
A NOTE ON BERNSTEIN-SATO IDEALS

JOSEP ÀLVAREZ MONTANER

Abstract. We define the Bernstein-Sato ideal associated to a tuple of ideals
and we relate it to the jumping points of the corresponding mixed multiplier
ideals.

1. Introduction

Let R be either the polynomial ring C[x1, . . . , xn] over the complex numbers
or the ring C{x1, . . . , xn} of convergent power series in the neighbourhood of the
origin, or any other point. The multiplier ideals of a elementf or an ideal a in R
are a family of nested ideals that play a prominent role in birational geometry (see
Lazarsfeld’s book [Laz04]). Associated to these ideals we have a set of invariants, the
jumping numbers, that are intimately related to other invariants of singularities. For
instance, Ein, Lazarsfeld, Smith and Varolin [ELSV04] and independently Budur
and Saito [BS05], proved that the negatives of the jumping numbers of f in the
interval (0, 1) are roots of the Bernstein-Sato polynomial of f . Budur, Mustaţă
and Saito [BMS06] extended the classical theory of Bernstein-Sato polynomials to
the case of ideals and also proved that the jumping numbers of an ideal a in the
interval (0, 1) are roots of the Bernstein-Sato polynomial of a.

There is a natural extension of the theory of multiplier ideals to the context of
tuples of germs F := f1, . . . , f` or tuples of ideals aaa := a1, . . . , a` in R. The main
differences that we encounter in this setting is that, whereas the multiplier ideals
come with the set of associated jumping numbers, the mixed multiplier ideals come
with a set of jumping walls. On the other side of the story we have the notion of
Bernstein-Sato ideal associated to a tuple of germs F given by Sabbah [Sab87]. In
the case of a tuple of plane curves, Cassou-Noguès and Libgober [CNL11] related
the Bernstein-Sato ideal with the so-called faces of quasi-adjunction which is a set
of invariants equivalent to the jumping walls.

The aim of this short note is to fill out the theory introducing the notion of
Bernstein-Sato ideal associated to a tuple ideals aaa := a1, . . . , a`. To such purpose
we are going to follow the approach given by Mustaţă [Mus19] where he relates
the Bernstein-Sato polynomial of a single ideal a =

(
f1, . . . , fr

)
to the reduced

Bernstein-Sato polynomial of g = f1y1 + · · ·+ fryr, where the yj ’s are new variables.
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Finally, we show in Theorem 3.11 that the negative of the jumping points of the
mixed multiplier ideals of the tuple aaa that are in the open ball of radius one centered
at the origin belong to the zero locus of the Bernstein-Sato ideal of aaa.

The theory of Bernstein-Sato polynomials and its relations with other invariants
such as the multiplier ideals is vast and rich. In this note we tried to introduce only
the essential concepts that we needed so we recommend those who are not that
familiar with these topics to take a look at the surveys of Budur [Bud15], Granger
[Gra10] or Jeffries, Núñez-Betancourt and the author [ÀJNB21] for further insight.

Acknowledgements: We would like to thank Guillem Blanco, Jack Jeffries and
Luis Núñez-Betancourt for many helpful conversations regarding this work.

2. Bernstein-Sato ideal of a tuple of ideals

Let R be either C[x1, . . . , xn] or C{x1, . . . , xn} and denote m = (x1, . . . , xn)
the (homogeneous) maximal ideal. Let aaa := a1, . . . , a` be a tuple of ideals in R.
For each ideal described by a set of generators ai =

(
fi,1, . . . , fi,ri

)
we consider

gi = fi,1yi,1 + · · ·+ fi,riyi,ri where the yi,j ’s are new variables. In particular we get
a tuple G := g1, . . . , g` in the ring A that will be either C[x1, . . . , xn, y1,1, . . . , y`,r` ]
or C{x1, . . . , xn, y1,1, . . . , y`,r`}. In the sequel, d := n+ r1 + · · ·+ r` will denote the
number of variables in A.

Associated to R or A we have the corresponding ring of differential operators

DR = R〈∂1, . . . , ∂n〉 , DA = A〈∂1, . . . , ∂n, ∂1,1, . . . , ∂`,r`〉

where ∂i (resp. ∂i,j) is the partial derivative with respect to xi (resp. yi,j). That is,
DR (resp. DA) is the C-subalgebra of EndC(R) (resp. EndC(A)) generated by the
ring and the partial derivatives.

