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Abstract

Framed in the field of Music Information Retrieval (MIR), there is the widely discussed
subject of audio-based Music Structure Analysis (MSA), where the Signal Segmentation
Problem would be located. This field of research consists of the study of techniques capable
of imitating the human perception of high-level structures that constitute a song. In other
words, they aim to be able to identify where one section of the song begins and another
ends, in a similar way to how a human listener would perceive it.

In this thesis, we present several implementations in the field of Music Segmentation. The
first one consists of a revision of an offline segmentation technique, in which some new
features have been implemented, thus improving its performance.
Going one step beyond the conventional form of this problem, thus seeking new lines of
development, a novel real-time segmentation algorithm has also been implemented, which
allows the exploration of the aforementioned high-level structures of a piece while it is
being performed live.

Also, in order to be able to evaluate and analyse the behaviour of the different algorithms,
a data-set has been curated to test the different implementations, an evaluation model has
been designed to quantify the different solutions, and finally, an automatic optimisation
strategy has been implemented to refine the different implementations.
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Resum

Emmarcat en l’àmbit de la Recuperació d’Informació Musical (RIM), hi ha el tema
àmpliament discutit de l’Anàlisi d’Estructures Musicals (AEM) basat en àudio, on quedaria
ubicat el problema de la segmentació del senyal. Aquesta disciplina de recerca consisteix
en l’estudi de tècniques capaces d’imitar la percepció humana de les estructures d’alt niv-
ell que constitueixen una cançó. És a dir, pretenen ser capaços d’identificar on comença
un passatge de la cançó i on acaba un altre, de manera semblant a com ho percebria un
oient humà.

En aquesta tesi, presentem diverses implementacions en el camp de la Segmentació Musi-
cal. La primera consisteix en una revisió d’una tècnica de segmentació offline, en la qual
s’han implementat algunes novetats, millorant aix́ı el seu rendiment.
Anant un pas més enllà del problema en el seu format convencional, també s’ha imple-
mentat un innovador algorisme de segmentació en temps real, que permet l’exploració de
les esmentades estructures d’alt nivell d’una peça mentre s’està interpretant en directe.

Aix́ı mateix, per tal de poder avaluar i analitzar el comportament dels diferents algorismes,
s’ha constrüıt un dataset amb el que provar les diferents implementacions, s’ha dissenyat
un model d’avaluació per quantificar les diferents solucions i, finalment, s’ha implementat
una estratègia d’optimització automàtica per refinar les diferents implementacions.
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Resumen

Enmarcado en el campo de la Recuperación de Información Musical (MIR), se encuentra
el ampliamente discutido tema del Análisis de Estructuras Musicales (MSA) basado en
audio, donde se ubicaŕıa el Problema de la Segmentación de Señales. Este campo de
investigación consiste en el estudio de técnicas capaces de imitar la percepción humana
de las estructuras de alto nivel que constituyen una canción. Es decir, pretenden ser
capaces de identificar dónde empieza un pasaje de la canción y dónde termina otro, de
forma similar a cómo lo percibiŕıa un oyente humano.

En este trabajo, presentamos varias implementaciones en el campo de la segmentación
musical. La primera consiste en una revisión de una técnica de segmentación offline, en la
que se han implementado algunas caracteŕısticas nuevas, mejorando aśı su rendimiento.
Yendo un paso más allá del formato convencional de este problema, y buscando aśı nuevas
ĺıneas de desarrollo, se ha implementado también un novedoso algoritmo de segmentación
en tiempo real, que permite explorar las mencionadas estructuras de alto nivel de una
pieza mientras esta se está interpretando en directo.

Además, para poder evaluar y analizar el comportamiento de los diferentes algoritmos,
se ha elaborado un data-set con el que probar los diferentes algoritmos, se ha diseñado
un modelo de evaluación para cuantificar las diferentes soluciones y, finalmente, se ha
implementado una estrategia de optimización automática para refinar las diferentes im-
plementaciones.
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1 Introduction

1.1 Statement of Purpose

The goal of this thesis has been to design and implement a set of algorithms capable of
recognising relevant changes in the musical intention of a piano player, thus being capable
of discerning transitions between homogeneous segments, and estimating the boundaries
in-between said segments.
It was also a main requirement of this project that the segmented signal had to be the
real-time recording of a live piano performance, and the analysis had to be performed
without delays.
Going into further detail, it was necessary for the analyzed musical piece to be part of
the recorded collection of live performances by the pianist Marco Mezquida1, which is
characterized by having a contemporary style, with strong influences of the atonal music
of the end of the 20st century. This proved to be highly relevant in the decision making
during the development of the project.

My motivation towards this thesis was mainly the interest I have developed during my
bachelors degree towards the discipline of signal processing. Also, being someone who has
studied music since a very young age, the opportunity of developing a project with a mul-
tidisciplinary approach, using both knowledge in signal processing and musical analysis,
was something that really captivated me.

1.2 Requirements and Specifications

• Requirements:
To be able to face this work, the initial requirements of the project needed to be
established. These were devised based on the initial description of this work, so they
were only conceived as an initial road map for the project.
The initial requirements that served as the basic structure for the project are the
following:

1. A data-set had to be built. Either using synthetic data, built and designed
by us to have specific segments which were annotated, or using real data. This
data-set would later on be used to test and evaluate the different implemented
algorithms.

2. A set of segmentation solutions needed to be implemented. After
having reviewed the current literature about signal segmentation, specifically
focused on music segmentation, the more promising solutions had to be se-
lected. The goal was to implement the chosen solutions, and to be able to
evaluate these against the previously mentioned database. Thus, drawing con-
clusions about the different factors that affected the effectiveness, and how
these could be improved.

1For more information about the pianist - https://marcomezquida.com/
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3. It was essential that a final solution be provided. At the end of the
project, it was expected that a working and optimised solution, capable of de-
tecting changes in a piano performance in real-time, was going to be delivered.

• Specifications:
The specifications from which this project started were relatively flexible. Since this
was a project that was being started from scratch, we had the freedom to decide
how it would be developed without prior conditionings.

– The code needed to be implemented using a well known programming language,
that was easily usable and readable, to ensure the replicability and adaptability
of this project. As a personal choice, the project ended up being developed using
Python as the main language.

– It was required for the implemented solution to be able to detect segments
based on some sort of high-level structure.

– These solutions needed to be computationally efficient to some point, in order
to guarantee that a real-time analysis was feasible.

– Proper results and a qualitative analysis of these, needed to be conducted.

1.3 Project Background

The idea for this project arose from a collaboration between Sonar and UPC in one of
its previous editions, but the development of this project started from scratch, taking no
previous work or development as a starting point.
It was proposed in this way with the aim that there would be no conditionings when
choosing which lines of research were going to be developed.

This project was conducted through the collaboration of the project director, who was
the one that proposed the idea for this project, and the student who was be in charge of
developing the thesis. The project is not framed within any research team, department or
company.

1.4 Work Plan

The methodology used to organize the project was the same used in other courses of
this degree. The project was organized in a work breakdown structure with different

work packages. A GANTT diagram is provided to illustrate said work package structure,
without going into unnecessary detail.
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1.4.1 Work Breakdown Structure

Figure 1: Work Breakdown Structure

1.4.2 Milestones

WP Short title Milestone/deliverable Date
1 State of Art Collection of Segmentation Techniques 16/03/2022
2 Algorithm selection Set of techniques to be implemented 20/03/2022
3 Implementation Set of implemented fully functional solutions 01/05/2022
4 Evaluation Conclusions on which solution works better 01/05/2022
5 Final solution Proposal for a final solution for this project 27/05/2022
6 Report Final report to be submitted 05/06/2022

Table 1: Milestones
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1.4.3 GANTT Diagram

Figure 2: GANTT Diagram

1.5 Deviations of the Original Plan

There were only some small modifications in the planning of this project. The most crucial
one being the decision of developing the implementation of the algorithms in parallel with
the evaluation model for said solutions.

This was made in such way with the aim of being able to use the conclusions drawn from
one implementation, and the intuition developed with this project, in the development of
the following solution, therefore avoiding previous mistakes.
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2 Overview of the Signal Segmentation Problem

It is usual to find that the signal one may be interested in studying, is actually a time-series
which can be represented as a sequence of discrete segments of specific length.
In mathematics, a time-series is described as a set of data points, indexed in a natural
temporal ordering, thus being a discrete-time sequences of data. Real-world examples of
time-series could be the evolution of water temperature in the process of making a cup of
coffee, the output of an electrocardiogram machine connected to a patient, or the audio
recording of any musician performing a musical piece.

