

IMPLEMENTATION OF A NON-RT RIC FOR

AUTOMATION SERVICE DEPLOYMENT OVER 4G SMALL

CELLS BASED ON OPENAIRINTERFACE TECHNOLOGY

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Pau Tomàs Culubret

In partial fulfilment

of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Co-advisors: Carlos Herranz and Jordi Casademont

Barcelona, June 2022

 1

Title of the thesis: Implementation of a non-rt RIC for automation service

deployment over 4G small cells based on OpenAirInterface technology.

Author: Pau Tomàs Culubret

Co-advisor: Carlos Herranz and Jordi Casademont

Abstract

With the continuous evolution of the mobile communications networks, it is important to
have virtualized open-source ecosystems such as OpenAirInterface, that can provide low
cost networks to the different operators.

In this project we aim to develop a centralised radio controller for the management of 4G
small cells based on OpenAirInterface technology. This radio controller interacts with the
specific solution equivalent to OAI's RT RIC called FlexRAN. The objective of the radio
controller is to achieve an automated deployment of 4G services over OAI technology
cells, where each service is assigned several dedicated radio resources (RAN slice).
Specifically, the aim is to manage the radio resources assigned to the different services
dynamically and according to the requirements of the service (QoS, latency, etc.).

 2

Acknowledgements

First of all, I would like to thank Carlos Herranz, Ph. D, for giving me the opportunity of

developing my master thesis in i2cat Foundation. Moreover, I would like to express my

gratitude towards him for being always willing to help me in every matter and for his

implication on this project. Also, to my advisor at UPC, Jordi Casademont for his

willingness to help.

In addition, I would like to thank to all the people that I met during my master’s and

bachelor’s degree, as we have come this way together. Finally, I would like to thank to my

parents and friends who have been always showing their support to me.

 3

Revision history and approval record

Revision Date Purpose

0 21/05/2022 Document creation

1 16/06/2022 Document revision

2 20/06/2022 Document revision

Written by: Reviewed and approved by:

Date 22/06/2022 Date 24/06/2022

Name Pau Tomàs Name Jordi Casademont

Position Project Author Position Project Supervisor

 4

Table of contents

Abstract .. 1

Acknowledgements .. 2

Revision history and approval record .. 3

Table of contents .. 4

List of Figures ... 6

List of Tables .. 8

1. Introduction .. 9

1.1. Work Plan ... 9

1.1.1. Problems and modifications from initial work plan 10

2. State of the art of the technology used or applied in this thesis 11

2.1. 4G Network Architecture... 11

2.2. Evolution towards 5G and its Network Architecture .. 14

2.3. OpenAirIterface .. 16

2.3.1. FlexRAN .. 17

2.4. NetConf .. 18

3. Methodology .. 21

3.1. OpenAirInerface LTE and 5G deployment study ... 21

3.2. Scenario description ... 23

4. Results .. 30

4.1. Lab scenario ... 30

4.2. Network configuration ... 31

4.3. RACOON SWAGGER Platform .. 39

4.4. Solution study ... 43

4.4.1. OAI eNB: baremetal vs docker .. 44

4.4.2. Problems with 5G OpenAirInterface networks ... 44

4.5. RAN Slicing .. 45

4.5.1. RAN Slicing dynamically assignation ... 45

4.6. Demonstration of a non-rt RAN controller for an automation service deployment

over a 4G small cell ... 46

5. Budget ... 58

6. Conclusions and future development ... 59

6.1. Future Work .. 59

Bibliography .. 60

 5

Annex 1 – Open5Gs environment files ... 61

Annex 2 – Open5Gs nsa-deploy.yaml .. 68

Annex 3 – OAI eNB configuration file .. 73

Annex 4 – E-UTRA band .. 79

Annex 5 – USRP b210 specifications ... 80

Glossary ... 82

 6

List of Figures

Figure 1: Gantt Diagram ... 10

Figure 2 LTE architecture with Core Network and Radio Access Network 11

Figure 3 LTE architecture standard [13] .. 12

Figure 4: NSA network architecture on the left, SA network architecture on the right 15

Figure 5 5G Core Network Architecture .. 16

Figure 6: OAI License Model .. 16

Figure 7: FlexRAN architecture ... 18

Figure 8: Netconf layers and examples ... 19

Figure 9: OpenAirInterface LTE software overall scenario .. 21

Figure 10: OpenAirInterface 5G software overall scenario .. 22

Figure 11: RACOON & OAI deployment scenario ... 23

Figure 12: Racoon-core internals: Model overview ... 24

Figure 13: OAI exporter diagram... 27

Figure 14: Different OAI API calls ... 28

Figure 15: OpenAirInterface scenario ... 30

Figure 16: Work Space with the two NUCs and the USRP.. 31

Figure 17: OAI Network Diagram .. 31

Figure 18: OAI MME configuration file. ... 33

Figure 19: OAI SGWU configuration file with env variables. .. 33

Figure 20: Subscriber information from the webUI for the Quectel UE. 34

Figure 21: OAI technology calls .. 39

Figure 22: OAIBox RACOON call ... 39

Figure 23: Config box RACOON call ... 40

Figure 24: Log Config Box RACOON call ... 40

Figure 25: OAI cell creation RACOON call .. 41

Figure 26: OAI cell configuration call .. 41

Figure 27: OAI cell deleted call ... 42

Figure 28: OAI chunk creation call .. 42

Figure 29: OAI chunk management calls .. 42

Figure 30: OAI service creation call .. 43

Figure 31: OAI service management calls .. 43

Figure 32: RAN logs errors ... 44

Figure 33: RAN slice assignation, RBs over time .. 46

file:///C:/Users/i2CAT/Downloads/master_thesis%20(1).docx%23_Toc106979117

 7

Figure 34: Screenshot of the racoon-core, netconf-manage, netconf-server and oai-api

initialized. .. 47

Figure 35: Box Registration demo... 48

Figure 36: Box Config demo ... 48

Figure 37: Box Config FlexRAN demo .. 49

Figure 38: Netconf-Manager and Netconf-server logs ... 49

Figure 39: Cell Creation demo .. 50

Figure 40: Cell Configuration demo .. 50

Figure 41: Netconf-Manager and Netconf-server logs 2 .. 51

Figure 42: OAI eNB log ... 51

Figure 43: FlexRAN information .. 52

Figure 44: Chunk demo .. 53

Figure 45: Service demo ... 53

Figure 46: Netconf-Manager and Netconf-server logs 2 .. 54

Figure 47: FlexRAN information 2 ... 54

Figure 48: Minicom Quectel Information ... 55

Figure 49: OAI Exporter demo .. 56

file:///C:/Users/i2CAT/Downloads/master_thesis%20(1).docx%23_Toc106979122

 8

List of Tables

Table 1: Work Plan Table ... 10

Table 2:Quectel and Simcom PLMN information .. 32

Table 3: Subscriber information for Quectel and SimCom .. 35

Table 4: USRP serial number information ... 36

Table 5: Dynamically slice assignation ... 46

Table 6: Components cost .. 58

Table 7: Salary and amortization costs ... 58

 9

1. Introduction

Since their inception, mobile communication networks have gained prominence as the
number of different modern applications have considerably increased during the last
decades. All of which, undoubtedly, leading to an enormous demand for more traffic
volume, more device connectivity, and greater Quality of Experience (QoE).

In fact, these networks have experienced a tremendous evolution over the decades.
Starting with the first generation (1G) launched in 1979 with analog technology. Next, the
second generation (2G) in which digital telephony was introduced and followed by the
third generation (3G) which was the first generation to incorporate Internet services. Then
the forth generation (4G) appeared, increasing the speed and the quality of the data, and
now, with the recent fifth generation (5G), it is providing more services than ever, with
higher efficiency and capacity.

Consequently, with the introduction in the market of these 5G networks, all the 2G and
3G networks are getting now discharged. However, this is something that will not happen
with the 4G [1], these networks will be necessarily in the market for many years, as there
are many use services that will not be deployed in 5G. In fact, operators will continue to
use 4G as a primary connectivity for users, and 5G will be presented to offer services
where it requires a major traffic demand.

With this tremendous evolution speed, it is important to have virtualized open-source
ecosystems that allows to develop and manage the software and hardware for the 3GPP
cellular network (4G and 5G). These software solutions can be used on radio over
general hardware equipment (COST servers), which provides a cost reduction and time
optimization for operators. This is a great advantage over the proprietary solutions that
works only within the manufacturer's own hardware.

