On the other hand, the non-parametric clustering methods were the ones that obtained
the best results compared to the model-based ones, also resulting in less complexity.
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3 Methodology / project development:

3.1 Data pre-processing

Database

The data used in this project are extracted from two different databases. ProHEpiC-19
database contains serological test results from 5 May 2020 to 11 February 2022 on HCWs
in Barcelona. Moreover, information on patients’ demographics, symptoms as well as if
they have been infected, reinfected and when they have been vaccinated is provided in
this database. On the other hand, Sistema d’Informació pel Desenvolupament de la Inves-
tigació en Atenció Primària (SIDIAP) database contains information on the symptoms
and drugs of these HCWs.

The serology table extracted from ProHEpiC-19 database collects the results of IgM(N)
and IgG (N, S) antibody levels. However, in this study, only IgG (N) antibody levels
are used. The main reason for this is that IgG (S) values can be altered by the effect of
the vaccine, making it impossible to differentiate whether a positive value is due to an
infection or a response to vaccination. In addition, as the study progressed, it became
clear that the IgM (N) antibody did not continue evolving over time, so IgM (N) levels
were no longer measured. As IgG (N) antibodies levels are measured repeatedly over a
period of time, we can measure their evolution.

During the start of the project, the database was checked to ensure that the data were
entirely correct. As a result, some duplicate items were removed and some infection dates
were updated.

As the aim of the project is to group patients according to their immune responses gen-
erated by the SARS-CoV-2, the results reported in this work will be obtained only with
infected patients, taking into account only the samples collected after infection but with-
out considering reinfection samples, i.e., serological tests performed after reinfection.

Descriptive analysis

A previous descriptive analysis considering all patients was performed for different cat-
egorical and continuous variables, where descriptive statistics were applied in order to
find out the principal characteristics of the population involved in the study. Numerical
variables were represented with their mean and standard deviation while the categori-
cal ones were represented with absolute frequencies and percentages. Missing values were
found in the following variables: civil status (4.27%), origin (7.11%), job (15.9%), total
diseases (0.24%), and total drugs (2.61%). This analysis was done with the R package
compareGroups meant to facilitate the construction of bivariate tables [29]. The different
programming languages and packages used for each section and sub-section are shown in
Appendix C.

Data temporal dispersion

As part of the data exploration process, first step was to investigate whether the data had
temporal dispersion in order to find out if there was much variation between measurement
times. This step was necessary especially for the conventional methods since, as discussed
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later in 3.2.1, it was necessary to discretise the time scale into different intervals. In this
way, even if these methods did not work taking into account the exact measurement day,
each sample of antibody levels would represent a period of time identical to that of the
other patients, avoiding direct comparison between two samples far apart in time.

Once COVID-19 infection was confirmed, the protocol was to perform serological tests
15, 30, 60, 90, 180, 270, 360, and 450 days after the baseline visit. However, in practice
they were not done on these exact days. Therefore, for each patient, the difference in days
between infection and the different tests was calculated and studied to see if the samples
were measured on the days stated by the protocol or if there was a temporal dispersion
in the data. Besides the possible dispersion, it was necessary to consider the number of
patient samples as some of them dropped out of the study or simply did not show up on
a given day, resulting in a lack of follow-up samples.

In the hypothetical case that all participants had the same number of samples and no
temporal dispersion i.e., the same number of tests conducted around the same days, no
prior transformation of the data would be necessary before going through clustering.
However, since it was known that not all patients had been fully followed up, it was opted
to perform different analyses before the clustering process.

Data selection and preparation

Once the existence of dispersion was verified, it was necessary to select infected patients
who were similar in terms of the days on which their different samples were measured. To
do this, different analyses were performed in order to select patients with sufficient and
correctly distributed follow-up infection samples to then prepare these data according to
the input requirements of the model. These analyses were approached differently depend-
ing on the type of clustering used. In this thesis, clustering methods were separated into
two main groups: conventional methods, which are described in 3.2.1, and longitudinal
methods described in 3.2.2.

Conventional methods

The requirement to be met in these methods is that the model input data, in this case,
one array per individual, must have the same length. Each array is made up of the
same number of samples and represents the evolution of the antibody levels through
fixed time periods instead of using the exact measurement day as additional input to the
model. In order to select those patients who were useful for the study by having correctly
distributed data along the time axis, avoiding those with a high number of missing samples
or with many samples on closely spaced days, the methodology presented in Figure 3.1
was followed.

Firstly, the time axis was divided into different periods e.g., {[0-15], [16-30], [31-65] . . . }.
In order to find the optimal number of intervals to work with as well as their ranges, an
exploratory analysis was conducted. These analyses consisted of testing different sets of
periods to see which set grouped the most individuals which had at least one sample in all
intervals or in all but one. The condition of having samples in all but one was imposed in
order to gain sample size but without having a high percentage of imputations, as would
result if patients with more than one interval with a missing value were taken. Once the
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optimal intervals were found, those patients who met the above requirement were selected.
Secondly in the data preparation step, for each of the selected individuals, the data were
modified in order to achieve the model input requirement of having data of equal length.
If the patient had more than one sample in the same interval, the median of these samples
was calculated. Subsequently, if the condition of having an interval without a sample was
met, it was imputed. To fill in the missing value, a k-nearest neighbours (KNN) model
was used, which predicted the missing value with reference to the mean of the 5-neighbour
samples.

Figure 3.1: Data selection and preparation for conventional methods

Once this was done, it was possible to have the data adapted to the input requirements
of the model, having an array for each patient of length equal to the number of intervals.
To better understand the process, a simple example is shown below:
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Example data selection and preparation for conventional methods

Let us consider two different patients with serological test results on the following
days:

p1: t1= [6,32,57,80] IgG1= [0.76, 1.81, 2.06, 1.04]
p2: t2= [2,34,93,120] IgG2= [2.71, 3.08, 3.14, 3.01]

In this context, this means that p1 had a test to measure antibody levels 6 days
after infection resulting in a total value of 0.76, the next on day 32 with a value of
1.81 and so on. Let us also consider the following set of time periods drawn from
the exploratory analysis:

Time intervals: [0-15],[16,30],[31-60],[61-90]

For this example, only patient p1 would be selected as it meets the requirement of
having samples in all intervals or in all but one. In the preparation step for this
patient, the median of antibody levels would be considered between the samples
57, 80 as they share the same interval. In addition, the missing sample from the
interval [16 - 30] would be imputed.
The model input data will therefore be only the array IgG1 with length equal to
the number of intervals, containing the evolution of IgG (N) antibody levels for p1.

Both the data review, the preparation process and the clustering process for conventional
methods were done with the Python programming language.

Longitudinal methods

For this type of methods, the model input data is somewhat different than for conventional
ones. In this case, as time between samples is considered by the model, for each patient,
apart from the array containing the immune response, there is also an array indicating
the time index of the sample, i.e., on which day the test was performed since the day of
infection.

