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Abstract 
We propose a hierarchical framework for collaborative intelligent systems. This framework 
organizes research challenges based on the nature of the collaborative activity and the information 
that must be shared, with each level building on capabilities provided by lower levels. We review 
research paradigms at each level, with a description of classical engineering-based approaches and 
modern alternatives based on machine learning, illustrated with a running example using a 
hypothetical personal service robot.  We discuss cross-cutting issues that occur at all levels, 
focusing on the problem of communicating and sharing comprehension, the role of explanation and 
the social nature of collaboration. We conclude with a summary of research challenges and a 
discussion of the potential for economic and societal impact provided by technologies that enhance 
human abilities and empower people and society through collaboration with Intelligent Systems.   

1. Introduction
Collaboration is a process where two or more agents work together as partners to achieve a shared 
goal [1]. Collaboration is a key challenge for creating Artificial Intelligence (AI) technologies that 
enhance human capabilities and empower people and society. We expect Collaborative AI to serve 
as a catalyst for the maturation and integration of AI technologies, enabling novel applications with 
important potential for economic and societal impact.  

Research in Collaborative AI spans more than 40 years, with theories and models proposed by 
different scientific communities. Many of the communities agree on similar concepts, but with 
differences in focus, terminology and experimental methods. An important challenge for 
Collaborative AI is to unify and build on results from these communities, aligning their conceptual 
foundations and terminologies and building on their results.  
In this article, we show how viewing collaboration as a hierarchy of perception-action cycles can 
provide a framework that unifies a broad spectrum of techniques and research problems for 
collaborative systems. We describe classical engineered approaches for components at each level 
and discuss modern alternatives based on machine learning. We then discuss some of the more 
salient research challenges that must be addressed to further develop collaboration with Intelligent 
Systems. 
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Figure 1. A hierarchy of capabilities for research on collaboration with intelligent systems.  
Collaboration at each level builds on abilities at the lower levels to determine solutions, procedures, 
tasks, and actions as shown on the right. Common ground for collaboration requires shared 
comprehension of situations (states), intentions, expertise and problems, as shown on the left. 
Common ground can be reached through explanation, instruction, demonstration and experience. 

2. A Hierarchy of Perception-Action Cycles 
Theories and experiments from Cognitive Science [2], Ergonomics [3] and Multi-modal Human-
Computer Interaction [4], [5] show that humans observe, model, act and interact using multiple 
modalities over multiple temporal scales with multiple frames of references.  Accordingly, human-
AI collaboration can be organized as a hierarchy of perception-action cycles, each with specific 
representations for information. We refer to the levels in this hierarchy as reactive (sensori-motor), 
situational (spatio-temporal), operational (task-oriented), praxical (experience-based) and creative, 
as illustrated in Figure 1.   

In the following, we provide definitions for each of these levels in terms of the information that can 
be represented and communicated. We summarize previous research on problems in each area and 
describe open research challenges, focusing on the problem of communicating and sharing  
comprehension, the power of explanations and the social nature of collaboration.  We will use the 
example of a hypothetical personal service robot to illustrate collaboration at different levels. We 
will assume that our hypothetical robot is capable of indoor and outdoor navigation in the presence 
of pedestrians, with abilities to communicate, sense and express emotions and to interact socially 
with people using speech, gesture, vision and natural language. Enabling technologies for such 
robots are the subject of active research, including within the laboratories of the authors of this 
article.  

