
Vol.:(0123456789)1 3

Graefe's Archive for Clinical and Experimental Ophthalmology 
https://doi.org/10.1007/s00417-022-05935-9

REVIEW ARTICLE

Comitant strabismus etiology: extraocular muscle integrity and central 
nervous system involvement—a narrative review

Bernat Sunyer‑Grau1   · Lluïsa Quevedo1 · Manuel Rodríguez‑Vallejo2 · Marc Argilés1

Received: 5 July 2022 / Revised: 9 November 2022 / Accepted: 1 December 2022 
© The Author(s) 2023

Abstract
Strabismus is not a condition in itself but the consequence of an underlying problem. Eye misalignment can be caused by 
disease, injury, and/or abnormalities in any of the structures and processes involved in visual perception and oculomotor 
control, from the extraocular muscles and their innervations to the oculomotor and visual processing areas in the brain. A 
small percentage of all strabismus cases are the consequence of well-described genetic syndromes, acquired insult, or disease 
affecting the extraocular muscles (EOMs) or their innervations. We will refer to them as strabismus of peripheral origin since 
their etiology lies in the peripheral nervous system. However, in most strabismus cases, that is comitant, non-restrictive, non-
paralytic strabismus, the EOMs and their innervations function properly. These cases are not related to specific syndromes 
and their precise causes remain poorly understood. They are generally believed to be caused by deficits in the central neural 
pathways involved in visual perception and oculomotor control. Therefore, we will refer to them as central strabismus. The 
goal of this narrative review is to discuss the possible causes behind this particular type of eye misalignment and to raise 
awareness among eyecare professionals about the important role the central nervous system plays in strabismus etiology, 
and the subsequent implications regarding its treatment. A non-systematic search was conducted using PubMed, Medline, 
Cochrane, and Google Scholar databases with the keywords “origins,” “causes,” and “etiology” combined with “strabismus.” 
A snowball approach was also used to find relevant references. In the following article, we will first describe EOM integrity 
in central strabismus; next, we will address numerous reasons that support the idea of central nervous system (CNS) involve-
ment in the origin of the deviation, followed by listing several possible central causes of the ocular misalignment. Finally, 
we will discuss the implications CNS etiology has on strabismus treatment.
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Key messages

Ocular misalignment is the consequence of an underlying problem in any of the structures involved in vision and

oculomotor control, from the extraocular muscles (EOMs) to the visual and oculomotor centers in the brain.

EOMs structure and function remains unaltered in most strabismus cases, where the causes of the deviation are 

believed to be in the central nervous system.

EOMs surgery, the standard ophthalmological treatment for strabismus, acts solely at a peripheral level and does not 

take into consideration nor is directed to remediate possible central deficits present.
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Introduction

Strabismus is a common disorder that affects from 3 to 6% 
of the worldwide population [1–4]. The American Academy 
of Ophthalmology (AAO) defines strabismus as a misalign-
ment of the eyes that may be congenital or acquired [5]. 
The direction, magnitude, and frequency of the deviation 
can vary widely between patients. The characteristics of 
the deviation can also change depending on the position of 
gaze (incomitance), and the viewing distance, near versus 
far. In addition, double vision, suppression, or anomalous 
sensory correspondence might be present, and in 12.5% of 
cases, the eye turn and amblyopia occur concurrently [6]. 
Strabismus can present itself in multiple forms, what some 
authors have called “strabismus polymorphy” [7]. This sug-
gests that the eye turn is a consequence of a vast number of 
conditions of multiple possible origins, influenced by either 
genetic or environmental factors, or a combination of both 
[8–10]. Strabismus is not a single entity nor a condition in 
itself. The eye misalignment is a manifestation/sign of an 
underlying problem involving one or multiple components 
of the visual and oculomotor systems along the peripheral-
central axis (Fig. 1), from the extraocular muscles (EOMs) 
themselves, their pulleys [11] and their innervations, to all 
brain areas involved in visual perception and oculomotor 
control: midbrain fusion centres [12], the lateral geniculate 
nucleus (LGN) and striate and extrastriate areas [13].