The so called Signal Segmentation Problem refers to the question of being able to recognise
segments that present a certain degree of resemblance within themselves, and differentiate
them from others, while detecting the location where this transition occurs (this will be
referred as a boundary from now on). Intuition tells us that there must be an element
causing this self-similarity in the frames that constitute the so-called ’segment’, and also
conditioning the differences between the different segments that make up the time-series.
From now on, this factor will be referred as an element of homogeneity. It can also be
assumed that if it were possible to measure change in this element of homogeneity, it
would also be possible to detect where the boundaries are located.

What makes this problem certainly not a triviality, is the difficulty that even describing
this element presents.

To illustrate this difficulty using a fairly simple example, when trying to segment a heart-
beat signal, it could be defined that a segment aligns with each individual heartbeat,
which would give us a segmentation like the one in the following figure 3:

Figure 3: Cardiogram signal segmented in individual heartbeats

However, it may be of interest to rather detect the two periods that integrate a full hear-
beat (diastole and systole), therefore obtaining a segmentation such as the one in figure
4, which clearly discerns of the one previously shown in figure 3:

Figure 4: Cardiogram signal segmented by systole and diastole
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This brief and oversimplified example, allows us to introduce and illustrate that one of the
difficulties faced with this segmentation problem is to get the segments and boundaries
estimated by the algorithm to align with the element of homogeneity that we are interested
in detecting.

This difficulty becomes especially notable when dealing with music, which is characterized
by many remarkably distinct but intertwined elements. This makes music an extreme case
in signal segmentation, due to its subjective, ambiguous, and hierarchical nature.
To face this difficulty, an intensive study of the state of the art has been conducted on
the different approaches that exist for segmentation in music (see section 2.1), and the
different descriptors that exist to characterize the information contained in said signal
(see section 3.1).

2.1 The Signal Segmentation Problem applied to Music

Framed in the field of Music Information Retrieval (MIR), there is the widely discussed
subject of audio-based Music Structure Analysis (MSA), where the Signal Segmentation
Problem would be located.

The basic premise of MSA is that any song can be divided into well defined independent
segments, that match the perception of the song by a human listener. This task originates
from an old and well extended practice in music theory: analyzing the form of a musical
piece by identifying important segments, thus inferring the existence a high-level structure.
This segmentation can be conducted either at a short time scale, such as motives or
phrases, which are short musical motives that tend to conceal a recurring motive in the
piece, or longer parts such as the classical A-B-A structure found in any classical Aria.

While this high-level structure can be very subjective, and can usually be influenced by
trends or musical periods, there is usually a broad agreement, both between music experts
an non-musician listeners, about which boundaries are more important or well defined,
as detailed in [2]. The aim of audio-based MSA (from now on referred as MSA) is to
automatize the correct detection of this boundaries, thus segmenting the musical piece
and unraveling the high-level structure hidden in the music.

In the past two decades there has been a growing tendency to try to improve and push the
state of the art in music segmentation through solutions based on machine learning models.
Even though there have been major breakthroughs using these methods, and models based
on deep learning using convolutional neural networks seem to be very promising, yielding
superior scores in most metrics [3], in this project we will mainly focus in approaches using
classic signal processing models, in which there is still a lot of room for improvements and
new lines of research.
This was decided mainly due to two reasons: the project requires a solution that is com-
putationally light, and that we want a solution that is designed specifically for the type
of music that we want to segment, for which we do not have a database large enough to
be able to successfully train a machine learning model.
Finally, also the lack of knowledge of these technologies on the part of the author would
have meant a considerable push back.
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In the line of research using classical signal processing methods, there are four main
approaches when facing this challenge:

2.1.1 Novelty

The novelty approach [1] takes as an a priori that music will always be locally homo-
geneous on both sides of any given boundary. Therefore, the main focus of any novelty
technique is to try to quantify the change at any given time, and establish a decision
threshold based on which the boundaries are separated from homogeneous segments.

Therefore, the segments that a novelty based algorithm excels in identifying are those
that start or end at a point in a given piece where one or more music descriptors (such
as rhythm, harmony or timbre) change drastically.
These differences in terms of musical intention can be visualized as blocks in the Self
Similarity Matrix (SSM, see section 3.2.1):

Figure 5: Similarity and cross-similarity between segments identified in a SSM [1]

2.1.2 Homogeneity

The homogeneity approach, also known as State Representation Analysis [4] [5], can be
seen as the other side of the same coin when compared with the novelty approach. While
novelty focus on detecting change, State Representation methods try to detect the lack of
it. Homogeneity based algorithms aim to detect a certain musical aspect (the homogeneity
factor previously mentioned in 2.1) which remains constant across the whole segment. This
could be found in either a passage where there is an harmonic modulation, a consistent
rhythm across some compasses or a passage played by only a certain instrument.

Referencing the SSM, already shown in figure 5 the State Representation methods basi-
cally aim to locate blocks of low distance on the main diagonal. These blocks are formed
when the used feature descriptor (see section 3.1) remains somewhat similar during an
occurrence of a musical part.
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2.1.3 Repetition

The repetition approach, also known as Sequence approach [6], is based on the detection
of repetitive segments. These segments are those that can be identified due to their re-
occurrences in a given piece, regardless of how novel/homogeneous they are on a smaller
time scale. Algorithms based in this method detect patterns that correlate with musical
structures commonly used in certain styles as indicators for the beginning or closure of a
section.

Sequence-based methods aim to locate off-diagonal stripes (a stripe representing low dis-
tance of two sequences), as represented in figure 6.

Figure 6: Off-diagonal similarity identified in a SSM

2.1.4 Regularity

The regularity approach [7], is based on the fact that, usually, musical segments hold a
certain degree of regularity. Methods based on this principle usually heavily rely on beats
and tempo analysis, trying to find structure in the number of beats per segment.

The main difference with respect to the homogeneity-based approach, is that regular-
ity algorithms are more oriented on the detection of more straightforward patterns. For
instance, the duration of segments that tend to span an integer number of beats.

18



3 Theoretical Background for Music Segmentation

In order to properly approach the problem of Music Segmentation, it is necessary to study
some of the commonly used techniques and mathematical descriptions. In this section, the
most crucial theoretical concepts used in this project will be introduced, so that the reader
can later on understand the decisions and processes described in the implementation of
this thesis (see section 5 and 6), but leaving more extensive descriptions to Appendix 1
(see section 10).

3.1 Audio Features Descriptors

In this subsection, a brief explanation of the audio feature descriptors that are used
throughout this project are presented. Even though the author is aware of other methods
such as Tonal Centroids, Pitch-Chromograms or Zero Crossing [8], the analysis of these
techniques will be avoided, since they have not been found relevant for our purpose.
In summary, the parameterization itself is a fundamental step in the development of a
segmentation algorithm, since it has a direct effect on how the boundaries are detected.

3.1.1 Mel Frequency Cepstral Coefficients - MFCC

The Mel Frequency Cepstral Coefficients, from now on referred as MFCC, is a well known
and commonly used feature extraction technique, which consist in the parameterization
of each frame of the signal.
The MFCC uses the Mel scale, which is based on the way humans distinguish between
frequencies (a non-linear perception), to divide the frequency band into sub-bands, and
then extracts the Cepstral Coefficients using the Discrete Cosine Transform (DCT). Since
it is based on the way humans perceive sound, it is a good choice for audio feature
extraction, specially since our main focus is trying to reflect in our segmentation algorithm
the way humans perceive the musical piece.

Figure 7: Example of MFCCs extracted from a piano track.

For a detailed explanation of how this technique works and the different nuances it
presents, please refer to the section 10.1.1 of the annex.
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3.1.2 Harmonic Pitch Class Profiles - HPCP

Harmonic pitch class profiles (from now on, referred as HPCP) is a feature extraction
technique, based on a pitch class profile descriptor. HPCP is an improved pitch distribu-
tion feature, constituted by sequences of feature vectors that describe tonality, measuring
the relative intensity of each of the 12 pitch classes (and its harmonic tones) of the equal-
tempered Eastern scale, within a frame. This results in a 12-dimensional profile for each
frame, and it is typically visualized as a 12×N matrix

This feature extraction technique differs from the one explained in the section above (see
section 3.1.1) mainly in that it is strongly based on pitch and tonal structures, as opposed
to MFCC that focus more on timbre analysis.

Figure 8: Example of normalized HPCPs extracted from a piano track.

