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ABSTRACT
Conjugate Gradient is a widely used iterative method to solve
linear systems 𝐴𝑥 = 𝑏 with matrix 𝐴 being symmetric and posi-
tive definite. Part of its effectiveness relies on finding a suitable
preconditioner that accelerates its convergence. Factorized Sparse
Approximate Inverse (FSAI) preconditioners are a prominent and
easily parallelizable option. An essential element of a FSAI precon-
ditioner is the definition of its sparse pattern, which constraints the
approximation of the inverse𝐴−1. This definition is generally based
on numerical criteria. In this paper we introduce complementary
architecture-aware criteria to increase the numerical effectiveness
of the preconditioner without incurring in significant performance
costs. In particular, we define cache-aware pattern extensions that
do not trigger additional cache misses when accessing vector 𝑥 in
the 𝑦 = 𝐴𝑥 Sparse Matrix-Vector (SpMV) kernel. As a result, we
obtain very significant reductions in terms of average solution time
ranging between 12.94% and 22.85% on three different architectures
- Intel Skylake, POWER9 and A64FX - over a set of 72 test matrices.
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1 INTRODUCTION
Many simulation codes require solving linear systems derived from
discretization schemes like finite differences or finite elements,
which are numerical methods to solve Partial Differential Equa-
tions (PDE). Very frequently, these methods produce very large
sparse matrices. Direct methods like the sparse LU factorizations
are not useful in this context due to their memory requirements
and the significant number of steps they take. Thus, iterative meth-
ods are the best option and, in particular, Krylov methods are very
commonly applied due to their excellent convergence properties.
Krylov methods solve a linear system𝐴𝑥 = 𝑏 by building a solution
within a Krylov subspace, which the method creates by following
an iterative process that considers powers of matrix 𝐴 multiplied
by vector 𝑏, that is, {𝑏,𝐴𝑏,𝐴2𝑏, ..., 𝐴𝑚𝑏}. When dealing with sym-
metric and positive definite matrices a popular Krylov method,
Conjugate Gradient (CG), is typically applied.

The fundamental kernels involved in the CG method are the
Sparse Matrix-Vector (SpMV) product 𝑦 = 𝐴𝑥 , the dot-product,
and the linear combination of two vectors. The performance of
the SpMV is significantly influenced by irregular memory access
patterns on 𝑥 driven by the locations of the sparse matrix non-zero
coefficients. As such, SpMV is an expensive memory-bound kernel
that requires large memory bandwidth capacity and mechanisms

like hardware prefetching. On the other hand, dot products and
vector-vector additions typically display regular memory access
patterns and achieve significant performance enhancements from
those resources and mechanisms.

Besides the performance properties of each individual kernel,
another aspect that strongly impacts CG capacity of solving linear
systems is the condition number of matrix𝐴. In this context, precon-
ditioners are typically used to improve the convergence properties
of CG. From simple Block-Jacobi [34] to sophisticated Multi-Grid
techniques [18], a large amount of procedures targeting efficient pre-
conditioning have been proposed. The Sparse Approximate Inverse
(SAI) preconditioner consists in evaluating an approximation of the
inverse 𝑀 ≈ 𝐴−1 constrained to a certain sparse pattern [11, 12].
Then, the equivalent and better conditioned system𝑀𝐴𝑥 = 𝑀𝑏 is
solved. In practice, the application of the SAI preconditioner con-
sists in an additional SpMV kernel, which makes it highly parallel.
In the context of CG, with symmetric and positive definite prob-
lems, the Factorized Sparse Approximate Inverse (FSAI) is applied,
which implies that 𝐴−1 is approximated via a factorization 𝐺𝑇𝐺

instead of a single matrix. A very important aspect of FSAI is the
definition of its corresponding sparse pattern. While state-of-the-
art solutions define this pattern by exclusively taking into account
numerical considerations, we demonstrate in this paper that low-
level architecture-aware concepts should also be taken into account
when defining the FSAI sparse pattern.

This paper proposes and evaluates an approach to extend FSAI
sparse patterns based on two fundamental concepts: First, a cache-
aware algorithm to extend sparse patterns, which reduces CG iter-
ation count while keeping the cost per iteration low. Such cache-
aware optimization relies on low-level aspects of the cache hier-
archy architecture like indexing mechanisms or virtual memory
management approaches. Second, an approach to filter out the
smallest entries of the cache-aware FSAI pattern extension with-
out degrading its convergence properties. This paper makes the
following contributions over the state-of-the-art:

• We propose a technique to obtain cache-friendly FSAI sparse
patterns. By considering some low-level aspects of the cache
hierarchy architecture, our algorithm is able to extend spar-
sity patterns in a way the number of iterations is reduced
while the cost per iteration remains low enough to increase
performance. Our approach is architecture independent as
it just requires the cache line size as architecture input.

• We propose a robust approach to filter out small entries of
the inverse approximation without degrading the numerical
properties of the FSAI preconditioner.



• We evaluate our proposals via an extensive evaluation cam-
paign considering 72 matrices of the SuiteSparse Collec-
tion [13] that fit in the available memory resources of a
single node. Our experiments consider three high-end sys-
tems: a 48-core Skylake machine, a 40-cores POWER9, and
a 48-cores A64FX. In Skylake, our approach reduces time-
to-solution by 15.02% on average. In POWER9 and A64FX,
these improvements are 12.94% and 22.85%, respectively.

2 BACKGROUND
This section provides some background information on the PCG
solver and the FSAI preconditioner.

2.1 Conjugate Gradient
The Conjugate Gradient (CG) method [34] is an iterative solver for
linear systems𝐴𝑥 = 𝑏, where𝐴 is a symmetric and positive definite
(SPD) matrix. In the 𝑖th iteration, the CG algorithm finds the best
solution approximation,𝑥𝑖 , with respect to the𝐴-norm, that belongs
to the subspace 𝑥0 + 𝐷𝑖 ; where 𝐷𝑖 = span{𝑟0, 𝐴𝑟0, ..., 𝐴𝑖−1𝑟0}, 𝑟0 is
the initial residual, and the 𝐴-norm is defined as ∥ 𝑣 ∥𝐴 =

√
𝑣𝑇𝐴𝑣 .

To find the approximation𝑥𝑖+1, an𝐴-orthogonal basis {𝑑0, 𝑑1, ..., 𝑑𝑖 }
of 𝐷𝑖+1 is build by using the conjugate Gram-Schmidt process, that
is, by adding a new element, 𝑑𝑖 , to the previously derived basis
𝑑0, ...𝑑𝑖−1 for 𝐷𝑖 :

𝛽𝑖 =
𝑟𝑇
𝑖
𝑟𝑖

𝑟𝑇
𝑖−1𝑟𝑖−1

, 𝑑𝑖 = 𝑟𝑖 + 𝛽𝑖𝑑𝑖−1,

where 𝑟𝑖 refers to the 𝑖th residual and 𝛽𝑖 is the Gram-Schmidt con-
jugation coefficient. 𝑥𝑖+1 can be represented in this new basis as

𝑥𝑖+1 = 𝛼0 𝑑0 + . . . + 𝛼𝑖−1 𝑑𝑖−1 + 𝛼𝑖 𝑑𝑖 , (1)
where the coefficients 𝛼0, ..., 𝛼𝑖−1 are obtained from the previous
iterations. Hence, in the 𝑖 + 1th iteration it is only necessary to
evaluate the component 𝛼𝑖 associated to 𝑑𝑖 to obtain 𝑥𝑖+1:

𝛼𝑖 =
𝑟𝑇
𝑖
𝑟𝑖

𝑑𝑇
𝑖
𝐴𝑑𝑖

, 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 (2)

Besides scalar operations, note that only three basic linear al-
gebra operations are required through the steps of the algorithm:
Sparse Matrix-Vector product (SpMV), linear combination of two
vectors, referred as AXPY in the BLAS terminology, and dot product.

2.2 Sparse Approximate Inverse Preconditioner
Sparse approximate inverse (SAI) preconditioners are based on the
assumption that the inverse of the system matrix contains many
small entries that can be neglected keeping only the largest ones
and, consequently, a sparse approximation can be effective. In the
setup process of the SAI method, an approximation of the inverse
𝑀 ≈ 𝐴−1 constrained to a fixed sparse pattern S is found. The
equivalent, but better conditioned, system𝑀𝐴𝑥 = 𝑀𝑏 is considered.

