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Abstract 

With the continuous evolution of the mobile communications networks, it is important to 
have virtualized open-source ecosystems such as OpenAirInterface, that can provide low 
cost networks to the different operators. 

In this project we aim to develop a centralised radio controller for the management of 4G 
small cells based on OpenAirInterface technology. This radio controller interacts with the 
specific solution equivalent to OAI's RT RIC called FlexRAN. The objective of the radio 
controller is to achieve an automated deployment of 4G services over OAI technology 
cells, where each service is assigned several dedicated radio resources (RAN slice). 
Specifically, the aim is to manage the radio resources assigned to the different services 
dynamically and according to the requirements of the service (QoS, latency, etc.).   
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1. Introduction 

Since their inception, mobile communication networks have gained prominence as the 
number of different modern applications have considerably increased during the last 
decades. All of which, undoubtedly, leading to an enormous demand for more traffic 
volume, more device connectivity, and greater Quality of Experience (QoE). 

In fact, these networks have experienced a tremendous evolution over the decades. 
Starting with the first generation (1G) launched in 1979 with analog technology. Next, the 
second generation (2G) in which digital telephony was introduced and followed by the 
third generation (3G) which was the first generation to incorporate Internet services. Then 
the forth generation (4G) appeared, increasing the speed and the quality of the data, and 
now, with the recent fifth generation (5G), it is providing more services than ever, with 
higher efficiency and capacity. 

Consequently, with the introduction in the market of these 5G networks, all the 2G and 
3G networks are getting now discharged. However, this is something that will not happen 
with the 4G [1], these networks will be necessarily in the market for many years, as there 
are many use services that will not be deployed in 5G. In fact, operators will continue to 
use 4G as a primary connectivity for users, and 5G will be presented to offer services 
where it requires a major traffic demand. 

With this tremendous evolution speed, it is important to have virtualized open-source 
ecosystems that allows to develop and manage the software and hardware for the 3GPP 
cellular network (4G and 5G). These software solutions can be used on radio over 
general hardware equipment (COST servers), which provides a cost reduction and time 
optimization for operators. This is a great advantage over the proprietary solutions that 
works only within the manufacturer's own hardware.  

One example of these virtualized open-source ecosystem is OpenAirInterface (OAI). This 
ecosystem allows to set up a 4G/5G network and inter-operate with commercial 
equipment, and so, it opens a world full of possibilities to incorporate new technologies 
and functionalities into a network 

In this research line, the aim of this project is to develop a centralized radio controller 
owned by the i2CAT Foundation (research center) to manage 4G and 5G small cells with 
OpenAirInterface technology. With this radio controller, it is intended to create an 
automated deployment of different 4G and 5G services over the different cells. These 
services will allow to assign a name of dedicated radio resources (RAN slices), and to 
manage the different PLMN and core networks of the radio. More in detail, this is planned 
to manage the different radio resources assigned to different services in a dynamic way 
and taking into account all service requirements (Quality of Service (QoS), latency, etc...). 

1.1. Work Plan 

The work plan followed in this project is summarized below, as well as a Gantt Diagram 
with the different tasks performed. 

Work Package Task ID Start Date End Date 

OpenAirInterface network 4G 
study 

4G Network Architecture study 1.1 12/01/2022 20/01/2022 

OpenAirInterface 4G study 1.2 18/01/2022 22/01/2022 
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OpenAirInterface 4G deployment 1.3 22/01/2022 30/01/2022 

OpenAirInterface network 5G 
study 

5G Network Architecture study 2.1 01/02/2022 10/02/2022 

OpenAirInterface 5G study 2.2 10/02/2022 15/02/2022 

OpenAirInterface 5G deployment 2.3 15/02/2022  25/02/2022 

Software development OAI API development 3.1 25/02/2022 10/03/2022 

OAI exporter development 3.2 10/03/2022 25/03/2022 

NetConf-Server development 3.3 25/03/2022 15/04/2022 

Netconf-Manager development 3.4 16/04/2022 25/04/2022 

Racoon-Core development 3.5 26/04/2022 15/05/2022 

Software Integration Integrate all the system elements 4.1 15/05/2022 20/05/2022 

Solution Demonstration Perform different demonstrations to 
validate the work 

5.1 21/05/2022 15/06/2022 

Table 1: Work Plan Table 

 

 

Figure 1: Gantt Diagram 

1.1.1. Problems and modifications from initial work plan  

Throughout the development of the project some problems in the deployment have occur 
that have deviated a little the project specifications. In fact, it has not been possible to 
deploy the 5G network, as OpenAirInterface has some bugs with connectivity of the 
different elements of the network that made impossible to incorporate 5G in the deployed 
system. Therefore, this work includes only the deployment of i2CAT's proprietary 
centralized radio controller for the management of 4G small cells based on 
OpenAirInterface technology. But, as can be seen in this project, the deployment of the 
5G network has also been prepared, to be put in action when OpenAirInterface can fix 
these software bugs, and we are confident it will be in the near future.   
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2. State of the art of the technology used or applied in this 

thesis 

This chapter will give an overview of the different 4G and 5G Network Architecture. It will 

also introduce the OpenAirInterface ecosystem opensource as well as the network 

management protocol Netconf. 

2.1. 4G Network Architecture 

Long Term Evolution (LTE) [2] is the fourth generation 4G in the mobile communications 

networks, it was introduced by the Third Generation Partnership (3GPP) and it is the 

evolution of the previous 3G (UMTS) and 2G (GSM) generations. Even the related 

specifications were formally known as evolved UMTS terrestrial radio access (E-UTRA) 

and evolved UMTS terrestrial radio access network (E-UTRAN). The first version of LTE 

was documented in 3GPP Release 8 specifications. 

The main objective of 4G technology is to provide a high data rate, with low latency and 

an optimization that allows flexible bandwidth deployment.  And its network architecture is 

designed to support packet-switched traffic with seamless mobility and high quality of 

service. 

LTE main features: 

- Data rates of 1Gbps peak in downlink and 500Mbps peak in uplink. 

- It uses both Time Division Duplex (TDD) and Frequency Division Duplex (FDD). 

- It supports flexible carrier bandwidths, from 1.4 MHz up to 20 MHz as well as both 

FDD and TDD. LTE designed with a scalable carrier bandwidth from 1.4 MHz up 

to 20 MHz which bandwidth is used depends on the frequency band and the 

amount of spectrum available with a network operator. 

- MIMO transmissions support. 

- In the network architecture, all nodes are IP based, which includ the backhaul 

connection to the radio base stations. 

- Standardization of QoS mechanisms on all interfaces. 

- Enhanced capacity and low cost per bit. 

Its architecture presents a flat structure, with two main parts in the network, the Core 

Network (CN) which can be seen as the Evolved Packet Core (EPC) and the Radio 

Access Network (RAN) which is the Evolved Terrestrial Radio Access Network (E-

UTRAN) [3]. 

 

Figure 2 LTE architecture with Core Network and Radio Access Network 
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In the figure 3, it is detailed which elements are included in this architecture, both in the 

core network and in the RAN access network, and also all the different interfaces that 

participate in this technology. 

 

Figure 3 LTE architecture standard [13] 

Radio Access Network 

The Radio Access Network (RAN) [4] is composed of a single network entity called 

evolved-NodeB (eNodeB) which constitutes a E-UTRAN base station. The eNodeB 

integrates all the functionalities of the access networks, very different from previous 

generations in which the access networks were composed of base stations and colling 

equipment.  

The E-UTRAN access network consists of eNodeBs that provides the connectivity 

between a user equipment (UE) and the EPC. It communicates with the rest of the LTE 

system through three different interfaces: E-UTRAN Uu, S1 and X2. 

- E-UTRAN Uu interface is also called e-Uu, is the one responsible for the transfer 

of information over the radio channel between the eNodeB and the UE.  

- S1 interface is the one responsible for the connectivity with the core network and 

in fact, it is actually split into two: 

o S1-AP to support the control plane  

o S1-U to support the user plane  

- X2 interface is the one that interconnects the different eNodeB, exchanging both 

signaling messages intended to enable more efficient management of the use of 

radio resources (such as information to reduce interference between eNodeBs) as 

well as traffic from system users when they move from one eNodeB to another 

during a handover process. 

Moreover, the control and user plane are important features in the organization of 

protocols towers associated with LTE network interfaces. In fact, the control plane refers 

to the protocol tower required to support the different functions and procedures necessary 

to manage the operation of such interface or the corresponding entity.  And the user 

plane refers to the protocol tower employed for sending user traffic over such interface. 

Core Network 

The Core Network [5] conform the EPC and it is composed by four different entities: 

Mobility Management Entity (MME), Home Subscriber Server (HSS), Serving Gateway 

(S-GW) and PDN Gateway (P-GW), and all of them are responsible for the IP 
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connectivity of the different UEs that are connected to the Radio Access Network and 

also to the external networks. 

- MME: The MME is the main element of the EPC to manage the access of UEs 

connected to the E-UTRAN. All terminals that are registered and connected to the 

4G network through the RAN have an assigned MME entity. The choice of this 

MME entity is made in the registration process and is based on a set of aspects 

such as geographic location as well as load balancing criteria. The MME entity 

assigned to a user can be changing and depending on the user's mobility within 

the network service area. It communicates with the eNodeB throw the interface 

S1-AP. 

Its main functions are:  

o Authentication and authorization of user access through E-UTRAN 

o Management of EPS bearer services 

o Management of user mobility in idle mode 

o Signaling for mobility support between EPS and 3GPP networks 

o Termination of NAS signaling protocols 

- HSS: The HSS is the entity that acts as the main database of the 3GPP system 

and stores network user information. This information is based on the user's 

subscription data and the information necessary for the network operation itself. 

This database can be queried and modified by the other network entities in charge 

of providing connectivity services or end services. In order to access the database, 

it is necessary to do it from the MME network and through the S6a interface, 

which its traffic carries subscriber and APN-related data. 

- S-GW: The S-GW is the entity that acts as the user plane gateway between E-

UTRAN and the EPC backbone throw the GTP-U (also called S1-U) interface. As 

with the MME entity, users who are registered in the 4G network also have an S-

GW entity assigned in the EPC through which their user plane passes. It is also 

assigned with geographical criteria as well as load balancing. Among its main 

functions are: 

o S-GW is responsible for providing an anchor point in the EPC backbone 

with respect to terminal mobility between eNodeBs. 

o The anchor point functionality also applies to mobility management with 

the legacy 3GPP access networks legacy (3G and 2G RAN). 

o Temporary storage of user IP packets in case the terminals are in idle 

mode. 

o Routing of user traffic. 

- P-GW: The P-GW is the entity in charge of providing connectivity between the 4G 

network and external networks (which in 3GPP specifications are called Packet 

Data Network (PDN)), which means that through this entity, users registered and 

connected in an LTE network become visible in an external network. Therefore, all 

IP packets generated by users are transported to the external network through 

this gateway and vice versa. 

Each user is assigned at least one P-GW gateway to transport the packets from 

its registration in the LTE network, and among its main functions are: 

o Application of the rules of use of the and rate control to the bearer services 

that the terminal has established. 

o The assignment of the IP address of a terminal used in a specific external 

network is done from the corresponding P-GW gateway and throw the 

interface S5/S8. 



   

 14 

o The P-GW gateway acts as an anchor point for mobility management 

between LTE and non-3GPP networks. 

o P traffic passing through the P-GW gateway is processed through a set of 

filters that associate each IP packet with the corresponding user and EPS 

bearer service. 

Nowadays this 4th generation of mobile communications networks is still in use [1], 

and in fact, it will be around for at least 10 more years, so 5G will not make LTE 

obsolete in any time soon.  

2.2. Evolution towards 5G and its Network Architecture 

The fifth generation of mobile communications networks is the last generation of the 

3GPP technologies after the 4G. Its standards have been introduced in the 3GPP Realise 

15.  

Before its release, previous generations wanted to offer fast and reliable communications 

data services to the different users in the network, and with 5G networks, it is also offer to 

the end user a wide variety of wireless services provided through multiple access 

platforms and multi-layer networks. 

In terms of 3GPP, it defines two different deployment architectures for 5G as can be seen 

in the figure 4:  

Non-standalone (NSA) network architecture 

The NSA 5G Network Architecture [6] takes advantage of the existing LTE infrastructure 

to deploy a 5G service. 5G Radio Access Network (RAN) and its New Radio (NR) 

interface is deployed with the 4G RAN and 4G CN infrastructure.  