One example of these virtualized open-source ecosystem is OpenAirInterface (OAI). This
ecosystem allows to set up a 4G/5G network and inter-operate with commercial
equipment, and so, it opens a world full of possibilities to incorporate new technologies
and functionalities into a network

In this research line, the aim of this project is to develop a centralized radio controller
owned by the i2CAT Foundation (research center) to manage 4G and 5G small cells with
OpenAirInterface technology. With this radio controller, it is intended to create an
automated deployment of different 4G and 5G services over the different cells. These
services will allow to assign a name of dedicated radio resources (RAN slices), and to
manage the different PLMN and core networks of the radio. More in detail, this is planned
to manage the different radio resources assigned to different services in a dynamic way
and taking into account all service requirements (Quality of Service (QoS), latency, etc...).

1.1. Work Plan

The work plan followed in this project is summarized below, as well as a Gantt Diagram
with the different tasks performed.

Work Package Task ID Start Date End Date

OpenAirInterface network 4G
study

4G Network Architecture study 1.1 12/01/2022 20/01/2022

OpenAirInterface 4G study 1.2 18/01/2022 22/01/2022

 10

OpenAirInterface 4G deployment 1.3 22/01/2022 30/01/2022

OpenAirInterface network 5G
study

5G Network Architecture study 2.1 01/02/2022 10/02/2022

OpenAirInterface 5G study 2.2 10/02/2022 15/02/2022

OpenAirInterface 5G deployment 2.3 15/02/2022 25/02/2022

Software development OAI API development 3.1 25/02/2022 10/03/2022

OAI exporter development 3.2 10/03/2022 25/03/2022

NetConf-Server development 3.3 25/03/2022 15/04/2022

Netconf-Manager development 3.4 16/04/2022 25/04/2022

Racoon-Core development 3.5 26/04/2022 15/05/2022

Software Integration Integrate all the system elements 4.1 15/05/2022 20/05/2022

Solution Demonstration Perform different demonstrations to
validate the work

5.1 21/05/2022 15/06/2022

Table 1: Work Plan Table

Figure 1: Gantt Diagram

1.1.1. Problems and modifications from initial work plan

Throughout the development of the project some problems in the deployment have occur
that have deviated a little the project specifications. In fact, it has not been possible to
deploy the 5G network, as OpenAirInterface has some bugs with connectivity of the
different elements of the network that made impossible to incorporate 5G in the deployed
system. Therefore, this work includes only the deployment of i2CAT's proprietary
centralized radio controller for the management of 4G small cells based on
OpenAirInterface technology. But, as can be seen in this project, the deployment of the
5G network has also been prepared, to be put in action when OpenAirInterface can fix
these software bugs, and we are confident it will be in the near future.

 11

2. State of the art of the technology used or applied in this

thesis

This chapter will give an overview of the different 4G and 5G Network Architecture. It will

also introduce the OpenAirInterface ecosystem opensource as well as the network

management protocol Netconf.

2.1. 4G Network Architecture

Long Term Evolution (LTE) [2] is the fourth generation 4G in the mobile communications

networks, it was introduced by the Third Generation Partnership (3GPP) and it is the

evolution of the previous 3G (UMTS) and 2G (GSM) generations. Even the related

specifications were formally known as evolved UMTS terrestrial radio access (E-UTRA)

and evolved UMTS terrestrial radio access network (E-UTRAN). The first version of LTE

was documented in 3GPP Release 8 specifications.

The main objective of 4G technology is to provide a high data rate, with low latency and

an optimization that allows flexible bandwidth deployment. And its network architecture is

designed to support packet-switched traffic with seamless mobility and high quality of

service.

LTE main features:

- Data rates of 1Gbps peak in downlink and 500Mbps peak in uplink.

- It uses both Time Division Duplex (TDD) and Frequency Division Duplex (FDD).

- It supports flexible carrier bandwidths, from 1.4 MHz up to 20 MHz as well as both

FDD and TDD. LTE designed with a scalable carrier bandwidth from 1.4 MHz up

to 20 MHz which bandwidth is used depends on the frequency band and the

amount of spectrum available with a network operator.

- MIMO transmissions support.

- In the network architecture, all nodes are IP based, which includ the backhaul

connection to the radio base stations.

- Standardization of QoS mechanisms on all interfaces.

- Enhanced capacity and low cost per bit.

Its architecture presents a flat structure, with two main parts in the network, the Core

Network (CN) which can be seen as the Evolved Packet Core (EPC) and the Radio

Access Network (RAN) which is the Evolved Terrestrial Radio Access Network (E-

UTRAN) [3].

Figure 2 LTE architecture with Core Network and Radio Access Network

 12

In the figure 3, it is detailed which elements are included in this architecture, both in the

core network and in the RAN access network, and also all the different interfaces that

participate in this technology.

Figure 3 LTE architecture standard [13]

Radio Access Network

The Radio Access Network (RAN) [4] is composed of a single network entity called

evolved-NodeB (eNodeB) which constitutes a E-UTRAN base station. The eNodeB

integrates all the functionalities of the access networks, very different from previous

generations in which the access networks were composed of base stations and colling

equipment.

The E-UTRAN access network consists of eNodeBs that provides the connectivity

between a user equipment (UE) and the EPC. It communicates with the rest of the LTE

system through three different interfaces: E-UTRAN Uu, S1 and X2.

- E-UTRAN Uu interface is also called e-Uu, is the one responsible for the transfer

of information over the radio channel between the eNodeB and the UE.

- S1 interface is the one responsible for the connectivity with the core network and

in fact, it is actually split into two:

o S1-AP to support the control plane

o S1-U to support the user plane

- X2 interface is the one that interconnects the different eNodeB, exchanging both

signaling messages intended to enable more efficient management of the use of

radio resources (such as information to reduce interference between eNodeBs) as

well as traffic from system users when they move from one eNodeB to another

during a handover process.

Moreover, the control and user plane are important features in the organization of

protocols towers associated with LTE network interfaces. In fact, the control plane refers

to the protocol tower required to support the different functions and procedures necessary

to manage the operation of such interface or the corresponding entity. And the user

plane refers to the protocol tower employed for sending user traffic over such interface.

Core Network

The Core Network [5] conform the EPC and it is composed by four different entities:

Mobility Management Entity (MME), Home Subscriber Server (HSS), Serving Gateway

(S-GW) and PDN Gateway (P-GW), and all of them are responsible for the IP

 13

connectivity of the different UEs that are connected to the Radio Access Network and

also to the external networks.

- MME: The MME is the main element of the EPC to manage the access of UEs

connected to the E-UTRAN. All terminals that are registered and connected to the

4G network through the RAN have an assigned MME entity. The choice of this

MME entity is made in the registration process and is based on a set of aspects

such as geographic location as well as load balancing criteria. The MME entity

assigned to a user can be changing and depending on the user's mobility within

the network service area. It communicates with the eNodeB throw the interface

S1-AP.

Its main functions are:

o Authentication and authorization of user access through E-UTRAN

o Management of EPS bearer services

o Management of user mobility in idle mode

o Signaling for mobility support between EPS and 3GPP networks

o Termination of NAS signaling protocols

- HSS: The HSS is the entity that acts as the main database of the 3GPP system

and stores network user information. This information is based on the user's

subscription data and the information necessary for the network operation itself.

This database can be queried and modified by the other network entities in charge

of providing connectivity services or end services. In order to access the database,

it is necessary to do it from the MME network and through the S6a interface,

which its traffic carries subscriber and APN-related data.

- S-GW: The S-GW is the entity that acts as the user plane gateway between E-

UTRAN and the EPC backbone throw the GTP-U (also called S1-U) interface. As

with the MME entity, users who are registered in the 4G network also have an S-

GW entity assigned in the EPC through which their user plane passes. It is also

assigned with geographical criteria as well as load balancing. Among its main

functions are:

o S-GW is responsible for providing an anchor point in the EPC backbone

with respect to terminal mobility between eNodeBs.

o The anchor point functionality also applies to mobility management with

the legacy 3GPP access networks legacy (3G and 2G RAN).

o Temporary storage of user IP packets in case the terminals are in idle

mode.

o Routing of user traffic.

- P-GW: The P-GW is the entity in charge of providing connectivity between the 4G

network and external networks (which in 3GPP specifications are called Packet

Data Network (PDN)), which means that through this entity, users registered and

connected in an LTE network become visible in an external network. Therefore, all

IP packets generated by users are transported to the external network through

this gateway and vice versa.

Each user is assigned at least one P-GW gateway to transport the packets from

its registration in the LTE network, and among its main functions are:

o Application of the rules of use of the and rate control to the bearer services

that the terminal has established.

o The assignment of the IP address of a terminal used in a specific external

network is done from the corresponding P-GW gateway and throw the

interface S5/S8.