The preconditioned version of the CG algorithm [34] requires
the inverse of the preconditioner at each time step. For SAI, since
the approximation of the inverse is computed explicitly, the precon-
ditioning process consists in an SpMV operation, which makes the
algorithm attractive due to the parallelizable nature of the SpMV

kernel. The SAI preconditioner has been extensively used for the so-
lution of linear systems from different application areas [2, 4, 30, 33].
The easy portability of the SpMV kernel has also fostered its appli-
cation to high-end architectures such as GPUs [9, 19, 32].

When dealing with symmetric and positive definite problems, to
preserve the system symmetry, the Factorized Sparse Approximate
Inverse (FSAI) preconditioner is applied and 𝐴−1 is approximated
by a factorization 𝐺𝑇𝐺 instead of a single matrix𝑀 , which means
that two SpMV products are necessary instead of one.𝐺 is a sparse
lower triangular matrix approximating the inverse of the Cholesky
factor, 𝐿, of 𝐴. To find 𝐺 , the problem is formulated as:

𝑚𝑖𝑛𝐺∈S ∥𝐼 −𝐺𝐿∥2𝐹 , (3)
where ∥ .∥𝐹 is the Frobenius norm and S is a lower triangular spar-
sity pattern. This problem can be solved independently for each
row 𝑖 of 𝐺 , which can be obtained by solving the local system
𝐴S𝑖S𝑖

𝑔𝑖 = 𝑒𝑖 ,where 𝐴S𝑖S𝑖
is the restriction of 𝐴 to the coefficients

of the 𝑖th row of the sparse pattern S𝑖 and 𝑒𝑖 is the 𝑖th column of
the identity matrix restricted to the same space [11, 28].

We apply state-of-the-art techniques [11] to find 𝐺 without ex-
plicitly evaluating 𝐿, i. e., only using the initial matrix 𝐴. In this
context, the sparse pattern S is defined a priori as the pattern of
a power 𝑁 of �̃�, where �̃� is obtained from 𝐴 by dropping small
entries. The power used to fix the sparse pattern is referred as the
sparse level of the preconditioner. In Algorithm 1, we show the
method proposed by Chow [11] to find 𝐺 .

Algorithm 1 FSAI, 𝐺𝑇𝐺 ≈ 𝐴−1

1: Threshold 𝐴 to produce �̃�.
2: Compute the pattern �̃�𝑁 , and let the pattern of𝐺 be the lower

triangular part of the pattern of �̃�𝑁 .
3: Compute the nonzero entries in 𝐺 by solving the Frobenius

minimization problem.
4: Drop small entries in new G and rescale.

3 ACCELERATING FSAI
This section describes a high-level view of our cache-aware sparse
pattern extension strategy to boost the FSAI performance. Algo-
rithm 2 displays a reformulation of FSAI by adding one step, the
cache-friendly extension of the sparse pattern, and replacing the
filtering-out and rescaling steps applied to G by a more complex
filtering-out process applied to an approximate precalculation of G
before its evaluation. The step added in line 3 extends the sparse
pattern of 𝐺 considering architecture-aware criteria to add addi-
tional entries that reduce the CG iteration count while incurring
a minimal overhead in terms of iteration cost. This step is further
described in Section 4. Note that we propose an extension of the
sparse pattern, therefore the set of matrices considered in the Frobe-
nius minimization problem of Equation 3 increases. Consequently,
the new inverse approximation is more accurate.

The step added in line 4 replaces the filtration that Algorithm 1
performs after the computation of𝐺 . In this new filtration strategy,
entries of the sparse pattern are filtered out based on an approximate
precalculation of 𝐺 . The resulting pattern is used to calculate the
final 𝐺 , ensuring a Frobenius-minimal 𝐴−1 approximation, i. e. the
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best approximation in this pattern. This step is further explained
in Section 5.

Algorithm 2 FSAI, 𝐺𝑇𝐺 ≈ 𝐴−1 with pattern extension and precal-
culation
1: Threshold 𝐴 to produce �̃�.
2: Compute the pattern �̃�𝑁 , and let the pattern, S, of 𝐺 be the

lower triangular part of the pattern of �̃�𝑁 .
3: Compute cache-friendly extension of the pattern of 𝐺 ,

S𝑒𝑥𝑡 .
4: Precalculate an approximation �̃� of the preconditioner,

and filter out entries of S𝑒𝑥𝑡 according to its values.
5: Calculate 𝐺 on the sparse pattern obtained from the previous

step.

4 CACHE-FRIENDLY FILL-IN
In this section we propose a cache-friendly fill-in approach to ex-
tend the sparse pattern of the FSAI preconditioner. We propose
architecture-aware techniques to extend the sparse pattern in a
way that we achieve significant reductions in terms of iteration
count while minimizing the iteration cost overhead. In particular,
we propose a method to extend the FSAI sparse pattern without
increasing the number of cache misses.

Since FSAI is applied via the SpMV kernel 𝑦 = 𝐴𝑥 , we must
consider the access patterns for all the involved data structures con-
taining 𝑦, 𝐴, and 𝑥 . Assuming that we traverse the sparse matrix
𝐴 in row order and that we store it using the Compressed Sparse
Row (CSR) format, the accesses on the data structures containing
𝐴 display a very simple stride-1 pattern. Since this pattern is easily
predictable by hardware prefetchers, there is some flexibility for
extending 𝐴 without suffering a prohibitive performance penalty.
Very similar considerations apply when accessing vector 𝑦. The
most problematic accesses are those coming from accesses to vector
𝑥 , which follow a random pattern and thus can not be easily pre-
dicted by the prefetcher. Our approach extends matrix 𝐴 without
increasing the number of cache misses due to accesses on 𝑥 . It is
important to state that similar considerations can be made when
accessing matrix𝐴 in column order and storing it with Compressed
Sparse Column (CSC) format, with the only difference that the roles
of vectors 𝑦 and 𝑥 switch. Without loss of generality, we assume
for the rest of this section that the SpMV kernel 𝑦 = 𝐴𝑥 is traversed
in row order, and that 𝐴 is stored in CSR.

4.1 Cache Alignment of Vector 𝑥
Our approach drives the extension of the FSAI sparse pattern by
taking into account the cache alignment of vector 𝑥 . The main idea
consists in extending 𝐴 with coefficients that will require elements
of 𝑥 belonging to the same cache line as the elements of 𝑥 where
the initial sparse pattern accesses. In other words, the idea is to
add new coefficients in 𝐴 that fully exploit the spatial locality on
memory accesses to vector 𝑥 . For example, if the first row of the
initial sparse pattern accesses a double-precision element 𝑥𝑖 located
in the first position of a 64Bytes cache line, we will not produce
any additional cache miss on 𝑥 by adding up to seven additional
non-zeroes right after the element that accesses 𝑥𝑖 .

The approach relies on determining the relative position of vector
elements 𝑥𝑖 in the cache lines storing them by using its correspond-
ing virtual address. In general, physical and virtual addresses are
composed by tag, index and offset bits, being this last subset the
one that determines the position within a cache line. Since the first
levels of the cache hierarchy are virtually indexed and physically
tagged to overlap the indexing process with the Transaction Looka-
side Buffer (TLB) traversal, the index and the offset bits of both
virtual and physical addresses are the same. Importantly, this means
that we can determine the relative position within a cache line of a
certain 𝑥𝑖 value by looking at the offset bits of its virtual address. If
𝑥𝑖 values are 64-bit floating-point numbers, a 64B cache line will
store 8 of them. That means that the virtual address modulo 8,
𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝑥 [𝑖]) mod 8, gives the relative position of 𝑥𝑖 within
its cache line. When dealing with larger cache line sizes we need
to use the corresponding number of elements stored per cache line.
For example, when dealing with the 256B cache lines of A64FX, if
𝑥𝑖 values are 64-bit floating-point numbers, we will compute the
virtual address modulo 32, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝑥 [𝑖]) mod 32.

Our approach is architecture independent since i) it can be
adapted to any cache line size by simply adjusting this value before
applying the cache-friendly fill-in procedure; ii) it can be adapted to
any cache indexing mechanism using virtual addresses; and, finally,
iii) it can be applied to any Instruction Set Architecture (ISA). Sec-
tion 7 shows an exhaustive evaluation of our cache-friendly fill-in
considering Skylake, POWER9 and A64FX architectures.