Definition 2.1. The Bernstein-Sato ideal of the tuple G is the ideal BG ⊆
C[s1, . . . , s`] generated by all the polynomials b(s1, . . . , s`) satisfying the Bernstein-
Sato functional equation

δ(s1, . . . , s`)gs1+1
1 · · · gs`+1

` = b(s1, . . . , s`)gs1
1 · · · g

s`
`

where δ(s1, . . . , s`) ∈ DA[s1, . . . , s`] and b(s1, . . . , s`) ∈ C[s1, . . . , s`].

Sabbah [Sab87] proved that BG 6= 0 in the convergent power series case. The
proof of BG 6= 0 in the polynomial ring case is completely analogous to the classical
case of a single element. Indeed, it is enough to consider the local case.

Remark 2.2. Briançon and Maisonobe showed in [BM02] that

B
C[x]
G =

⋂
p∈Cd

B
C{x−p}
G
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where BC[x]
G denotes the Bernstein-Sato ideal of a tuple G over the polynomial ring

and BC{x−p}
G is the Bernstein-Sato ideal of G in the convergent power series around

a point p ∈ Cd.

Now, since the gi are pairwise without common factors, we have

BG ⊆
(

(s1 + 1) · · · (s` + 1)
)
.

(see [May97, BM99] for details).

Definition 2.3. The reduced Bernstein-Sato ideal of the tuple G is the ideal
B̃G ⊆ C[s1, . . . , s`] generated by the polynomials

b(s1, . . . , s`)
(s1 + 1) · · · (s` + 1) ,

with b(s1, . . . , s`) ∈ BG.

Following the approach given by Mustaţă [Mus19] for the case of a single ideal,
we consider the following:

Definition 2.4. Let aaa = a1, . . . , a` be a tuple of ideals in OX,O and let G :=
g1, . . . , g` be its associated tuple of hypersurfaces. We define the Bernstein-Sato
ideal of aaa as

Baaa := B̃G ⊆ C[s1, . . . , s`]

Our next result shows that Baaa does not depend on the generators of the ideals
a1, . . . , a` and thus it is an invariant of the tuple aaa.

Theorem 2.5. Let aaa := a1, . . . , a` be a tuple of ideals and, for each ideal, con-
sider two different sets of generators ai =

(
fi,1, . . . , fi,ri

)
and ai =

(
f ′i,1, . . . , f

′
i,si

)
.

Consider the tuple G = g1, . . . , g` with gi = fi,1yi,1 + · · · + fi,riyi,ri and the tuple
G′ = g′1, . . . , g

′
` with g′i = f ′i,1y

′
i,1 + · · ·+ f ′i,siy

′
i,si

. Then B̃G = B̃G′ .

Proof. Without loss of generality we may assume that, for each ideal ai, the set of
generators f ′i,1, . . . , f ′i,si is just fi,1, . . . , fi,ri , hi for a given hi ∈ ai. Let z1, . . . , zri
such that hi = z1fi,1 + · · ·+ zrifi,ri . Then we have

g′i = fi,1y
′
i,1 + · · ·+ fi,riy

′
i,ri + hiy

′
i,ri+1

= fi,1y
′
i,1 + · · ·+ fi,riy

′
i,ri + (z1fi,1 + · · ·+ zrifi,ri)y′i,ri+1

= f1(y′i,1 + z1y
′
i,ri+1) + · · ·+ f`(y′i,ri + zriy

′
i,ri+1).

After a change of variables yi,j 7→ y′i,j + zjy
′
i,ri+1, this polynomial becomes gi.

Since Bernstein-Sato ideals do not change by change of variables, we conclude that
BG = BG′ and the result follows. �
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3. Mixed multiplier ideals

Let π : X ′ −→ X be a common log-resolution of a tuple of ideals aaa = a1, . . . , a`
in R. Namely, π is a birational morphism such that

· X ′ is smooth,
· ai · OX′ = OX′ (−Fi) for some effective Cartier divisor Fi, i = 1, . . . , `,
·
∑`
i=1 Fi + E is a divisor with simple normal crossings where E = Exc (π) is

the exceptional locus.

The divisors Fi =
∑
j ei,jEj are integral divisors in X ′ which can be decomposed

into their exceptional and affine part according to the support, i.e. Fi = F exc
i +F aff

i

where

F exc
i =

s∑
j=1

ei,jEj and F aff
i =

t∑
j=s+1

ei,jEj .

Whenever ai is an m-primary ideal, the divisor Fi is just supported on the exceptional
locus. i.e. Fi = F exc

i . We will also consider the relative canonical divisor

Kπ =
s∑
i=1

kjEj

which is a divisor in X ′ supported on the exceptional locus E defined by the
Jacobian determinant of the morphism π.