For the method used in this thesis explained in 3.2.2 and which is designed to work
especially with longitudinal data, no prior preparation of the data was necessary since the
model allowed to obtain results with inputs of different lengths. Nevertheless, a selection of
patients was made, considering only those who had a minimum of 5 samples. A posteriori,
in view of the first results, it was decided to add further conditions, which consisted of
considering only one-year of follow-up and removing those patients who did not have their
first visit before day 30 of infection and their last visit after day 270.

3.2 Clustering

Clustering is the task of grouping a set of observations in such a way that observations
in the same group (called a cluster) are more similar in some sense to each other than
to those in other groups. In this thesis, two types of clustering were carried out to group
patients according to the evolution of their IgG (N) antibodies after infection. The first
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results were extracted with conventional methods and then clustering was performed with
an algorithm applied directly to longitudinal data.

3.2.1 Conventional clustering

Conventional clustering methods, as expressed in the previous point, do not consider
uniformly the time variable, or putting it further, these methods assume that the time
samples have been taken at the same time days for all individuals. By having selected
those individuals with similarly distributed data, each sample of the trajectory represents
that it is taken in a time interval which is the same as for the other trajectories. This,
avoids comparing antibody levels on days that are widely separated. To obtain the first
results, it was decided to work with the K-means algorithm due to its simplicity and
extensive use but also to compare them a posteriori with those clusters obtained with a
variant designed to work especially with longitudinal data.

The K-means algorithm is the best-known and most widely used unsupervised clustering
technique. It is a partitional method that aims to separate a set of n observations into K
groups, where the value of K is fixed in advance and represents the number of centroids
to be found. The algorithm starts by randomly selecting K data points to serve as the
initial centers for the cluster, also known as centroids. To reach optimal partitioning, the
algorithm iterates over two steps. In the assignment step, every point is put into the cluster
of the nearest centroid. In this context, the ‘nearest’ is defined by a distance measure. In
the update step, the centroid of every cluster is recalculated as the mean of all data points
assigned to the cluster [30]. These two steps are repeated until a convergence criterion is
met. The final result does not necessarily have to be the best clustering as it is highly
dependent on the initialization. However, for each different initialization, it is ensured
that the results converge and that the optimal partitioning is obtained.

The basic idea of the algorithm is to define clusters so that the within cluster variation is
minimized. For the formulation of the K-means algorithm, let us consider a data set with
n observations X = {x1, · · · , xn} to be clustered into a set of K groups C = {Ck, k =
1, · · · , K} with µk being the centroid of the cluster Ck. In our work each observation xi

represents the antibody levels trajectory of a certain individual produced after infection.
The squared error between the centroid µk and the observations in cluster Ck is defined
as [31]:

J(Ck) =
∑
xi∈Ck

||xi − µk||2 (3.1)

The objective of the K-means algorithm is to minimize the sum of the squared error over
all K clusters, which is calculated as:

J =
K∑
k=1

J(Ck) =
K∑
k=1

∑
xi∈Ck

||xi − µk||2 (3.2)
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In this project, the K-means algorithm was applied with two different distances. Firstly,
with the Euclidean distance and subsequently with DTW. The latter was done as an
intermediate step before moving on to methods designed to especially cluster time series.

3.2.1.1 K-means with Euclidean distance

The first results were obtained by using the most traditional metric when applying the
K-means algorithm, called Euclidean distance. The Euclidean distance between two tra-
jectories is given by:

d(xi, xj) = ||xi − xj|| =

√√√√ T∑
t=1

(xi(t)− xj(t) (3.3)

Where in our thesis, xi(t) represents the antibody levels of the individual xi at time t. For
conventional methods as explained before, t represents an instant within a time period.
K-means with Euclidean distance was performed with the Scikit-learn KMeans package
of Python [32].

3.2.1.2 K-means with DTW

Dynamic Time Warping is a popular distance measure for time series, able to manage time
distortions by realigning time series when comparing them. As it is shown in Figure 3.2
while two series may have a similar shape, they might not be aligned on the time axis.
So, DTW is equivalent to minimizing the Euclidean distance between aligned time series
[10].

Figure 3.2: Comparison between DTW and Euclidean distance [10]

The goal of DTW is to find the optimal alignment between two-time series that achieves
minimum global cost. The global cost is defined as the summation of the cost between
each pair of points in the alignment. So, the cost between each pair of points can be
expressed as [33]:
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δ(ar, bc) = (ar − bc)
2 (3.4)

DTW distance, i.e., the optimal global cost of DTW can be calculated as follows:

D(Ar, Bc) = δ(ar, bc) +min{
D(Ar, Bc−1)
D(Ar−1, Bc)
D(Ar−1, Bc−1)

(3.5)

Figure 3.3: DTW alignment and DTW warping path [33]

As it can be seen this leads to a dynamic programming problem. Therefore, the process of
DTW consists of fully filling a cumulative cost matrix as shown in Figure 3.3, of dimensions
RxC (dimensions of the two-time series), which in our case as required in tslearn package
used in this thesis R = C [34]. The green line indicates the alignment of the time series
chosen from the minimum values of the cumulative cost matrix.

To fill the matrix, the steps presented in the pseudocode of Figure 3.4 are followed. The
last matrix cell m[R][C] holds the final DTW distance between the time series.

23



Figure 3.4: Pseudocode of DTW algorithm [33]

3.2.2 Longitudinal clustering

Since we were working with longitudinal data, once the results were extracted with the
conventional methods explained above, it was decided to use a method that could work
specifically with this type of data, taking into account the exact time point of each sample.
For this, a variant of K-means algorithm called kmlShape was used.

3.2.2.1 kmlShape

kmlShape is a clustering algorithm that clusters trajectories according to their shape.
It applies K-means within the context of a shape-respecting partitioning [11]. As briefly
reminded in the introduction of the clustering section, K-means uses two tools: a distance
and a mean. KmlShape is a variant which uses: the Fréchet distance to calculate the
distances between individuals and cluster centers; and Fréchet mean to construct the
centers of the clusters.

As shown in Figure 3.5c using the Euclidean distance does not allow solving the similar-
shape clustering problem. However, using the Fréchet distance which is a shape-respecting
distance leads to the partition presented in Figure 3.5d, giving a correct grouping. From
here, using a conventional way to compute the mean leads to non-representative centroids
as shown in Figure 3.5f. That is the reason kmlShape also uses a shape-respecting mean
leading to the clustering shown in Figure 3.5g. The peak of the centroid represents the
group well in terms of amplitude but less so in terms of time axis. Nevertheless, in our
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case, as individuals have their antibody levels peak around the same day, this effect will
not be seen to a large extent.