So, by introducing a 5G NR, it allows increase bandwidth capacity and network 

throughput respect to 4G networks, and to have greater flexibility in the functions of the 

user plan provided by the gateways (S-GW and P-GW) of the Evolved Packet Core. In 

contrary, NSA networks are limited to what is offered by the LTE network, in fact, there 

are several functionalities that are only available for 4G (network slicing, QoS treatment, 

flexibility in edge computing, and the general extensibility of the 5G core). 

Regarding its architecture, the 5G NR is called Next Generation NodeB (en-gNB). This 

base station is linked to the eNodeB through the interface X2, which it is also used for 

communications between NodeBs. And the communication between en-gNBs is done 

through the X2-U interface. Moreover, 5G NR need the control plane of a 4G network for 

control functions. NSA introduced the separation between the control plans and data in 

the gateways.   

Standalone (SA) network architecture 

In the SA Network Architecture [7], the LTE Core is replaced for a proper 5G Core,  which 

together with the gNB, the SA architectures consolidates a 5G network. With the 

introduction of the 5G Core Network, the data and control plans are totally decoupled, 

and it allows flexible and stateless positioning of virtual environments in the different 

network segments. 

5G core architecture is exposed in the figure 5, and can be divided into three groups 

depending where are they running: control plane with an equivalent part in the EPC, 

control plane without an equivalent part in the EPC and user plane. 
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Control plane with an equivalent part in the EPC: 

- AMF (Access and Mobility Management Function): It oversees all the connection, 

mobility management, authentication and authorization of access and the different 

location services. It replaces the EPC's MME, managing the mobility aspects. 

- SMF (Session Management Function): It is in charge of the management of the 

sessions of the different UEs (IP assignment, selection of the associated UP 

function, QoS control and UP routing control). It replaces a small part of the MME 

and the SW-C control part of the EPC. 

- PCF (Policy Control Function): It oversees controlling the policy rules that the PC 

functions must comply with. It replaces the PCRF of the EPC. 

- UDM (Unified Data Management): It is in charge of the Unified Data Management, 

that is, the user's identity. It replaces a part of the HSS of the EPC. 

- AUSF (Authentication Server Function): The essential part of the authentication 

server function. It replaces a part of the HSS of the EPC. 

Control plane without an equivalent part in the EPC: 

- SDSF (Structured Data Storage Network Function): It is used to store the different 

structured data. 

- UDSF (Unstructured Data Storage Network Function): It is used to store the 

different unstructured data. 

- NEF (Network Exposure Function): Used to help expose selected capabilities to 

third party services. 

- NRF (NF Repository Function): Used for the discovery of available services. 

- NSSF (Network Slicing Selector Function): It is used to select a different quotes 

for give a service to a UE.  

User plane: 

- UPF (User Plane Function): Is responsible for the traffic between the RAN and the 

internet, moreover, it is also responsible for the policy enforcement, the QoS 

policing and more. It replaces the P-GW in the EPC.  

 

Figure 4: NSA network architecture on the left, SA network architecture on the right 
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Figure 5 5G Core Network Architecture 

2.3. OpenAirIterface 

OpenAirInterface (OAI) Software Alliance [8] is a non-profit consortium founded by the 

French research group EURECOM. It is an ecosystem for open-source 

software/hardware development for the core network (EPC) and radio access network 

(RAN) networks.  

The OpenAirInterface software implements the 3GPP stack for 4G and 5G, with all 

elements for deploying a the radio access network (eNB, gNB, 4G UE and 5G UE) and a 

core network (EPC and 5G-CN), both distributed under separate licenses. 

 

Figure 6: OAI License Model 

Currently, the OAI software has a fully functional 4G network, and a 5G network which it 

is under development. It is written in C and under Linux optimized for x86.  For the 4G 

part, it provides the following features [9]: 

- LTE release 8.6 compliant, and implements a subset of release 10. 

- FDD and TDD configurations (5, 10, and 20 MHz bandwidth). 

- SISO and MIMO transmission. 
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- DL supported channels: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, 

PMCH. 

- UL supported channels: : PRACH, PUSCH, PUCCH, SRS, DRS. 

- Implements the MAC, RLC, PDCP and RRC layers. 

- HARQ support (UL and DL). 

- An optimized base band processing (which includes turbo decoder) 

And for the 5G, it will provide the following features [9]: 

- Static TDD and FDD configurations (10, 20, 40, 80, 100MHz bandwidth). 

- Support NSA and SA modes. 

- Intermediate downlink and uplink frequencies to interface with IF equipment. 

- DL supported channels: NR-PSS, NR-SSS, NR-PBCH, NR-PDCCH, NR-PDSCH. 

- UL supported channels: NR-PSS, NR-SSS, NR-PBCH, NR-PDCCH, NR-PDSCH. 

- LDPC encoder and decoder (BG1 and BG2 supported). 

- Polar encoder and decoder. 

Moreover, OpenAirInterface use specific hardware RF modules to deploy a network. The 

supported modules are: 

- USRP B210 over USB3 port, which has been used in this project to deploy the 

RAN network (eNB/gNB). All its specifications are placed in the annexed part 5, 

but as a summary: 

o 56 MHz bandwidth 

o Full duplex 

o MIMO 2X2 

o USB3.0. 

- USRP X310 over USB3 port. 

- BladeRF over USB3 port. 

- LimeSDR over USB3 port. 

- EURECOM EXPRESSMIMO2 PCIe card requiring a PC with a free 8/16-way 

PCIe slot. 

2.3.1. FlexRAN 

FlexRAN [10] is a real-time RAN controller which is also part of the OpenAirInterface 

Software Alliance, specifically, it is part of the Mosaic5G PROJECT GROUP which it is an 

ecosystem of opensource platforms and use-cases for 4G and 5G systems.  

FlexRAN platform [11] works for 4G networks and is divided into two main components: 

FlexRAN service and control plane and FlexRAN Application plane. The first one, is 

composed by a real time RAN controller that connects and manage several underlying 

RAN runtime, one for each 4G base station. As seen in the figure 7, FlexRAN Control 

protocol which is in charge of the communication between the Real-Time Controller of the 

Control Plane and the RAN agent embedded in runtime environment.  
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Figure 7: FlexRAN architecture 

Between its features, we can highlight 4 main ideas: 

- RAN Control & Data Plane Separation: 

Separating the control and data plane brings many benefits. The first one, it 

reduces the complexity of the system, and the second one, it allows the different 

third-parties authorized by the different operators to deploy different and 

innovative applications and services in the RAN. 

- Centralized & Real-time Control: 

Having a centralized and real-time controller allows to easily coordinate, monitor, 

and manage all the different eNB that are connected to the RAN controller. 

- Abstraction and Virtualized Control Functions: 

In order to control the RAN infrastructure, FlexRAN introduces a RAN API and a 

Virtualized Control Functions to perform different control operations in the base 

station. 

- Control Delegation & Policy Reconfiguration: 

Delegating the different mechanisms of the virtualized control functions, such as 

schedulers or mobility managers, from the master controller to the base stations 

at runtime, makes the system very flexible to the underlying networking conditions 

and to the different parameters from the operator. 

Moreover, the number of use-cases to implement are huge, but the two more important 

for this project are: 

- RAN Optimization: 

FlexRAN can be used to manage and change the different parameters of a RAN 

network such as the spectrum sharing, the network slicing or the core parameters. 

- Monitor RAN infrastructure: 

FlexRAN can also be used to monitor all the different information from all the 

eNodeBs and UEs connected to the RAN controller. 

2.4. NetConf 

NETCONF [12] stands for network configuration, and it is a network management 

protocol.  
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It is based on a server-client model on which the device that needs to be configured act 

as a server and the clients use XML formatted messages to communicate the 

configuration operations the device must perform. Moreover, these messages use remote 

procedure calls (RPC), the clients request goes inside an XML <rpc> element, and the 

server response inside a <rpc-reply>.  

Netconf does not offer a generic API to manipulate the devices but instead the device 

should be modeled and implement the operations that can be performed such as change 

the IP address of an interface or set the device hostname. 

The model is written in YANG, a modeling language like JSON in style but closer to 

YAML in content. The model defines the different variables and container that the device 

either write information on (operational data) or the client can modify and set values into 

(configuration) 

One of the main attributes of NETCONF is its ability to use different databases. Most 

engineers are familiar with running-config and start-up. NETCONF uses a third data store 

called candidate configuration. The candidate configuration data store contains 

configuration objects that have not yet been applied to the device. 

The NETCONF protocol is divided into four different layers: 

- The Content layer: it includes the configuration data and notification data. 

- The Operations layer: it defines a set of base protocol operations to retrieve and 

edit the configuration data, all the operations are listed at the end. 

- The Messages layer:  is responsible for providing the mechanism for encoding 

remote procedure calls (RPCs) and notifications. 

- The Secure Transport layer: is the one responsible for the security and the 

reliability of the messages that goes between the client and server. 

 

Figure 8: Netconf layers and examples 

NETCONF is commonly implemented using SSH as the transport. 

Its requirements are summarized next: 

- It must be a connection-oriented session and, therefore, there must be a constant 

connection between a client and a server. 

- NETCONF sessions must provide a means of authentication, data integrity, 

confidentiality. 

- Although NETCONF can be implemented with other transport protocols, each 

implementation must support SSH as a minimum. 

The Netconf protocol defines and implements the following operations by default: 

- edit-config 
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- get-config 

- get 

- rpc 

- get-schemas 

- lock 

- unlock 

- commit 

- connect 

- disconnect 

- subscribe 

- unsubscribe 
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3. Methodology  

The purpose of this work is to implement a non-RT RAN for automation service 

deployment over 4G and 5G small cells based on OpenAirInterface technology. The 

methodology section can be divided into two parts, first of all the OAI LTE and 5G 

deployment study, and then the description of the developed scenario for the 

implementation. As said in the introduction, the non-rt RAN has only been deployed for 

4G networks, as for 5G networks it hasn’t been possible due to many different bugs from 

OpenAirInterface. 

3.1. OpenAirInerface LTE and 5G deployment study 

In order to deploy the LTE network and the 5G network, a Wireless technology platform 

of OpenAirInterface (OAI) has been implemented. With its open-source software-based 

implementation of the LTE and 5G systems, it is possible to spanning the full protocol 

stack of 3GPP standard both in E-UTRAN and EPC. 

Regarding the LTE system, the OAI open-source software can be used to build and 

customize base stations (OAI eNB), core networks (OAI EPC) and a user equipment (OAI 

UE). It is also possible to connect the OAI eNB to commercial UEs, which it is what has 

been done in this project, as it provides a better implementation to test different 

configurations and network setups and monitor the network and also the UE in real-time. 

 

Figure 9: OpenAirInterface LTE software overall scenario 

Figure 9 shows the schematic of the implemented LTE scenario in i2cat laboratory. The 

OpenAirInterface software has been used to deploy OAI eNB. The core network has 

been done using OAI EPC and Open5GS [13] including the MME, HSS and SP-GW . 

And regarding the UE, instead of deploying it with OAI technology, it has been used two 

different devices, a Quectel and a Simcom modules UEs.  

Both OAI eNB and Open5Gs are running on top of NUC servers, and these are 

connected to a USRP, and the UEs have been running inside a Raspberry Pi and 

controller with the minicom software.   
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Regarding the 5G system, the OAI software has been used for the study of the 

implementation using a OAI gNB and OAI EPC NSA. As in LTE, the UEs UE, instead of 

deploying it with OAI technology, it has been used a smartphone 5G device. As said, the 

implementation of 5G in this project has not been possible due to many OpenAirInterface 

bugs.  

 

 

Figure 10: OpenAirInterface 5G software overall scenario 
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3.2. Scenario description 

The main idea of the project, is to automate the deployment and configuration of N OAI 

eNB, including RAN slices. To do so, a full scenario has been developed in order to 

control and monitor all the relevant parameters.  

Three different i2cat tools have implemented for OAI: Racoon, Netconf-Manager and 

Netconf-Server. These three tools, before doing this project there were implementations 

for other technologies such as Amarisoft or Accellerant, and now, after this work, for OAI 

technology. Moreover, it has also been developed new tools, specifically for 

OpenAirInterface software: oai API and oai exporter. 

 

 

Figure 11: RACOON & OAI deployment scenario 

The above figure corresponds to the developed software scenario. In order to understand 

it, a description of each element is exposed next, as well as some definitions that are 

important to understand this scenario. 