 14

o The P-GW gateway acts as an anchor point for mobility management

between LTE and non-3GPP networks.

o P traffic passing through the P-GW gateway is processed through a set of

filters that associate each IP packet with the corresponding user and EPS

bearer service.

Nowadays this 4th generation of mobile communications networks is still in use [1],

and in fact, it will be around for at least 10 more years, so 5G will not make LTE

obsolete in any time soon.

2.2. Evolution towards 5G and its Network Architecture

The fifth generation of mobile communications networks is the last generation of the

3GPP technologies after the 4G. Its standards have been introduced in the 3GPP Realise

15.

Before its release, previous generations wanted to offer fast and reliable communications

data services to the different users in the network, and with 5G networks, it is also offer to

the end user a wide variety of wireless services provided through multiple access

platforms and multi-layer networks.

In terms of 3GPP, it defines two different deployment architectures for 5G as can be seen

in the figure 4:

Non-standalone (NSA) network architecture

The NSA 5G Network Architecture [6] takes advantage of the existing LTE infrastructure

to deploy a 5G service. 5G Radio Access Network (RAN) and its New Radio (NR)

interface is deployed with the 4G RAN and 4G CN infrastructure.

So, by introducing a 5G NR, it allows increase bandwidth capacity and network

throughput respect to 4G networks, and to have greater flexibility in the functions of the

user plan provided by the gateways (S-GW and P-GW) of the Evolved Packet Core. In

contrary, NSA networks are limited to what is offered by the LTE network, in fact, there

are several functionalities that are only available for 4G (network slicing, QoS treatment,

flexibility in edge computing, and the general extensibility of the 5G core).

Regarding its architecture, the 5G NR is called Next Generation NodeB (en-gNB). This

base station is linked to the eNodeB through the interface X2, which it is also used for

communications between NodeBs. And the communication between en-gNBs is done

through the X2-U interface. Moreover, 5G NR need the control plane of a 4G network for

control functions. NSA introduced the separation between the control plans and data in

the gateways.

Standalone (SA) network architecture

In the SA Network Architecture [7], the LTE Core is replaced for a proper 5G Core, which

together with the gNB, the SA architectures consolidates a 5G network. With the

introduction of the 5G Core Network, the data and control plans are totally decoupled,

and it allows flexible and stateless positioning of virtual environments in the different

network segments.

5G core architecture is exposed in the figure 5, and can be divided into three groups

depending where are they running: control plane with an equivalent part in the EPC,

control plane without an equivalent part in the EPC and user plane.

 15

Control plane with an equivalent part in the EPC:

- AMF (Access and Mobility Management Function): It oversees all the connection,

mobility management, authentication and authorization of access and the different

location services. It replaces the EPC's MME, managing the mobility aspects.

- SMF (Session Management Function): It is in charge of the management of the

sessions of the different UEs (IP assignment, selection of the associated UP

function, QoS control and UP routing control). It replaces a small part of the MME

and the SW-C control part of the EPC.

- PCF (Policy Control Function): It oversees controlling the policy rules that the PC

functions must comply with. It replaces the PCRF of the EPC.

- UDM (Unified Data Management): It is in charge of the Unified Data Management,

that is, the user's identity. It replaces a part of the HSS of the EPC.

- AUSF (Authentication Server Function): The essential part of the authentication

server function. It replaces a part of the HSS of the EPC.

Control plane without an equivalent part in the EPC:

- SDSF (Structured Data Storage Network Function): It is used to store the different

structured data.

- UDSF (Unstructured Data Storage Network Function): It is used to store the

different unstructured data.

- NEF (Network Exposure Function): Used to help expose selected capabilities to

third party services.

- NRF (NF Repository Function): Used for the discovery of available services.

- NSSF (Network Slicing Selector Function): It is used to select a different quotes

for give a service to a UE.

User plane:

- UPF (User Plane Function): Is responsible for the traffic between the RAN and the

internet, moreover, it is also responsible for the policy enforcement, the QoS

policing and more. It replaces the P-GW in the EPC.

Figure 4: NSA network architecture on the left, SA network architecture on the right

 16

Figure 5 5G Core Network Architecture

2.3. OpenAirIterface

OpenAirInterface (OAI) Software Alliance [8] is a non-profit consortium founded by the

French research group EURECOM. It is an ecosystem for open-source

software/hardware development for the core network (EPC) and radio access network

(RAN) networks.

The OpenAirInterface software implements the 3GPP stack for 4G and 5G, with all

elements for deploying a the radio access network (eNB, gNB, 4G UE and 5G UE) and a

core network (EPC and 5G-CN), both distributed under separate licenses.

Figure 6: OAI License Model

Currently, the OAI software has a fully functional 4G network, and a 5G network which it

is under development. It is written in C and under Linux optimized for x86. For the 4G

part, it provides the following features [9]:

- LTE release 8.6 compliant, and implements a subset of release 10.

- FDD and TDD configurations (5, 10, and 20 MHz bandwidth).

- SISO and MIMO transmission.

 17

- DL supported channels: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH,

PMCH.

- UL supported channels: : PRACH, PUSCH, PUCCH, SRS, DRS.

- Implements the MAC, RLC, PDCP and RRC layers.

- HARQ support (UL and DL).

- An optimized base band processing (which includes turbo decoder)

And for the 5G, it will provide the following features [9]:

- Static TDD and FDD configurations (10, 20, 40, 80, 100MHz bandwidth).

- Support NSA and SA modes.

- Intermediate downlink and uplink frequencies to interface with IF equipment.

- DL supported channels: NR-PSS, NR-SSS, NR-PBCH, NR-PDCCH, NR-PDSCH.

- UL supported channels: NR-PSS, NR-SSS, NR-PBCH, NR-PDCCH, NR-PDSCH.

- LDPC encoder and decoder (BG1 and BG2 supported).

- Polar encoder and decoder.

Moreover, OpenAirInterface use specific hardware RF modules to deploy a network. The

supported modules are:

- USRP B210 over USB3 port, which has been used in this project to deploy the

RAN network (eNB/gNB). All its specifications are placed in the annexed part 5,

but as a summary:

o 56 MHz bandwidth

o Full duplex

o MIMO 2X2

o USB3.0.

- USRP X310 over USB3 port.

- BladeRF over USB3 port.

- LimeSDR over USB3 port.

- EURECOM EXPRESSMIMO2 PCIe card requiring a PC with a free 8/16-way

PCIe slot.

2.3.1. FlexRAN

FlexRAN [10] is a real-time RAN controller which is also part of the OpenAirInterface

Software Alliance, specifically, it is part of the Mosaic5G PROJECT GROUP which it is an

ecosystem of opensource platforms and use-cases for 4G and 5G systems.

FlexRAN platform [11] works for 4G networks and is divided into two main components:

FlexRAN service and control plane and FlexRAN Application plane. The first one, is

composed by a real time RAN controller that connects and manage several underlying

RAN runtime, one for each 4G base station. As seen in the figure 7, FlexRAN Control

protocol which is in charge of the communication between the Real-Time Controller of the

Control Plane and the RAN agent embedded in runtime environment.

 18

Figure 7: FlexRAN architecture

Between its features, we can highlight 4 main ideas:

- RAN Control & Data Plane Separation:

Separating the control and data plane brings many benefits. The first one, it

reduces the complexity of the system, and the second one, it allows the different

third-parties authorized by the different operators to deploy different and

innovative applications and services in the RAN.

- Centralized & Real-time Control:

Having a centralized and real-time controller allows to easily coordinate, monitor,

and manage all the different eNB that are connected to the RAN controller.

- Abstraction and Virtualized Control Functions:

In order to control the RAN infrastructure, FlexRAN introduces a RAN API and a

Virtualized Control Functions to perform different control operations in the base

station.

- Control Delegation & Policy Reconfiguration:

Delegating the different mechanisms of the virtualized control functions, such as

schedulers or mobility managers, from the master controller to the base stations

at runtime, makes the system very flexible to the underlying networking conditions

and to the different parameters from the operator.

Moreover, the number of use-cases to implement are huge, but the two more important

for this project are:

- RAN Optimization:

FlexRAN can be used to manage and change the different parameters of a RAN

network such as the spectrum sharing, the network slicing or the core parameters.

- Monitor RAN infrastructure:

FlexRAN can also be used to monitor all the different information from all the

eNodeBs and UEs connected to the RAN controller.

2.4. NetConf

NETCONF [12] stands for network configuration, and it is a network management

protocol.

 19

It is based on a server-client model on which the device that needs to be configured act

as a server and the clients use XML formatted messages to communicate the

configuration operations the device must perform. Moreover, these messages use remote

procedure calls (RPC), the clients request goes inside an XML <rpc> element, and the

server response inside a <rpc-reply>.