4.2 Algorithm for Cache-Friendly Fill-In
We propose an algorithm to produce a cache-friendly fill-in of
a generic FSAI sparse pattern. The inputs of our algorithm are
the initial sparse pattern S, and the array 𝑥 that will be used in
the SpMV operation. Algorithm 3 displays the pseudocode of our
Cache-Friendly Fill-In algorithm. The main loop iterates over the
initial pattern rows and, per each row, traverses all its non-zero
entries (lines 4-13). For each entry 𝑗 , it identifies the cache line of
the corresponding 𝑥 𝑗 component of the multiplying vector (line
9), using the procedure described in Section 4.1. Then it extends
the sparse pattern by inserting non-previously existing entries
corresponding to the portion of vector 𝑥 stored in this same cache
line (lines 10 and 11). This algorithm can be easily parallelized using
threading-based approaches like OpenMP or Posix threads.

4.3 Applying the Cache-Friendly Fill-In to FSAI
As described in Section 2, the FSAI preconditioner approximates
𝐴−1 by the factorization𝐺𝑇𝐺 . The sparse pattern of the original𝐺
matrix is extended using the algorithm described in Section 4.2 to
obtain an extended𝐺𝑒𝑥𝑡 matrix. Applying FSAI to a right-hand-side
vector 𝑝 implies computing the product𝐺𝑇

𝑒𝑥𝑡𝐺𝑒𝑥𝑡𝑝 . We use the CSR
format to store the 𝐺𝑒𝑥𝑡 matrix. The application of Algorithm 3
keeps the number of cache misses triggered by accesses to the 𝑝
vector when computing 𝐺𝑒𝑥𝑡𝑝 similar as 𝐺𝑝 , while the extended
number of entries of 𝐺𝑒𝑥𝑡 decreases CG iteration count.

For the 𝐺𝑇
𝑒𝑥𝑡 matrix, we also use the CSR storage format. Al-

though the application of Algorithm 3 does not explicitly target
the reduction of cache misses triggered by the 𝐺𝑇

𝑒𝑥𝑡 multiplication,
additional entries added in the same row of 𝐺 belong to the same
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Algorithm 3 Cache-Friendly Fill-In
1: S −→Sparse pattern to extend
2: 𝑥 −→ Multiplying vector in the SpMV
3: procedure ExtendPattern
4: Loop over every row i of pattern S
5: Loop over every entry j in row i
6: If j is in an already considered column block
7: Move to next j
8: Endif
9: Identify the cache line of its corresponding 𝑥 𝑗 coeffi-

cient
10: Compute initial and final columns matching the cache

line of 𝑥 𝑗
11: Add to the pattern the columns of the block that are

not already present
12: Endloop
13: Endloop

column of 𝐺𝑇 , and being close to previous entries of 𝐺 implies
belonging to adjacent or almost adjacent rows in 𝐺𝑇 . Therefore,
when multiplying by 𝐺𝑇

𝑒𝑥𝑡 , the entries generated by the extension
are accessed in consecutive rows. In conclusion, the spatial locality
optimization for the 𝐺𝑒𝑥𝑡 product results in a temporal locality
optimization of the 𝐺𝑇

𝑒𝑥𝑡 product.
Section 7 confirms that applying the 𝐺𝑒𝑥𝑡 matrices reduces the

number of CG iterations while keeping the cost per iteration low,
which produces significant performance benefits.

4.4 Cache-Friendly Fill-In Process Example
We show in Figure 1 an example of the cache-friendly fill-in process.
The left-hand side plot displays an initial sparse lower triangular
pattern for a generic 64x64 matrix where the non-zero entries are
represented by black squares. The array to its right represents the
multiplying vector 𝑥 . The cache-friendly fill-in Algorithm 3 loops
over every entry in the initial pattern. For each entry, it captures the
relative position in memory of the corresponding multiplying array
component. Suppose the first component of 𝑥 is stored in double
precision and aligned in memory such that its relative position
in a 64B cache line is 0. Whenever this entry is accessed, a block
of 8 entries composed of the initial one plus the following 7 will
be loaded. Every time an entry within this block is accessed, the
other seven will be available. However, the initial pattern may not
require to access them. The algorithm adds column entries in the
pattern such that all loaded array elements are used every time
their cache line is accessed (except if they correspond to entries
above the diagonal). The center plot in Figure 1 displays a lower
triangular pattern that has been extended using Algorithm 3. Black
squares correspond to entries in the initial pattern, and grey squares
are cache-friendly added entries. Difference in grey color serves
as a guide to identify the multiplying array cache line they are
added for. The pattern formed by the black and grey squares is
the one used to compute the values of extended𝐺 . Although this
extension targets the optimization of the spatial locality in the
SpMV products involving 𝐺 in FSAI, it also optimizes temporal
locality for the products involving 𝐺𝑇 .

5 FILTERING OUT SMALL G ENTRIES
Matrix 𝐺 , computed in Step 3 of Algorithm 1, produces the best
approximation 𝐺𝑇𝐺 to 𝐴−1 restricted to the S sparse pattern with
respect to the Frobenius norm (see Equation 3). A common strat-
egy to make the resulting approximation more efficient is to filter
out some 𝐺 entries containing small values in absolute terms. Re-
moving these entries may have computational benefits in terms of
accelerating its two associated SpMV products, 𝐺𝑇𝐺𝑝 , although it
may also degrade the numerical quality of the preconditioner. By
filtering out small entries the sparse pattern is modified and the
resulting 𝐺 does not necessarily minimize Eq. 3.

To get the best possible inverse approximation on the final sparse
pattern, we propose a new filtration strategy, prior to the evaluation
of𝐺 , that replaces the common filtration and rescaling steps per-
formed at the end of the preconditioner setup. This new strategy
is based on an approximate precalculation of 𝐺 . To filter out 𝐺
entries with low absolute value, we just require an approximation
describing their order of magnitude. To generate this low-cost ap-
proximation, we solve Eq. 3 via several iterations of the CG method
with a relatively high tolerance to obtain an approximate solution.
This solution allows to discriminate the entries with high absolute
values from those with small ones using a scale-independent order
of magnitude comparison of non-diagonal entries with respect to
diagonal entries. Differently, for the evaluation of 𝐺 in the result-
ing sparse pattern we use a direct solver (line 5 of Algorithm 2).
Section 7 demonstrates the robustness of this novel approach.

Note that the cache-friendly extension and the new filtration
strategies described here can be applied to any given sparse pattern.
Section 8 provides a short overview of different existing options to
define the initial sparse pattern. In any case, the steps followed to
apply our optimizations are:

(1) To extend the given pattern with cache-friendly entries. This
step corresponds to line 3 of Algorithm 2.

(2) To precompute 𝐺 on the extended pattern.
(3) To filter out entries of the extension featuring low absolute

values.
(4) To compute𝐺 coefficients on the sparse pattern generated in

the previous steps using Equation 3. This step corresponds
to line 5 of Algorithm 2.

Figure 1 illustrates these steps applied to a 64x64 sparse ma-
trix. The left-hand side image shows the lower triangular part of
the initial matrix. In the middle plot, we show how the pattern is
cache-friendly extended assuming a cache size of 64B and entries
stored in double precision. Note that different cache sizes would
lead to different extended patterns. An inverse approximation is
precalculated on this extended pattern. The right-hand side image
shows in red the final entries of the cache-friendly extension, being
the initial entries represented in black.

6 EXPLOITING SPATIAL AND TEMPORAL
LOCALITY IN THE 𝐺𝑝 AND 𝐺𝑇𝑝 PRODUCTS

This section describes a method to exploit spatial and temporal
locality of products 𝐺𝑝 and 𝐺𝑇 𝑝 , respectively. Previous sections
describe how to extend the sparse pattern of matrix 𝐺 to obtain
an extended 𝐺𝑒𝑥𝑡 where the additional entries do not increase the
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Figure 1: Graphical representation of the pattern extension strategy. Left: Initial lower triangular pattern of a given matrix, 𝐴
(black squares) plus the multiplying vector 𝑥 . Center: Cache-friendly pattern extension. Right: Filtered pattern.

number of cache misses triggered by accesses to multiplying vec-
tor 𝑝 when computing 𝐺𝑒𝑥𝑡𝑝 . This extension is based on a spatial
locality optimization of the product of𝐺 , and produces a temporal
locality optimization of the product of𝐺𝑇 . The pattern of𝐺 can be
extended to optimize both spatial and temporal locality for the two
SpMV products in FSAI. First, the extension, precalculation and
filtration steps have to be applied to𝐺 . Second, the extension, pre-
calculation and filtration steps have to be repeated on the extended
transposed pattern,𝐺𝑇

𝑒𝑥𝑡 . Applying the extension to the transposed
matrix 𝐺𝑇

𝑒𝑥𝑡 optimizes its spatial locality and the temporal locality
of the initial product. As a result the spatial and temporal local-
ity of both products is optimized. It is of utter importance to note
that the extensions have to be performed in two steps to ensure
the cache-friendliness of all the entries in the extended patterns
of both𝐺 and𝐺𝑇 . Applying the cache-friendly fill-in algorithm to
simultaneously extend𝐺 and𝐺𝑇

𝑒𝑥𝑡 , and precalculating and filtering
out the resulting pattern may produce non cache-friendly extended
entries. The steps to improve the spatial and temporal locality of
FSAI are the following:

(1) Extend initial lower triangular pattern, S, to cache-friendly
entries optimizing 𝑥 accesses in the 𝐺 product.