Racoon-core 

RACOON (RAN Controller Over OpenDaylight and NETCONF) is i2cat’s RAN (Radio 

Access Network) controller. Before the development of this work, it supported different 

devices: 

- i2cat’s customized PC Engines APU4 Wi-Fi devices (dual band 2.4-5MHZ) 

- i2cat’s customized Gateworks Ventana/Newport Wi-Fi devices (dual band 2.4-5 

MHz) 

- Accelleran’s E100 4G small cells 

- Amarisoft’s Callbox Pro (Supports 4G, 5G SA and 5G NSA) 

- i2cat’s customized PC Engines APU 802.11p V2X devices (High spectrum from 

5GHz band) 
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And now, with this work, it has been added to the list the OpenAirInterface 4G small cells 

and in a near future, when OpenAirInterface have a valid and fully functional 5G network, 

OAI 5G small cells. 

It is programmed in Java from scratch; uses the Spring Framework to create a REST API 

capable of registering, configuring, and deploying network infrastructure on different 

technologies. 

More in depth, racoon-core is the most important part of the deployment, as from this 

software all the small cells are controlled. For i2cat software protection, we will only go in 

deep of the OAI model inside the racoon core internals, as it is what has been developed 

in this work.  

 

Figure 12: Racoon-core internals: Model overview 

In the figure above, it is presented an overview of the racoon-core model. As seen, in this 

model we can find different internal elements that participate in the creation and 

management of the different OAI cells. In fact, we can distinguish four different internal 

elements: 

Box: 

- The box model represents a physical device that is being managed by Racoon. 

- The physical devices are NUCs or servers where the desired network is willing to 

be deployed. 

- To register a device, it has to be reachable from RACOON’s southbound and the 

user has to provide the necessary credentials during the registration process in 

order to establish a NETCONF connection to the node. 

- The registration process automatically discovers the device’s present physical 

interfaces. 

- Boxes can be interpreted as a container of physical interfaces. 
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- Boxes can be deleted; by deleting a box the connection between the device and 

RACOON’s southbounds is not interrupted and any configuration given to the 

device prior the delete process will still be present after the process finishes. 

- OAIBox is an extension of Box, it includes all the Cellular Parameters from the 

box, and it developed in a NUC where the OAI network is placed. 

Physical Interface: 

- A Physical interface represents a physical OAI 4G cell; generically it can be 

anything that can be described as a “network equipment” (Wi-Fi radio card, 4G 

cell, ethernet port…). 

- Usually, physical interfaces can’t be created; as mentioned before they are 

automatically discovered and populated during the box registration process; but 

with OpenAirInterface technology, the 4G OAI cells can be created on demand 

(up to the cell limit for the OAI box, in our case, limited to two cells per box). 

- Configuration can (it’s expected to) be provided before starting to use the physical 

interface. 

- OAI cells physical interfaces can also be deleted. 

Chunk: 

- A chunk is the definition of a subset of the topology on which a client or tenant will 

be allowed to deploy services on. 

- To create a chunk, the user has to select which physical interfaces, and which 

backhaul links (if any) the user will be allowed to deploy services onto. 

- Chunks can be created and destroyed on demand but it’s not possible to delete a 

chunk that has services running on top of it. 

- Creating and deleting a chunk does not impact the devices nor stores any data on 

them; RACOON is the only responsible for the chunk administration and storing 

on the database. 

Services: 

- Racoon services are responsible for deploying the provided configuration on the 

physical equipment; configure a cell to start radiating a certain PLMN or UL and 

DL quotes. 

- The user specifies on which physical interfaces (from the user’s chunk) will the 

service be deployed into and the configuration parameters for each technology 

selected. 

- Services can be created and deleted on demand. 

Netconf-Manager 

As explained in the state of art, NetConf is a network management protocol based on a 

server-client model on which the device that will be configured act as a server and the 

clients use XML formatted messages to communicate the configuration operations the 

device has to perform. The model is written in YANG, a modeling language similar to 

JSON in style but closer to YAML in content. The model defines the different variables 

and container that the device either write information on (operational data) or the client 

can modify and set values into (configuration). 

Therefore, Netconf-Manager is a spring-boot java application that acts as a Netconf client 

and translates from REST API calls to Netconf RPC (Remote Procedure Call) operations 

in order to retrieve or set configurations from a Netconf device. 
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Netconf-Manager defines the endpoints that racoon will use to either create virtual 

interfaces or set the channel configuration to a physical interface. 

Internally uses a Juniper java module (Licensed as BSD2) that handles the connection 

and credentials exchange between the server and the client and the main business logic 

is implemented on a separate java module. 

The REST API calls that are defined, communicate with NetConf servers without needing 

to implement the Netconf protocol on the RAN controller’s side. 

Netconf server 

The Netconf-server is equivalent to a neetopeer 2 agent, it provides an implementation to 

the Netconf RPCs defined by the Netconf protocol. It uses LibSSH as the server’s crypto 

library to encrypt the messages between the client and the server, which means that the 

client needs to authenticate with the server before any operations execution. 

Moreover, netconf-server act as the transAPI for the model. 

This API is writted on C, and before this work, it managed three different physical 

devices: 

- i2cat-box API: Handles very basic information such as the device’s dependencies, 

the hostname, memory / cpu usage,... 

- wired API: Capable of providing ip addresses to wired interfaces present on the 

system, creating new 8021q interfaces, creating GRE interfaces,... 

- wireless API: Administers the device’s Wi-Fi interfaces present on the system. 

The API is capable of instantiating virtual access points using Hostapd, creating 

and joining 80211s mesh networks,... 

And with the development of this work, it can manage the OpenAirInterface network. To 

do so, Netconf-Server communicates with two different elements. Firstly, in order to 

deploy and undeploy OAI eNB and to configure IP addresses to wired interfaces present 

on the system (creating new 8021q interfaces for example) it communicates with a OAI 

API which are present on each box, secondly, Netconf performs the RAN configurations 

via FlexRAN to configure the different cell parameters. As a summary Netconf server 

performs the following tasks: 

Via OAI API: 

- Deploy OAI cell 

- Stop OAI cell  

Via FlexRAN: 

- Add a new PLMN id  

- Remove a PLMN id 

- Create RAN slice 

- Modify an existing RAN slice 

- Disable RAN slicing 

It is important to understand why the NetConf server communicates with these two 

elements separately. First of all, the OAI API, as can be seen in the figure 11, it is build 

inside the box, which means that, for every box, there will be a OAI API that will deploy 

and stop the eNodeB cells inside these boxes, and to configure the wired interfaces 

present in the box. Secondly, the FlexRAN software is build together with the Netconf-
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server and a OAI exporter inside the dRAX, as the real-time controller FlexRAN can 

manage and communicate with all the deployed eNBs.  

Regarding the OAI dRAX element, it is an imaginary and central element, that provides 

communication with all the boxes and cells. It includes the netconf server, the FlexRAN 

and the Prometheus exporter.  

Prometheus exporter 

Apart of performing RAN configurations, FlexRAN also allows to monitor the state of RAN 
infrastructure (including both cells and UEs). To have a better look in all the FlexRAN 
monitoring information, it has been developed an exporter written with python and using a 
Prometheus database and Grafana exporter [14] to present all the relevant information of 
the RAN infrastructure. 

 

Figure 13: OAI exporter diagram 

As can be seen, the information arrives to the OAI exporter with a cURL API call to 
FlexRAN and respond it is a json file with all the eNBs and UEs information.  

The OAI exporter, filters the important information that needs to be monitored, and stores 
it into a Prometheus server. To store the data into the database, it has been used the 
python Prometheus client libraries which offer four core metric types. The first type, 
counter is a cumulative metric that represents a single monotonically increasing counter 
whose value can only increase or be reset to zero on restart, the second type, gauge is a 
metric that represents a single numerical value that can arbitrarily go up and down, the 
third, histogram samples observations (usually things like request durations or response 
sizes) and counts them in configurable buckets, and the last type, summary, which is 
similar to a histogram, a summary samples observations (usually things like request 
durations and response sizes) and it also provides a total count of observations and a 
sum of all observed values, it calculates configurable quantiles over a sliding time window. 
As all the monitored metrics can go up and down, the main type used for the metrics 
have been gauge.  

Once the metrics are stored into the prometheus server, they are exposed into a Grafana 
dashboard, where there is the possibility to filter by eNB or UE. All the relevant metrics 
and the dashboards are exposed in the results part. 

OAI API 

The OAI API is a REST API that has been developed specifically for OAI technology. It is 

written with python, and it is responsible for the deployment and the stop of the different 

OAI cells, as well as the configuration of the wired (ethernet) interfaces present in the box. 
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Figure 14: Different OAI API calls 

Figure 14 shows all the developed calls in this REST API.  

Moreover, in order to deploy OAI cells, there are two different calls to do it. One 

possibility is using OpenAirInterface binary files, with the meaning that the cell is 

deployed in the NUC internally, and the second option to deploy an OAI cell is by using a 

container, concretely a docker container to develop the cell. Moreover, the OAI API can 

deploy both OAI eNB and also gNB, this is because, even though FlexRAN can still not 

control 5G networks, in this work it has already been prepared the scenario of 5G, using 

both BareMetal and Docker Container, for future implementations.  

In order to deploy an eNB or gNB using binary files/baremetal, OAI API requests a json 

file with the cell main parameters for its configuration, and to stop it, it does not need any 

parameter as a NUC only allows to deploy one eNB or gNB per OAI box. In addition to 

the baremetal, docker also requests a json file with the cell main parameters for its 

deployment, and as it is possible to have multiple containers and therefore multiple OAI 

cells, in fact, in order to stop them, the OAI API requests the name of the cell. 

Apart from deploying OAI cells, the REST API also allows to return the different USRPs 

inside a box. 

Finally, there are two other calls to manage the wired (ethernet) interfaces with two 

different calls, the first one, /list_interfaces returns a list with all the available interfaces in 

each box, and also, the second one /interface_Management allows to add and delete a 

vlan, also to set an interface up and down and to set/change the interfaces IP. 

This OAI API, is placed inside each OAI box, as said before, this is because it needs 

superuser permissions to apply configurations to manages its cells and interfaces from 

that box. In this MSc Thesis, i2CAT provided two NUCs as OAI boxes, an OAI box is a 

physical machine which can be a NUC (Next Unit of Computing) or a server. In this 

project i2cat has provided Open-VERSO NUCs, which are Linux machines with a real-

time kernel. And each of them contains the OAI API, the FlexRAN agent which is 
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responsible for the configuration of an specific cell inside that box, and finally the OAI 

eNB deployed together with the USRPs B210 (the limitation in the number of USRPs is 

the number of USB3 ports in the host, in our case, NUCs only have 2 USB3 ports.) 
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4. Results 

This chapter aims to provide the different analysis and configuration of the 

OpenAirInterface network as well as the different results and tests performed in the 

developed platform. 

4.1. Lab scenario 

First of all, let’s present the scenario and the laboratory where the project has been 

carried out.  

The scenario that has been implemented is composed by two different NUCs in which the 

OAI network is placed, in NUC1, the core network with all its components, and in NUC2, 

the OAI eNB with the USRP b210. Also a Raspberry Pi which act as a UE and also a 

Raspberry Pi with two different Quectel and Simcom modules. The communication 

between these two NUCs is done throw the interface eno1, it is the onboard Ethernet 

(wired) adapter, which it is the most reliable interface to manage the communication 

between both NUCs as they are both placed in the same laboratory room. 

  

Figure 15: OpenAirInterface scenario 

The next image, shows the workspace of this scenario, which is placed in the i2cat 

laboratory, located in the Nexus building next to the ETSETB school in Barcelona. 
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Figure 16: Work Space with the two NUCs and the USRP. 

4.2. Network configuration 

To understand comprehensively the network architecture and configuration of each 

machine, in the figure 17 is presented a diagram with all the different details of the IP 

addresses and interfaces of each entity in NUC1, NUC2 and the Raspberry Pi. 

 

Figure 17: OAI Network Diagram 

NUC1 NETWORK 

The core presented in NUC1 is deployed using open5gs, a gitlab project [15] that can be 

used to create a EPC, specifically it can configure a series of software components and 

network functions that implement the 4G/ 5G NSA and 5G SA core functions.  

For the implementation of the LTE network, it has been used the 4G/5G NSA core, which 

contains the following components: 

- MME - Mobility Management Entity 

- HSS - Home Subscriber Server 

- PCRF - Policy and Charging Rules Function 

- SGWC - Serving Gateway Control Plane 

- SGWU - Serving Gateway User Plane 
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- PGWC/SMF - Packet Gateway Control Plane / (component contained in 

Open5GS SMF) 

- PGWU/UPF - Packet Gateway User Plane / (component contained in Open5GS 

UPF) 

As related in section 2.1 of the state of art, the core has two main planes, the control 

plane, and the user plane.  