Figure 3.5: The impact of using the Euclidean distance, the Euclidean mean, the Fréchet
distance and the Fréchet mean [11]

Fréchet distance and Fréchet mean

Fréchet distance is often represented intuitively by an example of a person traversing a
finite curved path while walking their dog on a leash, with the dog traversing a separate
finite curved path. They both can vary their speed, but neither of them can move back-
wards. The Fréchet distance between the two curves is the length of the shortest leash
sufficient for both to traverse their separate paths from start to finish. Moreover, unlike
classical distances, the calculation of Fréchet distance does not require trajectories of the
same length.

Fréchet distance is visually represented in Figure 3.6.
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Figure 3.6: Fréchet distance measurement [35]

The Fréchet mean between the two trajectories is the middle of the leash that links the
dog to the person. As formal definition is dense, mathematical formulation of both tools
can be found in [11].

For clustering our data, the kmlShape package available in R was used. Fréchet’s distance
parameter called timeScale allows to modify the time scale, increasing or decreasing the
cost of the horizontal shift. If timeScale is very big as represented in Figure 3.7c, then the
Fréchet’s distance is more similar to the Euclidean distance, taking into account when the
peak occurs rather than its amplitude. On the other hand, if timeScale is very small as
represented in Figure 3.7b, then it is more similar to the Dynamic Time Warping distance,
making the model in this case more invariant to time shifts, and clustering the green curve
with the black one in the same group as the distance between them is smaller. For this
reason, an exploratory analysis was carried out, from which the value of the parameter
that produced the best results was extracted.

Figure 3.7: Effect of timeScale parameter (Figure adapted from [11])

(a) Initial population (b) Small timeScale (c) Big timeScale

3.2.3 Validity indices

When working with this type of clustering algorithms, one problem is to specify the num-
ber of clusters beforehand, but the correct choice of K is often ambiguous. Cluster validity
indices (CVIs) can be used to identify the optimal number of clusters by evaluating the
degree of similarity or dissimilarity between the data (internal validity indices). In addi-
tion, CVIs can also be applied to compare the true partition with the one obtained from
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the clustering as well as for comparing two different partition results (external validity
indices). When applying clustering methods, both types were used with different finalities.

3.2.3.1 Internal validity indices

As K-means is an unsupervised method and therefore the prior partition is not known,
two internal validity indices were used in order to find the number of clusters that gave
the best grouping for our data. Since the validity indices are more designed to work with
classical distances, for the conventional methods explained previously in 3.2.1 two different
indices were applied. On the other hand, for the longitudinal clustering method described
in 3.2.2 only one of them was applied with a small modification.

Validity indices for K-means

Silhouette

Silhouette is an internal validity index used when the ground truth labels are not known,
as a measure of how similar an observation is to its own cluster (cohesion) compared to
other clusters (separation). Silhouette value ranges from -1 to +1, indicating that the
observation is ‘well-clustered’ when a value close to 1 is reached and on the contrary,
indicating that an object is ‘misclassified’ when closer to -1 [19].

Silhouette is calculated for each observation i as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.6)

Where:

• Cohesion a(i) is the mean distance between object i to all other objects in the same
cluster, and represents how well object i is assigned to its cluster

• Separation b(i) is the mean distance of object i to all objects in the nearest cluster,
of which object i is not a member

So, when s(i) is close to 1, implies that a(i) << b(i) and as a(i) measures the dissimilarity
between i to its own cluster, it presents a small value meaning that the observation is well
clustered.

Total silhouette score can be defined as the mean s(i) overall data observations of the
dataset:

S =
1

N

N∑
i=1

s(i) (3.7)

Calinski-Harabasz

Calinski-Harabasz index is another internal validity index, which was also calculated to
evaluate the model and find the K that best fits our dataset. It is sometimes called the
variance ratio criterion (VRC), and is defined as [21]:
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V RC =
BGSS

WGSS
· N −K

K − 1
(3.8)

Where BGSS is the overall between-group sum of squares, WGSS is the within-cluster
sum of squares, K is the number of clusters and N is the number of observations.

BGSS used to evaluate intercluster distance is defined as:

BGSS =
K∑
k=1

nk||mk −m||2 (3.9)

Where nk is the number of elements in the cluster k , mk is the centroid of cluster k and
m is the mean of the dataset.

WGSS is defined as:

WGSS =
K∑
k=1

∑
x∈Ck

||x−mk||2 (3.10)

Where K is the total number of clusters, x is an observation and mk is the centroid of
the cluster k.

To determine the optimal number of clusters, VRC has to be maximized with respect to
K. The larger the BGSS and the smaller the WGSS, the better data partitioning.

Validity indices for kmlShape

As was done for the conventional methods, validity indices were also applied. Calinski-
Harabasz criterion is best suited for k-means clustering solutions with squared Euclidean
distances so it was decided not to apply it. Moreover, in the case of partitioning using
the Fréchet distance, the problem is more complicated because the classical criteria are
designed to be used with classical distances [11]. Nevertheless, Silhouette index with
Fréchet distance was fully programmed as the Silhouette base function in the R package
was implemented only with the Euclidean distance. This was done with the purpose of
choosing the “right” number of clusters also for the kmlShape algorithm.

3.2.3.2 External validity indices

External validity indices are mainly used to compare the true partition with the one
obtained from the clustering. In order to do so, a knowledge of the true partition is
needed but, since the three methods applied in this project are unsupervised, this external
information is not known. Even so, as mentioned before, the external CVIs can also be
applied to compare the similarity between the different sets of clusters obtained from
different clustering algorithms. For this end, the Jaccard index was programmed as it was
not implemented in R and subsequently the matching matrix tool was used.
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Jaccard index

The Jaccard index measures the similarity between two datasets. The values of the index
vary between 0 and 1, indicating that the two datasets are more similar when closer to
1. In our case, the two datasets were the different partitions generated by applying the
different clustering techniques.

For the formulation of how to calculate Jaccard index the following example is proposed
[13]. Let us consider a dataset with four observationsX = {x1, x2, x3, x4} and the following
two partitions P = {{x1, x2, x4}, x3}, Q = {{x1, x3, x4}, x4}.

From here, all the combinations without repetition of two elements of the dataset are
made and each one is classified in 4 possibilities:

a: The pair of observations belong to the same cluster according to P and Q

b: The pair of observations belong to the same cluster according to P but not Q

c: The pair of observations belong to the same cluster according to Q but not P

d: The pair of observations do not belong to the same cluster according to either P
or Q

This can be simplified in the following concordance table:

Table 3.1: Concordance table for each pair of observations

Q
Pairs in Q Pairs not in Q

P
Pairs in P a c

Pairs not in P b d

From here, Jaccard index can be calculated as:

Jaccard =
a

a+ b+ c
(3.11)

Matching matrix

Matching matrix is not considered an external validity index, but it is a tool that is also
used for comparing to what extent each two partitions are similar. The matrix dimensions
depend on the number of clusters of each method.

