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Efficient Constitutive Model for Continuous Micro-Modeling of 

Masonry Structures 

Masonry is a composite material often modeled as an equivalent homogenous 

material. However, the complexity of its micro-structure leads to complex 

mechanical responses, which are almost impossible to capture accurately with 

homogenous constitutive models. Micro-modeling can be used in these scenarios, 

allowing for the explicit modeling of microstructural components, leading to an 

accurate capturing of their interaction. Its main drawback is the computational 

cost, which often makes this approach suitable only for the simulation of small 

specimens. This is especially true due to strain-softening leading to severe 

instabilities and non-convergence of the solution. The objective of this work is to 

propose a simple yet effective constitutive plastic-damage model for the 

microstructural components of masonry. It is based on a damage model 

previously developed by the authors. For a better representation of the cyclic 

response of masonry, plasticity is added using a simplified implementation that 

does not strictly follow the rules of standard elastoplasticity, allowing an explicit 

computation of the stress tensor from the strain tensor without the need for an 

iterative loop at the material level. To reduce the numerical issues related to 

strain-softening and thus improve the stability of the solution, an IM-PLEX 

integration algorithm is adopted. 

Keywords: masonry; micro-modeling; damage; plasticity; impl-ex; mixed 

implicit explicit integration; partitioned mesh; parallel computing; seismic 

analysis; buildings. 

Introduction 

From a macroscopic standpoint, masonry can be considered a composite material 

consisting of units (bricks or stones) and mortar joints. Their highly different 

mechanical properties, dimension ratios, and their arrangement in the microstructure 

contribute to extremely complex non-linear responses characterized by several different 

failure mechanisms. Simulation of masonry structures with the Finite Element Method 

can be done at different levels of detail.  



Homogenous continuum models (Pelà, Cervera, and Roca 2011, 2013; Pelà, 

Cervera, Oller, and Chiumenti 2014) can be used in a standard macroscopic approach, 

where the whole masonry structure is modeled as an equivalent homogeneous medium 

equipped with an equivalent homogeneous material that should be able to represent the 

main features of masonry. This method is the fastest in terms of both computational 

costs and model complexity. However, simple tensorial constitutive models may not be 

able to accurately represent features such as strength orthotropy followed by damage-

induced anisotropy and the effects of the arrangement and size of micro-structural 

constituents. Furthermore, it is well known that standard tensorial constitutive models, 

either based on plasticity, damage, or a combination of them, fail in representing the so-

called “size effect” (Barenblatt  2014; Bažant 2004). A “size effect” arises every time a 

material property does not appear to be the same for two geometrically similar 

structures with different sizes: In quasi-brittle materials, in fact, both structural 

brittleness and material strength are found to be scale-dependent. 

Other approaches have been proposed in the literature to overcome the 

shortcomings of macro-modeling in accounting for the effect of the microstructure on 

the structural response. Fracture-Mechanics has been extensively used to study crack 

propagation in masonry structures (Accornero, Lacidogna and Carpinteri 2016, 2018; 

Panian and Yazdani 2020; Yazdani and Habibi 2021). It is able to accurately describe 

the  crack propagation, and the size effects can be captured by resorting to the concepts 

of scaling laws for strength and brittleness, dimensional analysis and fractal geometry 

(Carpinteri 1994; Carpinteri and Chiaia 1997; Carpinteri and Puzzi 2009). On the other 

hand, Continuum-Mechanics has also been used to in this regard. To account for scale 

effects, the micro-structure should somehow be incorporated into the computational 

model. This can be achieved either with Micro-Modeling (Drougkas, Pelà and Roca 



2014; Lourenço 1996; Lourenço and Rots 1997; Oliveira and Lourenço 2004; Petracca 

et al. 2017) or with Multi-Scale Computational-Homogenization (Petracca et al. 2016, 

2017; Quinteros et al. 2012; Zucchini et al. 2002, 2009; De Bellis 2009; De Bellis et al. 

2011; Massart 2003; Massart et al. 2007; Mercatoris, Bouillard and Massart 2009; 

Mercatoris and Massart 2011). 