Definition 3.1. The mixed multiplier ideal associated to a tuple aaa = a1, . . . , a` of
ideals in R and a point λλλ = (λ1, . . . , λ`) ∈ R`>0 is defined as

J (aaaλ) := J (aλ1
1 · · · a

λ`
` ) = π∗OX′ (dKπ − λ1F1 − · · · − λ`F`e)

In the classical case of a single ideal we have the notion of jumping numbers
associated to the sequence of multiplier ideals. The corresponding notion in the
context of mixed multiplier ideals is more involved.

Definition 3.2. Let aaa = a1, . . . , a` be a tuple of ideals in R. Then, for each λλλ ∈ R`>0,
we define:

· The region of λλλ: Raaa (λλλ) =
{
λ′λ′λ′ ∈ R`>0

∣∣∣ J (aaaλ′λ′λ′) ⊇ J (aaaλλλ)
}
.

· The constancy region of λλλ: Caaa (λλλ) =
{
λ′λ′λ′ ∈ R`>0

∣∣∣ J (aaaλ′λ′λ′) = J (aaaλλλ)
}
.

The boundaries of these regions is where we have a strict inclusion of ideals.
Therefore we may define:

Definition 3.3. Let aaa = a1, . . . , a` be a tuple of ideals in R. The jumping wall
associated to λλλ ∈ R`>0 is the boundary of the region Raaa(λλλ).

In particular, we will be interested in the points of these jumping walls. In the
sequel, Bε(λλλ) stands for the open ball of radius ε centered at a point λλλ ∈ R`.
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Definition 3.4. Let aaa = a1, . . . , a` be a tuple of ideals in R. We say that λλλ ∈ R`>0
is a jumping point of aaa if J (aaaλ′λ′λ′) ! J (aaaλλλ) for all λ′λ′λ′ ∈ {λλλ− R`>0} ∩Bε(λλλ) and ε > 0
small enough.

From the definition of mixed multiplier ideals we have that the jumping points
λλλ ∈ R`>0 must lie on hyperplanes of the form Hj : e1,jz1 + · · ·+ e`,jz` = kj + νj for
j = 1, . . . , s and νj ∈ Z>0.

For λ ∈ (0, 1) we have J (aλ) = J (gλα) where a =
(
f1, . . . , fr

)
is a single ideal in R

and gα = α1f1 + · · ·+ αrfr ∈ R with αi ∈ C is a general element (see [Laz04, Prop.
9.2.28]). As a consequence of a more general result of Mustaţă and Popa given
in [MP20, Theorem 2.5] we also have a relation between J (aλ) and the multiplier
ideal of the associated hypersurface g = f1y1 + · · ·+ fryr in A.

Definition 3.5. Let J =
(
Q1(y), . . . , Qs(y)

)
be an ideal in A. Then, Coeff(J ) ⊆ R

is the ideal generated by

{Q1(α), . . . , Qs(α) | α ∈ Cr}

The result of Mustaţă and Popa in the form that we need is the following

Proposition 3.6. Let a =
(
f1, . . . , fr

)
be an ideal in R and let g = f1y1 + · · ·+fryr

be the associated hypersurface in A. Then, for any λ ∈ Q ∩ (0, 1) we have

J (aλ) = Coeff
(
J (gλ)

)
In particular, the set of jumping numbers in the interval (0, 1) of a and g coincide.

The mixed multiplier ideals version of this result follows immediately from the
following observation.

Remark 3.7. Consider a ray through the origin L : (0, . . . , 0) +µ(α1, . . . , α`) where
the αi’s are positive integers.

2

1
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Then, the jumping points of a tuple aaa = a1, . . . , a` lying on L are the jumping
numbers of the ideal aα1

1 · · · a
α`
`

Corollary 3.8. Let aaa = a1, . . . , a` be a tuple of ideals in R, G := g1, . . . , g` its
associated tuple of hypersurfaces and consider λλλ ∈ Q`>0 with Euclidean norm ‖ λλλ ‖< 1.
Then, λλλ is a jumping point of aaa if and only if it is a jumping point of G.

Proof. After Remark 3.7 we may assume that we have a single ideal a =
(
f1, . . . , fr

)
so its associated hypersurface is g = f1y1 + · · ·+ fryr. The result then follows from
3.6. �

In order to prove the main result of this section we will need the analytic definition
of mixed multiplier ideal associated to a tuple G = g1, . . . , g`.

Definition 3.9. Let G = g1, . . . , g` be a tuple in A. Let Bε(O) be a closed ball of
radius ε and center the origin O ∈ Cd. The mixed multiplier ideal (at the origin O)
of G associated with λλλ ∈ Q`>0 is

J (gλ1
1 · · · g

λ`
` )O =

{
h ∈A

∣∣ ∃ ε� 1 such that
∫
Bε(O)

|h|2

|g1|2λ1 · · · |g`|2λ`
dxdydx̄dȳ <∞

}
.