Normally, the confusion matrix is used in classification algorithms to calculate the pre-
cision by comparing the predicted class with respect of the real one, but when used in
unsupervised learning such as for clustering, it is called matching matrix. In our case,
the matching matrix was calculated in order to find similarities between clusters obtained
by different algorithms. This allowed to see the equivalences between clusters of different
methods. While green cells in Table 3.2 show the number of patients clustered in the
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same group in both methods, red cells show the number of individuals who have done so
differently.

Table 3.2: Matching matrix

0 a b c

Partition 2 1 d e f

2 g h i

0 1 2

Partition 1

As an example, let us consider that the horizontal axis represents the different labels
obtained by applying the K-means algorithm with Euclidean distance and vertical axis
the labels obtained with K-means and DTW. In this context ′g′ will store the number
of individuals that have been clustered in group 0 with Euclidean distance and in group
1 with DTW. If all red cells had a value of 0, it would mean that both algorithms have
generated the same partition.

3.3 Description of the individuals gathered in each cluster

3.3.1 Descriptive statistics

After using clustering methods where individuals were clustered according to the different
antibody levels trajectories, descriptive statistics were used. With it, the different variables
characterising the individuals were statistically described for each group. Numerical vari-
ables such as the age, the number of diseases or the number of different drugs consumed
were described by their mean and their standard deviation. On the other hand, categori-
cal variables such as sex, COVID-19 severity, reinfections and the different diseases were
described by counts and percentages. Once described, differences between groups were
studied by statistical tests and measured through the obtained p-values. This allowed
finding the most statistically significant variables (p<0.05). In this way it was possible to
see in which variables the different groups differed most in order to later be able to draw
conclusions.

Observed/expected ratio and exclusivity ratio

The observed/expected (O/E) ratio and the exclusivity ratio (EX) where also computed
in this work with the purpose of describing the clusters and finding whether a variable
was overrepresented or not in any given cluster. Only the categorical variables such as
COVID-19 severity, reinfection, chronic condition and drugs are the variables which can
be deeply analysed using O/E and EX. For the formulation let us consider reinfections
variable.
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For the calculation of the O/E ratio let us define first prevalence P . Prevalence is defined
as the proportion of people who have been reinfected. It is calculated as follows:

P =
Number of people reinfected

Total number of people
(3.12)

From here O/E ratio is calculated as follows:

O/E =
Prevalence of reinfections in the cluster

Prevalence of reinfections in the study
(3.13)

Exclusivity ratio is defined as the proportion of individuals with the chronic condition for
a certain cluster over the total of individuals with the chronic condition.

EX =
Number of people reinfected in the cluster

Number of people reinfected in the study
(3.14)

A significant variable is observed when O/E >= 2orEX >= 0.3 [36].

3.3.2 Clinical interpretation

Once the statistical description was available, the different groups obtained through the
clustering methods were studied and compared using a clinical perspective. This allowed to
identify which clinical variables were more determinant or related to the immune response
to SARS-CoV-2 elicited by COVID-19.

For this purpose, special attention was paid to whether there were differences in the mean
age or sex of the individuals in each cluster, their previous diseases or the number of drugs
they were taking. In addition, consideration was also given to whether their COVID-19
infection had been more or less severe, and thus antibodies had reached higher or lower
levels, and to whether this was related to whether individuals in one cluster had been
reinfected more than those in another. All this analysis can be used to define and adjust
prevention policies such as, for example, vaccination.
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4 Results

4.1 Data pre-processing

Participants characteristics

A total of 844 individuals were recruited, of whom 671 (79.5%) were infected by COVID-
19. Table 4.1 presents the demographic description as well as the number of diseases and
drugs for the study participants according to their clinical condition.

Table 4.1: Descriptive analysis for the study participants. Categorical variables are
described as N (%), and numerical variables as median (IQR)

Healthy
N=173
(20.5%)

Asymptomatic
N=205
(24.3%)

Mild-
moderate
illness
N=431
(51.1%)

Severe-
critical
illness
N=35
(4.1%)

Total
N=844

Sex:
Female 138 (79.8%) 148 (72.2%) 324 (75.2%) 17 (48.6%) 627 (74.3%)
Male 35 (20.2%) 57 (27.8%) 107 (24.8%) 18 (51.4%) 217 (25.7%)

Age: 47.6 (11.5) 43.4 (12.6) 43.8 (11.7) 54.5 (9.05) 44.9 (12.0)

Civil status:
Divorced 26 (15.5%) 17 (8.72%) 36 (8.74%) 3 (9.09%) 82 (10.1%)
Married 114 (67.9%) 124 (63.6%) 303 (73.5%) 27 (81.8%) 568 (70.3%)
Single 23 (13.7%) 48 (24.6%) 68 (16.5%) 2 (6.06%) 141 (17.5%)
Widow/er 5 (2.98%) 6 (3.08%) 5 (1.21%) 1 (3.03%) 17 (2.10%)

Origin:
EU 1 (0.60%) 0 (0.00%) 1 (0.25%) 0 (0.00%) 2 (0.26%)
Other 4 (2.41%) 6 (3.17%) 18 (4.53%) 0 (0.00%) 28 (3.57%)
South America 5 (3.01%) 4 (2.12%) 25 (6.30%) 1 (3.12%) 35 (4.46%)
Spain 156 (94.0%) 179 (94.7%) 353 (88.9%) 31 (96.9%) 719 (91.7%)

Education:
Higher level 18 (10.4%) 19 (9.27%) 42 (9.74%) 2 (5.71%) 81 (9.60%)
Other 22 (12.7%) 59 (28.8%) 125 (29.0%) 9 (25.7%) 215 (25.5%)
University 133 (76.9%) 127 (62.0%) 264 (61.3%) 24 (68.6%) 548 (64.9%)

Job:
Doctor 65 (40.4%) 45 (26.0%) 100 (28.8%) 10 (34.5%) 220 (31.0%)
Management 25 (15.5%) 19 (11.0%) 51 (14.7%) 4 (13.8%) 99 (13.9%)
Nurse 52 (32.3%) 68 (39.3%) 108 (31.1%) 11 (37.9%) 239 (33.7%)
Nurse assistant 9 (5.59%) 22 (12.7%) 34 (9.80%) 2 (6.90%) 67 (9.44%)
Other 6 (3.73%) 19 (11.0%) 48 (13.8%) 2 (6.90%) 75 (10.6%)
Social worker 4 (2.48%) 0 (0.00%) 6 (1.73%) 0 (0.00%) 10 (1.41%)

Number of chronic conditions:
0 diseases 19 (11.0%) 30 (14.7%) 55 (12.8%) 1 (2.86%) 105 (12.5%)
1 disease 34 (19.8%) 46 (22.5%) 59 (13.7%) 5 (14.3%) 144 (17.1%)
2-4 diseases 59 (34.3%) 66 (32.4%) 168 (39.0%) 10 (28.6%) 303 (36.0%)
5 or more diseases 60 (34.9%) 62 (30.4%) 149 (34.6%) 19 (54.3%) 290 (34.4%)

Number of distinct drugs:
0-3 drugs 7 (4.22%) 23 (11.6%) 32 (7.58%) 2 (5.71%) 64 (7.79%)
4-6 drugs 17 (10.2%) 24 (12.1%) 36 (8.53%) 3 (8.57%) 80 (9.73%)
7-10 drugs 25 (15.1%) 38 (19.1%) 68 (16.1%) 2 (5.71%) 133 (16.2%)
>10 drugs 117 (70.5%) 114 (57.3%) 286 (67.8%) 28 (80.0%) 545 (66.3%)
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Data temporal dispersion

Figure 4.1 shows all samples taken in the first 15 months of infection. There was a notable
temporal dispersion in the data, because as presented in the figure, the serological tests
performed after infection were performed on different days and not on the specific days
given by the protocol. However, a higher concentration was observed around days 15, 30,
60, 90, 180, 270, 360.