For a detailed explanation on this technique, please see section 10.1.2

3.2 Tools for Structure Discovery

Once the features of the studied signal have been extracted, and therefore it is possible
to work with a parameterization or characterization of the audio (as explained in section
3.1), it is proper to proceed with the structure discovery analysis.
For this purpose, there are different techniques and approaches, which will be described
below.

3.2.1 Self Similarity Matrix - SSM

One of the pillars for the structure discovery analysis is the Self Similarity Matrix [9] [10].
The construction of this matrix (from now on referred as SSM) consists in the comparison
of all pairwise combinations of frames (as illustrated in figure 9a), using a quantitative
similarity metric (further detail in section 10.3).
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In practice, an SSM can be useful to obtain an overview of the parts of a piece that recur
at least once, and the degree of similarity between all frames. The process to calculate an
SSM is as described below [10].

Being the B-dimensional spectral data computed for the N frames of a digital
audio file (as described in sections 3.1.1 and 3.1.2) represented by the vectors
{vi : i = 1, ..., N} ⊂ RB.
The SSM matrix, normalized such that its maximum value is 1, which, along
with its symmetrical properties, can be characterized as S(i, i) = 1 and S(i, j) =
S(j, i) ∀i, j ∈ [1 : N ], can be then calculated as follows.

SSM[i, j] = 1− d(vi, vj); (1)

Where d in (1) is a distance metric (further detail in section 10.3), and v is the
feature vector (as the MFCCs or HPCPs described in sections 3.1.1 or 3.1.2).

A representation of the result obtained after calculating the described method to obtain
a SSM can be observed in figure 9b, where can observed the diagonal stripes pointing out
area of similarity, and therefore, possibly high-level structures.

(a) SSM structure illustration (b) SSM calculated from MFCC features

Figure 9: Normalized Self Similarity Matrix representation, where

The decision on which distance metric to use depends on what is the intended use for the
SSM, as well as what feature extraction technique is being used, therefore a few options
should be taken into study.

For a detailed explanation on the various distance measures that will be considered in
this work, please see section 10.3 in annex.
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3.2.2 Recurrence Matrix

Essentially the Recurrence Matrix [11] can be considered a specific case of the more generic
SSM (see section 3.2.1), but in this case the K-neighbours technique is used and the matrix
is filled with binary values only instead of using distances to express similarities.

This Recurrence Matrix (from now on referred as RM) consists of a square
matrix RM whose elements Ri,j indicate pairwise resemblance between the
frames composing the analysed characterization, at times i and j. Formally,
for the same B-dimensional vector vi already described in section 3.2.1, taking
{vi : i = 1, ..., N}, it is set:

RMi,j = θ(ϵi,j − ||vi, vj||); for ∀i, j ∈ [1 : N ] (2)

Where θ(z) in (2) represents the Heaviside step function (yielding 1 if z > 0
and 0 otherwise), ||vi, vj|| can be any norm, even though usually the Euclidean
norm is used, and ϵi,j describes a suitable threshold for each cell (i, j), which
can be dynamically computed as follows.
For each frame vi,∀i ∈ [1, N ], its K neighbors vj,∀j ∈ [1, N ] are searched.
Then, mutuality between frames is forced by setting Ri,j = 1 only if vi is
neighbour of vj and, at the same time, vj is a neighbor of vi.

This method is usually found to be more robust against noise than other variants such
as the already mentioned SSM, mainly because of its more restrictive strategy. Still, it
has the downside that this representation suppresses relevant information. This makes us
aware of the need to seek balance between robustness against noise (where MR excels),
and the ability to reflect all available information (as is the case with SSM).

3.3 Novelty Indicators

Once the mathematical description of the recording we are working with has been con-
stituted, which allows us to explore the existence of high-level structures, it is needed to
study how to quantify the evolution of the studied piece in the temporal domain.

The classic and more broadly used approach to quantify the temporal-evolution and iden-
tify boundaries, is to apply a Checkerboard Kernel, as described below, over the main
diagonal of the used used matrix, thus obtaining a Novelty Curve from which the bound-
aries can be extracted by identifying its more prominent peaks [9] [12].

3.3.1 Checkerboard Kernel

When working with any of the mentioned Structure Discovery Analysis (see section 3.2),
it is required to be able to locate the instant when the change is happening. In order to
accomplish that, the so-called Checkerboard Kernel is correlated with the matrix we are
working with [9] [13].
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The simplest way to illustrate the logical function of this kernel, is by demonstrating its
behaviour in a 2× 2 dimension kernel.

C =

[
1 −1
−1 1

]
=

[
1 0
0 1

]
−

[
0 1
1 0

]
; (3)

Where C in (3) represents the checkerboard kernel, which can be decomposed into coher-
ence and anti-coherence kernels. The coherence term, being the first one, measures the
self-similarity on either side of the center point; thus being higher when the regions are
self-similar. The anti-coherence term measures the cross-similarity between two regions;
this will be high when the regions are substantially similar, thus with little difference
across the center point.
The difference of the two decomposed terms works as a novelty estimator of the signal. This
will take maximum values when the two regions are self-similar but different from each
other, therefore detecting what is considered a transition (boundary between segments).

Also, it is possible to construct larger kernels by means of the Kronecker product (⊗) of
C with a matrix of ones, as seen in Equation 4.

[
1 −1
−1 1

]
⊗

[
1 1
1 1

]
=


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 ; (4)

This Kernel can be smoother to avoid edge distortion using windows to taper the edges
towards zero. This is usually done by using a radially-symmetric Gaussian function.

This smoothing factor can be obtained by multiplying two Gaussian windows,
let them be called g1 and g2, with sizes s1 and s2, which defines the amount of
past and future features being taken into account (and it should be adjusted
depending on the music piece to be analyzed).

G = g1g
T
2 ; (5)

In figure 10, a 3D representation of the kernel after being smoothed with Gaussian tapering
can be observed.

Figure 10: Checkerboard kernel with Gaussian taper
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3.3.2 Novelty Curve

Correlating the Checkerboard Kernel (see section 3.3.1) with the similarity matrix (see
section 3.2) results in obtaining of a measure of novelty. The representation of this measure
of novelty in a time axis is referred as Novelty curve.
When correlating the kernel with the similarity matrix, if the kernel C is over a relatively
uniform region, the coherence and anti-coherence regions will tend to add up to zero; by
contrast, when C is positioned in an irregular region the overall sum will be larger. Thus,
obtaining a time-aligned measure of novelty (Novelty curve) in the recording.

Being M the similarity matrix we are working with, the Novelty curve for this
can be obtained as described below [13].

N(i) =

L/2∑
m=−L/2

L/2∑
n=−L/2

C(m,n)M(i+m, i+ n); for ∀i ∈ [L+ 1 : N − L] (6)

Being L the width (lag) of the kernel, and being N(i) in (6) the representation
of the novelty frame-aligned vector (where i represents the frame-index). It is
important to notice that, because of how L is defined, the correlation is only
computed for the interior of the signal where the kernel overlapsM completely.

Lastly, it is important to mention that the width L of the kernel C directly affects the
properties of the novelty measure and its estimations. A smaller kernel would only measure
novelty on shorter time periods, such as individual musical notes. Instead, wider kernels
are able to detect high-level structures such as musical transitions, key modulations, or
symphonic movements. Thus, it is obvious to conclude that the value of L will not be
trivial, and shall be thoroughly studied.

A representation of the novelty curve can be observed in figure 11.

Figure 11: Novelty curve representation
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3.4 Peak Detection Algorithm

Once the Novelty curve is obtained, it is still necessary to design a method to decide
which peaks should be considered an estimation for a boundary, and which ones should
be dismissed.
This difficulty can be approached from many perspectives with different levels of com-
plexity. The approach used in this thesis, is to consider a boundary the peaks whose score
exceeds a threshold function, which is calculated according to the processed signal, and
normalizing the value such that the maximum score is one and the minimum is zero.

During the implementation, different algorithms have been tested, so the details of the
different methods studied will be addressed in the implementation section (see section
5.2).
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4 The Segmentation Problem as a Binary Classifica-

tion Problem

In order to be able to evaluate the different solutions studied and proposed in this thesis,
as well as draw consistent conclusions across models, it was considered necessary to design
and implement an evaluation model. To approach this need, it was decided by the author
to evaluate this problem as a binary classification problem, therefore relying on classical
metrics to evaluate the different classification schemes.