Netconf does not offer a generic API to manipulate the devices but instead the device

should be modeled and implement the operations that can be performed such as change

the IP address of an interface or set the device hostname.

The model is written in YANG, a modeling language like JSON in style but closer to

YAML in content. The model defines the different variables and container that the device

either write information on (operational data) or the client can modify and set values into

(configuration)

One of the main attributes of NETCONF is its ability to use different databases. Most

engineers are familiar with running-config and start-up. NETCONF uses a third data store

called candidate configuration. The candidate configuration data store contains

configuration objects that have not yet been applied to the device.

The NETCONF protocol is divided into four different layers:

- The Content layer: it includes the configuration data and notification data.

- The Operations layer: it defines a set of base protocol operations to retrieve and

edit the configuration data, all the operations are listed at the end.

- The Messages layer: is responsible for providing the mechanism for encoding

remote procedure calls (RPCs) and notifications.

- The Secure Transport layer: is the one responsible for the security and the

reliability of the messages that goes between the client and server.

Figure 8: Netconf layers and examples

NETCONF is commonly implemented using SSH as the transport.

Its requirements are summarized next:

- It must be a connection-oriented session and, therefore, there must be a constant

connection between a client and a server.

- NETCONF sessions must provide a means of authentication, data integrity,

confidentiality.

- Although NETCONF can be implemented with other transport protocols, each

implementation must support SSH as a minimum.

The Netconf protocol defines and implements the following operations by default:

- edit-config

 20

- get-config

- get

- rpc

- get-schemas

- lock

- unlock

- commit

- connect

- disconnect

- subscribe

- unsubscribe

 21

3. Methodology

The purpose of this work is to implement a non-RT RAN for automation service

deployment over 4G and 5G small cells based on OpenAirInterface technology. The

methodology section can be divided into two parts, first of all the OAI LTE and 5G

deployment study, and then the description of the developed scenario for the

implementation. As said in the introduction, the non-rt RAN has only been deployed for

4G networks, as for 5G networks it hasn’t been possible due to many different bugs from

OpenAirInterface.

3.1. OpenAirInerface LTE and 5G deployment study

In order to deploy the LTE network and the 5G network, a Wireless technology platform

of OpenAirInterface (OAI) has been implemented. With its open-source software-based

implementation of the LTE and 5G systems, it is possible to spanning the full protocol

stack of 3GPP standard both in E-UTRAN and EPC.

Regarding the LTE system, the OAI open-source software can be used to build and

customize base stations (OAI eNB), core networks (OAI EPC) and a user equipment (OAI

UE). It is also possible to connect the OAI eNB to commercial UEs, which it is what has

been done in this project, as it provides a better implementation to test different

configurations and network setups and monitor the network and also the UE in real-time.

Figure 9: OpenAirInterface LTE software overall scenario

Figure 9 shows the schematic of the implemented LTE scenario in i2cat laboratory. The

OpenAirInterface software has been used to deploy OAI eNB. The core network has

been done using OAI EPC and Open5GS [13] including the MME, HSS and SP-GW .

And regarding the UE, instead of deploying it with OAI technology, it has been used two

different devices, a Quectel and a Simcom modules UEs.

Both OAI eNB and Open5Gs are running on top of NUC servers, and these are

connected to a USRP, and the UEs have been running inside a Raspberry Pi and

controller with the minicom software.

 22

Regarding the 5G system, the OAI software has been used for the study of the

implementation using a OAI gNB and OAI EPC NSA. As in LTE, the UEs UE, instead of

deploying it with OAI technology, it has been used a smartphone 5G device. As said, the

implementation of 5G in this project has not been possible due to many OpenAirInterface

bugs.

Figure 10: OpenAirInterface 5G software overall scenario

 23

3.2. Scenario description

The main idea of the project, is to automate the deployment and configuration of N OAI

eNB, including RAN slices. To do so, a full scenario has been developed in order to

control and monitor all the relevant parameters.

Three different i2cat tools have implemented for OAI: Racoon, Netconf-Manager and

Netconf-Server. These three tools, before doing this project there were implementations

for other technologies such as Amarisoft or Accellerant, and now, after this work, for OAI

technology. Moreover, it has also been developed new tools, specifically for

OpenAirInterface software: oai API and oai exporter.

Figure 11: RACOON & OAI deployment scenario

The above figure corresponds to the developed software scenario. In order to understand

it, a description of each element is exposed next, as well as some definitions that are

important to understand this scenario.

Racoon-core

RACOON (RAN Controller Over OpenDaylight and NETCONF) is i2cat’s RAN (Radio

Access Network) controller. Before the development of this work, it supported different

devices:

- i2cat’s customized PC Engines APU4 Wi-Fi devices (dual band 2.4-5MHZ)

- i2cat’s customized Gateworks Ventana/Newport Wi-Fi devices (dual band 2.4-5

MHz)

- Accelleran’s E100 4G small cells

- Amarisoft’s Callbox Pro (Supports 4G, 5G SA and 5G NSA)

- i2cat’s customized PC Engines APU 802.11p V2X devices (High spectrum from

5GHz band)

 24

And now, with this work, it has been added to the list the OpenAirInterface 4G small cells

and in a near future, when OpenAirInterface have a valid and fully functional 5G network,

OAI 5G small cells.

It is programmed in Java from scratch; uses the Spring Framework to create a REST API

capable of registering, configuring, and deploying network infrastructure on different

technologies.

More in depth, racoon-core is the most important part of the deployment, as from this

software all the small cells are controlled. For i2cat software protection, we will only go in

deep of the OAI model inside the racoon core internals, as it is what has been developed

in this work.

Figure 12: Racoon-core internals: Model overview

In the figure above, it is presented an overview of the racoon-core model. As seen, in this

model we can find different internal elements that participate in the creation and

management of the different OAI cells. In fact, we can distinguish four different internal

elements:

Box:

- The box model represents a physical device that is being managed by Racoon.

- The physical devices are NUCs or servers where the desired network is willing to

be deployed.

- To register a device, it has to be reachable from RACOON’s southbound and the

user has to provide the necessary credentials during the registration process in

order to establish a NETCONF connection to the node.

- The registration process automatically discovers the device’s present physical

interfaces.

- Boxes can be interpreted as a container of physical interfaces.

 25

- Boxes can be deleted; by deleting a box the connection between the device and

RACOON’s southbounds is not interrupted and any configuration given to the

device prior the delete process will still be present after the process finishes.

- OAIBox is an extension of Box, it includes all the Cellular Parameters from the

box, and it developed in a NUC where the OAI network is placed.

Physical Interface:

- A Physical interface represents a physical OAI 4G cell; generically it can be

anything that can be described as a “network equipment” (Wi-Fi radio card, 4G

cell, ethernet port…).

- Usually, physical interfaces can’t be created; as mentioned before they are

automatically discovered and populated during the box registration process; but

with OpenAirInterface technology, the 4G OAI cells can be created on demand

(up to the cell limit for the OAI box, in our case, limited to two cells per box).

- Configuration can (it’s expected to) be provided before starting to use the physical

interface.

- OAI cells physical interfaces can also be deleted.

Chunk:

- A chunk is the definition of a subset of the topology on which a client or tenant will

be allowed to deploy services on.

- To create a chunk, the user has to select which physical interfaces, and which

backhaul links (if any) the user will be allowed to deploy services onto.

- Chunks can be created and destroyed on demand but it’s not possible to delete a

chunk that has services running on top of it.

- Creating and deleting a chunk does not impact the devices nor stores any data on

them; RACOON is the only responsible for the chunk administration and storing

on the database.

Services:

- Racoon services are responsible for deploying the provided configuration on the

physical equipment; configure a cell to start radiating a certain PLMN or UL and

DL quotes.

- The user specifies on which physical interfaces (from the user’s chunk) will the

service be deployed into and the configuration parameters for each technology

selected.

- Services can be created and deleted on demand.

Netconf-Manager

As explained in the state of art, NetConf is a network management protocol based on a

server-client model on which the device that will be configured act as a server and the

clients use XML formatted messages to communicate the configuration operations the

device has to perform. The model is written in YANG, a modeling language similar to

JSON in style but closer to YAML in content. The model defines the different variables

and container that the device either write information on (operational data) or the client

can modify and set values into (configuration).

Therefore, Netconf-Manager is a spring-boot java application that acts as a Netconf client

and translates from REST API calls to Netconf RPC (Remote Procedure Call) operations

in order to retrieve or set configurations from a Netconf device.

 26

Netconf-Manager defines the endpoints that racoon will use to either create virtual

interfaces or set the channel configuration to a physical interface.

Internally uses a Juniper java module (Licensed as BSD2) that handles the connection

and credentials exchange between the server and the client and the main business logic

is implemented on a separate java module.