Strabismus of peripheral origin account for 5–25% of 
all strabismus cases [1, 4, 7, 14] and are the consequence 
of either complex well-described genetic syndromes [12, 

13] or due to acquired insult to the eye or its innervations. 
Peripheral strabismus are predominantly incomitant and can 
be caused by ocular or orbital trauma, craniofacial abnor-
malities, connective tissue disorders and syndromes, mus-
cular dystrophies, genetic myopathies, and cranial nerve 
syndromes and palsies [15–18].

On the other hand, the majority of strabismus, 75–95% 
of all strabismus cases [1, 4, 7, 14], are concomitant, non-
restrictive, non-paralytic, or developmental. They are not 
related to specific syndromes, and their genetic associations 
remain poorly understood [7, 13, 19–29]. They are gener-
ally believed to be caused by deficits in the central neural 
pathways involved in visual perception and oculomotor con-
trol [7, 30–36]. Although several possible mechanisms have 
been hypothesized, the specific central origins of strabismus 
remain elusive.

The aim of this study was to review and discuss the latest 
evidence about the etiology of the most common, and at the 
same time, the less known, types of ocular deviations: non-
restrictive, non-paralytic, and developmental strabismus. For 
this purpose, the EOM integrity in these cases is described 
first, addressing the following question “Are there any abnor-
malities in the EOMs in central strabismus?” Then, numer-
ous reasons that support the idea of central involvement in 
the origin of the deviation are addressed, and finally, several 
possible central causes of the ocular misalignment are listed. 
With this review, we aim to create awareness among eyecare 
professionals about the important role the central nervous 
system plays in strabismus etiology, and the subsequent 
implications regarding its treatment.

Fig. 1   Peripheral-central axis. 
It comprises structures of the 
visual and oculomotor systems, 
from the eye (periphery) to the 
brain (center). It includes the 
orbit, the extraocular muscles 
(EOMs), their pulleys, the 
nerves and their nuclei, the mid-
brain fusion centers, the lateral 
geniculate nucleus (LGN), and 
the primary (V1) and secondary 
visual areas
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The scientific literature on the possible causes of stra-
bismus, in particular regarding the integrity of the EOMs 
and the structure and function of the CNS, was searched. 
We used PubMed, Medline, Cochrane, and Google Scholar 
databases. We did not use restrictions for date nor language 
of publication; databases were last searched on June 2022. 
The keywords “origins,” “causes,” and “etiology” were com-
bined with “strabismus.” A snowball approach was also used 
to track down relevant references.

Extraocular muscle integrity in concomitant, 
non‑paralytic, strabismus

Despite minor differences, gross anatomical, ultra-structural 
[37], and histological [38] organization of EOMs in concom-
itant developmental strabismus are similar to that of EOMs 
without strabismus. High-resolution, surface coil magnetic 
resonance imaging (MRI) showed normal horizontal rectus 
muscle path lengths in strabismic patients compared to nor-
mal controls [39]. Sizes, paths, structure, and innervation 
of horizontal rectus EOMs and in connective tissues in the 
pulley system revealed no significant differences between 
orthotropic and naturally or artificially strabismic monkeys 
under histological examination and MRI [40]. On the other 
hand, high-resolution MRI showed medial rectus muscle to 
be 39% larger in esotropic patients than in controls [41]. 
Surprisingly, in the same individuals, lateral rectus mus-
cle cross-sections in esotropia were up to 28% larger but 
only significantly larger in one plane [41]. Hao et al. 2016 
reported similar results: rectus pulleys were found to be 
displaced differently in subjects with A, V, and Y, pattern 
exotropia but normal in concomitant exotropia. On the other 
hand, medial rectus muscle size was found to be significantly 
reduced in concomitant exotropia compared to normal sub-
jects and individuals with pattern exotropia (P < 0.05) [42]. 
Other authors reported extensive histological and micro-
scopic abnormalities in strabismic EOMs such as disorgani-
zation and atrophy of skeletal muscle fibers, vacuolation and 
degeneration of myofibrils, accumulation of lipid droplets, 
and clustering of mitochondria and autophagic processes 
[43]. Interestingly, all the above-mentioned defects were also 
seen in the EOMs of a strabismic patient with Down syn-
drome, a condition both associated with eye misalignment 
and central nervous system (CNS) defects.