4.1 Confusion Matrix and Qualitative Evaluation

In order to evaluate and analyse the results of an algorithm in the framework of binary
classification problems, it must be considered that the outputs of the algorithm are pre-
dictions, and therefore that these can be considered either correct or incorrect predictions.
For this purpose, the use of a confusion matrix is usually resorted to.

A confusion matrix [14] is a matrix with two dimensions (’real’ and ’predicted’), and an
identical set of parameters on both dimensions. This way, it is easy to represent whether
a prediction is either correct or the result of confusion (positive versus negative).

Total Population
P + N

Predicted Condition
Positive (PP) Negative (PN)

Real Condition
Positive (P) True Positive (TP) False Positive (FP)
Negative (N) False Negative (FN) True Negative (TN)

Table 2: Confusion Matrix

In our specific case, it allows us to determinate either if a boundary classification is correct
(True Positive) or if it is a mistake (False negative).

4.2 Dataset Curation

In order to evaluate the prediction obtained, a dataset on which to run the different
versions of the code is needed. To solve this need, and given that there are few live
performance recordings of the pianist we are working with, and for whom we want the
segmentation algorithm to be optimised, it is concluded that the most suitable solution
is to create a dataset of synthetic annotations.

For the creation of this synthetic dataset, it was decided to take the different recordings
available (a set of 12 tracks of variable length), and by means of an automated script,
segment all these tracks into fragments of a given duration, to then join them all together
in a single sequence, thus constituting a single audio with a set of synthetic boundaries.
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Subsequently, and once the synthetic track was obtained, human listening was carried out
in order to complete the automatic annotations with those organic boundaries that could
be found in the initial tracks. That is to say, all those organic transitions that could be
found in the initial tracks, and that should also be segmented.

This set of boundaries (both synthetic and organic) were then annotated, for later use
in the evaluation model, as a binary vector composed of segments of 250ms duration,
in which each of these segments are annotated as True if they contain a boundary, or
False if they contain a homogeneity period. The use of 250 ms periods was chosen so that
boundaries would be centred on these intervals, thus maximising the correctness of the
evaluations.

4.3 Evaluation Model

For the evaluation model it was decided to opt for a binary detection model (as described
above), based on the evaluation of predictions as correct or incorrect relying on classical
metrics. Once the predictions of the implemented algorithm in question are obtained,
in order to evaluate and discern whether each of the predictions is correct or incorrect
(True Positive or False Positive), it is necessary to also model the vector of predictions
following the same structure as described in the previous section. This is as a binary
vector composed of segments of 250ms duration, in which each of these segments are
annotated as True if they contain the prediction for a boundary, or False if they contain
the prediction for a homogeneity segment.

Once these two binary vectors are available, the computation of the different components
of the confusion matrix can be obtained by means of the calculation of logical operations
(see section 4.1).

With the values composing the confusion matrix, it is possible to compute different clas-
sical metrics which can be used to quantify the efficiency and effectiveness of the different
iterations of the algorithm. After reviewing the available literature on this matter [15], it
was decided to use the F-score as it balances the precision and the recall and allows easy
identification of the optimum parameter value, as described in (7).

Fscore =
2TP

2TP + FP + FN
; (7)
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5 Offline Music Segmentation

As a first approach to this complex problem, and with the intention of gaining some
comfort with the mathematical tools involved in this development, it was decided to
select the first algorithm without taking into consideration the requirement of it being
capable of running in real time.
For this reason, the author (advised by the thesis director) decided to base the first
implementation on one of the most relevant papers in this discipline, dealing with an
algorithm that, even after two decades, continues to be referenced in the most recent
publications and continues to show state-of-the-art results [16] [17].

The paper introduced and implemented in this section is ’Automatic Audio Segmentation
Using AMeasure of Audio Novelty’ by Jonathan Foote, published in 2000 in the framework
of the 2000th IEEE International Conference on Multimedia. This publication introduces
a method of estimating the instantaneous audio novelty by analyzing frame-to-frame
similarity. The ground rules for detecting significantly novel points, which therefore can
be considered predictions for a boundary, is that those will have high self-similarity in the
past and future, but low cross-similarity. It is also important to notice that this method
presents a very adjustable model, since the extent of the “past” and “future” can be
adjusted in order to change the scale of the analysis.

5.1 Proposed Algorithm

The backbone structure presented in the publication can be defined as follows:

Algorithm 1 Foote Automatic Audio Segmentation Algorithm

Require: : X , Sr,V ,D,S, Noveltyc
Ensure: : X = [x1, ..., xN ] with N > 0 and Sr = 44.1kHz
1: for ∀xn ∈ X do
2: Each frame is tapered with a Hamming window (9)
3: X ′ ←− FFT (X )
4: V ←− FeatureDescriptor(X ′)

5: for ∀vi ∈ V do
6: for ∀vj ∈ V do
7: S[i, j] = D(vi, vj)
8: Noveltyc ←− Correlation described in equation (6)
9: OUTPUT PeakSelection(Noveltyc)

Being X in Algorithm 1 a time-series input containing the music signal studied, Sr the
sample rate of said recording and D a distance metric such as 10.3.
Also V being the vector with the signal characterisation, and Novelty the novelty function
calculated by the algorithm.
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5.2 Implementation

For the implementation of this first algorithm, the author decided to use the programming
language Python, mainly due to the ease that this programming language presents when
it comes to being read and adapted to other programming languages, thus making the
replicability and revision of this project easier.

Python offers innumerable packages in which computationally efficient implementations
of almost all the mathematical tools necessary for this development can be found. Going
into further detail regarding the packages used for the implementation of this algorithm,
it is worth mentioning NumPy2 and SCIPY3, both being common packages for mathe-
matical programming, and Librosa4 [18], a Python package specially designed for music
information retrieval systems and audio analysis.
Lastly, and this proved to be an important factor in the development of the project,
python offers many cloud execution platforms, which facilitates the execution of scripts
that require long and computationally expensive executions. In this work, most of the de-
velopment has been carried out on Google Colab, so that the hardware that was available
for the author was not a limiting factor for the implementations.

It is important to mention that despite taking the ’idea’ for the algorithm from a pub-
lished paper, this only offered a non-exhaustive mathematical description of the algorithm,
therefore having to take decisions and make novel implementations to circumvent the gaps
in the paper.

An example of these novel implementations is the peak detection algorithm that was
implemented, which is explained in more detail in the following sections of this section.

5.2.1 New Peak Detection Algorithm

The main improvement that was made to the proposed algorithm, apart from slight
adjustments necessary for its implementation, and parts that were implemented freely
due to the lack of detail in the publication, is the prediction decision block, in which
it is selected which peaks of the novelty curve should be considered as predictions of a
boundary. The technique originally proposed in Foote’s paper consisted of an excessively
simple method, which was based on considering as boundary the local maximum within a
given time elongation segment. In this way, it did not take into account cases where there
could be a rapid succession of segments, or on the contrary, areas of greater homogeneity
in which there are no transitions to be detected. Because of these factors, the author
worked to improve this aspect and implement a new peak selection block.

The design of this new algorithm was based on the homogeneity principle already de-
scribed in this thesis, according to which a transition point between two segments can be
described as a point where adjacent zones have a high degree of self-similarity, but have
a very low score on cross-similarity between them.

2For more information about the package - https://numpy.org/
3For more information about the package - https://scipy.org/
4For more information about the package - https://librosa.org/doc/latest/index.html
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Following this rule, an algorithm was implemented that calculates a threshold function
by applying a median filter in the form of a sliding window of size F on the novelty curve,
which is then adjusted by adding the median value of the novelty curve multiplied by an
offset, (these are optimisable values).
The general structure of this algorithm is detailed below.

Algorithm 2 Peak Detection Algorithm

1: for Frame in NC vector do
2: if NC[Frame - 1] < NC[Frame] < NC[Frame + 1] then
3: It is considered to be a local max for this function.
4: if NC[Frame] > threshold[Frame] then
5: It is consided a true peak, and therefore a boundary prediction.
6: BoundaryList ←− append(Frame)

7: OUTPUT BoundaryList Estimation

5.3 Optimization of the Algorithm

In order to be able to adjust the different parameters involved in this implementation
to their optimal value, an automatic optimization process was deemed necessary. This
step can also be considered an addendum to Foote’s initial paper (Algorithm 1), and to
the current trends in this line of research, since usually (or as far as the author is aware
of from the various papers studied during the course of this thesis) the parameters are
usually adjusted manually and without further consideration of the effect they may have
on the results obtained.