For the LTE network, and first regarding the control plane, the MME is the main control 

plane hub of the core, it is linked to the HSS throw the S6a interface and to the SGWC 

and PGWC throw the S11 interface. Second, the user plain is the one that carriers the 

user data packets between the eNB and the external WAN, and it composed by the 

SGWU and the PGWU which connects to the control plane throw the SGWC and the Sxa 

interface. 

All the Open5GS components have config files, that have been used to configure each 

component’s IP local addresses and local interfaces and the IP addresses and DNS 

names of the other external components.  

By default, all the Open5GS components are configured for use inside a single server/PC, 

in fact, they communicate each other using the local loopback address space 127.0.0.X 

and lo interface. Therefore, some modifications have been made to stablish the 

communication with the RAN network in the other NUC. Next are exposed HSS, MME 

and SGWU config files, which are the one modified, the other config files can be 

consulted in Open5Gs gitlab repository [15]. 

MME configuration 

The MME config file includes the different PLMN and TAC information. This needs to be 

modified to match the UEs.  

In the next table can be found the PLMN and TAC information related to both Quectel 

and Simcom modules that need to be added to the MME configuration file. 

 PLMN TAC 

Quectel 00102 2 

Simcom 00103 2 

Table 2: Quectel and Simcom PLMN information 

Also, as the eNB is placed in a different NUC, we need to change the S1AP bind address 

and interface, to 192.168.40.97 and eno1 which is the address where the eNB is placed.  
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Figure 18: OAI MME configuration file. 

In order to have a better control of the .conf files, there is a generic .env file where all the 

parameters are stored. The important ones for this configuration are: 

MME_IP: 192.168.40.97 (other’s NUCs IP) 

MCC: 001 (Quectel PLMN, for example) 

MNC: 02 

SGWU configuration 

The same happens with the SGWU, as the eNB is placed in a different NUC, we need to 

change the GTP-U bind address, to 192.168.40.97 which is the address where the eNB is 

placed. 

 

Figure 19: OAI SGWU configuration file with env variables. 

SGWU_IP: 192.168.40.97 
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HSS configuration 

The last thing to be done is to include the subscriber information into the core network. 

This information is exclusive for each core network, and it is related to the UEs. The 

different parameters that are included in the subscriber information are [22]: 

- IMSI: International Mobile Subscriber Identity. It is a 15 digit unique identifying 

number that is used to identify the subscriber to the service. It is usually issued by 

the operator. IT consists on three parts: MCC Mobile Country Code (geographic 

region of the SIM), MNC Mobile Network Code (operator) and MSIN Mobile 

Subscriber Identifier (to identify individual subscribers). 

- Key: Subscriber Authentication Key. It is a 128 bit field, and it is part of the 

Authentication Algorithm. It is placed into the USIM and also to the HSS. 

- OPs: Operator Code. It is a 128 bit field and it is also part of the Authentication 

Algorithm. It is the same for all SIMs from a single operator. 

- APN: Access Point Name. Is the gateway name between a 4G mobile network 

and the public Internet. Usually, each operator has its own APN. 

To include this information, we need to do throw a WebUI application, which is an 

application part of the Open5Gs that allows you to interactively edit subscriber data. To 

access it, we have to connect to http://@NUC1_IP:3000 login, and follow the steps: 

1. Go to Subscriber Menu. 

2. Click + Button to add a new subscriber. 

3. Fill the IMSI, security context(K, OPc), and APN of the subscriber. 

4. Click SAVE Button 

 

Figure 20: Subscriber information from the webUI for the Quectel UE. 

In the next table can be found the different Subscriber information for both Quectel and 

Simcom modules. 

 Quectel SimCom 

IMSI 001025432100004 001035432000005 

OPs 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F 

http://@NUC1_IP:3000
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K 00112233445566778899AABBCCDDEEFF 00112233445566778899AABBCCDDEEFF 

APN internet internet 

Table 3: Subscriber information for Quectel and SimCom 

Moreover, in order to deploy this open5gs core network, a docker single node 

deployment using docker-compose has been developed [16]. In this docker container, all 

the IP and interface parameters have been included in an environment file .env to 

centralize all the configuration, this environment file is presented in the annexed part 1. 

NUC2 network 

In the NUC 2, it can be found the OAI eNB with the USRP B210 and the FlexRAN that 

will act as a real-time controller. 

The OAI eNB has been placed into NUC2 using two different tools, the first one and 

finally not useful, using docker to build and run the LTE RAN, and the second one and 

the one finally used in this project, running it in a binary file. In the last part of this section, 

it is explained why it is considered the binary/baremetal tool more reliable than the docker 

tool. 

Moreover, in order to deploy an OAI eNB, we need to set a config file, where all the eNB 

parameters are settled, this .conf file is presented in the annexed part 3. In the following 

list are summarized all the parameters that are modified every time a 4G RAN is 

deployed with RACOON. Moreover, all these parameters are actually dynamic, so, they 

can be modified anytime to match the desired configuration (in brackets are typical values 

provided to these parameters). 

ENB_ID – eNB id, it is part of the identification parameters of the RAN. (123) 

ENB_NAME – It is also part of the identification parameters of the RAN. (i2cat) 

UTRA_BAND_ID – The E-UTRA BAND id is equivalent to the EUTRA Operating Band, 

which it is the band where the DL ad UL frequencies are located. (in this work it has been 

used almost all the time the band 1, in the annexed part 4 are presented all the possible 

bands) 

DL_FREQUENCY_IN_MHZ – As we are working with FDD (Frequecy Division Duplex) 

spectrum, it requires pair bands, one for downlink and another for uplink. Both 

frequencies are transmitted simultaneously on different frequencies. (as we are using 

band 1, the DL frequency used is 2150MHz) 

UL_FREQUENCY_OFFSET_IN_MHZ – (the UL frequency used is 1950MHz) 

NB_PRB – Number of RB (Physical Resource Blocks). (As we are using band 1 it can be 

5, 10, 15 or 20) 

MCC – Mobile Country Code, it consists of three decimal digits. (eg Quectel 001) 

MNC – Mobile Network Code, it consists of two decimal digits. (eg Quectel 02) 

MNC_LENGTH – Length of the Mobile Network Code. (2) 

TAC – Tracking area. (1) 

NID_CELL - Physical cell id, used to calculate the position of some reference and 

synchronization signals 
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CELL_ID – Id of the cell. (eg 1023) 

ENB_S1C_IF_NAME -  S1C interface name (interface between eNB and MME). (eno1 

interface used) 

ENB_S1U_IF_NAME  - S1U interface name (interface between eNB and SGWU). (eno1 

interface used) 

ENB_S1C_IP_ADDRESS – S1C IP address. (192.168.40.97) 

ENB_S1U_IP_ADDRESS – S1U IP address. (192.168.40.97) 

ENB_X2_IF_NAME – X2 interface name (interface between eNBs). (eno1 interface used) 

ENB_X2_IP_ADDRESS – X2 IP address. (192.168.40.97) 

ENABLE_X2 – Boolean if X2 interface is enabled. (yes, as we expect more than 1 eNB) 

FLEXRAN_ENABLED – Boolean if FlexRAN is enabled. (yes, as it is the controller) 

FLEXRAN_INTERFACE_NAME – FlexRAN interface name. (eno1 interface used) 

FLEXRAN_IPV4_ADDRESS – FlexRAN IP address. (192.168.40.97) 

MME_S1C_IP_ADDRESS – MME core network IP address. (192.168.40.132, equivalent 

to NUC1 IP, where EPC is located). 

SERIAL – USRP serial number. (Currently working with two different USRPs 31DB5A3 

and 3150321). 

N_ANTENNA_DL – Number of antennas for downlink transmission. (Only using SISO, 1) 

N_ANTENNA_UL – Number of antennas for uplink transmission. (Only using SISO, 1) 

ROOT_SEQ_INDEX – The Root Sequence Index allows the UE to calculate which 

PRACH preamble it can use to attach to the cell. It is important to have different values 

for neighbors cells (1)  

TZ – Time Zone (Europe/Spain) 

An important parameter is the USRP serial number. A USRP is a Radio Frequency fully 

integrated, single-board, Universal Software Radio Peripheral (USRP™) platform with 

continuous frequency coverage from 70 MHz – 6 GHz to run the eNB. I2cat has lend two 

different USRPs. 

USRP B210 1 31DB5A3  

USRP B210 2 3150321 

Table 4: USRP serial number information 

Finally, the real-time controller FlexRAN, it is used to configure OpenAirInterface cells, 

core networks and manage RAN slices. It is composed by two main components: the 

FlexRAN Service and Control Plane and the FlexRAN Application plane. The FlexRAN 

Service and Control Plane is based on the of the Real-Time Controller, which is 

connected to several underlying RAN runtime, one for each RAN module (eg. 4G eNB). 

The RAN runtime environment provides the separation between the control and data 

plane, as it acts as an abstraction layer with RAN module on one side and RTC and 

control apps on the other side. Moreover, the communication between the real-time 

controller and the RAN agent embedded in runtime environment is managed by the 
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FlexRAN protocol. RAN control applications can be developed both on the top of the RAN 

runtime and RTC SDK which allows to not only monitor but also control and coordinate 

the state of RAN infrastructure, all this can be done as all FlexRAN data and APIs are 

open to be consumed by 3rd parties. It reduces the complexity of developing new control 

solutions.  

As seen in the figure 15, FlexRAN has been deployed in NUC2 for the purpose of being 

in the same NUC as the eNB RAN. In order to install it, it has been used a mosaic5g 

script located in its gitlab [17].  

The controller runs in localhost:9999/capabilities and can be checked using a browser. 

Moreover, to enable the controller, it must be done into the RAN’s configuration file 

setting the correct IP address and interface in the network _controller part: 

NETWORK_CONTROLLER : 

{ 

    FLEXRAN_ENABLED        = "yes"; 

    FLEXRAN_INTERFACE_NAME = "eno1"; 

    FLEXRAN_IPV4_ADDRESS   = "192.168.40.97"; 

    ... 

}; 

In this configuration, FlexRAN is enabled, the interface is eno1 and the IP address is the 

NUC’s IP. 

As said, FlexRAN allows to monitor, control, and coordinate the state of the RAN 

infrastructure throw a RESTful API using simple HTTP requests. Below are summarized 

all the API calls used in this project. 

- Get the eNB and UE configuration and statistics: 

To obtain all the agent’s statistics, we use the next command: 

 
$ curl -X GET http://FlexRAN_PUBLIC_IPADDR:9999/stats/ 

 

Where FlexRAN_PUBLIC_IPADDR is the public address of the NUC 

(192.168.40.97). This should return a json format data with all the information for 

all eNBs and their connected UEs. 

This API call has been used in the OAI exporter and also to do some checks in 

the slice, core and PLMN configurations in the netconf-server part. 

 

- Radio Resource Management 

For radio resource management, FlexRAN has been used for slicing purposes.  

In fact, network slicing is considered a very important mechanism that allows to 

serve to all network clients in a flexible and cost-efficient manner. 

To configure the slicing, we use the next command: 

 
$ curl -X POST http://FlexRAN_PUBLIC_IPADDR:9999/slice/enb/-

1 --data-binary @ran-sharing.json 

 

http://flexran_public_ipaddr:9999/stats/
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In the FlexRAN window, the same JSON file alongside a message indicating the 

transmission of the configuration to the respective agent should be shown. The 

RAN part will equally acknowledge the setting for each parameter. 

This API call has been used in the netconf-server part. 

 

- PLMN Management 

Regarding the PLMN management, with flexRAN it is also possible to dynamically 

manage the PLMNs and attached core networks of a base station. 

Before adding a core network, it is needed to add the corresponding PLMN. This 

is because the eNB informs to the MME in the S1SetupRequest about the 

broadcasted PLMNs and the MME will only accept this setup request if the 

PLMNs the MME is serving (as sent back as servedPLMNs in the 

S1SetupResponse) matches the broadcasted PLMNs of the eNB. 

So, in order to add the PLMN, we use the next command: 

 
$ curl -XPOST FlexRAN_PUBLIC_IPADDR:9999/plmn/enb -d 

@plmn.json 

 

In the plmn.json file, there is a list of the new PLMNs. 

After adding the PLMN, it is ow possible to add and connect to a core network 

using the following command: 

 
$ curl -XPOST FlexRAN_PUBLIC_IPADDR:9999/mme/enb/ -d 

@mme.json 

 

Where in the mme.json is listed the IP address of the MME of the core network to 

connect to. 

Finally it is possible also to delete the core network: 

 
$ curl -XDELETE FlexRAN_PUBLIC_IPADDR:9999/mme/enb/ -d 

@mme.json 

 

And also the PLMN can be deleted with the same command used to add the 

PLMN but with a plmn.json file without the PLMN that wants to be deleted.  