2.1 Reactive Collaboration 
Reactive collaboration assumes a form of tightly-coupled interaction where the actions of each 
agent are immediately sensed and used to trigger actions by the other. Reactive collaboration with 
humans requires that machines sense and act with a similar time-scale as humans. Sensori-motor 
reflexes in humans occur over a time scale of 80 to 300 milliseconds with reaction times determined 
by the number of neural layers between the sensing organ and the muscle activation units. Effective 
interaction requires that the temporal and physical properties of the machine be tuned to the sensori-
motor reflexes of the human collaborator. For example, a computer mouse must immediately 
display movements of a cursor on a computer screen within the perceptual time scale of the human 
user [6]. Even a small lag in display can have serious consequences for usability. 
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For our personal robot, an example of reactive collaboration is provided by navigation in a crowd of 
moving pedestrians. The potential for collisions can be estimated from the rate of change of bearing 
angle to pedestrians or obstacles. A small rate of change of bearing, combined with a negative 
change in distance indicates a potential for collision. Time to collision can be estimated by the 
relative distance divided by the rate of change of distance. Normally, collision can be avoided 
reactively by adjusting velocity or heading so as to increase the rate of change in bearing or increase 
the time to contact. For converging pedestrians, there is a social aspect to collision avoidance, with 
one pedestrians yielding to the other, or both pedestrians adapting their paths so as to avoid 
collision [7]. Integrating this social dimension into robot collision avoidance requires monitoring 
the motion of the pedestrians, predicting intention and reacting in a compatible manner. 
Classically, such systems have been implemented by directly coupling sensor output to motor 
control at design time. Techniques for learning reactive control of behaviors at run-time have 
recently been demonstrated. End-to-end systems can be trained using neural networks that 
transform perceptual signals directly to motor commands [8], providing a new technology for 
Demonstration Learning [9]. Reinforcement Learning can be used with Deep Learning [10] to learn 
control policies for mapping perception to action from experience. Deep Reinforcement Learning is 
increasingly used to learn robot behaviors or skills as networks that directly transform perception to 
action. Such techniques can be used to pre-learn fixed behaviors for interaction.  However, Deep 
Reinforcement Learning can require an extremely large number of trials, typically performed 
offline using a simulator.  Effective and efficient on-line learning through interaction with a teacher 
remains an open challenge. 

2.2 Situational Collaboration 
Situational collaboration refers to an interaction where perception and action are mediated by 
shared awareness of situation.  Situation awareness has long been recognized as a core competence 
for intelligent behavior, as well as survival in critical environments. The term can be traced to the 
early 20th century, where situation awareness was identified as a crucial skill for crews in military 
aircraft.  Situation awareness has been recognized as a foundation for successful decision-making 
across a broad range of domains. 
Factors related to situation awareness are a core concern for ergonomics.  According to Endsley [3], 
situation awareness is the perception of environmental elements and events with respect to time or 
space, the comprehension of their meaning, and the projection of their future status. Such abilities 
may be modeled as a process of construction, maintenance and use of a situation model.  
A situation model is a state-space model composed of four types of information [2]: 

1. A spatio-temporal framework (spatial locations, time frames) 
2. Entities (people, objects, ideas, etc.) 
3. Properties of entities (color, size, shape, emotions, etc.) 
4. Relations (spatial, temporal, causal, ownership, family, social, etc.)  

For mobile robot navigation, a classic example of a situation model is the network of places [11]. 
Each place in the network is a state defined by a name, and the proximity of the robot to a world 
position.  Each place can be associated with robot behaviors using rules or behavior trees [12].  
Situation models decouple perception and cognition from behavior, providing the basis for flexible 
systems that can assimilate observations, predict consequences, and determine appropriate actions 
for services using adaptive behaviors that can be learned and refined.   

Situational collaboration requires that people and systems share a situation model, including a 
common vocabulary for entities, relations and situations, and the actions that result in changes of 
situation. Established approaches for machine perception use supervised learning to pre-train object 
detectors with labeled training data from a pre-defined set of categories. This approach limits 
perception to a closed set of pre-defined entities and relations, thus limiting the set of situations that 



can be modeled or communicated. An important challenge for situational collaboration is to provide 
a means to perceive and communicate information about new entities and new relations.  This 
requires an ability to learn from demonstration, explanation and experience.  

The ability for an intelligent system to generate or comprehend an explanation about a current or 
intended situation remains a fundamental challenge for collaborative interaction. Sharing 
comprehension of a situation through explanation is an important challenge for collaboration with 
intelligent systems that is beyond the current state of the art.  

2.3 Operational Collaboration 
The operational level concerns the planning and execution of tasks.  Information at the operational 
level includes the current and desired situations, their expression as intentions, goals and sub-goals, 
tasks and sub-tasks, and plans of actions that can be used to attain the desired situation. This level 
can also concern actions that can be used to attain or maintain a stable situation as well as detection 
of threats and opportunities.  