To carry out this optimization, first it is necessary to narrow down which parameters
should be optimized:

• FFT size: Which determines the size of the computed FFT (see section 10.1.1.3),
thus also conditioning the size of the frames.

• Mel Filter-Bank size: This parameter is what determines into how many bands
is the Mel spectrum segmented (see section 10.1.1.4). Thus, it is also the number of
filters is the Mel Filter-Bank. This affects the resolution of the computed MFCCs.

• Number of Cepstral Coefficients computed: As the name indicates, it deter-
mines the number of coefficients to calculate for each frame (see section 10.1.1.5).

• Checkerboard Kernel size: This determines the size of the kernel (see section
3.3.1).

• Threshold Offset: This parameter is a float that acts as a multiplier parameter for
the median value of the novelty curve, in the calculation of the threshold function.

• Threshold Median Filter size:This variable explicitly determines the size of the
Median filter applied when computing the threshold function.
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Once the metrics for quantifying the optimization process were defined, and counting
with a robust evaluative model (see section 4.3), a suitable optimisation strategy for the
described algorithm had to be defined and implemented.

This algorithm consists of an iterative optimisation of individual parameters, in which
initially all parameters are instantiated with a random value (or pseudo-random value
within a given interval), and from there with those values set, the different parameters
are optimised one by one.

To illustrate this process, once the first parameter has been iterated for all the cases
considered, the value considered optimal (the one that has achieved the highest F-score)
is selected, and this value is fixed for the parameter in the optimisation of all following
variables. This same process is repeated for all other parameters to be optimised, until
the first optimisation cycle is finished. Once this first round is finished, all parameters are
set to the optimal value found so far.

At this point, and before starting the next optimisation cycle, the range of values to be
tested for each parameter is narrowed down and centered to the maximum value found in
the previous cycle.
This process is then repeated until the maximum F-score achieved at the end of a cycle
remains stable.

This algorithm is described in more detail below.

Algorithm 3 Multi-Parameter Optimization Algorithm

1: while F-score[end] > F-score[end - 1] do
2: for Parameter in ParametersList do
3: for value in RangeOfValues do
4: The Algorithm runs with Parameter = ParameterRangeOfValues[value]
5: Fscore ←− evaluation of this prediction
6: Results ←− append(Fscore)

7: Parameter ←− max(Results) ▷ It’s set to the optimal value

8: After the a round of optimization, each variable is set to its local optimal value
9: RangeOfValues ←− bounded around the maximum found

10: OUTPUT Optimal Values for ParametersList

5.4 Results and Analysis

The first result to be commented is the one obtained once the segmentation algorithm
is executed. Once the piece of music to be segmented is loaded, and after executing the
code, the output that can be observed in Figure 12 is obtained.
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Figure 12: Output when running the final solution for this implementation

In this view it can be observed a set of plots and values, which represent the set of steps
followed in the execution.
At the top left, it can be seen a plot containing the calculated Mel Spectogram, and below
it, and still on the left, a graph representing the vector of cepstral coefficients obtained
by the MFCC characterisation technique.
In the centre of said panel, there is the graphical representation of the computed SSM.
Finally, on the right side of this view it can be observed, at the top, the graphic for the
Novelty Curve, and at the bottom, a graph containing different plotted functions. In this
last graph, it can be observed in blue the same Novelty Curve already seen in the upper
plot, but this time accompanied in orange by the calculated Threshold, all together with
the predicted Boundaries in purple. This is seen in more detail on Figure 14.

Figure 13: F-score Optimization

By executing the optimization algorithm (see Algorithm 3), it was possible to optimize
the different parameters that act as variables in our code. It can be seen in Figure 13 the
evolution of the F-score through out the different cycles of optimization.
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It should be noted that this is not an exhaustive optimization algorithm, so there are no
guarantees that the observed convergence corresponds to the absolute maximum. Even
so, the results obtained can be considered conclusive, since the optimisation algorithm
was run in different cycles with different random initialization values as a starting point,
and always ending at the same maximum, therefore concluding that there is no reason to
believe that a better F-score can be obtained through optimization.

The final values for all the optimized parameters, obtained through out this optimization
process are:

FFTsize = 8192;

kMelF ilters = 40;

CCepstralCoefficients = 20;

Kernelsize = 256;

Offset = 0.45;

MedianFiltersize = 83;

Running the algorithm using this set of parameters, which are the optimal parameters,
it is obtained the prediction observed in Figure 14. This prediction scores a maximum
F-score value of 0.644068, with a correct detection of 41 out of 61 true boundaries (True
Positives) and 1079 out of the 1099 homogeneous segments (True Negatives), therefore
detecting 67.213% of all boundaries, and scoring a precision of 0.655.

Figure 14: Optimized Prediction
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5.5 Discussion

From the results obtained in this section, several conclusions can be obtained.

First of all, it can be observed that the implementation presented in this section works
remarkably well, managing to segment the signal in a way that is considerably similar to
what a human listener would do.
This conclusion can be drawn from the F-score measure, which is rather good, but it is
also reinforced by human listening to the results of the segmentation algorithm. A review
of the segmentation proposed by the algorithm shows that there is a certain coherence in
the results, where the most marked transitions are almost always detected as a boundary,
and where even certain motifs that are repeated throughout the track are detected and
segmented repeatedly.

In this aspect, and taking as a reference point the available literature on this type of
implementation, it is worth mentioning that the results obtained (without having carried
out a rigorous comparison, it should be noted) are quite in line with current trends.

It is also concluded that the design, implementation and consolidation of both an evalua-
tion model and an optimization strategy for the various parameters on which the algorithm
depends, have been achieved. Both models have been tested experimentally, proving their
correct behaviour, as well as their versatility in adapting to different formats.

With these conclusions the next implementation is started, which takes into consideration
the requirement that the offered solution must be one capable of running in real time,
therefore capable of processing the audio and offering predictions of its segmentation in
real time.
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6 Real-time Music Segmentation

In this second implementation, the main focus of attention was to make it work in real
time, so that as the music was ’listened to’, the same signal was segmented. To achieve
this, new factors such as computation time and decision delay had to be taken into
consideration. Going into further detail, in the field of real-time processing it is necessary
to distinguish two notions; First, the CPU load. In average the computer should be able
to process the incoming sample as fast as it is ’read’. This is generally what is referred
as real-time processing. If your sampling frequency is Fm, your CPU should allow you to
process Fm sample per second.
A second (and different issue) is the delay in which you will be able to generate an answer,
and to decide whether or not there was a detection. This is referred as decision delay, since
it is not only dependant on the CPU times, but also in the complexity of the process.

These factors had to be taken into consideration, with the code-level optimisations this
required, as well as a modelling of the behaviour of the algorithms when constrained to a
system with finite memory.

In order to address the requirement to implement a real-time segmentation model, the
author was hampered by the fact that there are currently not a large number of publica-
tions that study music segmentation in the specific context of real-time processing, and
of these, most of them rely on neural network-based models or machine learning models.
As these disciplines are outside the intended scope of this thesis, it was necessary to look
for a classical signal processing oriented alternative.

For this purpose, it was decided to build an implementation based on the paper ”Real-time
unsupervised music structural segmentation using dynamic descriptors” [19], published as
an academic paper by the university of São Paulo. The segmentation model described in
this paper consists on an algorithm based on the study of homogeneity and dissimilarity
of the audio studied, but presents considerable differences with respect to the paper used
as a reference for the first implementation.
The implementation described in another paper [5] was also followed, adapting it so that
it could work in real time. However, this implementation did not reach the optimisation
stage due to poor early results.

6.1 Proposed Algorithm

The models described in both papers used as starting point for these implementations,
broadly speaking, consist of the following steps.
First of all, and once the signal has been ’listened’, it is necessary to proceed to extract the
feature descriptors (in this case, dealing with dynamic descriptors, since it is a real-time
implementation). Specifically, in both implementations contemplated in this thesis, differ-
ent descriptors have been used. In the first one the already used MFCCs were extracted,
since they already showed a great performance in signal characterization. In the second
implementation, and with the aim to confirm the initial intuition that MFCCs were more
suitable signal descriptors than other options based on chromatic structures, HPCPs were
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used. Once these descriptors have been extracted, and therefore have a parameterisation
of the music we are dealing with is available, it is proper to proceed to constitute the
structure discovery matrix, which can vary. Again, different structures were used in both
implementations, in the first one the already mentioned SSM was used, and in the sec-
ond one the Recurrence Matrix, with its corresponding Lag Matrix (see section 10.2.1 in
annex), were used.