The REST API calls that are defined, communicate with NetConf servers without needing

to implement the Netconf protocol on the RAN controller’s side.

Netconf server

The Netconf-server is equivalent to a neetopeer 2 agent, it provides an implementation to

the Netconf RPCs defined by the Netconf protocol. It uses LibSSH as the server’s crypto

library to encrypt the messages between the client and the server, which means that the

client needs to authenticate with the server before any operations execution.

Moreover, netconf-server act as the transAPI for the model.

This API is writted on C, and before this work, it managed three different physical

devices:

- i2cat-box API: Handles very basic information such as the device’s dependencies,

the hostname, memory / cpu usage,...

- wired API: Capable of providing ip addresses to wired interfaces present on the

system, creating new 8021q interfaces, creating GRE interfaces,...

- wireless API: Administers the device’s Wi-Fi interfaces present on the system.

The API is capable of instantiating virtual access points using Hostapd, creating

and joining 80211s mesh networks,...

And with the development of this work, it can manage the OpenAirInterface network. To

do so, Netconf-Server communicates with two different elements. Firstly, in order to

deploy and undeploy OAI eNB and to configure IP addresses to wired interfaces present

on the system (creating new 8021q interfaces for example) it communicates with a OAI

API which are present on each box, secondly, Netconf performs the RAN configurations

via FlexRAN to configure the different cell parameters. As a summary Netconf server

performs the following tasks:

Via OAI API:

- Deploy OAI cell

- Stop OAI cell

Via FlexRAN:

- Add a new PLMN id

- Remove a PLMN id

- Create RAN slice

- Modify an existing RAN slice

- Disable RAN slicing

It is important to understand why the NetConf server communicates with these two

elements separately. First of all, the OAI API, as can be seen in the figure 11, it is build

inside the box, which means that, for every box, there will be a OAI API that will deploy

and stop the eNodeB cells inside these boxes, and to configure the wired interfaces

present in the box. Secondly, the FlexRAN software is build together with the Netconf-

 27

server and a OAI exporter inside the dRAX, as the real-time controller FlexRAN can

manage and communicate with all the deployed eNBs.

Regarding the OAI dRAX element, it is an imaginary and central element, that provides

communication with all the boxes and cells. It includes the netconf server, the FlexRAN

and the Prometheus exporter.

Prometheus exporter

Apart of performing RAN configurations, FlexRAN also allows to monitor the state of RAN
infrastructure (including both cells and UEs). To have a better look in all the FlexRAN
monitoring information, it has been developed an exporter written with python and using a
Prometheus database and Grafana exporter [14] to present all the relevant information of
the RAN infrastructure.

Figure 13: OAI exporter diagram

As can be seen, the information arrives to the OAI exporter with a cURL API call to
FlexRAN and respond it is a json file with all the eNBs and UEs information.

The OAI exporter, filters the important information that needs to be monitored, and stores
it into a Prometheus server. To store the data into the database, it has been used the
python Prometheus client libraries which offer four core metric types. The first type,
counter is a cumulative metric that represents a single monotonically increasing counter
whose value can only increase or be reset to zero on restart, the second type, gauge is a
metric that represents a single numerical value that can arbitrarily go up and down, the
third, histogram samples observations (usually things like request durations or response
sizes) and counts them in configurable buckets, and the last type, summary, which is
similar to a histogram, a summary samples observations (usually things like request
durations and response sizes) and it also provides a total count of observations and a
sum of all observed values, it calculates configurable quantiles over a sliding time window.
As all the monitored metrics can go up and down, the main type used for the metrics
have been gauge.

Once the metrics are stored into the prometheus server, they are exposed into a Grafana
dashboard, where there is the possibility to filter by eNB or UE. All the relevant metrics
and the dashboards are exposed in the results part.

OAI API

The OAI API is a REST API that has been developed specifically for OAI technology. It is

written with python, and it is responsible for the deployment and the stop of the different

OAI cells, as well as the configuration of the wired (ethernet) interfaces present in the box.

 28

Figure 14: Different OAI API calls

Figure 14 shows all the developed calls in this REST API.

Moreover, in order to deploy OAI cells, there are two different calls to do it. One

possibility is using OpenAirInterface binary files, with the meaning that the cell is

deployed in the NUC internally, and the second option to deploy an OAI cell is by using a

container, concretely a docker container to develop the cell. Moreover, the OAI API can

deploy both OAI eNB and also gNB, this is because, even though FlexRAN can still not

control 5G networks, in this work it has already been prepared the scenario of 5G, using

both BareMetal and Docker Container, for future implementations.

In order to deploy an eNB or gNB using binary files/baremetal, OAI API requests a json

file with the cell main parameters for its configuration, and to stop it, it does not need any

parameter as a NUC only allows to deploy one eNB or gNB per OAI box. In addition to

the baremetal, docker also requests a json file with the cell main parameters for its

deployment, and as it is possible to have multiple containers and therefore multiple OAI

cells, in fact, in order to stop them, the OAI API requests the name of the cell.

Apart from deploying OAI cells, the REST API also allows to return the different USRPs

inside a box.

Finally, there are two other calls to manage the wired (ethernet) interfaces with two

different calls, the first one, /list_interfaces returns a list with all the available interfaces in

each box, and also, the second one /interface_Management allows to add and delete a

vlan, also to set an interface up and down and to set/change the interfaces IP.

This OAI API, is placed inside each OAI box, as said before, this is because it needs

superuser permissions to apply configurations to manages its cells and interfaces from

that box. In this MSc Thesis, i2CAT provided two NUCs as OAI boxes, an OAI box is a

physical machine which can be a NUC (Next Unit of Computing) or a server. In this

project i2cat has provided Open-VERSO NUCs, which are Linux machines with a real-

time kernel. And each of them contains the OAI API, the FlexRAN agent which is

 29

responsible for the configuration of an specific cell inside that box, and finally the OAI

eNB deployed together with the USRPs B210 (the limitation in the number of USRPs is

the number of USB3 ports in the host, in our case, NUCs only have 2 USB3 ports.)

 30

4. Results

This chapter aims to provide the different analysis and configuration of the

OpenAirInterface network as well as the different results and tests performed in the

developed platform.

4.1. Lab scenario

First of all, let’s present the scenario and the laboratory where the project has been

carried out.

The scenario that has been implemented is composed by two different NUCs in which the

OAI network is placed, in NUC1, the core network with all its components, and in NUC2,

the OAI eNB with the USRP b210. Also a Raspberry Pi which act as a UE and also a

Raspberry Pi with two different Quectel and Simcom modules. The communication

between these two NUCs is done throw the interface eno1, it is the onboard Ethernet

(wired) adapter, which it is the most reliable interface to manage the communication

between both NUCs as they are both placed in the same laboratory room.

Figure 15: OpenAirInterface scenario

The next image, shows the workspace of this scenario, which is placed in the i2cat

laboratory, located in the Nexus building next to the ETSETB school in Barcelona.

 31

Figure 16: Work Space with the two NUCs and the USRP.

4.2. Network configuration

To understand comprehensively the network architecture and configuration of each

machine, in the figure 17 is presented a diagram with all the different details of the IP

addresses and interfaces of each entity in NUC1, NUC2 and the Raspberry Pi.

Figure 17: OAI Network Diagram

NUC1 NETWORK

The core presented in NUC1 is deployed using open5gs, a gitlab project [15] that can be

used to create a EPC, specifically it can configure a series of software components and

network functions that implement the 4G/ 5G NSA and 5G SA core functions.

For the implementation of the LTE network, it has been used the 4G/5G NSA core, which

contains the following components:

- MME - Mobility Management Entity

- HSS - Home Subscriber Server

- PCRF - Policy and Charging Rules Function

- SGWC - Serving Gateway Control Plane

- SGWU - Serving Gateway User Plane

 32

- PGWC/SMF - Packet Gateway Control Plane / (component contained in

Open5GS SMF)

- PGWU/UPF - Packet Gateway User Plane / (component contained in Open5GS

UPF)

As related in section 2.1 of the state of art, the core has two main planes, the control

plane, and the user plane.

For the LTE network, and first regarding the control plane, the MME is the main control

plane hub of the core, it is linked to the HSS throw the S6a interface and to the SGWC

and PGWC throw the S11 interface. Second, the user plain is the one that carriers the

user data packets between the eNB and the external WAN, and it composed by the

SGWU and the PGWU which connects to the control plane throw the SGWC and the Sxa

interface.

All the Open5GS components have config files, that have been used to configure each

component’s IP local addresses and local interfaces and the IP addresses and DNS

names of the other external components.