(2) Precalculate approximation on the extended pattern.
(3) Filter out the entries in extended positions to obtain S𝑒𝑥𝑡 .
(4) Extend (S𝑒𝑥𝑡 )𝑇 to cache-friendly entries optimizing 𝑥 ac-

cesses in the 𝐺𝑇 product.
(5) Precalculate approximation on the extended pattern.
(6) Filter out the entries in extended positions to obtain (S𝑒𝑥𝑡 )𝑇𝑒𝑥𝑡 .
(7) Calculate final𝐺 using the transposed sparse pattern (S𝑒𝑥𝑡 )𝑇𝑒𝑥𝑡 .
These steps are compiled in Algorithm 4. Section 7 confirms

that using pattern extensions generated via Algorithm 4 reduces
the number of iterations while keeping the cost per iteration low,
which produces very significant performance benefits.

7 EVALUATION
7.1 Experimental Setup
The numerical experiments of this paper consider all symmetric and
positive-definite matrices with non-zero coefficient count from 48K

Algorithm 4 FSAI, 𝐺𝑇𝐺 ≈ 𝐴−1 with pattern extension and precal-
culation optimizing spatial and temporal locality for both products

1: Threshold 𝐴 to produce �̃�.
2: Compute pattern �̃�𝑁 , and define the initial pattern S of 𝐺 as

the lower triangular part of the pattern of �̃�𝑁 .
3: Compute cache-friendly extension of pattern S optimizing 𝐺𝑝

product.
4: Precalculate the nonzero entries in the obtained cache-friendly

pattern and keep entries larger than parameter 𝑓 𝑖𝑙𝑡𝑒𝑟 . Define
S𝑒𝑥𝑡 as the sparse pattern of the extended matrix 𝐺𝑒𝑥𝑡 .

5: Compute cache-friendly extension of 𝑆𝑇𝑒𝑥𝑡 optimizing 𝐺𝑇
𝑒𝑥𝑡𝑝

product.
6: Precalculate the nonzero entries in the obtained cache-friendly

pattern and keep entries larger than parameter 𝑓 𝑖𝑙𝑡𝑒𝑟 . Define
(S𝑒𝑥𝑡 )𝑇𝑒𝑥𝑡 as the sparse pattern of matrix 𝐺𝑇 .

7: Compute 𝐺 coefficients on the transposed pattern (𝑆𝑒𝑥𝑡 )𝑇𝑒𝑥𝑡 .

up to 4.8M of the SuiteSparse Matrix Collection [13]. We exclude
the matrices that do not converge after 10000 iterations of the con-
jugate gradient method preconditioned with FSAI. The 72 resulting
matrices along with some of their characteristics are listed in the
second, third, fourth, and fifth columns of Table 1. Matrices come
from a variety of fields such as Electromagnetics, Computational
Fluid Dynamics (CFD), Acoustics, or Circuit Simulation.

We run our experiments in Skylake, POWER9 and A64FX shared-
memory systems. The Skylake machine is composed of two 24-
core Intel Xeon® Platinum 8160 processors at 2.1GHz with 12x8GB
DDR4-2667 DIMMS (2GB/core). The POWER9 system is composed
of two 20-core IBM Power9 8335-GTH processors at 2.4GHz with
16x32GBDIMMS. Both Skylake and POWER9 systems have 64Bytes
cache lines. The A64FX system is composed of a 48-core A64FX
Fujitsu processor at 2.2GHz with 256Bytes cache lines.

The code has been developed in C language and compiled with
GCC 10.1.0 on Skylake and POWER9, and GCC 10.2.0 on A64FX.
Our thread-based parallel code uses OpenMP 5.0 constructs. To
solve the linear systems involved in Step 7 of Algorithm 4, we use
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Table 1: Test matrices along with key properties and results. Results are provided as the preprocessing, solving times (in seconds)
and iterations to convergence for the basic FSAI and FSAIE(sp) and FSAIE(full) with a 0.01 𝑓 𝑖𝑙𝑡𝑒𝑟 , respectively. For the cases of
FSAIE(sp) and FSAIE(full) we also provide the percentage of lower triangular pattern entries increase with respect to FSAI
pattern after the extensions (% NNZ).