Among all the aforementioned approaches, this work focuses on Micro-Modeling. Its 

main advantage is the capability of capturing all the complex failure mechanisms that 

can appear at the microstructural level, the damage-induced anisotropy, and the 

interaction between microstructural components, even when simple isotropic tensorial 

constitutive models are used to model the constitutive behavior of the microscopic 

components. However, micro-modeling also has some drawbacks that limit its 

applicability to the simulation of small specimens, making it inapplicable to real-life 

large-scale structures. When used to model large-scale structures, micro-modeling 

obviously leads to extremely fine meshes and thus to costly analyses, both in terms of 

time and computational power. Furthermore, damage growth, strength degradation, and 

strain localization introduce the extra issue of poor convergence (or even non-

convergence at all) even when small time steps are used, increasing the computational 

cost even more. All the aforementioned drawbacks can be mitigated to a good extent 

using the right tools, such as parallel computing and robust integration algorithms for 

the constitutive models. 

This work presents a new plastic-damage model as an extension to a continuum 

damage model previously formulated by the authors (Petracca et al. 2017). The 

proposed model adds two new aspects to the existing model: 

• Plasticity, to represent the inelastic deformation and improve the representation 

of the masonry response under cyclic loadings. Since the focus of this work is to 



propose a fast and robust model for the simulation of large-scale structures, 

plasticity is introduced in a simplified fashion, avoiding iterative loops inside the 

constitutive model, thus retaining the explicit evaluation of the stress tensor 

from the strain tensor as in pure continuum damage models (Saloustros, Cervera, 

and Pelà, 2018). 

• IMPL-EX, a mixed implicit-explicit integration scheme (Oliver, Huespe, and 

Cante 2008) for the constitutive models that aims at improving the computability 

and robustness of nonlinear constitutive models showing strain-softening. 

All the numerical simulations shown in this work are carried out with the 

OpenSees (McKenna 2011) solver, where the authors have implemented the proposed 

constitutive model. Pre- and post-processing are carried out with the STKO software 

(STKO Scientific ToolKit for OpenSees). 

Tension-Compression Plastic-Damage Model 

The proposed tension-compression plastic-damage model described herein is an 

extension of a tension-compression damage model previously formulated by the authors 

(Petracca et al. 2017), which was in turn based on (Cervera, Oliver and Faria 1995; Wu, 

Li, and Faria 2006). The original model was formulated in the framework of classical 

continuum-damage mechanics, and therefore, inelastic permanent deformations were 

not accounted for, rendering the model unsuitable for simulating structures subjected to 

cyclic loading. However, a nice feature of continuum-damage models is that they can 

evaluate the stress tensor explicitly from the strain tensor, without the need for iterative 

loops at the constitutive level, which is common in the return mapping procedures in 

plasticity-based models. This makes the constitutive model calculations fast and robust, 

which is a useful feature when analyzing large-scale structures. 



The objective of the proposed new plastic-damage model is to introduce the 

description of plastic deformations in the existing damage model, keeping the simplicity 

of the continuum-damage framework. For this reason, plasticity has to be necessarily 

implemented in a simplified way, such that the stress tensor can still be explicitly 

evaluated from the strain tensor as per standard continuum-damage models, without 

introducing iterative procedures at the constitutive level, thus keeping the computational 

cost of the constitutive response as small as possible. 

Constitutive Model 

In the following description, all variables without subscripts refer to the current 

time-step, while those with the 𝑛𝑛 and 𝑛𝑛 − 1 subscripts refer to the same variables at the 

two previous (known) time steps. 

The nominal stress tensor 𝝈𝝈 is defined as 

  𝝈𝝈 = (1 − 𝑑𝑑𝑐𝑐+)𝝈𝝈�+ + (1 − 𝑑𝑑𝑐𝑐−)𝝈𝝈�− (1) 

where 𝝈𝝈�+ and 𝝈𝝈�− are the positive and negative parts, respectively, of the effective stress 

tensor, while 𝑑𝑑𝑐𝑐+ and 𝑑𝑑𝑐𝑐− are the positive and negative cracking damage variables. They 

account for stress reduction and stiffness degradation of the effective stress due to the 

opening of cracks. The effective stress tensor 𝝈𝝈� is defined as 

  𝝈𝝈� = 𝝈𝝈�+ + 𝝈𝝈�− (2) 

  𝝈𝝈�∓ = �1 − 𝑑𝑑𝑝𝑝𝑝𝑝
∓�𝝈𝝈�∓ (3) 

where 𝝈𝝈�+ and 𝝈𝝈�− are the positive and negative parts of the trial (i.e., the elastic 

prediction) effective stress tensor 𝝈𝝈�, while 𝑑𝑑𝑝𝑝𝑝𝑝
+ and 𝑑𝑑𝑝𝑝𝑝𝑝

− are the positive and negative 

plastic damage variables that account for stress reduction of the trial effective stress due 



to plastic flow. The trial effective stress tensor 𝝈𝝈� is defined as  

  𝝈𝝈� = 𝝈𝝈�𝒏𝒏 + 𝑪𝑪𝟎𝟎: (𝜺𝜺 − 𝜺𝜺𝒏𝒏) (4) 