Operational collaboration requires sharing authority. Authority may be shared with a strict 
hierarchy, where one agent has the power to over-rule the actions of the other as with an aircraft or 
maritime crew. Authority is often shared using a protocol where each agent has a primary authority 
over a particular task domain, with a possibility of accepting delegation of authority in other 
domains. Authority may also be shared equally where each agent is free to initiate tasks according 
to its understanding of the common goals and current situation, as can occur in some forms of team 
sports such as football or ice hockey. Operational collaboration can be facilitated by a shared 
comprehension of the current situation, desired goal, and plans of actions that can be used to attain 
the goal.  
In the case of our personal service robot, it is normally assumed that the robot's patron has authority 
over the robot. In this case, the patron would ideally delegate responsibility to the robot for certain 
tasks such as cleaning or cooking. For example, the patron may ask the robot to monitor sauce on a 
stove and make sure that it does not burn. Alternatively, it may be desirable for the robot to have the 
authority to proactively initiate tasks to assist the human or avoid an undesirable situation.  

Several scientific and engineering domains have proposed techniques for solving problems at the 
operational level.  In classic AI, problem solving is performed in a state space [13], with an initial 
state, a set of desired goal states and a set of actions that can be used to move between states. 
Classical AI planning techniques are concerned with how to represent the problem space and how 
to use the space to automatically develop plans of actions.  Task planning [14] has been extended to 
the more general problem of developing a possibly parallel sequence of operations that may be 
performed by multiple agents in a coordinated manner to attain a goal.  In such cases, a library of 
planning algorithms and behaviors (perception-action reflexes) can be used to provide approximate 
solutions. However, with such approaches, the problem space is based on a closed, pre-defined set 
of entities, and associated plans and behaviors are programmed in advance. In many real-world 
domains, such approaches are made impractical by the prohibitively large size of the state space and 
the cost of acquiring information.  

A framework for the study of operational collaboration has been provided by Activity Theory, a 
research framework that originated in Soviet psychology in the 1920s [15]. Activity Theory holds 
that the constituents of an activity are not fixed but can dynamically change as conditions 
(situations) change. As actions are repeated, they may be compiled, or "operationalized" into 
operations.  When confronted with a failure or an unfamiliar situation, operations may be 
decompiled into explicit plans for re-planning to overcome the difficulty.  

Activity Theory is essentially a framework for description and analysis. An attempt to extend this 
framework to a predictive theory is provided by Situated Action Theory.  Suchman [16] observes 
that human action is constantly constructed and reconstructed from dynamic interactions with the 



material and social worlds.  Situated Action Theory emphasizes the importance of the environment 
as an integral part of the cognitive process. The subject of study is not the individual or the 
environment, but the interaction between the two. Situated action models emphasize the emergent, 
contingent nature of activity, and stress that activity emerges from the particularities of a situation.   
An alternative form of activity theory is provided by proactive systems. Proactive behavior emerges 
from the particularities of the current situation and possible future situations, including the 
individual and the environment [17]. Such behavior is increasingly recognized as important for 
learning to interact as well as for generating a sense of affection and trust [18]. 
An ability to comprehend a human explanation for a plan of action, including authorizations or 
limits to authority remains an important challenge for collaboration with intelligent systems. 
Operational collaboration can benefit from exchanges of information about procedures and 
interaction protocols based on experience or training. This is provided by the praxical level.  

2.4 Praxical Collaboration 
Praxical collaboration involves the exchange of knowledge about actions and procedures for 
collaboration based on experience or training. Praxis is knowledge about how to act. The term 
"Praxical" was proposed by Heidegger [19] to refer to the knowledge acquired through experience 
of how to use tools.  Heidegger proposed a view of learning where capabilities are acquired through 
practical experiments.  For example, to learn about a hammer, it is necessary to hammer things and 
observe the effects.  Here we are extending the term Praxical to include the exchange of information 
about the concepts, actions and techniques, whether preprogrammed, learned from theory or 
training, or acquired from experience. Information represented at this level is about how to perceive 
and modify the environment, how to predict phenomena including the effects of action, and how to 
develop plans, select behaviors and perform actions. Praxis is particularly important for social 
interaction, as societies, cultures, and local populations continually evolve social practices. 
Learning proper protocols is fundamental to collaboration.  