This API call has been used in the netconf-server part. 
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4.3. RACOON SWAGGER Platform 

The automated service is controlled in the RAN controller RACOON with different API 

calls that allows to deploy and configure the different parameters. Before doing a demo, it 

will be explained which are the calls that have been developed and that are necessary to 

deploy a service. 

To visualize all the RACOON calls, it has been used a Swagger UI, which it is an open-

source tool to visualize and interact with the API’s resource without having any of the 

implementation logic in place, allowing to execute the different calls with its 

correspondent json configuration file if needed. Moreover, RACOON is organized by 

technologies, so, the calls that are used for deploying the OpenAirInterface boxs and 

cells are placed under the same section, and the chunk and service calls as are also 

used for other technologies are placed separately. 

Next can be found the six different calls that corresponds to the OpenAirInterface 

technology and allows to register and configure an OAI box, and to register, configure 

and delete an OAI cell.  

 

Figure 21: OAI technology calls 

The procedure followed to deploy an OAI BOX is: 

1. Register OAI Box 

 

Figure 22: OAIBox RACOON call 

The first step to deploy an OAI box is register it into RACOON, with this, we will set a 

json file with the name of the box, the IP address and the NetConf parameters, as 

Netconf client needs to authenticate with the server before any operations to 
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configure a cell. When this call is executed, if it is correct, it will return a 200 code with 

a json file that includes a unique box id identifier.  

2. Configure the OAI box 

 

Figure 23: Config box RACOON call 

The second step is to configure box’s eNB and gNB parameters. It requires a boxid, 

which it has been returned in the register call, and a json file with the eNB and gNB 

main parameters and the GTP IP address as the communication will be carried with a 

tunnel protocol defined by the 3GPP standards. 

3. Configure the OAI box logging capabilities and variables 

 

Figure 24: Log Config Box RACOON call 

And finally, the last step of the box configuration is to set the logOptions, we need to set 

the boxId and also a json file with FlexRAN IP address, port and the interface in order to 

monitor and configure the different eNBs and UEs. 

After a box is created in RACOON, it is possible to deploy an OpenAirInterface cell. To do 

so, a two step procedure needs to be taken into place, first to register the cell and then to 

configure. 
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4. Create an OAI cell 

 

Figure 25: OAI cell creation RACOON call 

So, the first thing to do, is create and register the OAI cell into RACOON. To do so, the 

cell runs inside a box, it requires a boxId, and a json file with the cell ID, a physical cell ID 

and the type of the cell, if it is 4G-FDD, 4G-TDD, 5G-FDD or 5G-TD. This will return a cell 

id, that will be the cell identifier. 

5. Configure the OAI cell 

 

Figure 26: OAI cell configuration call 

And finally, in order to configure the OAI cell, we need to specify its cell id, as well as all 

the configuration parameters of a specific cell. After this is done, the cell will be up and 

running. 

Apart from these methods of the creation of the box and cell, there is another call in the 

OAI technology, which it is one to delete the created cell  
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Figure 27: OAI cell deleted call 

If we want to delete a cell, it only requires to set the specify the cellId as is its unique 

identifier. 

Moreover, there is the possibility on having a service on a concrete deployed cell to 

configure a certain PLMN, UL and DL quotes as well as a core network. 

This service will be deployed in a chunk, which means, that before registering the service, 

we need to register the chunk. 

 

Figure 28: OAI chunk creation call 

In the case of the OAI technology, the chunk only carries physical interfaces (OAI cells 

and backhaul links). Moreover, each chunk returns an id as a unique identifier of the 

chunk. 

Moreover, there are other calls for managing the chunks. 

 

Figure 29: OAI chunk management calls 

After registering a chunk, services can be deployed to configure a PLMN, network slicing 

or to specify a core network, to do so, the service call requires first the chunk ID, and 

second a json file with the different physical interfaces (cells or backhaul links) and its 

service configuration. In the case of OAI, it is only necessary the vlanId and the 
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cellConfiguration (plmnId and oaiConfiguration). Moreover, after deploying the service, 

the call will return another id corresponding to the service. 

 

 

 

 

 

 

As well as in the chunks, there are also other calls for manage services.  

 

Figure 31: OAI service management calls 

4.4. Solution study 

In this section, it will be explained the different studies that have been done in order to 

test the different solutions. First with the study of the different tools that has been tested 

to deploy a consistent OAI eNB. And second, an explanation about why it is still not 

possible to deploy an OAI gNB cell. 

Figure 30: OAI service creation call 
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4.4.1. OAI eNB: baremetal vs docker  

In order to deploy an OAI eNB, two different tools have been tested to see which one is 

more reliable. Both of them are based in the openairinterface5g [18] gitlab repository, a 

OpenAirInterface repository, where there is the possibility to run docker and binary 

images for eNB, gNB, lte-UE and nr-UE. 

Regarding the docker tool, after two months of testing, we have reach the conclusion that 

there is a bug, that cannot be resolved. In a cell deployment inside a docker, there is one 

problem in which, after some time after the deployment, it enters in an infinite loop where 

in the OAI RAN logs only appears the error message “L1_thread isn’t ready..”. 

 

Figure 32: RAN logs errors 

After an extensive search, we found out that these errors refer to some memory leaks 

that we thought that happened in the docker compose container. So, as it is not reliable, 

we decided to only work with BareMetal, because, even though it limits the number of 

cells per box, it is more reliable. 

4.4.2. Problems with 5G OpenAirInterface networks 

The main problem with the 5G networks, come from the OAI gNB. When deploying the 

OAI-RAN 5G network, we found out that there was a problem with the encryption of msg3 

of the CRC (Scheduled PUSCH transmission), such as it is exposed in bold in the next 

sequence of messages from the gNB SA configuration .  

oai-ran    | [NR_MAC]   NR band duplex spacing is 0 KHz (nr_bandtable[37].band = 78) 

oai-ran    | [NR_MAC]   NR band 78, duplex mode TDD, duplex spacing = 0 KHz 

oai-ran    | [NR_MAC]   [gNB] Generate RAR MAC PDU frame 970 slot 7 preamble index 41 TA 
command 25 

oai-ran    | [NR_MAC]   Random Access 0 Msg3 CRC did not pass) 

oai-ran    | [NR_MAC]   [gNB 0][RAPROC] Frame 971, Slot 10 : CC_id 0 Scheduling 
retransmission of Msg3 in (971,17) 

oai-ran    | [NR_MAC]   Random Access 0 Msg3 CRC did not pass) 

oai-ran    | [NR_MAC]   [gNB 0][RAPROC] Frame 972, Slot 10 : CC_id 0 Scheduling 
retransmission of Msg3 in (972,17) 

oai-ran    | [NR_MAC]   Random Access 0 Msg3 CRC did not pass) 

oai-ran    | [NR_MAC]   [gNB 0][RAPROC] Frame 973, Slot 10 : CC_id 0 Scheduling 
retransmission of Msg3 in (973,17) 

oai-ran    | [NR_MAC]   Random Access 0 failed at state 2 (Reached msg3 max harq rounds) 

oai-ran    | [NR_MAC]   to remove in mac rnti_to_remove[0] = 0xdb5f 

oai-ran    | [NR_MAC]   handle_nr_ul_harq(): unknown RNTI 0xdb5f in PUSCH 

oai-ran    | [NR_PHY]   to remove rnti 0xdb5f 
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oai-ran    | [NR_PHY]   to remove rnti_to_remove_count=1, up_removed=1 down_removed=0 
pucch_removed=0 

oai-ran    | [NR_PHY]   [gNB 0][RAPROC] Frame 985, slot 19 Initiating RA procedure with 
preamble 63, energy 37.0 dB (I0 242, thres 120), delay 0 start symbol 0 freq index 0 

oai-ran    | [MAC]   UL_info[Frame 985, Slot 19] Calling initiate_ra_proc 
RACH:SFN/SLOT:985/19 

oai-ran    | [NR_MAC]   [gNB 0][RAPROC] CC_id 0 Frame 985 Activating Msg2 generation in 
frame 986, slot 7 using RA rnti 10b SSB index 0 RA index 0 

oai-ran    | [NR_MAC]   [gNB 0][RAPROC] CC_id 0 Frame 986, slotP 7: Generating RA-Msg2 
DCI, rnti 0x10b, state 1, CoreSetType 2 

The CRC stands for Cyclic Redundancy Checksum [19], and it is used for reducing the 

error rate in the data transmission and data storage. During the firsts months we tried to 

develop a solution for this, but we couldn’t manage to do it, because, even though it is an 

open source, it is not possible to eliminate this part of the original code. At the end, it was 

decide to do the system for LTE and prepare it for the future implementation of 5G. 

4.5. RAN Slicing 

An important feature of this project is the fact that it can dynamically assign RAN slices 

[21]. 

Slicing allows to assign a slice or percentage of the radio resources blocks (RBs) to the 

different operators, both for uplink and downlink transmissions. A Resource Block forms 

the block structure in LTE in the time-frequency domain, as a summary: 

- 1 frame is 10ms and consists of 10 sub-frames. 

- 1 sub-frame is 1ms and contains 2 slots. 

- 1 slot is 0.5ms in the time domain and each 0.5ms allocation can contain N 

Resource Blocks (where 6 < N < 110) depending on the bandwidth allocation and 

resource availability. 

- 1 Resource Block is 0.5ms and contains 12 subcarriers per OFDM symbol in the 

frequency domain. 

Moreover, the different UEs connected to the LTE RAN, will be allocated in their operator 

RAN slice. 

In this project, the different RAN slices are created throw the real-time controller FlexRAN 

[20] as said in the 4.2 section, with the command: 

$ curl -X POST http://FlexRAN_PUBLIC_IPADDR:9999/slice/enb/-

1 --data-binary @ran-sharing.json 

As said, to assign the RAN slice, it must be introduced into the RACOON service next to 

the other parameters (PLMN id and core network).  

4.5.1. RAN Slicing dynamically assignation 

In the next figure is presented a dynamic RAN slice assignation of two different operators, 

one with PLMN 00102 and the other one 00103. The current cell of the example is 

working in the E-UTRA band 7 transmitting with downlink frequency of 2680MHz and 

uplink frequency of 2560MHz. 

This test consists of the RBs assignation of two different operators over time (time1 and 

time2). In the next table is presented the dynamically slice assignation for both 00102 and 
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00103 operators, the downlink and uplink RBs over time, it is also presented the position 

of this RAN slicing.  

 

Transmission  Operator Time 1 RBs [slice position] Time 2 RBs [slice position] 

Downlink 00102 5 RBs  [0-5] 3 RBs [0-3] 

00103 6 RBs [6-12] 8 RBs [4-12] 

Uplink 00102 10 RBs [2-12] 7 RBs [2-9] 

00103 10 RBs [13-23] 13 RBs [10-23] 

Table 5: Dynamically slice assignation 

In the OAI Exporter is expressed the number of RBs in real-time, for each operator and 

each transmission. 

 

Figure 33: RAN slice assignation, RBs over time 

4.6. Demonstration of a non-rt RAN controller for an automation service 

deployment over a 4G small cell 

In this last part, it will be presented a demonstration on a 4G service deployment based 

on the developed RAN controller RACOON and how it communicates with the other 

software elements as well as with FlexRAN. In this demonstration, it will be created a LTE 

cell in a box with two different core networks and two UEs, one connected to each core 

network. At the end it is also exposed the different Grafana dashboards with the cell and 

UEs information.  

These are the steps that have been followed to deploy this service: 

- Creation and configuration of a OAI BOX. 

- Creation and configuration of a OAI eNB cell with a USRP b210. 

- Configuration of two different core networks with its subscriber information. 
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- Configuration of two different services to set the OAI core networks in the eNB 

with its correspondents PLMN ids and an assigned uplink and downlink quotes.   

- Connection of two different UEs to the eNB, the first one, a Quectel device, and 

the second one a SimCom.  

- Grafana and Prometheus exporter to monitor the different eNB and UEs 

information. 

Before starting with this demo, we need to run all of the five different software tools 

developed: racoon-core, netconf-manager, netconf-server, oai-API and oai-exporter. 

 

Figure 34: Screenshot of the racoon-core, netconf-manage, netconf-server and oai-api initialized. 

To start the deployment of this system, all the registrations and configurations are done 

throw the racoon-core API, the access to it, is done throw its SWAGGER URL: 

http://192.168.40.132:8008/swagger-ui/index.html#/  

Registration and configuration of a OAI BOX 

1. To first register the box, we will execute the call /OAIBox with the  parameters 

inside the request body.  
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As can be seen, the ipAddress corresponds to the eNB NUCs IP. 