  𝝈𝝈�+ = ∑ 〈𝜎𝜎�𝑖𝑖〉𝒑𝒑𝑖𝑖 ⊗ 𝒑𝒑𝑖𝑖3
𝑖𝑖=1  (5) 

  𝝈𝝈�− = 𝝈𝝈� − 𝝈𝝈�+ (6) 

where 𝝈𝝈�𝒏𝒏 is the effective stress (i.e., only including plasticity) at the previous time step 

𝑛𝑛, while 𝑪𝑪𝟎𝟎: (𝜺𝜺 − 𝜺𝜺𝒏𝒏) is the elastic trial stress increment, 𝜎𝜎�𝑖𝑖 is the ith eigenvalue of 𝝈𝝈�, 

and 𝒑𝒑𝑖𝑖 is its associated eigenvector. Note that in equation (4) the elastic trial predictor is 

performed in an incremental way, while in the standard continuum-damage models the 

elastic prediction is made in total-strain. Note that equation (4) is equivalent to the more 

standard format  𝝈𝝈� = 𝑪𝑪𝟎𝟎: �𝜺𝜺 − 𝜺𝜺𝒑𝒑𝒏𝒏�, where 𝜺𝜺𝒑𝒑𝒏𝒏 is the plastic strain tensor at the 

previous time step 𝑛𝑛. However, due to the proposed simplified implementation of the 

plasticity part of the algorithm, the plastic strain tensor does not necessarily need to be 

computed and stored as an internal variable, so it is more convenient to perform the 

elastic prediction as in equation (4).  

Failure Criteria 

The positive and negative failure criteria, or damage surfaces, based on the work 

of Lubliner et al. (1989), are defined as 

  �̃�𝜏− = 𝐻𝐻(−𝜎𝜎�𝑚𝑚𝑖𝑖𝑚𝑚) � 1
1−𝛼𝛼

�𝛼𝛼𝐼𝐼1 + �3𝚥𝚥2̃ + 𝑘𝑘1𝛽𝛽〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚〉�� (7) 

  �̃�𝜏+ = 𝐻𝐻(𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚) � 1
1−𝛼𝛼

�𝛼𝛼𝐼𝐼1 + �3𝚥𝚥2̃ + 𝛽𝛽〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚〉�
𝑓𝑓𝑡𝑡
𝑓𝑓𝑐𝑐𝑐𝑐
� (8) 

  𝛼𝛼 = 𝑘𝑘𝑏𝑏−1
2𝑘𝑘𝑏𝑏−1

 (9) 



  𝛽𝛽 = 𝑓𝑓𝑐𝑐𝑐𝑐
𝑓𝑓𝑡𝑡

(1 − 𝛼𝛼) − (1 + 𝛼𝛼) (10) 

where �̃�𝜏+ and �̃�𝜏− are the so-called equivalent (scalar) positive and negative stresses. 𝐼𝐼1 

is the first invariant of the trial effective stress tensor, 𝚥𝚥2̃ is the second invariant of the 

trial effective deviatoric stress tensor, 𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum trial effective principal 

stress, 𝑓𝑓𝑐𝑐𝑝𝑝 is the compressive peak stress, 𝑓𝑓𝑡𝑡 is the tensile strength, and 𝑘𝑘𝑏𝑏 is the ratio of 

the compressive bi-axial strength to the uniaxial compressive strength. The constant 𝑘𝑘1 

in equation (7) was proposed by the authors to control the influence the compressive 

criterion has on the dilatant behavior of the model (see figure (1)). For more information 

on this aspect, the reader can refer to Petracca et al. (2017).  

 

Figure 1. Damage surfaces in the principal stress space (2D plane stress case) (Petracca 

et al. 2017). 

 

The Heaviside functions of the maximum and minimum eigenvalues, 𝐻𝐻(𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚) 

and 𝐻𝐻(−𝜎𝜎�𝑚𝑚𝑖𝑖𝑚𝑚), are required to make sure the compressive surface is active only if at 



least one eigenvalue is negative, and, accordingly, the tensile surface is active only if at 

least one eigenvalue is positive. This is necessary for avoiding tensile damage growth 

under purely compressive stress states and compressive damage growth under purely 

tensile stress states. In fact, even if the positive and negative damage variables affect 

only the associated positive and negative parts of the stress, their failure surfaces, in 

equations (7) and (8), are a function of the whole stress tensor. 