Praxical collaboration requires protocols for how to exchange information and work together. Much 
of everyday human interaction is guided by social norms that provide protocols for interaction. The 
capability to recognize a social situation and adopt the appropriate social role is fundamental to 
human interaction at this level.  Socially collaborative machines require abilities to perceive and 
recognize social situations, and to behave in a manner that complies with the roles and interaction 
protocols dictated by social norms.  While such capabilities can be learned through experience, 
human learning is generally greatly facilitated by explanations from a parent or teacher.  People 
acquire knowledge of social norms from explanation and training refined by experience. Learning 
from explanations is an important open challenge.  
In the case of our personal service robot, the robot must be able to adapt to the individual 
preferences and routines of the patron in order to be accepted. Ideally, this would require an ability 
to interpret and learn from explanations about how objects should be found or stored and 
instructions for how tasks should be performed. It would also require that the system has an ability 
to generate explanations for problems encountered while performing tasks in order to request 
assistance or to justify its decisions and actions. A key challenge at this level is the capability to 
generate and comprehend explanations about individual preferences.  

An even more challenging form of praxical collaboration is learning to act so as to please a partner. 
An elderly care robot that shares a living space with a person must rapidly adopt behaviors that 
please and evoke affection. Learning to behave so as not to annoy, and learning to interact so as to 
stimulate positive and healthy emotions will be essential both to acceptance and to success as a 
resource for elderly care. 
Current technologies for social interaction with intelligent systems generally rely on 
preprogrammed dialogs and rules with little or no ability to adapt to local customs or individual 



variations. An important challenge in this area is to develop a technology for systems that can 
acquire and refine praxical abilities for protocols for socially correct interaction through training, 
explanation and experience, balancing pre-programmed abilities with learned behaviors. 

2.5 Creative Collaboration 
Creative collaboration refers to a form of interaction where two or more partners work together to 
solve a problem or create an original artifact.  In the most effective forms of creative collaboration, 
each partner evaluates the comprehension and analysis of other partners in order to offer 
constructive criticism or to reinforce and build on emerging insights. When two or more partners 
work well together, a form of creative resonance emerges in which each partner improves and 
builds on the ideas of the others.     
A classic example of creative collaboration with an intelligent system was provided by the R1 
expert system used by Digital Equipment Corporation (DEC) to configure Vax computers in the 
1980s [20]. R1 was a rule-based expert system that used approximately 500 forward chaining rules 
to empower a salesperson to assemble a compatible configuration of software and hardware. The 
salesperson would describe customer requirements to the R1 system, and use R1 to configure a 
working system. This approach dramatically improved the product acceptance rate for Vax 
computers, with 10-fold payback on the initial investment within the first year of use. In the case of 
a personal robot, creative collaboration would be useful for tasks such as developing a common 
strategy to search for a lost object, or inventing a new recipe to accommodate missing ingredients. 

Creative collaboration can be expected to find widespread application in professional areas 
including systems design, discovery and artistic creation. Expert systems technologies failed to 
achieve widespread use, largely because of the very high cost of encoding human expertise and the 
fact that many areas of human expertise require praxical knowledge that could not be encoded with 
the formal methods of early AI. The emergence of powerful new machine learning techniques that 
can acquire reactive, situational, operational and praxical knowledge offers the possibility of 
building intelligent systems that can amplify human capabilities through creative collaboration. For 
example, an intelligent system for collaborative programming has recently become available using 
Open-AI's Codex system based on GPT-3 [21] and many more such services can be expected in the 
near future. The challenge is how to apply these new learning technologies to build intelligent 
systems that function as effective collaborators to empower people. 

3. Core Research Challenges for Collaborative AI 
A compilation of the open research challenges posed by collaborative AI resulted in a long list of 
domain specific research problems. However, grouping these problems according to the framework 
level revealed a repeated pattern based on three core abilities:  Comprehension, Explanation and 
Learning, as shown in figure 2.  

3.1 Comprehension  
Comprehension can be defined as the ability to understand the meaning and importance of a sensory 
perception or of a linguistic construct. In common language, the terms comprehension and 
understanding are often used interchangeably. However, understanding tends to be overloaded with 
different meanings, whereas comprehension has well defined technical definitions in the 
educational and cognitive sciences. For example, reading comprehension is the ability to process a 
text, understand its meaning, and to integrate this meaning with what the reader already knows [22].  
Using the terminology of ergonomics [3], comprehension can be summarized as a process of 
assimilation, association, and anticipation. A sensory percept is expressed in an internal 
representation (assimilation) and associated with various forms of memory. The meaning of the 
percept emerges from such associations, allowing the agent to predict or anticipate consequences 
and determine actions.  