The response returns a 201 code and has a body which includes the box id. 

 

2. Second, we need to configure the box parameters. 

 

Figure 36: Box Config demo 

As can be seen, we only set the enb parameters, leaving the gnb to null or 0.  

If the configuration is correct, it returns a 204. 

 

 

 

 

 

 

Figure 35: Box Registration demo 
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3. And third, the configuration of the box logging capabilities and parameters. 

 

Figure 37: Box Config FlexRAN demo 

In the logging capabilities side, we must set the FlexRAN information, as from it, 

all future configurations will be done. In our case, FlexRAN is located at IP 

127.18.0.2, port 9999 and interface eno1. 

If the configuration is correct, it returns a 204 code. 

After the registration and configuration on the box, we can check out the Netconf-

Manager and Netconf-Server (netopeer2) logs to see if the configuration is correct. 

 

Figure 38: Netconf-Manager and Netconf-server logs 

As can be seen in the Netconf-Manager logs (left), it sends two messages, the first one 

with box configuration parameters, and the second one with the log capabilities 

parameters, both in a .xml format. Moreover, in the Netconf-server (netopeer-2), when we 

introduce the command to get the configuration, we find a .xml format file, with the name 

of the box, and both configurations. 
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Creation and configuration of a OAI cell 

1. The first thing to do is the creation of the cell. 

 

Figure 39: Cell Creation demo 

In order to create a cell inside the box, the first parameter that needs to be 

introduced is the boxId, and later, the main elements of the cell (cellId, 

physicalCellId, type). 

With the creation of the cell, it is only registered to racoon-core. To deploy it, we 

need to configure it with all the parameters. 

This first call, returns an id, which is unique for this cell. 

2. The second thing to do is to configure and deploy the cell. 

 

Figure 40: Cell Configuration demo 

First, it requires the cell id, and then all the main parameters of the cell, that, as 

can be seen, we have specified the eutra band 1, with a earfcnDl frequency of 400 

and earfcnUl frequency of 18400 and a bandwidth of 5MHz. We also set the tac, 

the tddConfig, the rootSeqInndex and the cellGain. As said in the section 4.2 there 

are other parameters to be said, but, those are fixed. One important fixed 
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parameter is the serial number of the USRP, that is hardcoded to 31DB5A3 (a 

USRP b210). 

This returns a 204 code if it is correct. 

As before, if we now check the configuration in the Netconf-Manager and Netconf-Server 

(netopeer2) we will now see, that in the Netconf-Manager (left) it appears an xml 

message with all the cell configuration, and in the Netconf-Server (netopeer) (right) when 

we get the configuration, it returns a xml with the box and the cell configuration.  

 

Figure 41: Netconf-Manager and Netconf-server logs 2 

Moreover, if we check the OAI API, where the eNB is deployed, we can see the logs of 

the initialization of the eNB. 

 

Figure 42: OAI eNB log 

With this five steps configuration, a cell is up and running, now it is time to introduce the 

different services, the core network, PLMN and also the uplink and downlink quotes (if 

needed). 

Moreover, we can also check the eNB information in the real time controller FlexRAN. 
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Figure 43: FlexRAN information 

Before the creation of the services, it is mandatory to have core networks running in order 

to have connectivity once those are introduced in the eNB. 

Core network deployment 

Core networks are deployed using Open5Gs, specifically inside docker-compose 

containers. Even though , in section 4.1 it was said that core network was only deployed 

in NUC1, for this test, it has been also deployed another core network in NUC2 to have 

multiple core’s running and test the slicing part properly. 

So, in order to deploy the core, we do it with the command  

$ docker-compose -f nsa-deploy.yaml up -d 

Where the nsa-deploy.yaml deploys both a 4G and 5G NSA core. Its content can be 

found in the annexed part 2. As we need two different cores, we have to run this 

command in both NUCs, with different nsa-deploy.yaml parameters, one for the Quectel, 

and the other one for the SimCom, as related in table 2 and 3. 

Moreover, once the core is up and running, we need to introduce the subscriber 

information to stablish connection with UEs, as in figure 20. As we have two different UEs, 

with two different SIMs and in consequence different information.  

Once they are up and running, it is time to deploy services in RACOON. 

Chunk and service configuration 

But before doing that, as said before, in order to generate a service, we need to first 

create a chunk.  
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Figure 44: Chunk demo 

To do so, we need to add the physical interface (cell id) inside the chunk call, so it is 

referenced to the cell we want to add configurations. If the requested body is correct, it 

will return a code 200 as well as a unique chunk id. 

After this, it is possible to start configuring the different services. We will add two services, 

to add both core networks with the PLMN ID and the dl and ul quotes. 

 

Figure 45: Service demo 

As can be seen, in the requested body, it is added a vlanId, and then the configuration of 

the cell with the PLMN id, core IP address, the core port, vlan core, and also both 

downlink and uplink quotes. This must be done twice, for both core networks, one placed 

in NUC1 and the other one in NUC2. 

If the service call is correct, it returns a 200 code and a response with a unique service id.  

After that, we will have the eNB configuration completed. To see it, let’s check again the 

netconf terminal information. 



   

 54 

 

Figure 46: Netconf-Manager and Netconf-server logs 2 

On the left it is only possible to see the last message of the last service, and on the right, 

in the netopeer configuration, we can see the xml configuration of the cell with both 

PLMNs and also the different slicing. 

Also, it is interesting to show the information throw FlexRAN to see if the 4G RAN has 

been configured properly.  

 

Figure 47: FlexRAN information 2 

As can be seen both core networks have connected. 

Now is time to add the two different UEs 

UE connectivity 

The UEs are connected into the Raspberry Pi, the Quectel module in the device ttyUSB7 

and the SimCom module in the ttyUSB3.  
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Next are the steps that needs to be done in order to stablish the communication with the 

eNB cell. 

1. Check the profiles to see if the correct APN is there: 
$ qmicli --device=/dev/cdc-wdm0 --device-open-qmi -p --wds-

get-autoconnect-settings (the device could vary in your case) 

$ qmicli --device=/dev/cdc-wdm0 --device-open-qmi -p --wds-

get-profile-list=3gpp 

Example to modify the profiles: 
$ qmicli -d /dev/cdc-wdm0 --wds-modify-

profile=3gpp,1,'apn=apntest' 

2. After that, just reboot ther radio of the modem (disconnect it manually) or use  

AT+CFUN=1,1 using "minicom -d /dev/ttyUSB3" (or /dev/ttyUSB7) 

3. Put the modem in raw_ip mode:   
$ echo Y > /sys/class/net/wwan0/qmi/raw_ip 

4. If echo command fails, do:  
$ sudo ifconfig wwan0 down 

$ echo Y > /sys/class/net/wwan0/qmi/raw_ip 

$ sudo ifconfig wwan0 up 

Next is an screenshot of the reboot of the quectel, and its connection to the eNB. 

 

Figure 48: Minicom Quectel Information 

Moreover, and finally, in order to expose all these metrics, it has been developed a 

Grafana dashboard, with the next parameters. 

In eNB_metrics:  

PhyCellId, Number of UE connected, Downlink and uplink frequencies, Downlink and 

uplink bandwidth and Slicing information. 

In UE_metrics: 

MacStats, Physical Resource Block (prb), Transport Block Size (tbs), Total Transport 

Size (totalTbs), rrMeasurements, pcellRsrp, pcellRsrq, pdcpStats, System Frame Number 

(sfn), Packets sent and received and Packets sent and received (Bytes). 
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Figure 49: OAI Exporter demo 
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As can be seen, OAI exporter, is in real time, and shows the different information of both 
the eNB and UEs.  
In the dashboard the information can be filtered by two different elements, first of all by 
eNB id, and second of all, by UEs IMSI id.  
Moreover, the eNB has been built with the name eNB_ENBid, where ENBid is the id of 
the cell, and the UE with the name UE_IMSInum_eNB_ENBid, where IMSInum is the 
UE’s IMSI number and ENBid is the id of the cell where it is connected.  
In the figure above, appears one eNB (eNB_1023) and two different UEs 
(UE_0_eNB_1023 and UE_001031136032709_eNB_1023). The first UE, corresponds to 
the Quectel UE, and it appears 0 as its IMSI, because it needs a reboot to appear the 
correct number, the second UE does not need this reboot.  
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5. Budget 

The different costs of this work can be divided into the main components that are needed 

to deploy the service, the salary and the different amortization of the computer. Table 6 

shows the cost different components and table 7 shows the salary and amortization costs. 

In this project everything that has been used is open-source so there is no need to 

include it. 

Regarding the salary, it has been taking into consideration an i2cat research intern 

engineer performing 800 hours job with a salary of 10€ for hour worked, taxes included. 

Moreover, about the amortization of the computer, it has been considered a 700€ PC with 

a residual value of 70€ and life span of 5 year 

 

Product Price / Unit (€) Number of units Total cost 

Raspberry Pi 2  40 1 40 

SimCom Module 23 1 23 

Quectel Module 30 1 39 

USRP b210 1720 2 3440 

Total cost 3542 

Table 6: Components cost 

 

Concept Cost (€) 

Salary (including social charges) 8000 

Amortization 70 

Total cost 8070 

Table 7: Salary and amortization costs 

The total cost of the project for 7 months has been 11612€ 
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6. Conclusions and future development 

This project has been developed with the intention of implement a centralized radio 

controller to manage different 4G and 5G small cells with OpenAirInterface technology for 

the creation of an automated deployment of the different network services over the 

different cells. To this end, a 4G OAI small cells management has been implemented in 

the i2cat radio controller RACOON, and 5G OAI small cells will be implemented in a near 

future when the different bugs are fixed.  

This implementation has shown that FlexRAN is a powerful tool that allows to perform 

many operations. Firstly, it allows to monitor the different RAN infrastructure, with the 

different eNBs and UEs, both in a high level, for example, with the monitoring of the 

different number of packets or bytes sent by each UE, and in a low level, for example, 

with the monitoring of the different core networks, PLMN ids or slicing quotes from an 

eNB. And secondly, it allows to configure the different eNB parameters, for example, the 

core network, PLMN or network slicing. Moreover, in order to visualize this FlexRAN data 

interactively, it has been possible to store the data in a Prometheus server and visualize it 

in a Grafana Dashboard in real-time. 

Moreover, it has shown that it is possible to automate the OpenAirInterface technology 

throw the RAN controller tool RACOON, which was already developed for other devices 

such as Amarisoft or Accellerant. 

And finally, RAN configurations, can be largely automated using both Netconf and an OAI 

REST API. This separation allows to have a centralized and distributed system at the 

same time, as RAN deployments are managed separately from its service management.  

6.1. Future Work 

There is a lot of effort to have a fully functional 5G network with no bugs from part of 

OpenAirInterface Software Alliance and finally have the opportunity to integrate it into the 

centralized ran controller.  

Also, next generation FlexRAN, called FlexRIC, should be implemented, because it is a 

software suite that contains two components, first, a RAN agent that allows for interfacing 

with the radio stack, and also a real-time controller for 5G.  

Moreover, with the OAI network scenario completed, it opens a lot of new opportunities to 

develop and test with 4G and 5G networks, such as, add different types of frameworks of 

a virtualized network, or the possibility of separate the Centralized Unit (CU) and 

Distributed Unit (DU) to reduce different parameters such as latency.  
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Annex 1 – Open5Gs environment files 

In this part, it is presented the two different environment files with all the relevant 

parameters for both core’s deployed. One with the Quectel information, and the other one 

with the SimCom information. In bold is highlighted the different mobile subscriber 

information. 