It should also be noted that in equations (7) and (8), the equivalent stresses �̃�𝜏+ 

and �̃�𝜏− are functions of the invariants of the trial effective stress tensor 𝝈𝝈�, which is 

computed incrementally as explained before. In this way �̃�𝜏+ and �̃�𝜏− are not necessarily 

monotonically increasing variables as required by the continuum-damage framework. 

To be consistent with the standard continuum-damage framework, the previously 

computed equivalent stresses are corrected as 

  𝜏𝜏∓ = �̃�𝜏∓ + 𝐸𝐸𝜆𝜆𝑚𝑚
∓ (11) 

where 𝐸𝐸 is the Young’s modulus, and 𝜆𝜆𝑚𝑚
+ and 𝜆𝜆𝑚𝑚

− are the positive and negative 

equivalent plastic strains, known from the previous time-step. In this way, the 

equivalent stress measures are like the ones computed in a standard continuum-damage 

model from the total strain. 

Plastic and Cracking damage variables 

To impose the irreversibility of the damage process, the model introduces the so-called 

damage thresholds  𝑟𝑟+ and 𝑟𝑟−, two scalar variables that denote the largest values ever 

reached by the equivalent stresses 𝜏𝜏+ and 𝜏𝜏− during the entire loading history for each 

time step  𝑡𝑡, 

  𝑟𝑟+(𝑡𝑡) = max � 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠 ∈ [0,𝑡𝑡]

𝜏𝜏+(𝑠𝑠) ; 𝑓𝑓𝑡𝑡� (12) 



  𝑟𝑟−(𝑡𝑡) = max � 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠 ∈ [0,𝑡𝑡]

𝜏𝜏−(𝑠𝑠) ; 𝑓𝑓𝑐𝑐0� (13) 

where 𝑓𝑓𝑡𝑡 and 𝑓𝑓𝑐𝑐0 are the elastic limits in tension and compression, respectively. At this 

point, in view of the last term added in equation (11), 𝑟𝑟+ and 𝑟𝑟− are two scalar 

measures of the stress tensor as if they were computed from the total strain. In fact, we 

can compute their total-strain counterparts and the associated nominal (including the 

effect of both plasticity and damage) hardening variables, as 

 

  𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡∓ = 𝑟𝑟∓

𝐸𝐸
 (14) 

  𝑞𝑞∓ = 𝑓𝑓∓�𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡∓� (15) 

The hardening functions 𝑓𝑓+ and 𝑓𝑓−  of 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡∓ are reported in figure (3) and figure (3). For 

a detailed description the reader can refer to Petracca et al.( 2017). 

 

Figure 2. Tensile hardening function 

 



 

Figure 3. Compressive hardening function 

 

 

The positive and negative plastic damage variables can be computed as 

  𝑑𝑑𝑝𝑝𝑝𝑝
∓ = 1 − 𝑞𝑞𝑐𝑐𝑝𝑝∓

�̃�𝑟∓
 (16) 

  �̃�𝑟∓ = 𝐸𝐸�𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡∓ − 𝜆𝜆𝑚𝑚
∓� (17) 

  𝑞𝑞𝑝𝑝𝑝𝑝∓ = 𝑞𝑞∓ + �1 − 𝜔𝜔∓��𝑟𝑟∓ − 𝑞𝑞∓� (18) 

where  �̃�𝑟∓ are the positive and negative damage thresholds associated with the trial 

effective stress tensor 𝝈𝝈�,  𝑞𝑞𝑝𝑝𝑝𝑝∓ are the effective (plastic part only) hardening variables, 

and  𝜔𝜔∓ are the tensile and compressive plastic-damage factors that can be used to 

calibrate the amount of plasticity to be considered. They range from 0 (pure damage) to 

1 (pure plasticity). Once the plastic hardening variables are computed, the cracking 

damage can be evaluated as 

  𝑑𝑑𝑐𝑐∓ = 1 − 𝑞𝑞∓

𝑞𝑞𝑐𝑐𝑝𝑝∓
 (19) 



With both plastic and cracking damage variables correctly evaluated, the plastic 

effective stress tensor and the nominal (damaged) stress tensor can be finally calculated 

as per equations (3) and (1), respectively, and the equivalent plastic strains can be 

updated as 

  𝜆𝜆∓ = 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡∓ −
𝑞𝑞𝑐𝑐𝑝𝑝∓

𝐸𝐸
 (20) 

A schematic (uniaxial) representation of the above-mentioned process is 

summarized in figure (4), while figures (5) and (6) show some representative examples 

of uniaxial and shear tests on a single integration point by varying the magnitudes of 𝜔𝜔∓ 

factors. 