By default, all the Open5GS components are configured for use inside a single server/PC,

in fact, they communicate each other using the local loopback address space 127.0.0.X

and lo interface. Therefore, some modifications have been made to stablish the

communication with the RAN network in the other NUC. Next are exposed HSS, MME

and SGWU config files, which are the one modified, the other config files can be

consulted in Open5Gs gitlab repository [15].

MME configuration

The MME config file includes the different PLMN and TAC information. This needs to be

modified to match the UEs.

In the next table can be found the PLMN and TAC information related to both Quectel

and Simcom modules that need to be added to the MME configuration file.

 PLMN TAC

Quectel 00102 2

Simcom 00103 2

Table 2: Quectel and Simcom PLMN information

Also, as the eNB is placed in a different NUC, we need to change the S1AP bind address

and interface, to 192.168.40.97 and eno1 which is the address where the eNB is placed.

 33

Figure 18: OAI MME configuration file.

In order to have a better control of the .conf files, there is a generic .env file where all the

parameters are stored. The important ones for this configuration are:

MME_IP: 192.168.40.97 (other’s NUCs IP)

MCC: 001 (Quectel PLMN, for example)

MNC: 02

SGWU configuration

The same happens with the SGWU, as the eNB is placed in a different NUC, we need to

change the GTP-U bind address, to 192.168.40.97 which is the address where the eNB is

placed.

Figure 19: OAI SGWU configuration file with env variables.

SGWU_IP: 192.168.40.97

 34

HSS configuration

The last thing to be done is to include the subscriber information into the core network.

This information is exclusive for each core network, and it is related to the UEs. The

different parameters that are included in the subscriber information are [22]:

- IMSI: International Mobile Subscriber Identity. It is a 15 digit unique identifying

number that is used to identify the subscriber to the service. It is usually issued by

the operator. IT consists on three parts: MCC Mobile Country Code (geographic

region of the SIM), MNC Mobile Network Code (operator) and MSIN Mobile

Subscriber Identifier (to identify individual subscribers).

- Key: Subscriber Authentication Key. It is a 128 bit field, and it is part of the

Authentication Algorithm. It is placed into the USIM and also to the HSS.

- OPs: Operator Code. It is a 128 bit field and it is also part of the Authentication

Algorithm. It is the same for all SIMs from a single operator.

- APN: Access Point Name. Is the gateway name between a 4G mobile network

and the public Internet. Usually, each operator has its own APN.

To include this information, we need to do throw a WebUI application, which is an

application part of the Open5Gs that allows you to interactively edit subscriber data. To

access it, we have to connect to http://@NUC1_IP:3000 login, and follow the steps:

1. Go to Subscriber Menu.

2. Click + Button to add a new subscriber.

3. Fill the IMSI, security context(K, OPc), and APN of the subscriber.

4. Click SAVE Button

Figure 20: Subscriber information from the webUI for the Quectel UE.

In the next table can be found the different Subscriber information for both Quectel and

Simcom modules.

 Quectel SimCom

IMSI 001025432100004 001035432000005

OPs 000102030405060708090A0B0C0D0E0F 000102030405060708090A0B0C0D0E0F

http://@NUC1_IP:3000

 35

K 00112233445566778899AABBCCDDEEFF 00112233445566778899AABBCCDDEEFF

APN internet internet

Table 3: Subscriber information for Quectel and SimCom

Moreover, in order to deploy this open5gs core network, a docker single node

deployment using docker-compose has been developed [16]. In this docker container, all

the IP and interface parameters have been included in an environment file .env to

centralize all the configuration, this environment file is presented in the annexed part 1.

NUC2 network

In the NUC 2, it can be found the OAI eNB with the USRP B210 and the FlexRAN that

will act as a real-time controller.

The OAI eNB has been placed into NUC2 using two different tools, the first one and

finally not useful, using docker to build and run the LTE RAN, and the second one and

the one finally used in this project, running it in a binary file. In the last part of this section,

it is explained why it is considered the binary/baremetal tool more reliable than the docker

tool.

Moreover, in order to deploy an OAI eNB, we need to set a config file, where all the eNB

parameters are settled, this .conf file is presented in the annexed part 3. In the following

list are summarized all the parameters that are modified every time a 4G RAN is

deployed with RACOON. Moreover, all these parameters are actually dynamic, so, they

can be modified anytime to match the desired configuration (in brackets are typical values

provided to these parameters).

ENB_ID – eNB id, it is part of the identification parameters of the RAN. (123)

ENB_NAME – It is also part of the identification parameters of the RAN. (i2cat)

UTRA_BAND_ID – The E-UTRA BAND id is equivalent to the EUTRA Operating Band,

which it is the band where the DL ad UL frequencies are located. (in this work it has been

used almost all the time the band 1, in the annexed part 4 are presented all the possible

bands)

DL_FREQUENCY_IN_MHZ – As we are working with FDD (Frequecy Division Duplex)

spectrum, it requires pair bands, one for downlink and another for uplink. Both

frequencies are transmitted simultaneously on different frequencies. (as we are using

band 1, the DL frequency used is 2150MHz)

UL_FREQUENCY_OFFSET_IN_MHZ – (the UL frequency used is 1950MHz)

NB_PRB – Number of RB (Physical Resource Blocks). (As we are using band 1 it can be

5, 10, 15 or 20)

MCC – Mobile Country Code, it consists of three decimal digits. (eg Quectel 001)

MNC – Mobile Network Code, it consists of two decimal digits. (eg Quectel 02)

MNC_LENGTH – Length of the Mobile Network Code. (2)

TAC – Tracking area. (1)

NID_CELL - Physical cell id, used to calculate the position of some reference and

synchronization signals

 36

CELL_ID – Id of the cell. (eg 1023)

ENB_S1C_IF_NAME - S1C interface name (interface between eNB and MME). (eno1

interface used)

ENB_S1U_IF_NAME - S1U interface name (interface between eNB and SGWU). (eno1

interface used)

ENB_S1C_IP_ADDRESS – S1C IP address. (192.168.40.97)

ENB_S1U_IP_ADDRESS – S1U IP address. (192.168.40.97)

ENB_X2_IF_NAME – X2 interface name (interface between eNBs). (eno1 interface used)

ENB_X2_IP_ADDRESS – X2 IP address. (192.168.40.97)

ENABLE_X2 – Boolean if X2 interface is enabled. (yes, as we expect more than 1 eNB)

FLEXRAN_ENABLED – Boolean if FlexRAN is enabled. (yes, as it is the controller)

FLEXRAN_INTERFACE_NAME – FlexRAN interface name. (eno1 interface used)

FLEXRAN_IPV4_ADDRESS – FlexRAN IP address. (192.168.40.97)

MME_S1C_IP_ADDRESS – MME core network IP address. (192.168.40.132, equivalent

to NUC1 IP, where EPC is located).

SERIAL – USRP serial number. (Currently working with two different USRPs 31DB5A3

and 3150321).

N_ANTENNA_DL – Number of antennas for downlink transmission. (Only using SISO, 1)

N_ANTENNA_UL – Number of antennas for uplink transmission. (Only using SISO, 1)

ROOT_SEQ_INDEX – The Root Sequence Index allows the UE to calculate which

PRACH preamble it can use to attach to the cell. It is important to have different values

for neighbors cells (1)

TZ – Time Zone (Europe/Spain)

An important parameter is the USRP serial number. A USRP is a Radio Frequency fully

integrated, single-board, Universal Software Radio Peripheral (USRP™) platform with

continuous frequency coverage from 70 MHz – 6 GHz to run the eNB. I2cat has lend two

different USRPs.

USRP B210 1 31DB5A3

USRP B210 2 3150321

Table 4: USRP serial number information

Finally, the real-time controller FlexRAN, it is used to configure OpenAirInterface cells,

core networks and manage RAN slices. It is composed by two main components: the

FlexRAN Service and Control Plane and the FlexRAN Application plane. The FlexRAN

Service and Control Plane is based on the of the Real-Time Controller, which is

connected to several underlying RAN runtime, one for each RAN module (eg. 4G eNB).

The RAN runtime environment provides the separation between the control and data

plane, as it acts as an abstraction layer with RAN module on one side and RTC and

control apps on the other side. Moreover, the communication between the real-time

controller and the RAN agent embedded in runtime environment is managed by the

 37

FlexRAN protocol. RAN control applications can be developed both on the top of the RAN

runtime and RTC SDK which allows to not only monitor but also control and coordinate

the state of RAN infrastructure, all this can be done as all FlexRAN data and APIs are

open to be consumed by 3rd parties. It reduces the complexity of developing new control

solutions.

As seen in the figure 15, FlexRAN has been deployed in NUC2 for the purpose of being

in the same NUC as the eNB RAN. In order to install it, it has been used a mosaic5g

script located in its gitlab [17].