Once the structure exploration matrix is constituted, the novelty curve can be computed,
therefore, and once this function is available, the only thing left to do being to select and
obtain the predictions for the segmentation by means of a peak detection algorithm. For
this last step, two different peak detection algorithms have been used, mainly with the
intention of, once again, verifying that the decisions made by the author were indeed the
right ones, and thus, discarding possible alternatives.

A broad description for the algorithms implemented can be seen below.

Algorithm 4 Real-Time Structural Segmentation

Require: : I; Inoutdata, wmin, wmax

Ensure: : S; boundarylocations, L; labelledsections
1: p←− 1, T ←− {}, x←− read(I)
2: while x ̸= NULL do
3: T ←− T ∪ {x}
4: if |T |+ 1 ≥ wmin then
5: relative←− LocateChangePoint(T )
6: if relative = NULL then
7: if |T |+ 1 > wmin then
8: T ←− {ti; ti ∈ T ; i ≥ wmin}
9: else
10: absolute←− (p− 1)− |T |+ relative
11: T ←− {ti; ti ∈ T ; i > relative}
12: S ←− S ∪ absolute
13: p←− p+ 1

14: L←− Label(S), x←− read(I)

6.2 Implementation of the Real-Time Solution

Once again, these implementations have been carried out from the ground up, and with-
out any previous basis, by the author, developing the code using Python as the main
programming language.
The aforementioned papers were taken as a starting point, but in the author’s imple-
mentations modifications were made with the intention of solving problems or improving
efficiency.

36



During the development of this real time solution, some challenges had to be faced. The
main challenge that characterises the real-time implementation as opposed to the previous
implementation is that, being a model that requires processing the signal as it listens to it,
processing times must be taken into consideration, because if these times are excessively
long, delays are formed that hinder real-time processing.

To solve this situation, the author models the problem by means of two variables called
tstep, which refers to how many seconds of music should be ’listened to’ before making the
prediction recalculation, and the variable Lpast, which determines the number of seconds
prior to the current instant that are taken into consideration for processing at any given
time.

These two parameters have a relationship, since the greater the value of the parameter
Lpast, the greater the number of data-points to be calculated at any given time, and
therefore the greater the processing time, in turn conditioning how small tstep can be.
This relationship can be illustrated as seen in equation 8.

It is important to notice that the parameter tstep also governs with how many seconds of
delay the predictions are accepted. To illustrate this idea, if for example the tstep takes a
value of 5 seconds, this implies that every 5 seconds of music listened the algorithm will
recalculate and new predictions will be made, but it also implies that these predictions
can be found in those last 5 seconds listened, thus implying a delay in the predictions of
up to 5 seconds (the size of the tstep).

tstep ≥ tdecision(Lpast); (8)

It is also worth mentioning that the processing time is considerably affected by the distance
metric used (see section 10.3), so this parameter has to be studied and limited in line with
the others already described.

For the second alternative algorithm implementation, in order to confirm the initial hy-
pothesis that MFCC was the most appropriate choice for the type of music we are trying
to segment, and to also explore possible ways to improve the effectiveness and efficiency
of the different algorithms implemented, it was decided to use HPCP (see section 3.1.2)
descriptors to characterise the signal. Taking advantage of this second independent im-
plementation, we took the opportunity to test different peak detection algorithms as well
as other tools for structure discovery, as already mentioned. However, due to the results
described in section 6.4, this second implementation was not taken to the optimisation
stage due to poorer than expected results.

6.3 Optimization

The same optimization model already described in section 4 was used in this implemen-
tation, as it proved to be consistent and robust, so it was considered that it did not need
to be modified beyond the necessary adaptations to make it compatible with this new
implementation.
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For this new implementation, the main focus of the optimisation process is the relationship
described in Equation 8. Therefore, the first condition to study in this relationship is the
effect of the different metrics on the processing time. For this study, the algorithm was
tested with numerous different metrics, which were obtained from different papers, to
then be compared and observe what effect they had.

(a) Canberra Distance (see Equation 20) (b) Euclidean Distance

(c) Correlation Distance (see Equation 22) (d) Cosine Distance (see Equation 21)

Figure 15: Evolution of the Decision Delay as a function of the length of the calibrated
sample, for different distance metrics.

In Figure 15 it can be observed the graphs representing the sample lengths corresponding
to 1, 3 and 5 seconds of decision delay. These are also the different tstep which will be used
later.

It was also necessary to study the effect of the Kernel size. As explained in section 3.3.1,
the size of the kernel influences what kind of structures are detected, but also given how
it is implemented, it can make it impossible to predict boundaries at the ends of the SSM
diagonal. Therefore, the effect of modifying this parameter on the F-score should also be
studied.

For this purpose, the exact relationship between the F-score (in the different tstep) and
the kernel size was experimentally studied, thus making it possible to conclude what can
be seen below.
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(a) 5 seconds tstep (b) 3 seconds tstep (c) 1 seconds tstep

Figure 16: Evolution of F-score as a function of the Kernel size, according to the tstep.

Here it can be observed that there is a clear relation between kernel size and F-score, but
that this is a function of the tstep used.
Therefore, it can be concluded that depending on the tstep being used, there is an optimal
value for the kernel size to be used, and that depending on this the predictions can be
improved. It can also be clearly observed that if kernel too large is used, predictions are
no longer made in the time interval comprising the tstep used, and similarly if a kernel
size too small is used, the sensitivity decreases and the predictions become too abundant,
thus lowering the F-score.

6.4 Results and Analysis

The first result to be addressed is the view that is generated during the execution of this
real-time solution. This can be seen in Figure 17.
In this view it can seen how after each new tstep seconds of the listened music, the algorithm
computes new predictions, and in case a boundary prediction is made in the last tstep
seconds of the sample, this boundary is printed on the screen as shown in the figure
below, therefore indicating the segmentation in the last few seconds of listened music.
This way, it is possible to make a real time use of the segmentation algorithm, obtaining
the information in real time according to the parameters with which it has been configured.

Figure 17: Real time execution, detecting a boundary using a tstep of 1 second

It is also possible to obtain a representation of the final segmentation performed by the al-
gorithm, thus obtaining a global view of the proposed segmentation. This can be observed
below.
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Figure 18: Final view of a real time execution

The second result to be discussed is the one shown in Figure 19. In it, it can be seen the
different F-score obtained for the different implementations, and according to the tstep
used.

Figure 19: F-score as a function of tstep, for different implementations

In this graph, it can be seen; in green the F-score obtained with the standard configuration
(this consists of initialising all the parameters with the values obtained in the optimisation
of the offline solution) of the HPCP implementation, for the different tstep of 1, 3 and 5
seconds. It is worth mentioning that in this implementation the values are significantly
lower than in the others, which is coherent with the initial hypothesis that the HPCP
feature descriptors are worse given the style of music dealt with.
Also, in orange, it can be seen the F-score for the same tsteps of the real-time implemen-
tation using MFCC in its standard configuration, and in blue the same for its optimised
version. It is worth highlighting that the higher the tsteps, the higher the effectiveness
of the segmentation algorithm. This is due to the relationship described in Equation 8,
which describes that the smaller the tsteps, the smaller the memory taken into considera-
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tion when recalculating the predictions for each new sample, which consequently hinders
the good performance of the algorithm.
It is also remarkable the improvement observed once the optimisation process has been
applied, reaching the most optimal case studied to obtain an F-score of 0.597.

6.5 Discussion

None of the different results obtained in this section are unexpectedly new, or in other
words, they are all aligned with the initial hypothesis.

It has been confirmed that indeed, given the type of music dealt with, the most suitable
feature extractors to use were MFCC, since it was observed that actually HPCP gives
significantly worse predictions.

It has also been shown that the algorithm working in real time, and therefore having
restrictions on the size of the memory (the length of the music sample size to be used),
suffers from a decrease in the performance of the algorithm. This can be clearly observed
in that, even after subjecting the algorithm in real time to the proper optimisation pro-
cess, the F-scores obtained are still lower than those obtained in the offline execution.
This result was to be expected and is consistent with what was expected, so it can be
extrapolated that it is not a consequence of our algorithm, but of the very nature of what
is a real-time execution.

In summary, it can be concluded that although the results are lower than those observed
in the section on non-real-time implementation, the results obtained are consistent and
within expectations, thus being positive results.
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7 Conclusions

As a final conclusion of this work, it can be concluded that indeed, in the field of Real-Time
Music Segmentation, framed in the field of audio-based Music Structure Analysis (MSA),
there is still much room for the developments of new techniques, as well as improvements
on existing models, without having to resort to machine learning solutions.