 

 

Figure 4. Schematic representation of the elastic predictor and the plastic and damage 

correctors 



 

Figure 5. Uniaxial tension-compression cyclic test on one integration point with (a) 

𝜔𝜔+ = 0 and 𝜔𝜔− = 0.0, and with (b) 𝜔𝜔+ = 0 and 𝜔𝜔− = 0.7. 

 

Figure 6. shear cyclic test with a precompression on one integration point with (a) 𝜔𝜔+ =

0.5 and 𝜔𝜔− = 0.5, and with (b) 𝜔𝜔+ = 1.0 and 𝜔𝜔− = 1.0. 

Key aspects of the simplified plastic-damage algorithm 

As described in the previous sections, the plastic part of the proposed plastic-damage 

model has been implemented in a simplified fashion, in order to achieve an explicit 

evaluation of the stress tensor from the current strain tensor, minimizing the number of 

computations at the constitutive level. Here is a summary of key points of the simplified 

algorithm: 



• Some ingredients of standard plasticity theory, such as yield surface and flow 

rule, are not present here. Instead, the plastic corrector simply corresponds to an 

isotropic scaling of the positive and negative parts of the trial elastic stress 

tensor, as in equation (3) via the plastic-damage variables 𝑑𝑑𝑝𝑝𝑝𝑝
− and 𝑑𝑑𝑝𝑝𝑝𝑝

+. 

• Plastic (𝑑𝑑𝑝𝑝𝑝𝑝
∓) and cracking (𝑑𝑑𝑐𝑐

∓) damage variables share the same failure 

criteria in equations (7) and (8), therefore they do not evolve independently. 

• How much one damage variable grows with respect to the other is only 

controlled by the user-defined tensile (𝜔𝜔+) and compressive (𝜔𝜔−) plastic-

damage factors. They can range from 0 (only the cracking damage evolves) to 1 

(only the plastic damage evolves). For materials such as mortar, the tensile 

factor can be lower than the compressive one to reflect the more brittle nature of 

the tensile failure with respect to the compressive failure. 

Implementation of the IMPL-EX integration scheme 

It is well known that non-linear constitutive models with strain softening lead to 

instabilities, and the convergence of the iterative procedure becomes difficult to achieve 

or unachievable. To improve the stability and robustness of this kind of problems, the 

so-called IMPL-EX integration algorithm originally formulated in Oliver, Huespe, and 

Cante (2008) is included in the proposed tension-compression plastic-damage model. 

The IMPL-EX algorithm is a mixed implicit/explicit integration scheme for evaluating 

the internal variables of a constitutive model. The main idea is that the computation of 

the constitutive model is divided into two main stages: an explicit extrapolation stage 

followed by an implicit correction stage. 



Explicit Extrapolation 

During the global implicit iterative procedure to find equilibrium at time 𝑡𝑡𝑚𝑚+1, the strain 

tensor is computed in each element, and it is sent to the constitutive model. In the 

standard integration scheme, the internal variables 𝑟𝑟+ and 𝑟𝑟− are nonlinear functions of 

the trial effective stress tensor, as per equations (12) and (13), and therefore, they 

depend nonlinearly on the current trial strain tensor. This nonlinear dependence makes 

the global problem nonlinear. The real issue, however, is the presence of strain 

softening. In this case, the consistent tangent matrix required for the Newton-Raphson 

scheme may have negative eigenvalues, rendering the global system matrix 

illconditioned. Instead, in the explicit stage of the IMPL-EX algorithm, those internal 

variables are linearly extrapolated from the previous values at time 𝑡𝑡𝑚𝑚−1 and 𝑡𝑡𝑚𝑚 as  

  𝑟𝑟𝑚𝑚+1∓ = 𝑟𝑟𝑚𝑚∓ + Δ𝑡𝑡𝑛𝑛+1
Δ𝑡𝑡𝑛𝑛

�𝑟𝑟𝑚𝑚∓ − 𝑟𝑟𝑚𝑚−1∓ � (21) 

In this way, those variables and, in turn, the damage variables depend only linearly on 

the strain. There is, however, another source of nonlinearity: the tension-compression 

split of the stress tensor as per equations (5) and (6). Those equations can be re-written 

after defining the rank-four positive and negative projectors (Pelà, Cervera, and Roca 