Abnormalities at molecular and gene expression levels 
in the EOMs appear to be more prominent. Intermediate 
filament protein distributions were found to be different in 
EOMs of patients with concomitant exotropia compared to 
normal subjects [44]. Altick et al. (2012), observed differ-
ences in gene expression between strabismic and normal 
human EOMs in genes associated with signaling, calcium 
handling, mitochondria function and biogenesis, and energy 

homeostasis [35]. Moreover, Altick found a decrease in the 
expression of contractility genes and an increase of extra-
cellular matrix-associated genes. Similar findings of altered 
gene expression have been reported by other authors. Zhu 
et al. (2013) found reduced expression of seven myogenesis-
related genes in EOMs of patients with concomitant strabis-
mus [45], and Agarwal et al. (2016) reported downregula-
tion of muscle proteins and upregulation of expression of 
collagens, regulators of collagen synthesis and degradation, 
connective tissue growth factor (CTGF), and growth factors 
controlling extracellular matrix (ECM) [46].

These studies suggest that some degree of peripheral 
muscular abnormality is present in concomitant strabismus. 
However, it remains unresolved whether the presence of ana-
tomical, histological, and molecular abnormalities in EOM 
structure are the cause of the ocular deviation, or rather a 
consequence of altered function, as seen in other muscles 
[34, 35, 43, 44], for example, in stroke victims where the 
loss of function leads to abnormalities in skeletal muscle 
mass and anatomy [47, 48], decrease in fiber length, and 
change in pennation angle [49]. Mechanical and microstruc-
tural changes of skeletal muscle have been reported after 
changes in function [50], immobilization of skeletal muscles 
with or without stroke led to atrophy, and deterioration of 
the mechanical properties of the muscle.

Skeletal muscles, and therefore extraocular muscles [51], 
have a high degree of adaptability. Muscle fibers contain 
myofibrils, which are essentially long chains of sarcomeres, 
the contractile units of skeletal muscle. Skeletal muscles 
adapt their lengths by addition or subtraction of sarcom-
eres at the extremes of myofibrils to maintain optimal func-
tion. Length adaptation of extraocular muscles can occur 
in response to muscle position [51], muscle stimulation 
[52–54], and to facilitate binocular alignment [51, 55]. The 
cause of abnormal muscle length paths in strabismus could 
lie well beyond the muscles themselves.

Strabismus of central origin

The idea that concomitant, non-paralytic, developmental 
strabismus are caused by deficits in the central nervous sys-
tem is supported by different arguments. The minor abnor-
malities found in the EOMs (periphery) in these types of 
strabismus might be a consequence of altered function rather 
than the cause of the deviation.

First of all, in most strabismus cases, the subject has no 
limitation of gaze. Patients with esotropia and exotropia can 
abduct and adduct either eye effortlessly. Moreover, exotro-
pia can be greater at distance than at near [56], known as 
divergence excess, where there is no muscular impediment 
to converge. Likewise, in convergence excess, esotropia is 
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greater at near than at distance, the subject being fully capa-
ble to diverge [57].

Strabismus is associated with neurodevelopmental and 
neurologic disorders such as cerebral palsy [58–60], Down’s 
syndrome [61–63], neurodevelopment delay [61, 63, 64], 
intellectual disability [65], and white matter damage of 
immaturity [66]. Greenberg investigated the prevalence 
and types of esotropia in a Western population and found 
that 11.4% of esotropias were associated with CNS defects: 
cerebral palsy, developmental delay, Down syndrome, and 
seizure disorder [4]. Likewise, approximately 15% of chil-
dren with exotropia have associated neurologic abnormali-
ties, cerebral palsy, and developmental delay [67]. Acquired 
brain injury (ABI), which is any type of brain injury occur-
ring after birth, often leads to eye movement and binocular 
coordination disorders, including strabismus [68–71]. ABI 
are predominantly caused by stroke, brain tumor, infection, 
cerebral hypoxia, or after impact or sudden shake to the 
head. Lesions can occur at the level of the cranial nerves 
innervating the EOMs (periphery) or in the brainstem and 
brain areas involved in oculomotor control (center) [72]. The 
frequency of ocular misalignment in the presence of brain 
damage is difficult to report since it depends on the nature, 
extension, and location of the injury. Fowler found that stra-
bismus was present in 28% of patients with stroke, many 
of them with no obvious signs of brainstem abnormalities 
[68]. The higher-than-average prevalence of strabismus in 
the presence of CNS defects indicates that in many cases, the 
cause of strabismus lies in the brain. Moreover, these stud-
ies depict the relationship between strabismus and obvious, 
well-defined neurological alterations. More subtle, covert 
neurological deficits could be the cause of strabismus in a 
much larger proportion of cases.