It has also been observed in this thesis how by using classical signal processing algorithms
and techniques, and at the same time improving and complementing some of the tech-
niques already described in other publications, remarkably good results can be obtained.

It is also worth highlighting the different results obtained, which are summarised in the
following table.

Implementation F-score % correct
predictions

Precision

Offline Optimised
Segmentation

0.644 67.21 % 0.655

HPCP Standard
Real-Time Solution

0.323 26.67 % 0.400

MFCC Standard
Real-Time Solution

0.444 43.30 % 0.448

MFCC Optimised
Real-Time Solution

0.597 65.00 % 0.513

Table 3: Summary of the results from all implementations

It can be observed that, although the offline segmentation algorithm still performs bet-
ter than the real-time version, the real-time version has been refined to come closer to
the scores of the offline version. Thus, concluding that the main objective of the work,
which was to develop and implement a real-time music segmentation solution, has been
successfully achieved.
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8 Future Work

The main line of improvement that this author considers that would be interesting to
investigate, but that due to the limited time offered in a final degree thesis could not be
carried out, would be the implementation of a mixed segmentation model in which the
predictions made by different feature extracting techniques are taken into consideration
at the same time.
That is, using MFCC and HPCP simultaneously, in such a way that either the processing
scheme of both models is executed separately, and once the predictions of the two models
are obtained separately, a final decision is taken according to a balancing of these two
models by means of assigned statistical weights, or establishing the structure exploration
matrix by constructing it by means of the distances calculated in both characterisation
vectors, and balancing these distances also by means of assigned weights. In this way,
a more robust model that can take into account more factors of the processed signal in
question is likely to be achieved.
Of course, the weights assigned to each of the vectors or predictions of the various feature
extraction techniques should be subjected to a rigorous optimisation process, otherwise
the model could be undermined and perform worse than the current model.
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9 Economic and Environmental Impact

9.1 Budget

This section will try to model and discuss the budget needed to develop a project of this
scale.
For this purpose, it has been considered that the developer would earn 11€/hour and
that the whole project needs around 585 hours in order to be completely finished. The
number of hours dedicated to each part of the project can be seen in the following table.

Work Plan Required Hours
WP1 : State of Art 95
WP2 : Algorithm selection 10
WP3 : Implementation 320
WP4 : Evaluation and optimization 90
WP5 : Final Solution 25
WP6 : Report 45
TOTAL 585

Table 4: Hours worked break down

After performing an analysis of the total hours dedicated to the project, a total of 585
hours have been obtained. In the following table the rest of the costs necessary to develop
the project are discussed.

Concept Amount (in eur)
Developer Salary 11€/h x 585h = 6435€
Computer 750€
Cloud Computing Platform 9.25€/month x 5 month = 46.25€
Electricity and Others 200€
TOTAL 7431.25€

Table 5: Costs break down

As detailed in Table 4, the estimated total budget required for the development of this
project is 7431.25€.
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9.2 Environmental Impact

In this section we will detail the environmental impact corresponding to the development
of this project. Mainly, as this is a software project, the environmental impact corresponds
to the CO2 emitted due to electricity consumption, which may or may not come from
clean or renewable energy sources. The electricity consumption and the mass of CO2

emitted into the atmosphere are detailed below.

Causer of the
Consumption

Hourly
consumption

Total
Consumption

CO2

Consumption
Computer 200 W 90 kWh 20.983 Kg of CO2

Cloud Computing 300 W 55.5 kWh 05 Kg of CO2

Others 150 W 87.75 kWh 20.458 Kg of CO2

TOTAL 700 W 233.25 kWh 41.441 Kg of CO2

Table 6: CO2 consumption break down

We can see that the total emissions generated by this project would be around 41.5Kg of
CO2.

3Google Colab has a carbon footprint of zero
4Google Colab has a carbon footprint of zero
5Google Colab has a carbon footprint of zero
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10 Appendix 1: In-Depth Theoretical Background

This appendix provides more detailed explanations of some of the mathematical tools
already included in the body of the paper, as well as other mathematical descriptions
not previously mentioned, but necessary to get a better grasp of the background of this
complex problem.

10.1 Audio Features Descriptors

In this subsection the description and explanation of the audio feature descriptors that
will be used throughout this project are presented. Even though the author is aware of
other methods such as Tonal Centroids, Pitch-Chromograms or Zero Crossing [8], with
the purpose of not extending this section beyond what is necessary, the analysis of these
techniques will be avoided, since they have not been found relevant for our purpose.
In summary, the parameterization itself is a fundamental step in the development of a
segmentation algorithm, since it has a direct effect on how the boundaries are detected.

10.1.1 Mel Frequency Cepstral Coefficients - MFCC

The Mel Frequency Cepstral Coefficients, from now on referred as MFCC, is a well known
and commonly used feature extraction technique, which consist in the parameterization
of each frame of the signal.
The MFCC uses the Mel scale, which is based on the way humans distinguish between
frequencies (a non-linear perception), to divide the frequency band into sub-bands, and
then extracts the Cepstral Coefficients using the Discrete Cosine Transform (DCT). The
fact that is it based on the human perception of sound, makes it a good choice for audio
feature extraction, specially since our main focus is trying to reflect in our segmentation
algorithm the way humans perceive the musical piece.
Going into further detail, the process can be broken down into the following steps:

10.1.1.1 Pre-Processing

Before beginning the process of feature extraction, which would be later on analysed,
there are a few steps that need to be taken in order to ensure the quality of the signal we
are working with. In order to avoid aliasing in the signal, which would negatively impact
the feature extraction, we first need to ensure that the recording we are working with is
sampled at a sample rate of 44.1kHz. According to the Nyquist principle, as long as we
are working with a sample rate of 44.1kHz, theoretically we can obtain a total bandwidth
of 22.05kHz.

This way, since the signal we are working with has a sample rate of 44.1kHz, and therefore
a bandwidth of 22.05kHz, this implies that the signal is contained only within the first
Nyquist zone (from 0Hz to 22.05kHz), therefore ensuring there is no overlap with the
second Nyquist zone, which would cause aliasing.
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10.1.1.2 Frame Windowing

Being music recording a slowly time-varying (or quasi-stationary) signal, which can be
considered a non stationary process, it is known that the Fast Fourier Transform (FFT)
would produce distortions. In order to extract stable acoustic characteristics, we must
assume the audio behaves as a stationary process locally (for short periods of time).
Therefore, we conclude that, in order to carry out the signal analysis, it is needed to
fragment the signal into shorter frames [20].
To accomplish this, we need to taper the signal. A Hamming window is used with this
purpose, as described below:

Let X = [x1, ..., xN ] be the vector representing the recorded music, where N
is the number of samples in the signal.

Using the Hammer window described as:

wH[n] = 0.54− 0.46 cos

(
2π

N
n

)
; for 0 ≤ n ≤ N (9)

We obtainX ′[n] = [x′
1, ..., x

′
N ] being the vector containing the windowed frames

(column vectors x′
n) of the signal.

The decision to use a Hamming window, instead of other frame blocking and windowing
techniques, was made with the intention of accomplishing smooth edges, enhancement
of the harmonics, and to reduce the edge effect while computing the Discrete Fourier
Transform (DFT) on the signal. It is also important to mention that the size of this window
(and consequently, the size of the FFT) can not be chosen randomly, and a thorough study
of its effects on the results of the segmentation algorithms must be conducted (see section
5.3).
In addition, we need to consider the overlapping between frames, therefore a step-size
needs to be studied and detailed in the process. The purpose of the overlapping between
samples is that, as an inherited condition from the use of a Hamming window, all frames
present some lose of information in the edges. The best way to avoid the lose of information
is through the use of overlapping [21].

10.1.1.3 Discrete Fourier Transform Spectrum

In this step, each frame is converted into magnitude spectrum by applying and calculating
its DFT:

X[k] =
M−1∑
n=0

x[n]e−j 2πkn
M ; for 0 ≤ n ≤ N − 1 (10)

Being M the number of points used to compute the DFT
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10.1.1.4 Mel Spectrum

The Mel spectrum is computed by passing the Fourier transformed signal through a set
of band-pass filters known as Mel filter-bank. The Mel scale can be described as having a
linear frequency spacing until 1 kHz, and a logarithmic spacing above 1 kHz [22].