2011) as follows 

  𝑷𝑷+ = ∑ 𝐻𝐻(𝜎𝜎�𝑖𝑖)𝒑𝒑𝑖𝑖 ⊗ 𝒑𝒑𝑖𝑖 ⊗ 𝒑𝒑𝑖𝑖 ⊗ 𝒑𝒑𝑖𝑖3
𝑖𝑖=1  (22) 

  𝑷𝑷− = 𝑰𝑰 − 𝑷𝑷+ (23) 

where 𝐻𝐻(𝜎𝜎�𝑖𝑖) is the Heaviside function of the ith principal stress. Now equations (5) and 

(6) can be re-written as 

  𝝈𝝈�∓ = 𝑷𝑷∓:𝝈𝝈� (24) 



In the explicit stage of the IMPL-EX algorithm, those projectors are not computed as a 

function of the current trial stress but are set equal to their converged values at the 

previous time step 

  𝑷𝑷∓ = 𝑷𝑷𝑚𝑚∓ (25) 

At this point, all sources of nonlinearity are removed, and the global problem becomes 

step-wise linear. Furthermore, the consistent tangent stiffness matrix now coincides 

with the secant matrix: 

  𝑪𝑪𝑡𝑡𝑚𝑚𝑚𝑚 = �(1 − 𝑑𝑑𝑐𝑐+)�1− 𝑑𝑑𝑝𝑝𝑝𝑝+ �𝐏𝐏+ + (1 − 𝑑𝑑𝑐𝑐−)�1 − 𝑑𝑑𝑝𝑝𝑝𝑝− �𝐏𝐏−�:𝑪𝑪0 (26) 

Implicit Correction 

Once the global implicit iterative procedure has converged and found equilibrium at 

time 𝑡𝑡𝑚𝑚+1, all the trial internal variables are saved as converged variables, i.e., the 

starting point for the next time step. 

  𝑟𝑟𝑚𝑚−1∓ = 𝑟𝑟𝑚𝑚∓ (27) 

  𝑟𝑟𝑚𝑚∓ = 𝑟𝑟∓ (28) 

  𝜆𝜆𝑚𝑚∓ = 𝜆𝜆∓ (29) 

In the IMPL-EX scheme, before doing the aforementioned internal variables swap, a 

standard implicit update of the current internal variables is performed. This way, the 

error generated by the explicit extrapolation scheme is mitigated, and due to the nature 

of the explicit extrapolation, the time-step should be small enough compared to standard 

implicit schemes to keep the error under control. 



Numerical Application 

The proposed model, in its original formulation based purely on Continuum-Damage 

mechanics and a standard implicit integration scheme, has been extensively tested 

against benchmark problems and small masonry specimens under monotonic loading 

conditions. In Petracca, Pelà, Rossi, Zaghi, Camata, and Spacone (2017) the model has 

been first tested in simple 1-element benchmarks to evaluate the shear response against 

different values of vertical pre-compression both in terms of shear strength and 

dilatancy, and finally it has been used to simulate experimental tests on the in-plane 

behavior of small masonry shear walls. Instead, in Petracca, Pelà, Rossi, Oller, Camata, 

and Spacone (2017), it has been tested against a masonry wall under monotonic out-of-

plane actions. 

This work, instead, aims at assessing the capability of the new model, equipped 

with the plasticity part to represent permanent inelastic deformations and a mixed 

implicit-explicit integration algorithm to improve convergence and stability, to simulate 

large-scale structures under cyclic loads. A two-story unreinforced masonry (URM) 

building tested at the University of Pavia, and described in detail in Magenes, Calvi, and 

Kingsley (1995), is used and simulated numerically to assess the effectiveness and 

robustness of the proposed plastic-damage model. For a complete description of the 

model prototype and the testing procedure, the user can refer to Magenes, Calvi, and 

Kingsley 1(995) and the references therein. Materials were chosen to match typical old 

urban buildings in Italy, i.e., solid fired-clay bricks with a mean compressive strength 

on cubes equal to 16 MPa, and mortar made of a mix of hydraulic lime and sand (1:3 

volume) with a compressive strength ranging from 2 to 3 MPa. A complete description 

of material parameters is given in Binda et al. (1995). Material properties for the plastic-

damage model used for bricks and mortar joints are given in table (1). 



Table 1. Material parameters used in the numerical simulation. 