Figure 4.1: Temporal dispersion on the dataset

On the other hand, as shown in Figure 4.2 later, this dispersion was minimised after the
individual selection process for the conventional methods by taking only those individuals
that had samples around the same days.

Data selection

As previously mentioned, a total of 671 patients were infected by COVID-19. However,
since the start of the study, not all of them underwent the same number of serological
tests (samples) to measure their antibody levels. Table 4.2 shows the number of infected
patients, grouped according to the total number of follow-up samples they contain. From
here it can be seen, for example, that there are 124 participants who have 6 follow-up
samples and only 12 who have 10.

Table 4.2: Number of infected patients, grouped according to the total number of
follow-up samples

n samples 1 2 3 4 5 6 7 8 9 10 11 12 13 15

n patients 20 36 51 28 43 124 134 163 47 12 4 4 4 1

The above table takes into account all tests performed on patients with a COVID-19 infec-
tion in their history. However, as mentioned in database section of 3.1, it was necessary to
filter only those samples that have been obtained post-infection and prior to reinfection.

33



Once this filter was applied in order to work only with the useful ones, a total of 625
participants were obtained who had at least one immune response measurement. Table 4.3
shows the new grouping of patients according to their number of infection samples. This
decrease and the fact that there are a large number of patients with few follow-up samples
was due to two possible reasons: the participants were infected before the start of the study,
i.e., between March and May 2020, when serological tests were not done systematically,
or they simply dropped out the study at some point either before or after the infection.

Table 4.3: Number of infected patients, grouped according to the total number of
samples after removing those obtained post-infection and pre-reinfection

n samples 1 2 3 4 5 6 7 8 9 10

n patients 59 68 47 33 40 95 101 137 39 6

In addition to this general selection, used for example when knowing the data dispersion
of Figure 4.1, a different selection of individuals was made from this, depending on the
type of clustering model to be applied.

Conventional clustering

Once the data were explored and from the knowledge that serological tests were repeated
at day 15, 30, 60, 60, 90, 180, 270 and 360 after infection, the first sets of intervals were
proposed to find out how many patients were grouped in each case. Table 4.4 shows for
each set of periods, the number of participants who had samples in all intervals (A0) and
those who had samples in all but one (A1).

Table 4.4: Number of patients grouped for different sets of intervals

Intervals A0 A1

[0,10],[11,25],[26,45],[46,75],[76,140],[141,230] 57 108

[0,10],[11,20],[25,45],[50,75],[80,120],[160,200] 19 85

[0,10],[11,25],[26,45],[46,75],[76,140],[141,230], [231,315] 50 87

[0,10],[11,20],[25,45],[50,75],[80,120],[160,200], [250,290] 14 63

[0,10],[11,25],[26,45],[46,75],[76,140],[141,230], [231,315], [316,440] 45 73

[0,10],[11,20],[25,45],[50,75],[80,120],[160,200], [250,290], [330,420] 11 56

Based on these initial analyses, it was decided to use intervals with continuity, as despite
having slightly more dispersion, they considered a larger number of patients than those
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without continuity. In addition, after one year of follow-up, some patients did not have
more samples, so it was decided to work with a total of 7 intervals to analyse the immune
response in the first 365 days. To finish the exploratory analysis, the ranges for these 7
intervals with continuity were optimised by choosing those that considered the maximum
number of patients. The final set of intervals is as follows.

Table 4.5: Patients grouped with the chosen set of intervals

Intervals A0 A1

[0,18],[19,34],[35,63],[64,90],[91,175],[176,270],[271,366] 122 80

These 202 selected patients went through the data preparation process explained in 3.1
obtaining 7 samples for each patient, making a total of 1414 samples.

Figure 4.2 shows that once this process for the conventional methods of selecting patients
with equally distributed samples is done, the data did not present as much temporal
dispersion as it did with the whole dataset. This concentration of data benefited when
clustering with K-means since, although only antibody levels were taken into account
and not the day on which they were measured, it ensured that the different samples of
individuals were not compared on days temporarily separated.

Figure 4.2: Temporal dispersion after data selection for conventional methods

Longitudinal clustering

Figure 4.3 presents the number of patients (N) and total samples (S) resulting from the
application of the different conditions in order to select those individuals that will later
be clustered with the kmlShape algorithm.
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Figure 4.3: Participants selection results for kmlShape algorithm. N=number of
patients, S= total number of samples

To carry out the first tests with the longitudinal method, only the condition that the
participants had a minimum number of samples was considered. However, the results
with only this condition were not valuable as the model was heavily influenced by when
individuals had their first or last sample. For example, it was observed that a centroid
started on day 40, clustering individuals which their follow-up samples started around
that day independently of the evolution of their antibody levels. In view of this, three
more conditions were considered to avoid this problem.

The first was to perform the analysis of antibody levels for only one year of follow-up, and
once it was filtered to eliminate all those samples taken later than 365 days after infection,
it was observed that the number of samples was considerably reduced. 9 patients out of
625 were also reduced, which means that they only underwent serological tests once the
year of infection had passed. Of these 616 patients, two new conditions were applied to
ensure that participants had data at the beginning and end of follow-up. After eliminating
those which did not have the first sample before day 30 since diagnosis and the last after
day 270, a total of 228 was obtained. This considerable reduction is due to the fact that
a large part of the participants did not have serological test results in these first days
after infection, which turned out to be quite important days to differentiate the different
immune responses. Finally, only individuals who had 5 or more samples were chosen once
applied these conditions, resulting in a total of 218 patients.

As kmlShape allowed entries of different lengths, the 218 individuals that were clustered
with this algorithm are distributed as follows.
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Table 4.6: Distribution of patients selected for kmlShape, according to number of
samples

n samples 5 6 7 8 9

n patients 19 34 113 51 1

4.2 Clustering

4.2.1 Conventional clustering

This section presents the clustering results using the K-means algorithm with the Eu-
clidean distance and secondly the K-means with the DTW. Both techniques made use of
the 202 patients selected in the data pre-processing step.