An ability to comprehend is fundamental for collaborative intelligent systems. At the reactive level, 
the agent must be able to comprehend perceptions and the effects of actions in order to provide 
reactive control, as well as maintain an accurate model of a situation. For situational and operational 
collaboration, a system must be able to comprehend explanations of the current and desired 
situations and to generate explanations of its own comprehension to share with a partner. 
Comprehension and explanation emerge as fundamental to interaction at all levels.  

 
Figure 2.  A technology for Collaborative Intelligent Systems requires abilities for comprehension, 
explanation and learning at each level of collaboration, with abilities at each level building on the 
abilities of lower levels. The research challenges associated with comprehension, explanation and 
learning at each level require different technical expertise, depending on the nature of the 
information that is processed at each level. 

3.2 The Role of Explanation 
In a recent article, John Carroll argues that a proper technology for "Explanatory AI" is 
fundamental for trust between humans and AI [23]. Explanatory AI explains itself, providing an 
account of why it does what it does. However, such explanations are highly subjective and deeply 
contextual [24], with needs and expectations depending on the degree of domain and technical 
expertise of the human partner.  
An explanation can be defined as a statement that makes something clear or justifies an action. For 
situation modeling, the "something" is the situation, including the underlying entities and relations 
as well as associated actions and intentions. For operational collaboration, an explanation can 
provide a description of the sequence of intended actions that can take a situation to a desired state, 
as well as a description of the sequence of intermediate situations that can be used to ensure the 
proper execution of actions and operations. For praxical collaboration, explanations can be used to 
share knowledge about how to obtain information and coordinate actions based on habits and social 
norms. Explanations can also facilitate agreement on protocols for interaction and collaboration, 
facilitating coordinated action and recognition of intention. Explanations can be used to describe 
hypotheses for creative collaboration. An ability to generate and interpret explanations is key for all 
levels of collaboration with intelligent systems.  
Explanations can be structured as narratives that provide answers to the Quintilian questions Who, 
What, Why, When, Where, and How. Specifying these elements is key to establishing a shared 
situation model and a shared agreement on operational plans and authority, whether describing past, 
present or future situations.  "What" and "where" describe the entities and relations that compose a 
situation. "Why'' describes the desired or goal situations. "How" concerns the sequence of actions or 
operations that can be used to reach the goal. "When" describes the conditions under which the 
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actions and operations can be performed. "Who" assigns the operational authority to perform the 
actions, or establishes a protocol for determining authority during the operation.  
Such a narrative structure can substitute for a lack of experience by providing grounding for 
interpreting instructions. Explanations can be used to compensate for the lack of experience when 
providing instructions. They can also be used to diagnose and learn from the results of operations 
"after the fact" when operations fail to provide a desired outcome. An explanation can help identify 
whether the failure was due to incomplete or inaccurate model of the situation or the result of 
erroneous assumptions or some other cause. A narrative that explains the understanding of the 
situation and the reasons for selecting actions can be used to learn from the failure and improve 
operations for the future.  
Intelligent collaboration requires abilities to share comprehension. Explanations provide a powerful 
technique for sharing situation models, operational plans, praxical knowledge and creative 
solutions. Developing technologies for dynamically generating explanations and for interpreting 
explanations are an important challenge for collaboration with intelligence systems.  In addition to 
comprehension and explanation, collaborative intelligent systems require an ability to learn. 