The controller runs in localhost:9999/capabilities and can be checked using a browser.

Moreover, to enable the controller, it must be done into the RAN’s configuration file

setting the correct IP address and interface in the network _controller part:

NETWORK_CONTROLLER :

{

 FLEXRAN_ENABLED = "yes";

 FLEXRAN_INTERFACE_NAME = "eno1";

 FLEXRAN_IPV4_ADDRESS = "192.168.40.97";

 ...

};

In this configuration, FlexRAN is enabled, the interface is eno1 and the IP address is the

NUC’s IP.

As said, FlexRAN allows to monitor, control, and coordinate the state of the RAN

infrastructure throw a RESTful API using simple HTTP requests. Below are summarized

all the API calls used in this project.

- Get the eNB and UE configuration and statistics:

To obtain all the agent’s statistics, we use the next command:

$ curl -X GET http://FlexRAN_PUBLIC_IPADDR:9999/stats/

Where FlexRAN_PUBLIC_IPADDR is the public address of the NUC

(192.168.40.97). This should return a json format data with all the information for

all eNBs and their connected UEs.

This API call has been used in the OAI exporter and also to do some checks in

the slice, core and PLMN configurations in the netconf-server part.

- Radio Resource Management

For radio resource management, FlexRAN has been used for slicing purposes.

In fact, network slicing is considered a very important mechanism that allows to

serve to all network clients in a flexible and cost-efficient manner.

To configure the slicing, we use the next command:

$ curl -X POST http://FlexRAN_PUBLIC_IPADDR:9999/slice/enb/-

1 --data-binary @ran-sharing.json

http://flexran_public_ipaddr:9999/stats/

 38

In the FlexRAN window, the same JSON file alongside a message indicating the

transmission of the configuration to the respective agent should be shown. The

RAN part will equally acknowledge the setting for each parameter.

This API call has been used in the netconf-server part.

- PLMN Management

Regarding the PLMN management, with flexRAN it is also possible to dynamically

manage the PLMNs and attached core networks of a base station.

Before adding a core network, it is needed to add the corresponding PLMN. This

is because the eNB informs to the MME in the S1SetupRequest about the

broadcasted PLMNs and the MME will only accept this setup request if the

PLMNs the MME is serving (as sent back as servedPLMNs in the

S1SetupResponse) matches the broadcasted PLMNs of the eNB.

So, in order to add the PLMN, we use the next command:

$ curl -XPOST FlexRAN_PUBLIC_IPADDR:9999/plmn/enb -d

@plmn.json

In the plmn.json file, there is a list of the new PLMNs.

After adding the PLMN, it is ow possible to add and connect to a core network

using the following command:

$ curl -XPOST FlexRAN_PUBLIC_IPADDR:9999/mme/enb/ -d

@mme.json

Where in the mme.json is listed the IP address of the MME of the core network to

connect to.

Finally it is possible also to delete the core network:

$ curl -XDELETE FlexRAN_PUBLIC_IPADDR:9999/mme/enb/ -d

@mme.json

And also the PLMN can be deleted with the same command used to add the

PLMN but with a plmn.json file without the PLMN that wants to be deleted.

This API call has been used in the netconf-server part.

 39

4.3. RACOON SWAGGER Platform

The automated service is controlled in the RAN controller RACOON with different API

calls that allows to deploy and configure the different parameters. Before doing a demo, it

will be explained which are the calls that have been developed and that are necessary to

deploy a service.

To visualize all the RACOON calls, it has been used a Swagger UI, which it is an open-

source tool to visualize and interact with the API’s resource without having any of the

implementation logic in place, allowing to execute the different calls with its

correspondent json configuration file if needed. Moreover, RACOON is organized by

technologies, so, the calls that are used for deploying the OpenAirInterface boxs and

cells are placed under the same section, and the chunk and service calls as are also

used for other technologies are placed separately.

Next can be found the six different calls that corresponds to the OpenAirInterface

technology and allows to register and configure an OAI box, and to register, configure

and delete an OAI cell.

Figure 21: OAI technology calls

The procedure followed to deploy an OAI BOX is:

1. Register OAI Box

Figure 22: OAIBox RACOON call

The first step to deploy an OAI box is register it into RACOON, with this, we will set a

json file with the name of the box, the IP address and the NetConf parameters, as

Netconf client needs to authenticate with the server before any operations to

 40

configure a cell. When this call is executed, if it is correct, it will return a 200 code with

a json file that includes a unique box id identifier.

2. Configure the OAI box

Figure 23: Config box RACOON call

The second step is to configure box’s eNB and gNB parameters. It requires a boxid,

which it has been returned in the register call, and a json file with the eNB and gNB

main parameters and the GTP IP address as the communication will be carried with a

tunnel protocol defined by the 3GPP standards.

3. Configure the OAI box logging capabilities and variables

Figure 24: Log Config Box RACOON call

And finally, the last step of the box configuration is to set the logOptions, we need to set

the boxId and also a json file with FlexRAN IP address, port and the interface in order to

monitor and configure the different eNBs and UEs.

After a box is created in RACOON, it is possible to deploy an OpenAirInterface cell. To do

so, a two step procedure needs to be taken into place, first to register the cell and then to

configure.

 41

4. Create an OAI cell

Figure 25: OAI cell creation RACOON call

So, the first thing to do, is create and register the OAI cell into RACOON. To do so, the

cell runs inside a box, it requires a boxId, and a json file with the cell ID, a physical cell ID

and the type of the cell, if it is 4G-FDD, 4G-TDD, 5G-FDD or 5G-TD. This will return a cell

id, that will be the cell identifier.

5. Configure the OAI cell

Figure 26: OAI cell configuration call

And finally, in order to configure the OAI cell, we need to specify its cell id, as well as all

the configuration parameters of a specific cell. After this is done, the cell will be up and

running.

Apart from these methods of the creation of the box and cell, there is another call in the

OAI technology, which it is one to delete the created cell

 42

Figure 27: OAI cell deleted call

If we want to delete a cell, it only requires to set the specify the cellId as is its unique

identifier.

Moreover, there is the possibility on having a service on a concrete deployed cell to

configure a certain PLMN, UL and DL quotes as well as a core network.

This service will be deployed in a chunk, which means, that before registering the service,

we need to register the chunk.

Figure 28: OAI chunk creation call

In the case of the OAI technology, the chunk only carries physical interfaces (OAI cells

and backhaul links). Moreover, each chunk returns an id as a unique identifier of the

chunk.

Moreover, there are other calls for managing the chunks.

Figure 29: OAI chunk management calls

After registering a chunk, services can be deployed to configure a PLMN, network slicing

or to specify a core network, to do so, the service call requires first the chunk ID, and

second a json file with the different physical interfaces (cells or backhaul links) and its

service configuration. In the case of OAI, it is only necessary the vlanId and the

 43

cellConfiguration (plmnId and oaiConfiguration). Moreover, after deploying the service,

the call will return another id corresponding to the service.

As well as in the chunks, there are also other calls for manage services.

Figure 31: OAI service management calls

4.4. Solution study

In this section, it will be explained the different studies that have been done in order to

test the different solutions. First with the study of the different tools that has been tested

to deploy a consistent OAI eNB. And second, an explanation about why it is still not

possible to deploy an OAI gNB cell.

Figure 30: OAI service creation call

 44

4.4.1. OAI eNB: baremetal vs docker

In order to deploy an OAI eNB, two different tools have been tested to see which one is

more reliable. Both of them are based in the openairinterface5g [18] gitlab repository, a

OpenAirInterface repository, where there is the possibility to run docker and binary

images for eNB, gNB, lte-UE and nr-UE.

Regarding the docker tool, after two months of testing, we have reach the conclusion that

there is a bug, that cannot be resolved. In a cell deployment inside a docker, there is one

problem in which, after some time after the deployment, it enters in an infinite loop where

in the OAI RAN logs only appears the error message “L1_thread isn’t ready..”.

Figure 32: RAN logs errors

After an extensive search, we found out that these errors refer to some memory leaks

that we thought that happened in the docker compose container. So, as it is not reliable,

we decided to only work with BareMetal, because, even though it limits the number of

cells per box, it is more reliable.