To find the best number of clusters to group the patients, the validity indices were used.
Figure 4.4 shows the results of the Calinski-Harabasz index for the two techniques men-
tioned, where it was found that both methods gave similar results.

Figure 4.4: Calinski-Harabasz index for K-means with Euclidean distance and K-means
with DTW

Nevertheless, when using DTW patients were not equally distributed and the temporal
alignment was sometimes not as desired, since in some cases samples were compared on
days that were quite far apart in time. Because of this, partitions were created such
as the one that can be seen later in Figure 4.11b, where the peak of the cluster with
lower antibody levels was around day 100, when it should be around day 30. In addition,
despite obtaining validity index higher values when grouping with 3 and 5 clusters, no
clear conclusion was reached as to the optimal number of intervals. Because of this, for
the K-means with the Euclidean distance, which gave the best results analytically and
visually, it was proposed to work with another index to see if clearer conclusions could be
drawn.

Figure 4.5 shows the different scores of the Silhouette validity index applied to the K-
means with Euclidean distance.
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Figure 4.5: Silhouette coefficient for K-means with Euclidean distance

Again, although no significant differences were observed in finding the optimal number of
clusters, it was decided to choose the groupings of 3 and 5 clusters, since in both indices
a slightly better result was obtained.

Figure 4.6a shows the silhouette scores for each cluster. Figure 4.6b shows the final par-
tition made with 3 clusters, separating clusters by colours where the thick lines are the
centroids of the groups and the thin lines are the individuals assigned to each cluster.
A ’better clustering’ was observed for individuals with lower antibody levels grouped in
cluster 0, as their Silhouette scores were closer to 1 with no negative values for any pa-
tient. Also, from the thickness of the Silhouette plot it was possible to visualise the size of
the cluster. It was observed that for clustering with 3 clusters, the thickness was similar
for all three, indicating that each group had a similar number of patients. However, when
it was clustered with 5 clusters as shown in Figure 4.7a, one group was seen to have a
significantly higher number of patients than the others, including a total of 79 out of 202
who had higher Silhouette scores.

Figure 4.6: Silhouette analysis and final partition with 3 clusters

(a) Silhouette plot (b) Final partition
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Figure 4.7: Silhouette analysis and final partition with 5 clusters

(a) Silhouette plot (b) Final partition

In all clusters, a generalized increase in antibody levels was observed up to day 30 from
diagnosis, followed by a decrease. However, the values of the antibody levels were quite
different for each group, so it was important to describe statistically each one in order to
find the characteristics of the patients that caused these levels.

4.2.2 Longitudinal clustering

As explained in 3.2.2, modifying the timeScale parameter of the Fréchet distancefor the
kmlShape algorithm, it was possible to give different cost to the horizontal shift. In order
to find the value that best suited our dataset, several clustering were done by trying
different numbers. Figure 4.8 shows a comparison of the partitions resulting from the
application of two different timeScales.

Figure 4.8: Impact of timeScale parameter in kmlShape algorithm. X -axis represents
time from diagnosis in days and Y-axis represents the IgG (N) antibody levels.

(a) timeScale = 0.05 (b) timeScale = 0.7
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It was observed that choosing a smaller timeScale, making the Fréchet distance more sim-
ilar to the DTW, gave better results, as it allowed the different groups to be distinguished
according to their antibody levels as it can be seen in the final partition of Figure 4.8a.
In addition, when a higher timeScale was chosen, it was observed that the creation of the
different clusters was influenced by the day on which the patients had their last sample.
This can be seen by comparing the green cluster and the red cluster in Figure 4.8b.

After these analyses were done, it was decided to work with a timeScale = 0.05.

The next step was to obtain the optimal number of clusters for the kmlShape. For this,
the Silhouette index was adapted to work with the Fréchet distance. For the 218 selected
patients and clustering with timeScale = 0.05, the results in Figure 4.9 were obtained for
this index.

Figure 4.9: Silhouette coefficient for kmlShape

From Figure 4.9 it can be seen that the best clustering for kmlShape algorithm was ob-
tained when the population was grouped into 3 clusters. However, since clinical analysis is
the most useful validity to understand the results and to confirm this choice, the descrip-
tive statistics produced a posteriori were studied for the clustering with 3, 4, 5 clusters,
which were the options that gave the best results in terms of Silhouette. From this study,
different conclusions were drawn regarding the optimal number of clusters.

Firstly, it was seen that with 3 clusters there were significant differences between the
groups, but these results were not sufficiently innovative at the clinical level, i.e., they did
not contribute anything new to what was expected. Secondly, when 5 clusters were used,
it was observed that three large groups were generated and the other two were too small,
which were splits of the former.

Given these circumstances, it was decided that the optimal partition was the one created
with 4 clusters depicted in Figure 4.10, as it provided the most value at the clinical level.
The percentages shown at the top indicate how many individuals are in each group out
of the 218 total.
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Figure 4.10: kmlShape with 4 clusters

4.2.3 Clusterings comparison

After choosing 4 clusters as the best option, Jaccard’s external index and the coincidence
matrix were used to compare the degree of similarity between two partitions. To do this,
the partitions created with the three different algorithms were compared two by two.
In the case of the two K-means clusterings, they were compared using the 202 selected
patients as they made use of the same dataset. However, for the comparison of these two
conventional methods with kmlShape only those patients selected in both methods were
used, resulting in a total of 175 of the 218 selected for longitudinal methods.

Figure 4.11: Final partitions with 4 clusters. Cluster 0 is represented with red color.
Cluster 1 is represented with dark blue color. Cluster 2 is represented with green color.

Cluster 3 is represented with cyan color.
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Figure 4.11a and Figure 4.11b are the same as shown in Figure 4.6 and Figure 4.7,
produced with the two conventional methods, but now adapted to R in order to have the
same cluster names and to be able to compare them with the following techniques.

Matching matrix

Thanks to the matching matrix, similarities and differences between different clusterings
were found. Figure 4.12 shows the matching matrix between K-means with Euclidean
distance and K-means with DTW where 93% of the patients were grouped in the same
cluster. The most significant changes occurred in cluster 2 (green), where it was seen that
for this group 9 out of 57 participants were clustered in the other groups.

Figure 4.12: Matching matrix between K-means with Euclidean distance and K-means
with DTW

As can be seen in the following figures, more differences were observed when comparing
the conventional methods with the longitudinal one. When comparing K-means with
Euclidean distance and kmlShape (Figure 4.13), 26 of the 175 patients used in both
methods were clustered differently. On the other hand, fewer similarities were seen when
comparing K-means with DTW and kmlShape (Figure 4.14), as 37 of the 175 patients
were clustered differently.

Figure 4.13: Matching matrix between K-means with Euclidean distance and kmlShape
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It was observed that when comparing the conventional methods with the longitudinal one,
the partitions differed in the same way, as more than 70% of the differences were observed
between clusters that grouped patients with higher antibody levels (clusters 1 and 3).