Smoking during pregnancy increases the risk of children 
developing strabismus compared to the children of mothers 
that did not smoke [73–75]. Fetal development of the oculo-
motor and visual systems could be particularly sensitive to 
toxic exposure or smoking-induced fetal hypoxia during the 

second half of pregnancy. Alterations caused by smoking are 
more likely to be at the level of the CNS than in the EOMs 
or their innervations, given its associations to thinning of the 
cerebral cortex [76], and reduced gray matter volumes and 
densities in specific areas [77]. Exposure to other potentially 
neurotoxic substances during pregnancy such as alcohol [78, 
79] and drugs [80] is also associated with an increased risk 
of strabismus.

The concept of strabismic control is another important 
point indicating central origin and central relevance in stra-
bismus. It is widely recognized that strabismus control plays 
a significant role in the outcomes of EOM surgery, especially 
in intermittent exotropia [81, 82]. People, whether with stra-
bismus or without, have a certain amount of sensorimotor 
knowledge related to their eyes and their position in space. 
In order to grade the amount of control patients have over 
their deviations, multiple control scores (Table 1) have been 
developed by different authors [83–86]. They all essentially 
evaluate strabismic control based on the frequency of the 
tropic and phoric phase and the quality and speed of the 
refixation movement after the occlusion of one eye. In addi-
tion, some people with strabismus are capable of altering 
the magnitude of the eye turn, they can do “something” to 
decrease the deviation, and “something” to increase it even 
though they are often unable to describe how they do it. 
In line with strabismus control, in many cases, the devia-
tion worsens when the person is sick, tired, distracted, or 
absorbed in a highly attention-demanding task. All these 
unequivocally point to cerebral involvement in eye misalign-
ment pathogenesis [7].

Strabismus can resolve spontaneously. Infantile esotro-
pia measuring up to 40 PD has been reported to resolve in 
46/170 (27%) of patients in the first months of life without 
treatment [87]. On the other hand, eye misalignment can also 
worsen over time. Intermittent and variable deviations tend 
to become constant. Even after successful surgical alignment 
(less than 10PD from orthotropia), the ocular deviation can 
reappear. Exotropic drift after an initially successful surgery 

Table 1   Newcastle control score.  Adapted from Haggerty et al., (2004)[83]

NCS total = Home + Clinic near + Clinic distance

Home control score 0 Squint/monocular eye closure never noticed
1 Squint/monocular eye closure seen occasionally (< 50% of time child observed) for distance
2 Squint/monocular eye closure seen occasionally (> 50% of time child observed) for distance
3 Squint/monocular eye closure seen for distance and near fixation

Clinic control near 0 Manifest only after cover test and resumes fusion without need for blink or refixation
1 Blink or refixate to control after CT
2 Manifest spontaneously or with any form of fusion disruption without recovery

Clinic control distance 0 Manifest only after cover test and resumes fusion without need for blink or refixation
1 Blink or refixate to control after CT
2 Manifest spontaneously or with any form of fusion disruption without recovery
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is a common phenomenon [88–90]. This is another indicator 
that the cause of the deviation remains untreated and is not 
related to EOMs structure.

Last but not least, cortical activity changes have been seen 
after successful treatment in convergence insufficiency, a 
non-strabismic binocular dysfunction characterized by 
exodeviation, asthenopia, and in some cases double vision at 
near [91, 92]. Treatment with vision therapy led to improve-
ment in near point of convergence (NPC), greater positive 
fusional vergence, reduction in symptoms, and lower near 
dissociated phoria values. More importantly, improvement in 
clinical parameters correlated with an increase in functional 
activity in the frontal areas of the brain, the cerebellum and 
the brainstem [91, 92].