Parameter Description Unit Mortar Brick 

𝐸𝐸 Young’s modulus 𝑁𝑁 𝑚𝑚𝑚𝑚2⁄  533.0 2171.0 

𝜈𝜈 Poisson’s ratio - 0.15 0.15 

𝑓𝑓𝑡𝑡 Tensile strength 𝑁𝑁 𝑚𝑚𝑚𝑚2⁄  0.1 1.62 

𝐺𝐺𝑡𝑡 
Tensile fracture 

energy 𝑁𝑁 𝑚𝑚𝑚𝑚⁄  0.08 0.1 

𝑓𝑓𝑐𝑐𝑝𝑝 Compressive strength 
at peak 𝑁𝑁 𝑚𝑚𝑚𝑚2⁄  6.2 6.2 

𝜀𝜀𝑐𝑐𝑝𝑝 Compressive 
deformation at peak - 0.015 0.008 

𝐺𝐺𝑐𝑐 
Compressive fracture 

energy 𝑁𝑁 𝑚𝑚𝑚𝑚⁄  80.0 5.0 

𝑘𝑘1 
Damage surface: 

shear compression 
reduction 

- 0.16 0.16 

𝜔𝜔+ Tensile plastic-
damage factor - 0.6 0 

𝜔𝜔− Compressive plastic-
damage factor - 1.0 0 

 

Note that in the numerical model we used, for both bricks and mortar joints, the 

compressive strength of the homogenized masonry. This is necessary for 2D and Shell 

models, due to the plane-stress assumption: Due to the large difference in their elastic 

constants, when subjected to compressive stress states, mortar is in triaxial-compression 

(thus increasing its strength against the vertical stress), while brick is in biaxial-tension / 

uniaxial-compression (thus increasing its strength against the vertical stress). In plane-

stress conditions this is not possible, therefore a simple remedy is to use, for both 

constituents, the compressive strength of the masonry itself.  



The structure consists of four components named “Door Wall,” “Window Wall,” 

and two “Transverse Walls,” subjected to a quasi-static cyclic loading protocol under 

displacement-control, as shown in figure (7). 

 

Figure 7: Schematic representation of the tested structure and applied load, taken from 

Magenes, Calvi, and Kingsley (1995). 

The report describes how the Door Wall is substantially detached from the other three 

walls so that the Window Wall and the two Transverse Walls form a structural system 

that is almost independent from the Door Wall. There is only a weak coupling 

represented by the flexible floor steel beams. 

The numerical model was created in STKO pre- post-processor (STKO 

Scientific ToolKit for OpenSees), which automatically produced the TCL input files for 

the OpenSeesMP parallel solver. OpenSeesMP is a parallel version of OpenSees 

suitable for running either parallel parametric analysis of small models or a single 

analysis of a large-scale model. Even if the two structural systems can be efficiently 

analyzed as two separate 2D analyses due to the weak coupling between them, the 

objective of this work is to show the performance and robustness of the proposed model 

in large-scale cyclic analyses. For this reason, we decided to model the whole structure 



in a three-dimensional shell model, as shown in figure (8), by discretizing the units and 

mortar bed/head joints of masonry seperately as is usual in the micro-modeling 

approach. 

 

Figure 8: Micro-model developed in STKO’s pre andpost-processors 

The numerical model consists of 4-node shell elements with a 2 × 2 Gauss integration, 

five through-the-thickness integration points for bricks and mortar joints, contact 

elements at the disconnected edges between the Door Walls and the two Transverse 

Walls, and Force-Based Beam elements for the flexible diaphragm.  

The adopted shell element is the ASDShellQ4 (ASDShellQ4 User Manual) 

element implemented by the authors in OpenSees. The ASDShellQ4 element is a 4-

node general purpose thick shell element. The membrane behavior is enhanced with the 

AGQ6-I (Chen et al. 2004) formulation, which makes the element almost insensitive to 

geometry distortion, as opposed to standard iso-parametric elements. The drilling DOF 

(rotation about the normal axis) is treated with the Hughes-Brezzi (Hughes, and Brezzi 

1989) formulation, with special care to avoid membrane locking, using a 1 point 



quadrature plus hourglass-stabilization. Finally, the plate bending part is treated using 

the MITC4 (Dvorkin, and Bathe 1984; Bathe, and Dvorkin 1985) formulation to avoid 

the well known transverse shear locking behavior of thick plate elements. 

The model is partitioned into 24 sub-domains to be used with 24 processors in 

the parallel analysis. The whole mesh consists of roughly 177 thousand elements and 60 

thousand nodes, with about 7500 elements per process. The partitioning of the mesh is 

shown in figure (9). 