Figure 4.14: Matching matrix between K-means with DTW and kmlShape

Jaccard index

Table 4.7 shows the different index values obtained by comparing two by two the parti-
tions shown in Figure 4.11. As explained in the methodology section, the Jaccard index
measures the similarity between two partitions of a dataset, indicating that they are more
similar when the index is closer to one. Once this index was calculated, the same conclu-
sions were reached as with the matching matrix, with the partitions of the conventional
methods being the most similar to each other and those created by applying the K-means
with DTW and kmlShape being the most different.

Table 4.7: Jaccard index results

Clusterings Jaccard

K-means with Euclidean distance and K-means with DTW 0.7957

K-means with Euclidean distance and kmlShape 0.7217

K-means with DTW and kmlShape 0.6269

Once all the tests had been carried out, the kmlShape algorithm was chosen as the optimal
one. This was because this method was specially designed to work with longitudinal data
without quantifying the time in which each sample was taken, being the one that best
modelled the different temporal evolutions of the antibody levels. Moreover, it was also
taken into account for the decision, the fact that kmlShape do not require all individuals
to have the same number of samples, so for health studies where dropouts occur it may be
the most convenient option. Subsequently, descriptive statistics corroborated that it was
the optimal method, as it was the one that allowed finding the most significant differences
between groups.
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4.3 Description of the individuals gathered in each cluster

4.3.1 Descriptive statistics

Table 4.8 lists the main variables that characterise the individuals in the different groups
formed with the chosen optimal algorithm, the kmlShape with 4 clusters represented in
Figure 4.10.

Statistically significant differences in antibody levels between clusters were found in age,
COVID-19 severity and number of symptoms. These significant variables and other char-
acteristics that distinguish the four groups are presented in the clinical interpretation
section

Table 4.8: Descriptive statistics of the individuals in each cluster using kmlShape

overall-valueN=89
(41%)

N=57
(26%)

N=43
(20%)

N=29
(13%)

Sex: 0.020
Female 68 (76.4%) 43 (75.4%) 29 (67.4%) 14 (48.3%)
Male 21 (23.6%) 14 (24.6%) 14 (32.6%) 15 (51.7%)

Age 42.5 (11.6) 40.9 (10.9) 51.8 (12.2) 45.9 (13.1) <0.001

Reinfection: 0.245
0 84 (94.4%) 50 (87.7%) 42 (97.7%) 28 (96.6%)
1 5 (5.62%) 7 (12.3%) 1 (2.33%) 1 (3.45%)

Number of vaccines: 0.980
0 83 (93.3%) 54 (94.7%) 41 (95.3%) 28 (96.6%)
1 4 (4.49%) 3 (5.26%) 2 (4.65%) 1 (3.45%)
2 2 (2.25%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

COVID-19 severity: <0.001
Asymptomatic infection 33 (37.1%) 4 (7.02%) 8 (18.6%) 6 (20.7%)
Mild moderate Illness 56 (62.9%) 52 (91.2%) 30 (69.8%) 22 (75.9%)
Severe or critical Illness 0 (0.00%) 1 (1.75%) 5 (11.6%) 1 (3.45%)

Number of symptoms 2.99 (3.31) 5.44 (3.71) 5.12 (3.49) 5.62 (4.75) <0.001

Number of chronic conditions 3.33 (2.54) 3.91 (3.00) 4.88 (4.29) 5.34 (3.88) 0.009

Number of distinct drugs 12.7 (9.32) 14.9 (10.2) 15.4 (10.8) 15.3 (10.6) 0.348

Number of invoiced drugs 66.7 (153) 92.6 (166) 196 (259) 123 (178) 0.002

Observed/expected ratio and exclusivity ratio

To better describe the groups, O/E ratio and exclusivity ratio EX were calculated as
shown in Table 4.9 for the COVID-19 severity and reinfections variables. High percentage
of reinfections were found in clusters with lower antibody levels. Moreover, significant
differences were also found in COVID-19 severity variable. The study of these results is
shown in Table 4.9 and expressed in the next section.
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Table 4.9: O/E and Exclusivity of reinfections and COVID-19 severity in each cluster.
Significant values to better describe a cluster are show in yellow cells (O/E>=2 or

EX>=0.3)

N=89 N=57 N=43 N=29

O/E EX O/E EX O/E EX O/E EX

Reinfection 0.874 0.357 1.912 0.500 0.362 0.071 0.537 0.071

COVID-19 severity:
Asymptomatic infection 1.584 0.647 0.299 0.078 0.795 0.157 0.884 0.117
Mild moderate illness 0.857 0.350 1.243 0.325 0.950 0.188 1.033 0.137
Severe or critical illness 0 0 0.546 0.143 3.621 0.714 1.074 0.143

4.3.2 Clinical interpretation

The different groups of the final partition shown before in Figure 4.10 were studied and
compared from a clinical perspective as shown below.

Red cluster

Group with the lowest antibody levels, representing 41% of the included participants. The
average age is 42.5 years and 76.4% are women. 65% of total asymptomatic cases are found
in this group, which also has the lowest number of chronic diseases, the fewest symptoms
during infection and the fewest different medications. They also account for 35.7% of total
reinfections. Therefore, this is a group of, widely speaking, healthy individuals who had
an asymptomatic COVID-19 infection and did not develop lasting antibodies. Thus, a
considerable number of reinfections occur in this group.

Green cluster

Represents 26% of the included participants. It is the youngest group with an average
age of 41 years and with a higher proportion of women. 91.2% of the individuals had
a mild COVID-19 infection. It is the cluster with the second lowest number of chronic
conditions, but also the second group in number of symptoms during infection. 50% of the
total reinfections are found in this cluster. Therefore, this is a group of healthy individuals
who had a mild COVID-19 infection. They developed medium antibody levels that quickly
decreased. Thus, most reinfections occur in this group.

Dark blue cluster

Representing 20% of the included participants, it is the group with the highest and more
lasting in time antibody levels. It is the oldest group with an average age of 51.8 years
and with 71% of the total number of severe COVID cases. It also has the highest number
of different medications and the highest number of billed drugs. Despite being the second
group with the highest number of chronic conditions. Only 1 reinfection is found in this
cluster. Therefore, this is a older group with a poor health status. This status could
have influenced the severity of their COVID-19 infection, which developed higher levels
of antibody levels. Thus, the number of reinfections is low.
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Cyan cluster

13% of the included individuals with an average age of 46 years. It is the group with the
higher proportion of men (51.3%) and with the higher number of symptoms during the
COVID-19 infection. It contains a high percentage of COVID-19 mild infection cases and
is the cluster with the highest number of chronic conditions. The patients in this group
are the second with the fewest number of different medicines, but also the second with the
greatest number of invoiced drugs. Only 1 reinfection is found in this cluster. Similarly,
this group of adults have a poor health status. However, their chronic conditions did
not interfere that much with COVID-19 as those from the dark blue cluster. Therefore,
their response to COVID-19, even though high, was lower than theirs. The number of
reinfections is also low.
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5 Budget

In this chapter the total cost of the project is estimated.