FSAI FSAIE(sp) FSAIE(full)
ID Matrix #rows NNZ Type Setup Solve Iter Setup Solve Iter % NNZ Setup Solve Iter % NNZ
1 shipsec5 179860 4598604 Structural 9.58E-02 1.08E+00 1615 3.01E-01 1.01E+00 1465 14.95 5.39E-01 1.04E+00 1437 20.82
2 offshore 259789 4242673 Electromagnetics 8.91E-02 8.97E-01 782 2.82E-01 8.25E-01 771 16.39 6.82E-01 9.07E-01 751 30.86
3 smt 25710 3749582 Structural 3.14E-01 4.32E-01 884 9.78E-01 3.06E-01 574 20.49 1.78E+00 2.95E-01 515 33.19
4 parabolic_fem 525825 3674625 CFD 6.45E-02 2.26E+00 1460 2.16E-01 1.87E+00 1144 65.78 5.31E-01 1.67E+00 1054 119.98
5 Dubcova3 146689 3636643 2D/3D 7.36E-02 1.19E-01 153 2.99E-01 1.46E-01 138 62.55 5.89E-01 1.22E-01 107 110.01
6 shipsec1 140874 3568176 Structural 8.53E-02 1.10E+00 1985 2.26E-01 1.09E+00 1982 14.49 4.39E-01 1.12E+00 1945 19.49
7 nd3k 9000 3279690 2D/3D 1.75E+00 1.97E-01 406 4.19E+00 1.76E-01 357 2.07 6.05E+00 1.65E-01 336 3.03
8 cfd2 123440 3085406 CFD 5.81E-02 1.21E+00 2600 2.01E-01 1.14E+00 1969 74.60 4.17E-01 1.21E+00 1862 120.11
9 nasasrb 54870 2677324 Structural 8.90E-02 1.10E+00 2768 1.96E-01 1.11E+00 2761 5.95 2.92E-01 1.10E+00 2739 8.87
10 oilpan 73752 2148558 Structural 5.94E-02 5.85E-01 1620 1.24E-01 5.53E-01 1452 24.81 2.22E-01 5.36E-01 1326 47.70
11 cfd1 70656 1825580 CFD 4.74E-02 3.56E-01 932 1.49E-01 3.33E-01 801 62.48 3.15E-01 3.41E-01 739 113.35
12 qa8fm 66127 1660579 Acoustics 4.12E-02 4.14E-03 13 9.71E-02 3.58E-03 11 22.44 1.68E-01 3.57E-03 11 28.70
13 2cubes_sphere 101492 1647264 Electromagnetics 4.74E-02 5.60E-03 12 1.24E-01 5.74E-03 12 10.20 2.50E-01 5.34E-03 11 17.30
14 thermomech_dM 204316 1423116 Thermal 6.11E-02 5.80E-03 9 9.11E-02 5.85E-03 9 2.08 1.97E-01 5.79E-03 9 2.42
15 msc10848 10848 1229776 Structural 1.85E-01 2.18E-01 712 3.50E-01 2.04E-01 651 8.36 6.03E-01 1.64E-01 528 21.51
16 Dubcova2 65025 1030225 2D/3D 4.31E-02 6.04E-02 158 1.08E-01 5.60E-02 131 88.81 2.15E-01 4.90E-02 106 162.91
17 gyro 17361 1021159 Model Reduction 7.22E-02 1.72E+00 4457 1.55E-01 1.11E+00 3576 25.93 2.67E-01 1.38E+00 3400 35.16
18 gyro_k 17361 1021159 DMR 7.30E-02 1.54E+00 4444 1.49E-01 1.24E+00 3599 25.93 2.60E-01 1.02E+00 3450 35.16
19 olafu 16146 1015156 Structural 5.42E-02 4.17E-01 1782 1.10E-01 3.80E-01 1524 14.00 1.71E-01 3.15E-01 1336 22.64
20 bundle1 10581 770811 CG/V 1.08E-01 6.82E-03 22 2.11E-01 5.83E-03 20 0.01 3.00E-01 6.04E-03 20 0.01
21 G2_circuit 150102 726674 Circuit Simulation 3.25E-02 3.84E-01 1026 6.69E-02 3.23E-01 808 146.97 1.11E-01 3.18E-01 772 215.71
22 Pres_Poisson 14822 715804 CFD 5.85E-02 6.53E-02 285 9.99E-02 3.89E-02 160 35.75 1.62E-01 3.23E-02 130 61.49
23 thermomech_TC 102158 711558 Thermal 3.50E-02 3.94E-03 9 7.83E-02 3.90E-03 9 3.13 1.14E-01 3.96E-03 9 3.65
24 cbuckle 13681 676515 Structural 5.07E-02 2.48E-02 114 8.83E-02 2.55E-02 108 12.55 1.38E-01 2.30E-02 101 24.08
25 finan512 74752 596992 Economic 3.12E-02 2.88E-03 10 5.95E-02 2.72E-03 9 34.16 8.94E-02 2.79E-03 9 42.53
26 crystm03 24696 583770 Materials 2.91E-02 3.45E-03 13 6.04E-02 3.51E-03 12 14.04 9.75E-02 3.26E-03 11 26.34
27 thermal1 82654 574458 Thermal 3.19E-02 2.80E-01 735 5.85E-02 2.24E-01 603 95.58 1.34E-01 2.26E-01 532 189.89
28 wathen120 36441 565761 Random 2D/3D 2.97E-02 6.10E-03 25 5.20E-02 4.88E-03 19 76.92 8.82E-02 4.85E-03 19 98.41
29 apache1 80800 542184 Structural 2.89E-02 4.43E-01 1663 4.46E-02 4.17E-01 1582 66.59 6.92E-02 4.32E-01 1574 73.41
30 gridgena 48962 512084 Optimization 3.06E-02 4.32E-01 1729 4.39E-02 3.49E-01 1350 80.29 8.16E-02 3.23E-01 1205 141.49
31 wathen100 30401 471601 Random 2D/3D 4.20E-02 4.67E-03 25 4.65E-02 3.76E-03 19 76.75 7.21E-02 3.84E-03 19 98.18
32 bcsstk17 10974 428650 Structural 3.42E-02 1.27E-01 627 5.83E-02 1.09E-01 551 15.84 9.04E-02 1.08E-01 491 28.78
33 cvxbqp1 50000 349968 Optimization 3.77E-02 1.60E+00 5032 4.29E-02 1.58E+00 5051 0.10 6.37E-02 1.61E+00 5045 0.22
34 Kuu 7102 340200 Structural 4.34E-02 3.01E-02 147 7.40E-02 2.75E-02 128 25.63 1.07E-01 2.57E-02 115 44.54
35 shallow_water2 81920 327680 CFD 4.47E-02 3.42E-03 14 3.79E-02 3.07E-03 12 99.87 5.79E-02 2.72E-03 10 161.23
36 shallow_water1 81920 327680 CFD 3.00E-02 2.00E-03 8 3.82E-02 1.94E-03 7 43.21 5.21E-02 1.50E-03 6 59.76
37 crystm02 13965 322905 Materials 3.52E-02 3.05E-03 13 5.83E-02 2.61E-03 12 13.17 7.05E-02 2.79E-03 11 18.40
38 bcsstk16 4884 290378 Structural 3.47E-02 2.32E-02 83 5.92E-02 2.34E-02 80 11.83 8.83E-02 2.38E-02 79 16.08
39 s2rmq4m1 5489 263351 Structural 2.96E-02 7.46E-02 360 4.83E-02 7.57E-02 356 9.71 5.80E-02 7.64E-02 353 17.41
40 s1rmq4m1 5489 262411 Structural 3.25E-02 6.17E-02 299 4.16E-02 6.29E-02 299 13.27 5.84E-02 6.29E-02 290 20.99
41 Dubcova1 16129 253009 2D/3D 2.68E-02 1.75E-02 84 5.10E-02 1.49E-02 67 89.09 7.57E-02 1.26E-02 55 167.32
42 bcsstk25 15439 252241 Structural 2.76E-02 6.97E-01 3880 3.82E-02 6.49E-01 3584 24.04 5.16E-02 6.31E-01 3366 38.13
43 bcsstk28 4410 219024 Structural 3.31E-02 2.21E-01 1003 4.78E-02 1.81E-01 849 19.23 8.64E-02 1.62E-01 715 39.46
44 s2rmt3m1 5489 217681 Structural 2.74E-02 7.72E-02 384 4.04E-02 7.78E-02 365 16.28 5.45E-02 7.30E-02 350 29.05
45 s1rmt3m1 5489 217651 Structural 3.22E-02 6.36E-02 320 3.78E-02 6.22E-02 310 20.11 5.54E-02 5.90E-02 301 32.16
46 minsurfo 40806 203622 Optimization 2.67E-02 9.21E-03 42 3.95E-02 7.43E-03 32 228.76 5.14E-02 6.95E-03 29 356.20
47 jnlbrng1 40000 199200 Optimization 2.73E-02 1.38E-02 62 3.24E-02 1.32E-02 60 58.40 3.95E-02 1.38E-02 60 58.40
48 torsion1 40000 197608 Duplicate Optimization 2.70E-02 6.88E-03 31 4.19E-02 5.60E-03 24 194.19 4.25E-02 5.30E-03 23 206.92
49 obstclae 40000 197608 Optimization 2.72E-02 6.80E-03 31 3.46E-02 5.45E-03 24 194.19 4.33E-02 5.33E-03 23 206.92
50 t2dah_e 11445 176117 DMR 2.70E-02 6.01E-03 32 3.56E-02 2.84E-03 15 98.79 4.33E-02 3.14E-03 15 127.74
51 nasa2910 2910 174296 Structural 5.79E-02 1.06E-01 390 8.01E-02 1.01E-01 378 7.63 1.19E-01 8.97E-02 331 24.55
52 Muu 7102 170134 Structural 2.93E-02 1.84E-03 10 3.90E-02 1.61E-03 9 9.69 4.87E-02 1.50E-03 8 16.54
53 bcsstk24 3562 159910 Structural 2.79E-02 1.51E-01 773 3.77E-02 8.93E-02 438 10.57 5.05E-02 7.10E-02 363 20.17
54 bcsstk18 11948 149090 Structural 2.63E-02 1.16E-01 547 3.54E-02 1.10E-01 522 20.52 4.48E-02 1.06E-01 489 34.02
55 ted_B 10605 144579 Thermal 2.79E-02 1.62E-03 9 3.22E-02 1.39E-03 8 12.70 4.13E-02 1.39E-03 8 14.54
56 ted_B_unscaled 10605 144579 Thermal 2.67E-02 1.53E-03 9 3.51E-02 1.39E-03 8 12.70 3.80E-02 1.36E-03 8 14.54
57 bodyy6 19366 134208 Structural 2.55E-02 1.35E-01 594 3.01E-02 1.42E-01 599 20.19 3.68E-02 1.32E-01 599 24.55
58 bodyy5 18589 128853 Structural 2.51E-02 6.06E-02 241 3.20E-02 5.98E-02 243 26.01 3.35E-02 6.10E-02 243 31.81
59 aft01 8205 125567 Acoustics 2.54E-02 8.13E-02 418 3.33E-02 6.73E-02 335 43.54 3.38E-02 6.09E-02 320 54.98
60 bodyy4 17546 121550 Structural 2.73E-02 2.35E-02 97 3.03E-02 2.38E-02 97 36.66 3.35E-02 2.34E-02 97 44.64
61 bcsstk15 3948 117816 Structural 2.65E-02 5.81E-02 240 3.48E-02 5.66E-02 225 30.67 4.44E-02 5.46E-02 220 41.91
62 crystm01 4875 105339 Materials 2.53E-02 3.97E-03 13 3.27E-02 3.84E-03 12 11.19 3.77E-02 3.50E-03 11 17.26
63 nasa4704 4704 104756 Structural 3.17E-02 3.06E-01 1410 3.13E-02 2.73E-01 1277 18.59 3.95E-02 2.66E-01 1217 32.10
64 msc04515 4515 97707 Structural 2.86E-02 1.03E-01 572 2.91E-02 7.97E-02 450 27.51 3.32E-02 7.87E-02 434 50.49
65 fv3 9801 87025 2D/3D 2.47E-02 2.46E-02 126 2.93E-02 2.33E-02 123 76.01 3.10E-02 2.51E-02 124 97.97
66 fv2 9801 87025 2D/3D 2.86E-02 2.83E-03 15 2.78E-02 2.63E-03 14 71.15 3.01E-02 2.66E-03 14 97.97
67 fv1 9604 85264 2D/3D 2.48E-02 2.82E-03 15 2.70E-02 2.47E-03 14 71.13 2.95E-02 2.54E-03 14 93.14
68 bcsstk13 2003 83883 CFD 3.79E-02 1.76E-01 566 5.68E-02 1.79E-01 535 21.94 8.39E-02 1.70E-01 496 41.15
69 sts4098 4098 72356 Structural 2.81E-02 1.81E-02 100 3.91E-02 1.66E-02 92 32.30 5.21E-02 1.57E-02 86 51.71
70 nasa2146 2146 72250 Structural 2.54E-02 2.12E-02 108 3.12E-02 2.02E-02 105 20.97 3.37E-02 2.05E-02 105 31.30
71 bcsstk14 1806 63454 Structural 2.59E-02 2.61E-02 116 3.06E-02 2.45E-02 109 10.60 3.84E-02 2.53E-02 105 16.71
72 bcsstk27 1224 56126 Structural 2.75E-02 1.84E-02 90 3.17E-02 1.89E-02 90 8.51 3.95E-02 1.79E-02 89 15.70
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the MKL 2017.4 library in Skylake, LAPACK 3.8.0 in POWER9 and
OPENBLAS 0.3.10 in A64FX. We consider our numerical experi-
ments to converge when the initial residual norm is reduced by
eight orders of magnitude, being the initial guess always zero. For
every matrix, a random right-hand side is generated with values
ranging from -1 to 1 and normalized to the matrix max norm. For
the time measurements we have considered the minimum time over
20 and 50 repetitions of each experiment for the setup and solve
phases, respectively.