Remark 3.10. As in the case of Bernstein-Sato ideals it is enough to consider this
local case since we have

J (gλ1
1 · · · g

λ`
` ) = ∩p∈CdJ (gλ1

1 · · · g
λ`
` )p.

If it is clear from the context we will omit the subscript referring to the point.

Theorem 3.11. Let aaa = a1, . . . , a` be a tuple of ideals in R. Let λλλ ∈ Q`>0 be a
jumping point of aaa with Euclidean norm ‖ λλλ ‖< 1. Then −λλλ ∈ Z(Baaa).

Proof. Let λλλ ∈ Q`>0 be a jumping point of the tuple G = g1, . . . , g` associated to aaa

with ‖ λλλ ‖< 1 and take h ∈ J (fλλλ′) r J (fλλλ) with λλλ′ ∈ {λλλ− R`>0} ∩Bε(λλλ) for ε > 0
small enough. Therefore

|h|2

|g1|2λ
′
1 · · · |g`|2λ

′
`

is integrable but when we take the limit ε→ 0 we end up with
|h|2

|g1|2λ1 · · · |g`|2λ`
that is not integrable. Set d = n + r1 + · · · + r` and consider the complex zeta
function ∫

Cd
|g1|2s1 · · · |g`|2s`ϕ(x, y, x̄, ȳ)dxdydx̄dȳ,

where s1, . . . , s` are indeterminate variables and ϕ(x, x̄) ∈ C∞c (Cd) is a test function,
i.e. an infinitely many times differentiable function with compact support. Moreover
ϕ has holomorphic and antiholomorphic part. For any b(s1, . . . , s`) ∈ BG we have a
Bernstein-Sato functional equation

δ(s1, . . . , s`)gs1+1
1 · · · gs`+1

` = b(s1, . . . , s`)gs1
1 · · · g

s`
`
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Therefore

b2(s1, . . . , s`)
∫

Cd
ϕ(x, y, x̄, ȳ)|g1|2s1 · · · |g`|2s`dxdydx̄dȳ =

=
∫

Cd
δ̄∗δ∗(s1, . . . , s`)

(
ϕ(x, y, x̄, ȳ)

)
|g1|2(s1+1) · · · |g`|2(s`+1)dxdydx̄dȳ.

where δ̄∗ and δ∗ denote the conjugate and the adjoint differential operators associated
to δ. Notice that |h|2ϕ(x, x̄) is still a test function so

b2(s1, . . . , s`)
∫

Cd
|h|2ϕ(x, y, x̄, ȳ)|g1|2s1 · · · |g`|2s`dxdydx̄dȳ =

=
∫

Cd
δ̄∗δ∗(s1, . . . , s`)

(
|h|2ϕ(x, y, x̄, ȳ)

)
|g1|2(s1+1) · · · |g`|2(s`+1)dxdydx̄dȳ.

Now we take a test function ϕ which is zero outside the ball Bε(O) and identically
one on a smaller ball Bε′(O) ⊆ Bε(O) and thus we get

b2(s1, . . . , s`)
∫
Bε′ (O)

|h|2|g1|2s1 · · · |g`|2s`dxdydx̄dȳ =

=
∫
Bε′ (p)

δ̄∗δ∗(s1, . . . , s`))
(
|h|2
)
|g1|2(s1+1) · · · |g`|2(s`+1)dxdydx̄dȳ.

Taking s = −(λ′1, . . . , λ′`) we get

b2(−λ′1, . . . ,−λ′`)
∫
Bε′ (O)

|h|2

|g1|2λ
′
1 · · · |g`|2λ

′
`

dxdydx̄dȳ =

=
∫
Bε′ (O)

δ̄∗δ∗(−λ′1, . . . ,−λ′`)
(
|h|2
)
|g1|2(1−λ′

1) · · · |g`|2(1−λ′
`)dxdydx̄dȳ

but the right-hand side is uniformly bounded for all ε > 0. Thus we have

b2(−λ′1, . . . ,−λ′`)
∫
Bε′ (O)

|h|2

|g1|2λ
′
1 · · · |g`|2λ

′
`

dxdydx̄dȳ ≤M <∞

for some positive numberM that depends on h. Then, by the monotone convergence
theorem we have to have b2(−λ1, . . . ,−λ`) = 0 and thus −λλλ ∈ Z(B̃G) = Z(Ba). �
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