 

Figure 9: Partitioning of the mesh for parallel computing 

 

The analysis is performed using a Displacement-Control integrator with the 

cyclic displacement protocol described in Magenes, Calvi, and Kingsley (1995). The 

imposed displacement-increment for the Displacement-Control integrator is about 2.5 

mm, which has proven to be sufficiently small to keep the integration error of the 

IMPL-EX scheme under an acceptable threshold. 

Figure (10) shows the force-displacement curve obtained at the Door Wall, 

while figure (11) shows the force-displacement curve obtained at the assembly made of 



the Window Wall and the two Transverse Walls. The overall prediction of the 

numerical model is in good agreement with the experimental results, both in terms of 

maximum force and hysteresis loop. The main difference that can be observed from the 

two curves is that the numerical model shows more plastic deformations during the first 

cycles compared to the experimental results. In the experimental results, it seems like 

the first cycles produce almost only strength and stiffness degradation, while plastic 

deformations are more predominant during the last cycles. This observation offers a 

starting point for future work, as in the current implementation the plastic-damage 

factors 𝜔𝜔+ and 𝜔𝜔− are constant during the analysis. A possible improvement could be 

an evolutionary law for plastic-damage factors so that the amount of plastic 

deformations can be controlled over time. 

 

Figure 10: Force-Displacement curve for the Door Wall 

 



 

Figure 11: Force-Displacement curve for the Window Wall and the two Transverse 

Walls 

Figures (12) and (13) show the numerically obtained crack pattern at the end of the 

cyclic analysis, compared with the experimental observations reported in Magenes, 

Calvi, and Kingsley (1995). The observed failure mechanisms are reproduced 

satisfactorily. 

 

Figure 12: Crack pattern obtained at the end of the analysis for the Door Wall (right), 

compared with the experimental result (left), taken from Magenes, Calvi, and Kingsley 

(1995). 



 

Figure 13: Crack pattern obtained at the end of the analysis for the Window Wall 

(right), compared with the experimental result (left), taken from Magenes, Calvi, and 

Kingsley (1995). 

 

Computational Costs 

The entire mesh of the case study consists of roughly 177 thousand elements and 60 

thousand nodes, 6 DOFs per node, for a total of about 360 thousand equations. The 

mesh is partitioned into 24 sub-domains and analyzed with OpenSeesMP. The model 

ran on a 128-cores AMD Ryzen Threadripper 3990X 3.40 GHz CPU. The analysis was 

subdivided into 3200 time-steps and ran in 2 hours and 53 minutes only, with a constant 

number of iterations for each time-step equal to 2, thanks to the fact that the IMPL-EX 

algorithm produces a step-wise linear solution, that is, within each time step, the stress 

response does not depend on the trial strain. The results in terms of computational time 

are remarkable and clearly demonstrate the efficiency of the proposed constitutive 

model combined with a mixed implicit explicit integration algorithm. 

Conclusions 

This paper presented an efficient constitutive model based on continuum damage 



mechanics and improved with the representation of inelastic deformations to better 

represent the plastic and cyclic response of masonry. The simplified implementation of 

the inelastic deformations allows an explicit computation of the stress tensor from the 

input strain tensor without the need for an iterative loop at the material level. The novel 

constitutive model has been proposed for the continuous micro-modeling of masonry, 

i.e., by discretizing both units and mortar-joints with continuum finite elements. 

Micro-modeling is a tool that can accurately represent the complex nonlinear response 

of materials such as masonry, with a highly heterogeneous micro-structure where each 

constituent exhibits strongly nonlinear behavior. The presence of the microstructure in 

the numerical mesh captures the complex geometric interactions and failure 

mechanisms that arise at the micro-scale extremely well. Unfortunately, the 

computational cost is prohibitively high and can drastically increase when standard 

implicit algorithms are used to solve the nonlinear equations due to the brittle nature of 

the masonry constituents and, thus the ill conditioning of the system matrix. For this 

reason, in the literature, micro-modeling has been used mainly for the analysis of small-

scale specimens. However, the aforementioned drawbacks can be satisfactorily 

mitigated by considering parallel computing, as it offers an increase in speed by 

partitioning the entire domain into many smaller sub-domains that can be analyzed 

simultaneously. The IMPL-EX algorithm removes the strong nonlinearity given by the 

plastic-damage model, thus improving convergence and robustness and consequently 

reducing the computation time. If, as in this case, the only source of nonlinearity is the 

constitutive model (i.e., other nonlinearities are not considered, such as large 

deformations), the nonlinear problem becomes step-wise linear, and convergence is 

guaranteed. 
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