Our evaluation considers the state-of-the-art FSAI approach, and
two other preconditioners where the sparse pattern is extended us-
ing our cache-friendly methods. These are the precise descriptions
of all considered approaches:

• FSAI - Factorized Sparse Approximate Inverse preconditioner.
This is the state-of-the-art FSAI preconditioner [11] described
in Algorithm 1. We use as pattern the lower triangular pat-
tern of𝐴 without thresholding and filtering only null entries.

• FSAIE(sp) - Factorized Sparse Approximate Inverse precondi-
tioner with a sparse pattern extension exploiting spatial locality.
It extends the lower triangular sparse pattern of 𝐴, which is
the pattern used by FSAI. It exploits spatial locality in the
first product and temporal locality in the second. FSAIE(sp)
corresponds to Algorithm 4 without steps 5 and 6. G co-
efficients are computed on the pattern S𝑒𝑥𝑡 . We consider
values 0.0, 0.001, 0.01, and 0.1 for the 𝑓 𝑖𝑙𝑡𝑒𝑟 parameter. The
filtering-out process is applied using a scale-independent
order of magnitude comparison of non-diagonal entries with
respect to diagonal entries and removes only entries of the
extension.

• FSAIE(full) -Factorized Sparse Approximate Inverse precondi-
tioner with pattern extension exploiting spatial and temporal
locality. It extends the lower triangular sparse pattern of 𝐴.
It exploits spatial and temporal locality in both products.
FSAIE(full) corresponds to Algorithm 4. We set the filtering-
out parameter, 𝑓 𝑖𝑙𝑡𝑒𝑟 , to values 0.0, 0.001, 0.01, and 0.1. The
same value is used in the steps corresponding to lines 4
and 6. We apply the filtering-out process considering a scale-
independent order of magnitude comparison of non-diagonal
entries with respect to diagonal entries. The filtering-out pro-
cesses remove only entries added in the extensions

We use a common configuration for all matrices to avoid a param-
eter fine-tuning for each experiment of the evaluation campaign.
Convergence tolerance is kept constant in all experiments for all
the approaches. We report results in terms of iteration and time
reductions, Gflop/s, and data cache misses.

7.2 Performance Improvement on Skylake
In this sectionwe describe the performance of FSAIE(sp) and FSAIE(full)
with respect to FSAI. Table 1 shows results for the three techniques
and 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 in the Skylake system. Columns 6-8 report setup
time, solve time, and iterations required to convergence for FSAI.
These are the baseline results on Skylake against which we compare
our pattern extension methods. Columns 9-12 report, respectively,
setup time, solve time, iterations to convergence, and the percent-
age of entries FSAIE(sp) adds to the lower triangular pattern of 𝐴.
Columns 13-16 report these same metrics concerning FSAIE(full). In

many cases we observe both FSAIE(sp) and FSAIE(full) to success-
fully decrease iteration count and solve time. FSAIE(full) obtains
larger pattern extensions than FSAIE(sp), which produces larger
iteration count and solution time decreases.

Table 2: Percentage of average iteration and time improve-
ments, highest time improvement, and highest time degrada-
tion of FSAIE(sp) and FSAIE(full) for 𝑓 𝑖𝑙𝑡𝑒𝑟 values 0.0, 0.001,
0.01, 0.1, and best 𝑓 𝑖𝑙𝑡𝑒𝑟 per matrix on Skylake.

FSAIE(sp)
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.0 12.40 2.89 51.20 -68.94

0.001 12.25 5.99 51.05 -30.18
0.01 11.76 9.59 52.80 -22.82
0.1 6.32 5.54 43.64 -16.48

Best filter 11.45 11.16 52.80 -3.34
FSAIE(full)

Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.0 18.41 -3.69 56.72 -170.23

0.001 17.88 8.68 53.81 -41.99
0.01 16.71 12.75 53.09 -2.38
0.1 8.90 8.90 43.74 -19.84

Best filter 16.60 15.02 56.72 -2.06

Table 2 shows, per each 𝑓 𝑖𝑙𝑡𝑒𝑟 value we consider, the average
improvement in terms of iteration count and solution time in the
second and third columns, respectively. The 𝐵𝑒𝑠𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 category
shows results when the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value per matrix is considered.
Table 2 also shows the highest time improvement and degrada-
tion in its fourth and fifth columns, respectively. We report results
considering the experimental setup of 72 matrices described in Sec-
tion 7.1 and two cases: FSAIE(sp) and FSAIE(full). Note that for the
𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 the results of Table 2 are a summary of Table 1. We
observe for the two methods how low filter values, e.g. 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.0,
lead to high iterations decrease, which is not translated into time-
to-solution decrease. In these scenarios, the cost per iteration is
high since extended patterns have a large amount of entries with
low values that do not improve the preconditioner quality but have
a significant computational cost. When increasing the 𝑓 𝑖𝑙𝑡𝑒𝑟 value,
the gap between average iteration decrease and average time de-
crease is reduced as the iteration overhead reduces as well. For large
values this gap becomes very small, although the improvement in
terms of iteration count is relatively small since we add a small
number of entries to the sparse pattern. The best improvements
are obtained when 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01. The achieved accuracy for all
matrices is always lower than 1E-08, which is the value set for all
tests, and does not significantly change when performing pattern
extensions. Following experiments show the same behavior.

Table 2 shows how the FSAIE(full) method achieves much better
results than FSAIE(sp). FSAIE(full) obtains larger average perfor-
mance improvements for 𝑓 𝑖𝑙𝑡𝑒𝑟 values 0.001, 0.01, and 0.1. Ex-
tending the sparse pattern by considering spatial and temporal
locality in the two SpMV operations, 𝐺𝑇𝐺𝑝 , produces larger and
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Figure 2: Time decrease of the FSAIE(full) vs FSAI using the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value per matrix (blue columns) and 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 value
(orange columns) on the Skylake architecture.

more efficient sparse patterns. These improved sparse pattern ex-
tensions obtain larger reductions in terms of iteration count while
succeeding in keeping the iteration cost low. FSAIE(full) obtains
average performance improvements of 12.75% and 8.90% when pa-
rameter 𝑓 𝑖𝑙𝑡𝑒𝑟 is set to 0.01 and 0.1, respectively. FSAIE(full) also
obtains time reductions of more than 50% for some matrices with
𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01. In the following sections, all experiments consider
FSAIE(full) as described in Algorithm 4.

Table 3: Average iteration increase percentage and highest
iteration increase percentage of FSAIE(sp), when using stan-
dard filtering-out against the proposed filtering-out strategy.
The 𝑓 𝑖𝑙𝑡𝑒𝑟 values 0.0, 0.001, 0.01, 0.1 are considered.