Central strabismus etiology

Central strabismus can be the consequence of anatomical 
and/or functional abnormalities found in any of the brain 
areas and pathways involved in vision and oculomotor con-
trol, including the oculomotor and proprioceptive nuclei in 
the brainstem, the medial reticular formation, the pontine 
reticular formation, the superior colliculus, the thalamus, the 
cerebellum, the corpus callosum, and the occipital lobe, and 
the extraestriate areas involved in visual processing in the 
parietal and frontal lobes, the parietal eye field, and the fron-
tal and supplementary eye fields [7, 68–71]. Brain abnormal-
ities can either be the consequence of obvious, identifiable 
lesions such as the ones caused by trauma, stroke, infection, 
brain tumor, etc., or the consequence of more subtle insult 
to the brain, undetectable to testing. In the following section, 
we will provide with examples of brain abnormalities that 
could be the cause of strabismus. We will focus on stud-
ies reporting reduced gray matter volumes, abnormal brain 
activity, and abnormal connectivity within and between 
brain regions in subjects with strabismus. By no means, 
we believe these examples constitute all the possible brain 
abnormalities that can result in strabismus; we simply intend 
to illustrate the variety of defects and locations involved in 
strabismus pathogenesis.

Reduced gray matter volumes and abnormal brain 
activity

Subjects with strabismus present abnormal brain activity 
in multiple areas, within the primary and secondary visual 
cortex, but also beyond the occipital lobe. Ouyang et al. 
(2017) reported reduced gray matter volumes in strabismic 
patients in the left cuneus [93]. In the lingual gyrus, cor-
responding to Brodmann area 19 and site to the second-
ary visual cortex (V2), higher synchrony of spontaneous 
neuronal activity was observed in amblyopic-strabismic 

adults [94] and in concomitant strabismus [95] than in nor-
mal controls. Moreover, brain activity in the lingual gyrus 
has been reported to be higher than average in children 
with infantile esotropia [96]. Shao et al. (2019) reported 
higher spontaneous brain activity in right and left middle 
occipital gyrus in amblyopic-strabismic adults [94]. The 
middle occipital gyrus also corresponds to the secondary 
visual cortex and is part of the dorsal visual stream. Along 
the dorsal stream, Chan et al. (2004) found reduced gray 
matter volumes in the occipital and parietal lobe in strabis-
mic compared to healthy controls [97]. The dorsal stream 
processes visual information relevant to the position of 
objects in space and the visual guidance of action [98].

Yang et al. (2014) found increased brain activity in the 
bilateral precuneus of subjects with Infantile Esotropia 
compared to healthy controls [96]. Similar findings have 
been reported by other authors, who have found increased 
synchrony of spontaneous neuronal activity in the right 
precuneus [94]. This structure is located on the medial sur-
face of the superior parietal lobe, anterior to the parietooc-
cipital sulcus. It is associated with a variety of functions 
including cognition, memory, and emotion. In the visual 
domain, it is involved in visuo-spatial representations, 
attention, and in the execution, planning, and imagination 
of movements [99–101].

In the frontal lobe, Shao et al. (2019) found higher 
synchrony of spontaneous neuronal activity in the pre-
cental gyrus (premotor cortex) of both hemispheres 
and a reduction in the left inferior frontal gyrus [94]. 
The premotor cortex plays a role in the control of 
movement, including eye movements. Ouyang et al. 
(2017) found the right premotor cortex to have reduced 
gray matter volumes in strabismic patients [93]. In 
contrast, Chan et  al. (2004) observed greater gray 
matter volumes in the frontal and supplementary eye 
fields, in the prefrontal cortex, and in the thalamus and 
basal ganglia in strabismic adults compared to normal 
controls [97].

Ouyang et al. (2017) also found lower than normal gray 
matter volumes in strabismic patients in the left middle 
temporal pole, the left cerebellum posterior lobe, and the 
right posterior cingulate cortex [93]. Higher synchrony of 
spontaneous neuronal activity has also been found in the 
fusiform gyrus and the cerebellum in concomitant stra-
bismus [95].

On the oculomotor and vestibular systems, abnormal 
neural activity can also result in strabismus. Altered func-
tion anywhere in the proprioceptive extraocular circuitry, 
especially early during development, can derive in loss 
of feedback control of eye position and hence loss of bin-
ocular vision [102–104]. Eye misalignment can also be 
a consequence of abnormal activity along the vestibular 
system and pathways [105, 106].