Figure 20: Graph of the relation between Hertz frequency and Mel scale

The relation between the conventional frequency and the Mel spacing, can be described
as:

fMel = 2595 log10

(
1 +

f

700

)
(11)

Being f the Hertz frequency, and fMel the representation of the human per-
ception of said frequency.

To build the filter-bank necessary to obtain the Mel spectrum, first the center-points
for each filter need to be calculated. The process followed to obtain said frequencies is
illustrated in figure 21.

Figure 21: Description of the process followed to obtain the center-points for the filter-bank
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Once the previously described values are obtained, we can compute the filter bank as
described below.

Hm[k] =


0, k < f(m− 1)
2(k−f(m−1))
f(m)−f(m−1)

, f(m− 1) ≤ k ≤ f(m)
2(f(m+1)−k)
f(m+1)−f(m)

, f(m) < k ≤ f(m+ 1)

0, k > f(m− 1)

; for 0 ≤ m ≤M − 1 (12)

Where Hm[k] in (12) is the triangular filter for the kth energy spectrum bin.

Therefore, after area-normalizing the filter-bank by dividing the amplitude of the triangle
by the width of its Mel band, the following representation is obtained:

Figure 22: Normalized Mel filter-bank

After that, the Mel spectrum of each frame is computed. This can be done by multiplying
the magnitude spectrum of each frame X[k] by each of the of the triangular Mel weighting
filters Hm[k], as described below.

S[m] =
N−1∑
k=0

[
|X[k]|2Hm[k]

]
; for 0 ≤ m ≤M − 1 (13)

Where Hm[k] in (13) is the triangular filter for the kth energy spectrum bin as
described in (12).

Finally, we obtain S[m] = [xmel1 , ..., xmelN ], being a vector containing each frame xmelk of
the music signal as a vertical vector of k values, each representing the audio power for the
k filters in the filter-bank. This is referred as Mel Frequency Coefficients
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10.1.1.5 Cepstral Coefficents

The final step in generating the MFCC is to use the Discrete Cosine Transform (DCT)
applied to the transformed Mel frequency coefficients in order to obtain the Cepstral
Coefficients.
Prior to computing the DCT, the Mel spectrum is usually represented on a log scale. This
results in a signal in the Cepstral domain, with a quefrequency (the time scale of the
Cepstral domain is usually referred as quefrequency) peak corresponding to the pitch of
the signal, and a number of formants representing low quefrequency peaks [23].

c[n] =
M−1∑
m=0

log10(S[m]) cos

(
πn(m− 0.5)

M

)
; for n = 0, 1, 2, ..., C − 1 (14)

Where c[n] in (14) is the calculated C Cepstral Coefficients for each frame.
Therefore, obtaining C MFCCs.

The representation of the C MFCC obtained in 14 looks as illustrated in figure 24.

Figure 23: Example of Cepstral Coefficients extracted from a piano track.

It is important to mention a few last details at this point, and before initiating another
section. First of all, it is important to understand that the zeroth coefficient of the MFCC
can sometimes be excluded, since it represents the average log-energy of the input signal,
which only carries volume-specific information [23].

Also, it should be mentioned that the value of C is not trivial, and it needs to be studied
and optimized (see section 5.3) as it has an important effect on the effectiveness of the
algorithm
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10.1.2 Harmonic Pitch Class Profiles - HPCP

Harmonic pitch class profiles (from now on, referred as HPCP) is a feature extraction
technique, based on a pitch class profile descriptor. HPCP is an enhanced pitch distribu-
tion feature, constituted by sequences of feature vectors that describe tonality, measuring
the relative intensity of each of the 12 pitch classes (and its harmonic tones) of the equal-
tempered scale within a frame. This results in a 12-dimensional profile for each frame,
and it is typically visualized as a 12×N matrix

Short-Time Fourier Transform

After following the same steps of pre-processing and windowing as described in sections
10.1.1.1 and 10.1.1.2, we convert the framed signalX[n] in a time series of length N ′. To
do that, we compute the Short-Time Fourier Transform [24] as described below:

Xm[k] =
M−1∑
n=0

x[n+mH]w[n]e
−j2πn k

NDFT ; (15)

Where x[n] in (15) is a frame of the recorded signal, w w[n] is the analysis
window, H is the hop size for the sliding window, M is the size of the window
and lastly NDFT . The time frame index would be m ∈ [0 : N − 1] and the
frequency index k ∈

[
0 : NDFT

2
− 1

]
The process described below require the absolute value of the complex frequency domain
representation |Xm(k)|, so that the magnitude spectrum of the signal can be obtained.

HPCPs

To capture the amount of energy contained by each of the twelve notes of the conventional
scale, across a specific number of octaves, in one of the frames that constitute the music
signal, the following process must be computed [25].

HPCPm[p] =

fc∑
k=f0

(φ(k) = p)|Xm(k)|2; for p ∈ [0 : 11] (16)

Where f0 and fc are the start and end frequencies that delimit the bin in which
HPCPs are computed. p represents the 12 notes, and φ in (16) is a frequency
mapping function defined in (17):

φ(k) =

[
12 log2

(
fs
fref

k

NDFT

)]
mod 12; for p ∈ [0 : 11] (17)

Where fs represents the sample rate of the recorded signal, and fref the fre-
quency of the first bin, corresponding to the note p = 0.
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Being as they are HPCPs usually normalized, we obtain the following expres-
sion, describing the whole process as in (16) and (18):

HPCP′
m[p] =

HPCPm[p]

argmaxp HPCPm[p]
=

∑fc
k=f0

([
12 log2

(
fs

frefp

k
NDFT

)]
mod 12

)
|Xm(k)|2

argmaxpHPCPm[p]
(18)

Through this process, we obtain a vector x[n] = [x1, ..., xN ′ ] which contains
a vertical vector xn[p] (dimension 12x1) corresponding to each of the frames
that make up the initial signal, and in which the information of the HPCPs is
contained.

As a result of the execution of this audio characterization technique, we obtain the fol-
lowing type of plot, which can be described as a matrix in which the power corresponding
to each note can be observed, for each instant of the signal (frame).

Figure 24: Example of normalized HPCP features extracted of a piano track.

10.2 Tools for Structure Discovery

In this section, we describe another structure of lesser relevance, but necessary to fully
understand this thesis.

10.2.1 Circular Time-Lag Matrix

The Circular Time-Lag Matrix is in fact a modified version of the already explained SSM
(see section 3.2.1), but a certain post-processing is added to the steps [26].
The Circular Time-Lag Matrix (from now on referred as CLM) represents the similarity
of each frame to each of the K frames. Graphically, it implies that it rows correspond
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to K appropriately padded diagonals above the main diagonal of an SSM. This allows
to detect repetitions (appearing as horizontal lines, instead of the diagonals in the SSM)
within a limited context.

Such process requires the circularly shifting of the rows of the previously con-
structed matrix (this being either a SSM or a RM) such that.

CLMi,j = Mk+1,j; for ∀i, j ∈ [1 : N ] (19)

WhereM in (19) represents a previously computed square matrix, of dimension
N ×N , and k = (i+ j − 2) mod N .

10.3 Distance Metrics

Which metric is decided to use can have various effects on the segmentation algorithm of
which it is a part, since it must be understood that not all distance metrics quantify the
same factors.
Therefore, this section will describe some of the most common metrics that have proven
to be useful in the course of this thesis.

• Canberra Distance

The Canberra distance is a numerical measure of the distance between
pairs of points in a vector space. It can be understand as a weighted
version of the more commonly known Manhattan distance.

dcanb(vi, vj) =
n∑

k=1

|vin − vjn|
|vin| − |vjn|

; (20)

Where vi and vj in (20) are characterization vectors.

• Cosine Distance or Similarity

The cosine similarity is a measure of similarity between two frames. It is
defined as vectors in an inner product space, and the cosine similarity is
defined as the cosine of the angle between them, that is, the dot product
of the vectors divided by the product of their lengths.

dcos(vi, vj) =
< vi, vj >

||vi||||vj||
; (21)
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• Correlation Distance

The Correlation distance is a measure of dependence between two paired
random vectors of arbitrary, not necessarily equal, dimension. In our
case, the correlation distance coefficient is zero if and only if the vectors
are independent. Thus, distance correlation measures both linear and
nonlinear association between two frames.

dcorre(vi, vj) =
(vi − µvi) · (vj − µvj)

||vi − µvi ||2||vj − µvj ||2
; (22)

Where µvi in (22) represents the mean of the vector vi , and ||vi − µvi ||2
represents the l2-norm, also known as Euclidean norm.
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