Filter value Avg. iter. inc. Highest iter. inc.
0.0 0.0 0.88

0.001 0.0 1.95
0.01 1.63 113.9
0.1 7.95 114.96

It is not possible to find a single 𝑓 𝑖𝑙𝑡𝑒𝑟 value optimal for all
the matrices belonging to the extensive and heterogeneous set we
consider in this paper. Previous work [5, 6, 15] tunes parameters
for each particular matrix when applying FSAI. By considering
the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value for each matrix we obtain a 15.02% average
time improvement, being the best result among all matrices a time
decrease of 56.72% and the worst a time increase of 2.06%.

Figure 2 depicts the improvement obtained in Skylake by the
FSAIE(full) method with respect to FSAI for each matrix of the
experimental set. In the x-axis we show Matrix IDs, which are
defined in the first column of Table 1. In the y-axis we display the
performance improvement in terms of time decrease percentage.We
show the results of the best performing 𝑓 𝑖𝑙𝑡𝑒𝑟 value for each matrix
(blue columns) and results for 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 (orange columns). The
two approaches displayed in Figure 2 show similar trends since for
most of the matrices 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 is the best option.

Table 31 compares the state-of-the-art filtration strategy of Al-
gorithm 1 with the new strategy proposed in Section 5. Results
are presented in terms of iterations increase when the standard
1This Table does not consider one case in the experimental set that did not converge
when using the state-of-the-art filtering strategy with 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.1.

approach is used instead of the new one, for various 𝑓 𝑖𝑙𝑡𝑒𝑟 values.
Results are presented in terms of iterations since, for each 𝑓 𝑖𝑙𝑡𝑒𝑟

value, the final number of entries is the same in both approaches
so the computational cost is equivalent. For low 𝑓 𝑖𝑙𝑡𝑒𝑟 values both
methods lead to similar iteration results. However, for larger 𝑓 𝑖𝑙𝑡𝑒𝑟
values, i.e. 0.1, the standard approach causes a significant degrada-
tion of the convergence for some matrices of the experimental set.
On average, with 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.1, matrices converge with 7.95% more
iterations with respect to the proposed filtering-out strategy. In all
cases, our new filtration strategy avoids convergence degradation
while providing a higher degree of robustness to the method.

7.3 Effects on Data Cache Misses and FLOPS
In this section we describe the benefits of the FSAIE(full) method
in terms of data cache misses and floating-point operations per sec-
ond (flop/s) when its extended sparse patterns are used on Skylake.
FSAIE(full) bases its effectiveness on two aspects: First, achieving
a reduction in terms of iteration count by extending the precon-
ditioner sparse pattern; and, second, keeping low the additional
iteration cost the pattern extension incurs. Section 7.2 has shown
the benefits of FSAIE(full) in terms of time to solution and iteration
count with respect to FSAI in the Skylake system. This section
demonstrates the effectiveness of FSAIE(full) in this second aspect.

Figure 3 shows three histograms displaying the average L1 data
cache misses triggered by accesses to vector 𝑝 when computing the
preconditioning operation𝐺𝑇𝐺𝑝 . The cache misses are normalized
to the total number of non-zero entries of the 𝐺 matrix. The his-
tograms classify each one of the 72 matrices of our experimental
setup depending on the number of L1 data cache misses experi-
enced when preconditioning 𝑝 via 𝐺𝑇𝐺𝑝 . We consider three differ-
ent ways of obtaining the 𝐺 matrix: First, via the state-of-the-art
FSAI preconditioner (category 𝐺𝐹𝑆𝐴𝐼 ); second, via the FSAIE(full)
method (category 𝐺𝐹𝑆𝐴𝐼𝐸 (𝑓 𝑢𝑙𝑙 ) ); and, third, using a randomly gen-
erated extended sparse pattern (category𝐺𝑟𝑎𝑛𝑑𝑜𝑚). When consider-
ing 𝐺𝐹𝑆𝐴𝐼𝐸 (𝑓 𝑢𝑙𝑙 ) and 𝐺𝑟𝑎𝑛𝑑𝑜𝑚 , the amount of new entries present
in the extended sparse pattern is the same. These results clearly
indicate how our cache-friendly sparse pattern extensions success-
fully minimize the average data cache misses per𝐺 non-zero entry.
This cache behaviour makes it possible to translate the iteration
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Figure 3: Histogram of L1 data cache misses on 𝑝 accesses in
the preconditioning operation𝐺𝑇𝐺𝑝 normalized to the num-
ber of𝐺 matrix non-zero entries. Blue columns correspond to
state-of-the-art𝐺 matrices, orange columns to cache-friendly
extended 𝐺 matrices, and green columns to randomly ex-
tended matrices.

Figure 4: Histogram of the Gflop/s ratio when precondition-
ing the 𝑝 vector via the 𝐺𝑇𝐺𝑝 operation. Blue columns cor-
respond to state-of-the-art 𝐺 matrices, orange columns to
cache-friendly extended 𝐺 matrices, and green columns to
randomly extended matrices.

count reductions of FSAIE(full) to elapsed time reductions. Ran-
dom extensions dramatically increase L1 data cache misses, which
highlights the quality of the 𝐺𝐹𝑆𝐴𝐼 (𝑓 𝑢𝑙𝑙 ) sparse pattern.

Figure 4 contains three histograms showing the observed Gflop/s
ratios when preconditioning the 𝑝 vector via the 𝐺𝑇𝐺𝑝 operation.
These histograms classify each one of the 72 considered matrices
depending on the Gflop/s ratios they reach when preconditioning
𝑝 . We consider the same three different approaches to construct the
G matrix as Figure 3: 𝐺𝐹𝑆𝐴𝐼 , 𝐺𝐹𝑆𝐴𝐼𝐸 (𝑓 𝑢𝑙𝑙 ) , and 𝐺𝑟𝑎𝑛𝑑𝑜𝑚 . Figure 4
clearly shows how the cache-aware extensions of the FSAIE(full)

method significantly improve the floating-point throughput achieved
by the sparse patterns of baseline FSAI. For a significant number of
matrices, FSAIE(full) produces sparse patterns able to reach more
than 40Gflops/s when performing the two SpMV operations of
𝐺𝑇𝐺𝑝 . Since the peak performance of our double socket 24-core
Skylake system is 3200GFlop/s, FSAIE(full) makes it possible to
achieve more than 1.25% of the peak for a large number of matri-
ces. This is a very large percentage, since the SpMV kernel rarely
reaches more than 40Gflop/s on multi-core x86 architectures with
512-bit SIMD extensions [1, 36]. Randomly extending the sparse
pattern of𝐺 does not produce competitive flop/s ratios in general.

7.4 Setup Phase Overhead
While our methods significantly accelerate the solver phase of the
conjugate gradient method, the extension of the sparse pattern
incurs some overhead in the setup phase with respect to FSAI,
mainly due to the higher cost of computing𝐺 entries. This overhead
is on average 180% for FSAIE(full) with 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 with respect
to FSAI. Table 1 shows the timing cost per matrix of the setup and
solve phases for FSAI in its sixth and seventh columns, respectively.
The setup and solve costs of FSAIE(sp) are represented in the ninth
and tenth columns. These two metrics for the FSAIE(full) appear in
the thirteenth and fourteenth columns of Table 1.

Such overhead becomes negligible in a practical numerical simu-
lation context since the setup phase is performed only once while
the solve phase is repeated several times for the same matrix. Fur-
thermore, even when the setup is to be repeated on each time step,
some of its parts, such as the definition of the final pattern, do not
need to be repeated on each time step.

Table 4: Percentage of average iteration and time improve-
ments, highest time improvement, and highest time degrada-
tion of FSAIE(sp) and FSAIE(full) for 𝑓 𝑖𝑙𝑡𝑒𝑟 values 0.0, 0.001,
0.01, 0.1, and best 𝑓 𝑖𝑙𝑡𝑒𝑟 per matrix on POWER9.

FSAIE(full)
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.0 18.55 -14.24 52.26 -208.93

0.001 17.96 2.49 54.49 -58.08
0.01 16.90 10.25 56.72 -18.90
0.1 8.99 8.56 42.75 -12.35

Best filter 15.15 12.94 56.72 -12.35

7.5 Evaluation on POWER9
We perform numerical experiments on a 40-cores POWER9 sys-
tem. Our parallel experiments run on all the 40 cores. The experi-
mental setup is described in detail in Section 7.1. To highlight the
architecture-independent aspect of our proposals, we use the ex-
act same source code for both POWER9 and Skylake experiments,
with the exception of the numerical library used to solve the lin-
ear systems associated with each row on the computation of 𝐺𝑒𝑥𝑡 .
Table 4 shows a summary of the results obtained considering dif-
ferent 𝑓 𝑖𝑙𝑡𝑒𝑟 values. The average improvement for the FSAIE(full)
algorithm when using the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value per matrix is 12.94%.
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Figure 5: Time decrease of the FSAIE(full) vs FSAI for the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 0.01 𝑓 𝑖𝑙𝑡𝑒𝑟 value (orange
columns) on the POWER9 architecture.