	 Graefe's Archive for Clinical and Experimental Ophthalmology

1 3

Abnormal connectivity

Cortico‑cortical

Numerous cortico-cortical connections suffer alterations in 
strabismus. Either connections within a given area, such as 
in V1 in cats [107] or in pathways connecting distant areas. 
Yan et al. (2010) found white matter volumes to be reduced 
along the dorsal visual pathway in adults with concomitant 
exotropia [108]. Huang, Li, Zhang, et al. (2016) reported 
increased fractional anisotropy (FA) values in the precuneus 
and medial frontal gyrus of both hemispheres in patients 
with concomitant strabismus, suggesting enhanced fiber den-
sity, axonal diameter, and myelination [109]. In contrast, the 
authors found decreased FA values in the left superior tem-
poral gyrus. FA is a marker for white matter microstructural 
state. Decreased FA values are associated with white matter 
defects. Ouyang et al. (2017) found significantly reduced 
white matter volumes in the bilateral middle temporal gyrus, 
the right precuneus and right premotor cortex in concomi-
tant strabismus patients compared to healthy controls [93]. 
Zhu et al. (2018) observed abnormal functional connectivity 
in concomitant exotropia patients between the left primary 
visual cortex (BA17-V1) and the left lingual gyrus/cerebel-
lum posterior lobe, the right middle occipital gyrus, the left 
precentral gyrus/postcentral gyrus, and the right inferior 
parietal lobule/postcentral gyrus; abnormal functional con-
nectivity was also found between the right primary visual 
cortex and right middle occipital gyrus [110].

Callosal

The corpus callosum plays a role in the development of 
human binocularity [111, 112]. Ten Tusscher et al. (2018) 
found abnormal interhemispheric fibers in the corpus callo-
sum connecting right and left primary visual cortical areas in 
individuals with infantile esotropia (IE) compared to normal 
controls [113]. Subjects with IE had a higher amount of 
these fibers, and their hemispheric distribution was asym-
metric, with callosal fibers starting from one primary visual 
cortex being different from the ones arising from the con-
tralateral homologous areas [113]. Abnormal connectivity 
of the corpus callosum in the primary and secondary visual 
cortex has been reported in cats with surgically induced stra-
bismus and in Siamese cats with natural esotropia [114]. The 
latter suggests that abnormal corpus callosum connectivity 
is not only a consequence of surgically-induced strabismus 
but a potential factor in strabismus pathogenesis. This is 
also supported by studies in cats in which the corpus cal-
losum had been sectioned early on life and consequently 
displayed strabismus [115–117]. In a study of 13 children 
with corpus callosum agenesis, strabismus was present in 
6 (46%) of the children [118]. Corpus callosum maturation 

is dependent on visual experience: monocular deprivation 
[119], complete darkness [120, 121], and strabismus [114, 
122] result in a reduction of callosal projections, changes 
in their distribution and detrimental effects of callosal neu-
ron properties. Moreover, spontaneous neural activity even 
before eye-opening (in absence of visual input) contributes 
to normal corpus callosum development [123–125].

Dorsal–ventral

It has been hypothesized that a division between the ven-
tral and dorsal streams, as seen in children with Williams 
syndrome, leads to visual problems and severe visuospatial 
difficulties. Strabismus is found in a greater proportion of 
cases of Williams syndrome compared to the normal popu-
lation [126].

The dorsal stream, involved in processing visuospatial 
information and planification of visuomotor action [98], has 
been reported to be particularly compromised in develop-
mental disorders such as Williams syndrome, autism, dys-
lexia, and in premature infants [126–130]. Atkinson hypoth-
esized that the dorsal stream has specific vulnerability during 
development [131]. Insult early in development could result 
in abnormal space representation, altered eye movements, 
and deficits in visual-directed behaviors such as locomotion, 
reaching, and grasping, which could be associated to stra-
bismus. Gopal et al. (2020) developed a treatment exercise 
for amblyopia and strabismus with emphasis on the dorsal 
stream, both regarding saccadic eye movements and visually 
guided action such as pointing, and also by improving atten-
tion. In their pilot study with 35 subjects with amblyopia, 22 
of whom had strabismic amblyopia, stereopsis improved in 
34 (97%), and ortophoria was achieved in 15/22 (68%) after 
10 one hour sessions [132].