Only the cost of salaries is estimated since, as stated in the methodology chapter, the
implementation of the code to carry out the analyses was done in Python and R, which
does not involve any cost since they are Open-source programming languages. For the
student we assume a salary of 9€/h, which is the standard undergraduate internship
salary and for the 3 project supervisors we estimate an average salary of 30€/h with a
dedication of 3h/week. The project budget is estimated in Table 5.1.

Table 5.1: Project budget

Amount Cost/hour Dedication Total

Student 1 9 €/h 450 h 4.050 €

Project supervisor 3 30 €/h 54 h 4.860 €

8.910 €
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6 Conclusions and future development

The main objective of the project was to study different clustering methods in order to
group individuals according to the evolution of their immune response to SARS-CoV-2.
Different techniques are presented in this study, including both conventional techniques
such as K-means and others specifically designed to deal with longitudinal data such as
kmlShape. In addition, different validity indices were studied to find the optimal number
of clusters.

Both the Calinski-Harabasz index and the Silhouette index showed that the optimal num-
ber of clusters was 3 or 5. However, once the clinical analysis had been carried out, it
was seen that the results with these numbers were not very innovative at a clinical level
beyond what was expected, so 4 was chosen as the optimal number of clusters. Therefore,
clinical interpretation is the most useful method for explaining the results, and it also
helped to choose the model that best grouped the individuals. Between K-means with
Euclidean distance, K-means with DTW and kmlShape, the latter was finally chosen as
the method with the most significant differences between the groups. This was in line
with what was expected, as kmlShape was the method especially designed to work with
longitudinal data.

The last objective was to describe the patients included in each cluster in order to identify
which characteristics of the individuals triggered the immune response of each group. To
do this, a clinical interpretation was made from the descriptive statistics of each cluster.
Four groups with different characteristics were found: , two ’healthier’ groups one of
asymptomatic people and one of people with mild COVID-19 infection with lower level
of antibodies and high number of reinfections. The other two groups consisted of older
people with more previous chronic conditions, which caused them to pass COVID-19
more severely. This severity led them to develop higher and longer-lasting antibody levels,
resulting in a lower number of reinfections.

Future development

These longitudinal techniques could be applied to other types of immune responses, not
only antibody responses, but also cellular responses. In addition, they could be applied
to find types of evolutions of immune response to other viruses such as HIV or the flu.
By identifying these groups, different predictive models of mortality or reinfection could
be developed. These models could be more accurate thanks to division, instead of having
a general predictive model applied to the complete population. These predictive models
should also be developed considering the longitudinal evolution, so either survival Cox
models or recurrent neural networks based Deep Learning models could be developed
from this work.
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[22] Abelardo Montesinos-López. Estudio del AIC y BIC en la selección de modelos
de vida con datos censurados. PhD thesis, University of Guanajuato Guanajuato,
Mexico, 2011.

[23] William M Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 66(336):846–850, 1971.

[24] Paul Jaccard. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci.
Nat., 44:223–270, 1908.

[25] Kimiya Gohari, Anoshirvan Kazemnejad, Ali Sheidaei, and Sarah Hajari. Clustering
of countries according to the COVID-19 incidence and mortality rates. BMC Public
Health, 22(1):1–12, 2022.

[26] Eunyoung Emily Lee, Kyoung-Ho Song, Woochang Hwang, Sin Young Ham, Hyeonju
Jeong, Jeong-Han Kim, Hong Sang Oh, Yu Min Kang, Eun Bong Lee, Nam Joong
Kim, et al. Pattern of inflammatory immune response determines the clinical course
and outcome of COVID-19: unbiased clustering analysis. Scientific Reports, 11(1):1–
8, 2021.

[27] Rafael Assis, Aarti Jain, Rie Nakajima, Algis Jasinskas, Saahir Khan, Huw Davies,
Laurence Corash, Larry J Dumont, Kathleen Kelly, Graham Simmons, et al. Dis-
tinct SARS-CoV-2 antibody reactivity patterns in coronavirus convalescent plasma
revealed by a coronavirus antigen microarray. Scientific Reports, 11(1):1–12, 2021.

[28] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of
clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B, 63(2):411–423, 2001.

50
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A SARS-CoV-2 structure

The structure of Coronaviruses, of the family Coronaviridae, encodes four major struc-
tural proteins, namely, spike (S), membrane (M), envelope (E), and nucleocapsid (N)
(Figure A.1). Coronavirus S protein is a large, multifunctional class I viral transmembrane
protein. Homotrimers of the virus-encoded S protein make up the distinctive crown-like
appearance on the surface of the virus. Functionally is required to enter the infectious
virion particles into the cell through interaction with various host cellular receptors. Sub-
type S1 makes up the sizeable receptor-binding domain of the S protein, while S2 forms
the stalk of the spike molecule. The M protein is the most abundant viral protein present
in the virion particle, giving a definite shape to the viral envelope. It binds to the nu-
cleocapsid and acts as a central organizer of coronavirus assembly. The N protein plays
a role in complex formation with the viral genome and is also involved in other aspects
of the CoV replication cycle. The host cellular response to viral infection facilitates M
protein interaction needed during virion assembly. About E protein, the inactivation or
absence of this protein is related to the alter virulence of coronaviruses due to changes in
morphology, release, and tropism. 1 2

Figure A.1: The virus structure of SARS-CoV-2

1Dhama Kuldeep et al. Coronavirus Disease 2019–COVID-19. Clinical Microbiology Reviews.
2020;33(4):1–48.

2Maier HJ et al. Coronaviruses: An Overview of Their Replication and Pathogenesis. Coronaviruses:
Methods and Protocols. 2015;1282(1):1–282.
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B Work Plan

B.1 Work Packages

53



54



B.2 Gantt Chart

Figure B.1: Project Gantt chart
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C Programming languages and packages used during

the project

Table C.1: Programming languages and packages used during the project according to
different tasks

Task Programming language Packages used

Data pre-processing
Descriptive analysis R compareGroups 4.0
Data temporal dispersion Python -
Data selection and preparation Python sklearn.impute.KNNImputer

Clustering
Conventional clustering

K-means with Euclidean distance Python sklearn.cluster.Kmeans
K-means with DTW Python tslearn.clustering.TimeSeriesKMeans

Longitudinal clustering
kmlShape R kmlShape

Validity indices
Conventional clustering Python sklearn.metrics.calinski harabasz score

sklearn.metrics.silhouette score
Longitudinal clustering R -

Description of the individuals
gathered in each cluster

Descriptive statistics R compareGroups 4.0
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