3.3 The Challenge of Learning 
Learning can be defined as the acquisition of new abilities through explanation or experience. An 
ability to learn is even more fundamental than comprehension or explanation. The enormous 
complexity of the real world imposes a requirement to  continue to acquire and adapt abilities. 
Indeed, most definitions of intelligence include an ability to learn as a core ability.     
Note that learning is distinct from comprehension. Comprehension refers to acquisition and 
maintenance of a description for controlling a process, modeling a situation, planning an operation, 
or agreeing methods to achieve goals. Learning concerns acquisition of abilities: the means or 
capacity to perceive, comprehend, and act.  
Learning to recognize entities can be particularly challenging for functional categories of objects 
based on affordances. Affordances are the qualities or properties of an object that define possible 
uses for the object and indicate how it can be used [25]. Functional categories are sets of entities 
that share affordances. For humans, learning to recognize and name functional categories is 
facilitated by experience. Without reference to the experience of sitting, machines are reduced to 
superficial detection of chairs based on shape and appearance.   
Advances in machine learning have recently provided an enabling technology for systems that can 
learn through observation and interaction. Transformers and self-attention [26] have become the 
dominant approach for natural language processing (NLP) with systems such as BERT [27] and 
GPT-3 [20] rapidly displacing more established Recurrent and Convolutional Network structures 
with an architecture composed of stacked encoder-decoder modules using self-attention. This 
provides an important new technology that appears well-suited for linguistic communications at all 
levels, including sharing information about situations, agreeing on tasks at the operational level, as 
well as sharing praxical knowledge and communicating for creative collaboration. Applying such 
technology for collaboration with intelligent systems raises many new and interesting research 
challenges. 

3.4 Finding Common Ground 
In a recent paper in Nature [28] the authors argue for a science of cooperative intelligence based on 
machine abilities to understand, communicate and interact with people, under the guidance of 
norms and institutions. The authors referred to this as "finding common ground" with AI systems.  
Finding common ground and the related problem of mutual understanding provide an interesting 
perspective on research challenges for collaborative AI. This requires abilities to comprehend, 
explain and learn at reactive, situational, operational, praxical and creative levels raising 



challenging problems for a variety of scientific disciplines. Differences in the expertise required to 
address problems at each level result from the nature of the information expressed: sensori-motor 
signals, symbolic entities and relations, plans of action, or general knowledge about how to 
accomplish tasks and create new artifacts. The study of Collaborative Artificial Intelligence is not 
the exclusive domain of any one scientific community. 

4. Discussion and Conclusions 
We have described a hierarchical framework for collaborative intelligent systems. Each level of the 
hierarchy concerns interaction with distinct forms of information: Sensori-motor signals for the 
reactive level, entities and relations for the situational level, tasks and plans for the operational 
level, domain specific knowledge about how to perceive and act for the praxical level, and 
problems, hypotheses and solutions at the creative level.  

This framework has been designed to provide a problem space for research, grouping related 
challenges into subcategories according to the information that is processed and the nature of the 
interaction. Such a problem space facilitates formulation and comparative evaluation of competing 
techniques. However this framework can also serve as a reference model for designing systems, 
providing a functional decomposition for collaborative intelligent systems.  
All levels are concerned with natural language communications. Reading, writing, listening and 
speaking have substantial sensori-motor components. Much of natural language communication is 
about describing situations. For example, the verb of a sentence is a predicate describing the 
relation between the subject entity and one or more object entities. Natural language can be used for 
coordinating actions during operational collaboration. Natural language is highly effective and 
widely used for communicating praxical knowledge and for creative collaboration.   
Enabling technologies for collaboration with intelligent systems have potential for significant 
societal impact and wealth generation. An obvious example is in computer games and virtual 
worlds (the metaverse) where enabling virtual characters with abilities for situation understanding, 
operational collaboration and creative problem solving can have enormous impact. Similarly, 
virtual musical groups with simulated players that can sense and react musically to a musician can 
engender creativity by empowering musicians to explore new forms of music without the clash of 
egos that can occur in real musical bands.  

Chatbots are another area where an enabling technology for collaborative problem solving could 
provide important wealth generation.  Most current chatbot technologies rely on pre-programmed 
linguistic patterns to generate plausible natural language responses to queries, while restricting 
responses to preprogrammed answers or interpretations of results from search engines.  
Empowering chatbots with an ability to creatively explore solutions with users would have an 
enormous appeal, for example by providing virtual customer service agents for online commerce 
that could guide and assist users in planning purchases.  
Technologies to permit humans and intelligent systems to collaboratively analyze problems and 
determine solutions augmented with explanations and courses of possible actions can have 
enormous impact for social impact and scientific understanding.  Finding common ground at all 
levels is key.  
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