Figure 5 shows the improvement obtained on the POWER9 sys-
tem by the FSAIE(full) method with respect to FSAI for each matrix
of the experimental set. In the x-axis we show the Matrix IDs, which
are defined in Table 1. In the y-axis we display the performance
improvement in terms of time decrease percentage. We show re-
sults considering the best performing 𝑓 𝑖𝑙𝑡𝑒𝑟 value (blue columns)
per matrix, and the best common 𝑓 𝑖𝑙𝑡𝑒𝑟 value (orange columns),
which is 0.01. The trends we see in Figure 5 are similar to those in
Figure 2. For most of matrices 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01 is the best option.

Since both Skylake and POWER9 machines have 64Bytes cache
lines, the flexibility of FSAIE(full) for adding additional entries when
generating new sparse patterns is the same on the two systems.
Therefore, the average iteration decrease achieved by FSAIE(full)
is very similar on both systems, as we can see in Tables 2 and 4.
The small differences are due to different cache line alignments of
vector 𝑝 , plus small numerical effects due to round-off errors.

Table 5: Percentage of average iteration and time improve-
ments, highest time improvement, and highest time degrada-
tion of FSAIE(sp) and FSAIE(full) for 𝑓 𝑖𝑙𝑡𝑒𝑟 values 0.0, 0.001,
0.01, 0.1, and best 𝑓 𝑖𝑙𝑡𝑒𝑟 per matrix on A64FX.

FSAIE(full)
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.0 27.81 -17.52 76.99 -575.19

0.001 26.47 14.93 63.47 -54.79
0.01 23.98 20.08 61.38 -6.58
0.1 13.36 13.76 48.03 -3.80

Best filter 24.91 22.85 76.99 -0.96

7.6 Evaluation on A64FX
We perform numerical experiments on a 48-cores A64FX system.
The experimental setup is described in detail in Section 7.1. We
use the same code as the POWER9 and Skylake experiments, with
the exception of the numerical library used for the computation of
the inverse approximation. A64FX features 256Bytes cache lines,
four times larger than Skylake and POWER9 cache lines. This is an
important difference as it enables FSAIE(full) to add more cache-
friendly entries to the extended sparse patterns, which produces

larger iteration count decreases. Indeed, Table 5 clearly shows much
larger average iteration decreases than Tables 2 and 4. These large
iteration decreases bring significant performance improvement.
The FSAIE(full) method brings average performance improvements
of 20.08% for 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01, and 22.85% when using the best 𝑓 𝑖𝑙𝑡𝑒𝑟
per matrix. Not filtering out any entry, i. e. 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.0, brings
performance degradation since the iteration cost grows more than
the iteration reduction.

Figure 6 shows the improvement obtained on A64FX by the
FSAIE(full) method with respect to FSAI for each matrix of the
experimental set. In the x-axis we show the Matrix IDs, which
are defined in Table 1. In the y-axis we display the performance
improvement in terms of time decrease percentage. We show the
results of the best performing 𝑓 𝑖𝑙𝑡𝑒𝑟 value (blue columns) for each
matrix and the results for the best general 𝑓 𝑖𝑙𝑡𝑒𝑟 value (orange
columns), which is 0.01. Many matrices display much larger perfor-
mance improvements on A64FX than POWER9 and Skylake.

7.7 Comparing Results on Different
Architectures

To clearly illustrate the benefits of FSAIE(full) on Skylake, POWER9
and A64FX, we show in Figure 7 three histograms classifying the
72 matrices of our experimental set in terms of time improvement
with respect to FSAI. The red dotted vertical line represents the
median improvement. There is a large difference between A64FX
and the other two architectures. While results on Skylake and
POWER9 show similar trends due to their fundamentally equal
pattern extensions, when FSAIE(full) is applied to A64FX it obtains
richer sparse patterns, which significantly increase the average
improvement for all the matrices in the experimental set. This is a
consequence of A64FX having a 4 times larger cache line size than
Skylake or POWER9. On average, FSAIE(full) with 𝑓 𝑖𝑙𝑡𝑒𝑟 = 0.01
generates 61% additional entries to 𝐺 on Skylake and POWER9,
and 93% additional entries on A64FX.

8 RELATEDWORK ON APPROXIMATE
INVERSE METHODS

There are several previously proposed methods to generate patterns
for the sparse approximate inverse problem. They are considered
either static or dynamic methods [14], depending on how the sparse
pattern of the approximate inverse is evaluated.
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Figure 6: Time decrease of the FSAIE(full) vs FSAI for the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 0.01 𝑓 𝑖𝑙𝑡𝑒𝑟 value (orange
columns) on the A64FX architecture.

(a) Skylake (b) POWER9 (c) A64FX

Figure 7: Histograms classifying the 72 matrices of our experimental set in terms of time improvement achieved by FSAIER(full)
using the best 𝑓 𝑖𝑙𝑡𝑒𝑟 value with respect to FSAI.

For the static approach, the one considered in this paper, the
pattern is determined a priori and kept unvaried throughout the
computation of the inverse approximation, either𝑀 or 𝐺 for fac-
torized approaches. Various alternatives have been considered. A
common one is using the sparse pattern of a power of the 𝐴 ma-
trix, usually 𝐴2 or 𝐴3 [10, 16, 20]. Other techniques reshape the
initial pattern [23]. The resulting patterns can be sparsified through
the processes of thresholding and post-filtration or through adap-
tive entry dropping strategies [5, 6, 11, 15, 27, 29]. Finding optimal
thresholding and filtration criteria is generally a challenging task.

Dynamic approximate inverse methods compute the inverse pat-
tern from adaptive procedures that start from an initial guess, for
example a diagonal pattern, and enlarge it following some strat-
egy until a specific criteria is fulfilled. An example of a dynamic
approach, SPAI, was proposed by Grote and Huckle [17]. There is
also a factorized formulation, FSPAI [21]. Other dynamic strategies
have been developed more recently, such as, its generalization to
block form, BSAI [22], and others like PSAI and RSAI [25, 26]. Typ-
ically, dynamic approximate inverses are more powerful than their
static counterparts. However, it is not trivial to efficiently paral-
lelize them, and their preprocessing stage is generally much costlier
than static approaches. There are implementations of several dy-
namic and static strategies for computing FSAI preconditioners
in shared-memory parallel machines [24]. In addition, techniques

to run SAI preconditioners on GPUs have been proposed for both
static [3, 7, 31, 35] and dynamic strategies [8].

A common factor of all cited approximate inverse methods, ei-
ther static or dynamic, is that none of them take into consideration
architectural criteria to define the sparse pattern. Based on the
concept of cache-friendly pattern extensions, our method is com-
plementary to any of the alternatives mentioned. Themost common
static method, FSAI, has been used here as a reference. Nonethe-
less, given any other pattern evaluated with numerical criteria, our
approach brings out a potentially significant performance boost.

9 CONCLUSIONS
This paper demonstrates the benefits of a FSAI sparse pattern ex-
tension based on two fundamental concepts: first, an algorithm able
to produce a cache-aware extension of the sparse pattern in a way
that the iteration count of CG is significantly reduced with a low
time per iteration overhead; second, a robust filtering strategy that
maximizes the benefits of the cache-aware extension. Our exten-
sive evaluation campaign considers 72 matrices and cutting-edge
high-end hardware. It demonstrates on the Skylake architecture
average improvements of 15.02% in terms time to solution, and time
reductions of more than 50% for some matrices. Our evaluation
shows that our proposals are applicable to any generic multi-core
architecture by reporting performance improvements on Skylake,
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POWER9, and A64FX. The large 256Bytes cache lines of A64FX
produce the best results, namely, average improvements of 22.85%
in terms time to solution, and time reductions of more than 75% for
some matrices.

While state-of-the-art approaches define sparse patterns exclu-
sively based on numerical considerations, this paper is the first
in demonstrating the benefits of taking into account computer
architecture concepts. Indeed, the cache-aware pattern extension
proposed is complementary to any numerical strategy employed for
the definition of the sparsity pattern. Aspects like the design of the
cache hierarchy or the information contained in virtual addresses,
enable those additional optimizations that are easily applicable to
boost applications performance.
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