In the retino‑geniculo‑cortical pathway

Abnormal predominance of crossed retinal ganglion cells at 
the optic chiasm is sometimes associated with strabismus in 
humans [36, 133]. An unnaturally high number of crossed 
RGCs is also found in Siamese cats [134] and in albino rats, 
rabbits, monkeys [135], and also in humans with albinism 
[136–139]. All previous cases manifest higher than average 
percentages of strabismus.

Implications regarding strabismus 
treatment

The ocular deviation is not a disease in itself but a conse-
quence of an underlying problem ranging from systemic, 
ocular, and neurological diseases to genetic syndromes and 
to acquired injury to the structures involved in vision. Lack 
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of understanding of strabismus etiology may prevent treat-
ment from being targeted to the specific causes of the eye 
misalignment. Optimal medical treatment should be directed 
to the source. Classical and contemporary standard treat-
ment for strabismus, i.e., EOMs surgery, acts exclusively at 
a peripheral level. EOM surgery consists of mechanically 
weakening or strengthening the muscles to correct the eye 
misalignment. However, in most strabismus cases, there is 
little or no evidence of abnormalities in the EOMs. In addi-
tion, the presence of co-existing CNS abnormalities suggests 
that the CNS plays a role in strabismus pathogenesis. Not 
being able to address the concomitant CNS abnormalities 
in strabismus could be the cause of surgical treatment vary-
ing [23] and sometimes unsuccessful results [28, 140–144], 
often with high recurrence and reoperation rates [145–148], 
all despite being a common and frequently implemented 
procedure worldwide [149, 150]. By surgically rearranging 
EOM position, no steps are taken to enhance control, nor to 
improve oculomotor and perceptual abilities. If anything, 
awareness of eye position could be increasingly limited due 
to the destruction of proprioceptive afferents [151]. Con-
sidering that multiple causes, along the periphery-center 
axis, can be behind the ocular deviation, different treatment 
strategies tailored to the precise strabismus causes might be 
needed. Some cases benefiting from surgery, others from 
patch therapy, glasses prescription, vision therapy, and in 
some cases, the deviation can resolve spontaneously. Differ-
ent treatment strategies imply a multidisciplinary approach 
between ophthalmologists, optometrists, and may be in the 
future neurologists. Incorporating treatment directed at 
improving oculomotor control, enhancing fusion, proprio-
ception, interhemispheric connectivity, etc.

Conclusion

Alterations in structures in the oculomotor and visual 
systems along the peripheral–central axis can result in 
strabismus. In concomitant, non-restrictive, developmen-
tal strabismus (the most common type of strabismus), no 
significant anatomical and/or functional abnormalities are 
present at the level of the EOMs. In these cases, the devia-
tion is believed to be caused by alterations in the central 
neural pathways involved in visual perception and oculomo-
tor control [152]. However, the exact causes remain poorly 
understood [20–23]. Multiple arguments reinforce the idea 
that the SNC plays an important role in comitant strabismus 
pathogenesis: the higher than average presence of strabismus 
in neurological conditions and diseases; the increased rates 
of strabismus in children exposed to neurotoxic substances 
such as tobacco, alcohol, and drugs during pregnancy; the 
absence of limitations of gaze; the capacity for some exo-
tropes to converge and some esotropes to diverge; the control 

and awareness that many strabismic patients have over the 
deviation; the negative effects stress, fever, and tiredness 
have in strabismus control; and last but not least, the brain 
activity changes seen after successful treatment of conver-
gence insufficiency with vision therapy. Furthermore, multi-
ple CNS abnormalities co-exist with strabismus. On the one 
hand, changes in brain activity, brain connectivity, and gray 
and white area volumes might be direct consequences of the 
eye misalignment or its adaptations. On the other hand, these 
very same functional and anatomical alterations could be 
the initial cause of strabismus. In order to improve strabis-
mus treatment success rates, research regarding the origins 
of strabismus should be encouraged so that in the future, 
treatment is tailored to the precise causes of the eye mis-
alignment. Different treatment methods focusing on distinct 
points of the peripheral-central axis might allow for a more 
customized approach and yield better results. With some 
strabismus cases responding better to periphery-acting treat-
ment (surgery), while other cases showing better outcome 
with treatment acting at CNS level.
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