.env core1 (NUC1 192.168.40.132) 

#TZ=Europe/Berlin 

 

MCC=001 

MNC=02 

 

TEST_NETWORK=172.22.0.0/24 

DOCKER_HOST_IP=192.168.41.68 

 

# MONGODB 

MONGO_IP=172.22.0.2 

 

# HSS - open5gs 

HSS_IP=172.22.0.3 

 

# PCRF 

PCRF_IP=172.22.0.4 

 

# SGW 

SGWC_IP=172.22.0.5 

SGWU_IP=172.22.0.6 

SGWU_ADVERTISE_IP=172.22.0.6 

 

# SMF 

SMF_IP=172.22.0.7 

 

# UPF 

UPF_IP=172.22.0.8 

UPF_ADVERTISE_IP=172.22.0.8 
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# MME 

MME_IP=172.22.0.9 

 

# AMF 

AMF_IP=172.22.0.10 

 

# AUSF 

AUSF_IP=172.22.0.11 

 

# NRF 

NRF_IP=172.22.0.12 

 

# UDM 

UDM_IP=172.22.0.13 

 

# UDR 

UDR_IP=172.22.0.14 

 

# IMS DNS 

DNS_IP=172.22.0.15 

 

# RTPENGINE 

RTPENGINE_IP=172.22.0.16 

 

# MYSQL 

MYSQL_IP=172.22.0.17 

 

# FHOSS 

FHOSS_IP=172.22.0.18 

# ICSCF 

ICSCF_IP=172.22.0.19 

 

# SCSCF 

SCSCF_IP=172.22.0.20 
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# PCSCF 

PCSCF_IP=172.22.0.21 

 

# SRSLTE ENB 

SRS_ENB_IP=172.22.0.22 

 

# UERANSIM 

NR_GNB_IP=172.22.0.23 

NR_UE_IP=172.22.0.24 

 

UE1_IMEI=356938035643803 

UE1_IMEISV=4370816125816151 

UE1_IMSI=001025432100004 

UE1_KI=00112233445566778899AABBCCDDEEFF 

UE1_OP=000102030405060708090A0B0C0D0E0F 

UE1_AMF=8000 

 

# OAI ENB 

OAI_ENB_IP=172.22.0.25 

 

# OPEN5GS WEBUI 

WEBUI_IP=172.22.0.26 

 

# PCF 

PCF_IP=172.22.0.27 

 

# NSSF 

NSSF_IP=172.22.0.28 

 

# BSF 

BSF_IP=172.22.0.29 
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.env core2 (NUC1 192.168.40.97) 

#TZ=Europe/Berlin 

 

MCC=001 

MNC=03 

 

TEST_NETWORK=172.22.0.0/24 

DOCKER_HOST_IP=192.168.40.97 

 

# MONGODB 

MONGO_IP=172.22.0.2 

 

# HSS - open5gs 

HSS_IP=172.22.0.3 

 

# PCRF 

PCRF_IP=172.22.0.4 

 

# SGW 

SGWC_IP=172.22.0.5 

SGWU_IP=172.22.0.6 

SGWU_ADVERTISE_IP=192.168.40.97 

 

# SMF 

SMF_IP=172.22.0.7 

 

# UPF 

UPF_IP=172.22.0.8 

UPF_ADVERTISE_IP=192.168.40.97 

 

# MME 

MME_IP=172.22.0.9 

 

# AMF 

AMF_IP=172.22.0.10 
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# AUSF 

AUSF_IP=172.22.0.11 

 

# NRF 

NRF_IP=172.22.0.12 

 

# UDM 

UDM_IP=172.22.0.13 

 

# UDR 

UDR_IP=172.22.0.14 

 

# IMS DNS 

DNS_IP=172.22.0.15 

 

# RTPENGINE 

RTPENGINE_IP=172.22.0.16 

 

# MYSQL 

MYSQL_IP=172.22.0.17 

 

# FHOSS 

FHOSS_IP=172.22.0.18 

 

# ICSCF 

ICSCF_IP=172.22.0.19 

 

# SCSCF 

SCSCF_IP=172.22.0.20 

 

# PCSCF 

PCSCF_IP=172.22.0.21 

 

# SRSLTE ENB 
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SRS_ENB_IP=172.22.0.22 

 

# UERANSIM 

NR_GNB_IP=172.22.0.23 

NR_UE_IP=172.22.0.24 

 

UE1_IMEI=356938035643803 

UE1_IMEISV=4370816125816151 

UE1_IMSI=001011234567895 

UE1_KI=8baf473f2f8fd09487cccbd7097c6862 

UE1_OP=11111111111111111111111111111111 

UE1_AMF=8000 

 

# OAI ENB 

OAI_ENB_IP=172.22.0.25 

 

# OPEN5GS WEBUI 

WEBUI_IP=172.22.0.26 

 

# PCF 

PCF_IP=172.22.0.27 

 

# NSSF 

NSSF_IP=172.22.0.28 

 

# BSF 

BSF_IP=172.22.0.29 

 

# ENTITLEMENT SERVER 

ENTITLEMENT_SERVER_IP=172.22.0.30 

 

# OSMOMSC 

OSMOMSC_IP=172.22.0.31 

 

# OSMOHLR 
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OSMOHLR_IP=172.22.0.32 

 

# SMSC 

SMSC_IP=172.22.0.33 
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Annex 2 – Open5Gs nsa-deploy.yaml 

Next it is exposed a part of the .yaml file in order to deploy a nsa network with open5gs. 
Moreover, it is only exposed the part for the mme, hss, sgw, pgw and webui as are the 
main components used and modified from open5gs for the 4G Core Network deployment.  

version: '3' 

services: 

  webui: 

    image: docker_open5gs 

    container_name: webui 

    depends_on: 

      - mongo 

    env_file: 

      - .env 

    environment: 

      - COMPONENT_NAME=webui 

    volumes: 

      - ./webui:/mnt/webui 

      - /etc/timezone:/etc/timezone:ro 

      - /etc/localtime:/etc/localtime:ro 

    expose: 

      - "3000/tcp" 

    ports: 

      - "3000:3000/tcp" 

    networks: 

      default: 

        ipv4_address: ${WEBUI_IP} 

  hss: 

    image: docker_open5gs 

    container_name: hss 

    env_file: 

      - .env 
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    environment: 

      - COMPONENT_NAME=hss-1 

    volumes: 

      - ./hss:/mnt/hss 

      - ./log:/open5gs/install/var/log/open5gs 

      - /etc/timezone:/etc/timezone:ro 

      - /etc/localtime:/etc/localtime:ro 

    depends_on: 

      - mongo 

    expose: 

      - "3868/udp" 

      - "3868/tcp" 

      - "3868/sctp" 

      - "5868/udp" 

      - "5868/tcp" 

      - "5868/sctp" 

    networks: 

      default: 

        ipv4_address: ${HSS_IP} 

  sgwc: 

    image: docker_open5gs 

    depends_on: 

      - smf 

      - upf 

    container_name: sgwc 

    env_file: 

      - .env 

    environment: 

      - COMPONENT_NAME=sgwc-1 

    volumes: 
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      - ./sgwc:/mnt/sgwc 

      - ./log:/open5gs/install/var/log/open5gs 

      - /etc/timezone:/etc/timezone:ro 

      - /etc/localtime:/etc/localtime:ro 

    expose: 

      - "2123/udp" 

      - "8805/udp" 

    networks: 

      default: 

        ipv4_address: ${SGWC_IP} 

  sgwu: 

    image: docker_open5gs 

    depends_on: 

      - smf 

      - upf 

    container_name: sgwu 

    env_file: 

      - .env 

    environment: 

      - COMPONENT_NAME=sgwu-1 

    volumes: 

      - ./sgwu:/mnt/sgwu 

      - ./log:/open5gs/install/var/log/open5gs 

      - /etc/timezone:/etc/timezone:ro 

      - /etc/localtime:/etc/localtime:ro 

    expose: 

      - "8805/udp" 

      - "2152/udp" 

    ports: 

      - "2152:2152/udp" 
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    networks: 

      default: 

        ipv4_address: ${SGWU_IP} 

  mme: 

    image: docker_open5gs 

    depends_on: 

      - hss 

      - sgwc 

      - sgwu 

      - smf 

      - upf 

    container_name: mme 

    env_file: 

      - .env 

    environment: 

      - COMPONENT_NAME=mme-1 

    volumes: 

      - ./mme:/mnt/mme 

      - ./log:/open5gs/install/var/log/open5gs 

      - /etc/timezone:/etc/timezone:ro 

      - /etc/localtime:/etc/localtime:ro 

    expose: 

      - "3868/udp" 

      - "3868/tcp" 

      - "3868/sctp" 

      - "5868/udp" 

      - "5868/tcp" 

      - "5868/sctp" 

      - "36412/sctp" 

      - "2123/udp" 
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    ports: 

      - "36412:36412/sctp" 

    networks: 

      default: 

        ipv4_address: ${MME_IP} 
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Annex 3 – OAI eNB configuration file  

In this annexed part, it is exposed the enb.fdd.conf file with all the relevant parameters for 
a eNB deployment. Moreover, most of the parameters are dynamic, using an 
environment file with the variables presented in the section 4, but in the next configuration, 
the different environment variables have already been replaced. 
 
Active_eNBs = ( "i2cat"); 

# Asn1_verbosity, choice in: none, info, annoying 

Asn1_verbosity = "none"; 

 

eNBs = 

( 

 { 

    ////////// Identification parameters: 

    eNB_ID    =  555; #123; 

    cell_type =  "CELL_MACRO_ENB"; 

    eNB_name  =  "i2cat"; 

 

    // Tracking area code, 0x0000 and 0xfffe are reserved values 

    tracking_area_code = 1; 

    plmn_list = ( { mcc = 0; mnc = 0; mnc_length = 2; } ); 

 

    tr_s_preference     = "local_mac" 

    nr_cellid           = 1023; 

 

    // In seconds 

    rrc_inactivity_threshold = 0; 

 

    ////////// Physical parameters: 

 

    component_carriers = ( 

      { 

      node_function             = "3GPP_eNODEB"; 

      node_timing               = "synch_to_ext_device"; 

      node_synch_ref            = 0; 

      frame_type                = "FDD"; 

      tdd_config                = 3; 

      tdd_config_s              = 0; 

      prefix_type               = "NORMAL"; 

      eutra_band                = 1; 

      downlink_frequency        = 2150000000L; 

      uplink_frequency_offset   = -190000000; 

      Nid_cell                  = 123; 

      N_RB_DL                   = 25; 

      Nid_cell_mbsfn            = 500;#123; 

      nb_antenna_ports          = 1; 

      nb_antennas_tx            = 1; 

      nb_antennas_rx            = 1; 

      tx_gain                   = 90; 

      rx_gain                   = 125; 

      pbch_repetition           = "FALSE"; 

      prach_root                = 0; 

      prach_config_index        = 0; #100; 
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      prach_high_speed          = "DISABLE"; 

      prach_zero_correlation    = 1; 

      prach_freq_offset         = 2; 

      pucch_delta_shift         = 1; 

      pucch_nRB_CQI             = 0; 

      pucch_nCS_AN              = 0; 

      pucch_n1_AN               = 0; 

      pdsch_referenceSignalPower= -25; 

      pdsch_p_b                 = 0; 

      pusch_n_SB                = 1; 

      pusch_enable64QAM         = "DISABLE"; 

      pusch_hoppingMode         = "interSubFrame"; 

      pusch_hoppingOffset       = 0; 

      pusch_groupHoppingEnabled = "ENABLE"; 

      pusch_groupAssignment     = 0; 

      pusch_sequenceHoppingEnabled = "DISABLE"; 

      pusch_nDMRS1              = 1; 

      phich_duration            = "NORMAL"; 

      phich_resource            = "ONESIXTH"; 

      srs_enable                = "DISABLE"; 

/* 

      srs_BandwidthConfig       =; 

      srs_SubframeConfig        =; 

      srs_ackNackST             =; 

      srs_MaxUpPts              =; 

*/ 

 

      pusch_p0_Nominal          = -96; 

      pusch_alpha               = "AL1"; 

      pucch_p0_Nominal          = -104; 

      msg3_delta_Preamble       = 6; 

      pucch_deltaF_Format1      = "deltaF2"; 

      pucch_deltaF_Format1b     = "deltaF3"; 

      pucch_deltaF_Format2      = "deltaF0"; 

      pucch_deltaF_Format2a     = "deltaF0"; 

      pucch_deltaF_Format2b     = "deltaF0"; 

 

      rach_numberOfRA_Preambles                = 64; 

      rach_preamblesGroupAConfig               = "DISABLE"; 

      rach_powerRampingStep                    = 4; 

      rach_preambleInitialReceivedTargetPower  = -108; 

      rach_preambleTransMax                    = 10; 

      rach_raResponseWindowSize                = 10; 

      rach_macContentionResolutionTimer        = 48; 

      rach_maxHARQ_Msg3Tx                      = 4; 

 

      pcch_default_PagingCycle                 = 128; 

      pcch_nB                                  = "oneT"; 

      bcch_modificationPeriodCoeff             = 2; 

      ue_TimersAndConstants_t300               = 1000; 

      ue_TimersAndConstants_t301               = 1000; 

      ue_TimersAndConstants_t310               = 1000; 

      ue_TimersAndConstants_t311               = 10000; 

      ue_TimersAndConstants_n310               = 20; 
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      ue_TimersAndConstants_n311               = 1; 

      ue_TransmissionMode                      = 1; 

 

      //Parameters for SIB18 

      rxPool_sc_CP_Len                                       = 

"normal"; 

      rxPool_sc_Period                                       = 

"sf40"; 

      rxPool_data_CP_Len                                     = 

"normal"; 

      rxPool_ResourceConfig_prb_Num                          = 20; 

      rxPool_ResourceConfig_prb_Start                        = 5; 

      rxPool_ResourceConfig_prb_End                          = 44; 

      rxPool_ResourceConfig_offsetIndicator_present          = 

"prSmall"; 

      rxPool_ResourceConfig_offsetIndicator_choice           = 0; 

      rxPool_ResourceConfig_subframeBitmap_present           = 

"prBs40"; 

      rxPool_ResourceConfig_subframeBitmap_choice_bs_buf     = 

"00000000000000000000"; 

      rxPool_ResourceConfig_subframeBitmap_choice_bs_size    = 5; 

      rxPool_ResourceConfig_subframeBitmap_choice_bs_bits_unused = 

0; 

/* 

      rxPool_dataHoppingConfig_hoppingParameter              = 0; 

      rxPool_dataHoppingConfig_numSubbands                   = 

"ns1"; 

      rxPool_dataHoppingConfig_rbOffset                      = 0; 

      rxPool_commTxResourceUC-ReqAllowed                     = 

"TRUE"; 

*/ 

      // Parameters for SIB19 

      discRxPool_cp_Len                                               

= "normal" 

      discRxPool_discPeriod                                           

= "rf32" 

      discRxPool_numRetx                                              

= 1; 

      discRxPool_numRepetition                                        

= 2; 

      discRxPool_ResourceConfig_prb_Num                               

= 5; 

      discRxPool_ResourceConfig_prb_Start                             

= 3; 

      discRxPool_ResourceConfig_prb_End                               

= 21; 

      discRxPool_ResourceConfig_offsetIndicator_present               

= "prSmall"; 

      discRxPool_ResourceConfig_offsetIndicator_choice                

= 0; 

      discRxPool_ResourceConfig_subframeBitmap_present                

= "prBs40"; 

      discRxPool_ResourceConfig_subframeBitmap_choice_bs_buf          

= "f0ffffffff"; 
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      discRxPool_ResourceConfig_subframeBitmap_choice_bs_size         

= 5; 

      

discRxPool_ResourceConfig_subframeBitmap_choice_bs_bits_unused  = 

0; 

 

      //SSB central frequency of NR secondary cell group (for ENDC 

NSA) 

      nr_scg_ssb_freq = 641272; 

    } 

  ); 

 

    srb1_parameters : 

    { 

        # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 

350, ... 500] 

        timer_poll_retransmit    = 80; 

 

        # timer_reordering = (ms) [0,5, ... 100, 110, 

120, ... ,200] 

        timer_reordering         = 35; 

 

        # timer_reordering = (ms) [0,5, ... 250, 300, 

350, ... ,500] 

        timer_status_prohibit    = 0; 

 

        # poll_pdu = [4, 8, 16, 32 , 64, 128, 256, 

infinity(>10000)] 

        poll_pdu                 =  4; 

 

        # poll_byte = (kB) 

[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinit

y(>10000)] 

        poll_byte                =  99999; 

 

        # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32] 

        max_retx_threshold       =  4; 

    } 

 

    # ------- SCTP definitions 

    SCTP : 

    { 

        # Number of streams to use in input/output 

        SCTP_INSTREAMS  = 2; 

        SCTP_OUTSTREAMS = 2; 

    }; 

 

    enable_measurement_reports = "no"; 

 

    ////////// MME parameters: 

    mme_ip_address      = ( { ipv4       = "0.0.0.0"; 

                              ipv6       = "192:168:30::17"; 

                              port       = 36412 ; 

                              active     = "yes"; 
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                              preference = "ipv4"; 

                            } 

                          ); 

 

    ///X2 

    enable_x2         = "no"; 

    t_reloc_prep      = 1000;      /* unit: millisecond */ 

    tx2_reloc_overall = 2000;      /* unit: millisecond */ 

    t_dc_prep         = 1000;      /* unit: millisecond */ 

    t_dc_overall      = 2000;      /* unit: millisecond */ 

 

    NETWORK_INTERFACES : 

    { 

        ENB_INTERFACE_NAME_FOR_S1_MME            = "eno1"; 

        ENB_IPV4_ADDRESS_FOR_S1_MME              = 

"192.168.40.97"; 

        ENB_INTERFACE_NAME_FOR_S1U               = "eno1"; 

        ENB_IPV4_ADDRESS_FOR_S1U                 = 

"192.168.40.97"; 

        ENB_PORT_FOR_S1U                         = 2152; # Spec 

2152 

        ENB_IPV4_ADDRESS_FOR_X2C                 = 

"192.168.40.97"; 

        ENB_PORT_FOR_X2C                         = 36422; # Spec 

36422 

    }; 

  } 

); 

 

MACRLCs = 

( 

  { 

    num_cc          = 1; 

    tr_s_preference = "local_L1"; 

    tr_n_preference = "local_RRC"; 

    phy_test_mode   = 0; 

    puSch10xSnr     =  160; 

    puCch10xSnr     =  160; 

  } 

); 

 

L1s = 

( 

  { 

    num_cc = 1; 

    tr_n_preference = "local_mac"; 

  } 

); 

 

RUs = 

( 

  { 

    local_rf                      = "yes" 

    nb_tx                         = 1 



   

 78 

    nb_rx                         = 1 

    att_tx                        = 0 

    att_rx                        = 0; 

    bands                         = [7]; 

    max_pdschReferenceSignalPower = -27; 

    max_rxgain                    = 95; 

    eNB_instances                 = [0]; 

#    clock_src                     = "external"; 

    sdr_addrs = "serial=31DB5A3" 

  } 

); 

 

THREAD_STRUCT = 

( 

  { 

    #three config for level of parallelism 

"PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or 

"PARALLEL_RU_L1_TRX_SPLIT" 

    parallel_config    = "PARALLEL_SINGLE_THREAD"; 

    #two option for worker "WORKER_DISABLE" or "WORKER_ENABLE" 

    worker_config      = "WORKER_ENABLE"; 

  } 

); 

 

NETWORK_CONTROLLER : 

{ 

    FLEXRAN_ENABLED        = "yes"; 

    FLEXRAN_INTERFACE_NAME = "eno1"; 

    FLEXRAN_IPV4_ADDRESS   = "192.168.40.97"; 

    FLEXRAN_PORT           = 2210; 

    FLEXRAN_CACHE          = "/mnt/oai_agent_cache"; 

    FLEXRAN_AWAIT_RECONF   = "no"; 

}; 

 

log_config : 

  { 

     global_log_level                      ="info"; 

     global_log_verbosity                  ="high"; 

     hw_log_level                          ="info"; 

     hw_log_verbosity                      ="medium"; 

     phy_log_level                         ="info"; 

     phy_log_verbosity                     ="medium"; 

     mac_log_level                         ="info"; 

     mac_log_verbosity                     ="high"; 

     rlc_log_level                         ="info"; 

     rlc_log_verbosity                     ="high"; 

     pdcp_log_level                        ="info"; 

     pdcp_log_verbosity                    ="high"; 

     rrc_log_level                         ="info"; 

     rrc_log_verbosity                     ="medium"; 

}; 
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Annex 4 – E-UTRA band  

Next can be found a list with the different 4G LTE frequency band. There are only the 

bands with the geographical area: Global, EMEA (Europe, Middle East, and Africa) and 

EU, as if not, the list would be too large. Moreover, the list does not include the channel 

bandwidth, which include frequency bands of 1.4, 3, 5, 10, 15, 20 MHz. In fact, the two 

different bands that have been used in this project are 1 and 7, and both includes 5, 10, 

15, 20 MHz. 

 

  

Bandwidth Duplex spacing Geographical 3GPP

Low Middle High DL/UL (MHz) Low Middle High (MHz) area release

2110 2140 2170 1920 1950 1980

0 300 599 18000 18300 18599

1805 1842.5 1880 1710 1747.5 1785

1200 1575 1949 19200 19575 19949

2620 2655 2690 2500 2535 2570

2750 3100 3449 20750 21100 21449

925 942.5 960 880 897.5 915

3450 3625 3799 21450 21625 21799

791 806 821 832 847 862

6150 6300 6449 24150 24300 24449

3510 3550 3590 3410 3450 3490

6600 7000 7399 24600 25000 25399

758 780.5 803 703 725.5 748

9210 9435 9659 27210 27435 27659

462.5 465 467.5 452.5 455 457.5

9870 9895 9919 27760 27785 27809

1452 1474 1496

9920 10140 10359

1900 1910 1920

36000 36100 36199

2010 2017.5 2025

36200 36275 36349

2570 2595 2620

37750 38000 38249

2496 2593 2690

39650 40620 41589

3400 3500 3600

41590 42590 43589

3600 3700 3800

43590 44590 45589

5150 5537.5 5925

46790 50665 54539

5855 5890 5925

54540 54890 55239

3550 3625 3700

55240 55990 56739

3550 3625 3700

56740 57490 58239

1432 1474.5 1517

58240 58665 59089

1427 1429.5 1432

59090 59115 59139

3300 3350 3400

59140 59640 60139

2483.5 2489.5 2495

60140 60197 60254

2110 2155 2200 1920 1965 2010

65536 65986 66435 131072 131522 131971

738 748 758

67336 67436 67535

753 768 783 698 713 728

67536 67686 67835 132672 132822 132971

461 463.5 466 451 453.5 456

68936 68961 68985 133472 133497 133521

420 422.5 425 410 412.5 415

70546 70571 70595 134182 134207 134231

422 424.5 427 412 414.5 417

70596 70621 70645 134232 134257 134281

757 757.5 758 787 787.5 788

70646 70651 70655 134282 134287 134291
103 NB-IoT FDD 1 -30 17.5

EMEA 16.288 410+ FDD 5 10

87 410 FDD 5 10 EMEA 16.2

72 450 PMR/PAMR FDD 5 10 EMEA 15.0

68 700 ME FDD 30 55 EMEA 13.3

EMEA 13.267 700 EU SDL 20 Downlink only

Global 13.265 2100+ FDD 90 190

53 TD 2500 TDD 11.5 16.0

15.252 TD 3300 TDD 100

51 TD 1500- TDD 5 15.0

15.050 TD 1500+ TDD 85

49 TD 3600r TDD 150 Global 15.1

Global 14.248 TD 3600 TDD 150

47 TD V2X TDD 70 Global 14.1

Global 13.246 TD Unlicensed TDD 775

43 TD 3700 TDD 200 10

1042 TD 3500 TDD 200

41 TD 2600+ TDD 194 Global 10

EMEA 838 TD 2600 TDD 50

EMEA 834 TD 2000 TDD 15

33 TD 1900 TDD 20 EMEA 8

EMEA 12.432 1500 L-band SDL 44 Downlink only

31 450 FDD 5 10 Global 12.0

APAC,EU 11.128 700 APT FDD 45 55

22 3500 FDD 80 100 EMEA 10.4

20 800 DD FDD 30 -41 EMEA 9

8 900 GSM FDD 35 45 Global 8

EMEA 8

Global 8

Global 8

7 2600 FDD 70 120

3 1800+ FDD 75 95

1 2100 FDD 60 190

and Name Mode

Downlink (MHz) Uplink (MHz)

Earfcn Earfcn
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Annex 5 – USRP b210 specifications 

In the next figures, it is presented the different features, the product overview, 

specifications, and a diagram with the different components of the USRP b210 used in 

this project. 
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Glossary 

CN   Core Network 

eNB   evolved NodeBs 

EPC   Evolved Packet Core 

E-UTRAN  Evolved Terrestrial Radio Access Network 

FDD   Frequency División Duplexing 

gNB  gNodeB 

GSM   Global System for Mobile Communications 

GUMMEI  Globally Unique MME Identity 

HSS   Home Subscriber Server 

IMSI   International Mobile Subscriber Identity 

LTE   Long Term Evolution 

MCC   Mobile Country Code 

MIMO   Multiple Input Multiple Output 

MME   Mobility Management Entity 

MNC   Mobile Network Code 

OAI   OpenAirInterface 

OPc   Operator key or code 

OSA   OpenAirInterface Software Alliance 

P-GW   PDN Gateway 

PLMN Id  Public Land Mobile Network Identifier 

QoS   Quality of Service 

RAN   Radio Access Network 

RPC  Remote Procedure Calls 

S-GW   Serving Gateway 

TAI List  Tracking Area Identity List 

TCP   Transmission Control Protocol 

TDD   Time División Duplexing 

UE   User Equipment 

UMTS   Universal Mobile Telecommunications System 

USRP   Universal Software Radio Peripheral 