4.4.2. Problems with 5G OpenAirInterface networks

The main problem with the 5G networks, come from the OAI gNB. When deploying the

OAI-RAN 5G network, we found out that there was a problem with the encryption of msg3

of the CRC (Scheduled PUSCH transmission), such as it is exposed in bold in the next

sequence of messages from the gNB SA configuration .

oai-ran | [NR_MAC] NR band duplex spacing is 0 KHz (nr_bandtable[37].band = 78)

oai-ran | [NR_MAC] NR band 78, duplex mode TDD, duplex spacing = 0 KHz

oai-ran | [NR_MAC] [gNB] Generate RAR MAC PDU frame 970 slot 7 preamble index 41 TA
command 25

oai-ran | [NR_MAC] Random Access 0 Msg3 CRC did not pass)

oai-ran | [NR_MAC] [gNB 0][RAPROC] Frame 971, Slot 10 : CC_id 0 Scheduling
retransmission of Msg3 in (971,17)

oai-ran | [NR_MAC] Random Access 0 Msg3 CRC did not pass)

oai-ran | [NR_MAC] [gNB 0][RAPROC] Frame 972, Slot 10 : CC_id 0 Scheduling
retransmission of Msg3 in (972,17)

oai-ran | [NR_MAC] Random Access 0 Msg3 CRC did not pass)

oai-ran | [NR_MAC] [gNB 0][RAPROC] Frame 973, Slot 10 : CC_id 0 Scheduling
retransmission of Msg3 in (973,17)

oai-ran | [NR_MAC] Random Access 0 failed at state 2 (Reached msg3 max harq rounds)

oai-ran | [NR_MAC] to remove in mac rnti_to_remove[0] = 0xdb5f

oai-ran | [NR_MAC] handle_nr_ul_harq(): unknown RNTI 0xdb5f in PUSCH

oai-ran | [NR_PHY] to remove rnti 0xdb5f

 45

oai-ran | [NR_PHY] to remove rnti_to_remove_count=1, up_removed=1 down_removed=0
pucch_removed=0

oai-ran | [NR_PHY] [gNB 0][RAPROC] Frame 985, slot 19 Initiating RA procedure with
preamble 63, energy 37.0 dB (I0 242, thres 120), delay 0 start symbol 0 freq index 0

oai-ran | [MAC] UL_info[Frame 985, Slot 19] Calling initiate_ra_proc
RACH:SFN/SLOT:985/19

oai-ran | [NR_MAC] [gNB 0][RAPROC] CC_id 0 Frame 985 Activating Msg2 generation in
frame 986, slot 7 using RA rnti 10b SSB index 0 RA index 0

oai-ran | [NR_MAC] [gNB 0][RAPROC] CC_id 0 Frame 986, slotP 7: Generating RA-Msg2
DCI, rnti 0x10b, state 1, CoreSetType 2

The CRC stands for Cyclic Redundancy Checksum [19], and it is used for reducing the

error rate in the data transmission and data storage. During the firsts months we tried to

develop a solution for this, but we couldn’t manage to do it, because, even though it is an

open source, it is not possible to eliminate this part of the original code. At the end, it was

decide to do the system for LTE and prepare it for the future implementation of 5G.

4.5. RAN Slicing

An important feature of this project is the fact that it can dynamically assign RAN slices

[21].

Slicing allows to assign a slice or percentage of the radio resources blocks (RBs) to the

different operators, both for uplink and downlink transmissions. A Resource Block forms

the block structure in LTE in the time-frequency domain, as a summary:

- 1 frame is 10ms and consists of 10 sub-frames.

- 1 sub-frame is 1ms and contains 2 slots.

- 1 slot is 0.5ms in the time domain and each 0.5ms allocation can contain N

Resource Blocks (where 6 < N < 110) depending on the bandwidth allocation and

resource availability.

- 1 Resource Block is 0.5ms and contains 12 subcarriers per OFDM symbol in the

frequency domain.

Moreover, the different UEs connected to the LTE RAN, will be allocated in their operator

RAN slice.

In this project, the different RAN slices are created throw the real-time controller FlexRAN

[20] as said in the 4.2 section, with the command:

$ curl -X POST http://FlexRAN_PUBLIC_IPADDR:9999/slice/enb/-

1 --data-binary @ran-sharing.json

As said, to assign the RAN slice, it must be introduced into the RACOON service next to

the other parameters (PLMN id and core network).

4.5.1. RAN Slicing dynamically assignation

In the next figure is presented a dynamic RAN slice assignation of two different operators,

one with PLMN 00102 and the other one 00103. The current cell of the example is

working in the E-UTRA band 7 transmitting with downlink frequency of 2680MHz and

uplink frequency of 2560MHz.

This test consists of the RBs assignation of two different operators over time (time1 and

time2). In the next table is presented the dynamically slice assignation for both 00102 and

 46

00103 operators, the downlink and uplink RBs over time, it is also presented the position

of this RAN slicing.

Transmission Operator Time 1 RBs [slice position] Time 2 RBs [slice position]

Downlink 00102 5 RBs [0-5] 3 RBs [0-3]

00103 6 RBs [6-12] 8 RBs [4-12]

Uplink 00102 10 RBs [2-12] 7 RBs [2-9]

00103 10 RBs [13-23] 13 RBs [10-23]

Table 5: Dynamically slice assignation

In the OAI Exporter is expressed the number of RBs in real-time, for each operator and

each transmission.

Figure 33: RAN slice assignation, RBs over time

4.6. Demonstration of a non-rt RAN controller for an automation service

deployment over a 4G small cell

In this last part, it will be presented a demonstration on a 4G service deployment based

on the developed RAN controller RACOON and how it communicates with the other

software elements as well as with FlexRAN. In this demonstration, it will be created a LTE

cell in a box with two different core networks and two UEs, one connected to each core

network. At the end it is also exposed the different Grafana dashboards with the cell and

UEs information.

These are the steps that have been followed to deploy this service:

- Creation and configuration of a OAI BOX.

- Creation and configuration of a OAI eNB cell with a USRP b210.

- Configuration of two different core networks with its subscriber information.

 47

- Configuration of two different services to set the OAI core networks in the eNB

with its correspondents PLMN ids and an assigned uplink and downlink quotes.

- Connection of two different UEs to the eNB, the first one, a Quectel device, and

the second one a SimCom.

- Grafana and Prometheus exporter to monitor the different eNB and UEs

information.

Before starting with this demo, we need to run all of the five different software tools

developed: racoon-core, netconf-manager, netconf-server, oai-API and oai-exporter.

Figure 34: Screenshot of the racoon-core, netconf-manage, netconf-server and oai-api initialized.

To start the deployment of this system, all the registrations and configurations are done

throw the racoon-core API, the access to it, is done throw its SWAGGER URL:

http://192.168.40.132:8008/swagger-ui/index.html#/

Registration and configuration of a OAI BOX

1. To first register the box, we will execute the call /OAIBox with the parameters

inside the request body.

 48

As can be seen, the ipAddress corresponds to the eNB NUCs IP.

The response returns a 201 code and has a body which includes the box id.

2. Second, we need to configure the box parameters.

Figure 36: Box Config demo

As can be seen, we only set the enb parameters, leaving the gnb to null or 0.

If the configuration is correct, it returns a 204.

Figure 35: Box Registration demo

 49

3. And third, the configuration of the box logging capabilities and parameters.

Figure 37: Box Config FlexRAN demo

In the logging capabilities side, we must set the FlexRAN information, as from it,

all future configurations will be done. In our case, FlexRAN is located at IP

127.18.0.2, port 9999 and interface eno1.

If the configuration is correct, it returns a 204 code.

After the registration and configuration on the box, we can check out the Netconf-

Manager and Netconf-Server (netopeer2) logs to see if the configuration is correct.

Figure 38: Netconf-Manager and Netconf-server logs

As can be seen in the Netconf-Manager logs (left), it sends two messages, the first one

with box configuration parameters, and the second one with the log capabilities

parameters, both in a .xml format. Moreover, in the Netconf-server (netopeer-2), when we

introduce the command to get the configuration, we find a .xml format file, with the name

of the box, and both configurations.

 50

Creation and configuration of a OAI cell

1. The first thing to do is the creation of the cell.

Figure 39: Cell Creation demo

In order to create a cell inside the box, the first parameter that needs to be

introduced is the boxId, and later, the main elements of the cell (cellId,

physicalCellId, type).

With the creation of the cell, it is only registered to racoon-core. To deploy it, we

need to configure it with all the parameters.

This first call, returns an id, which is unique for this cell.

2. The second thing to do is to configure and deploy the cell.

Figure 40: Cell Configuration demo

First, it requires the cell id, and then all the main parameters of the cell, that, as

can be seen, we have specified the eutra band 1, with a earfcnDl frequency of 400

and earfcnUl frequency of 18400 and a bandwidth of 5MHz. We also set the tac,

the tddConfig, the rootSeqInndex and the cellGain. As said in the section 4.2 there

are other parameters to be said, but, those are fixed. One important fixed

 51

parameter is the serial number of the USRP, that is hardcoded to 31DB5A3 (a

USRP b210).

This returns a 204 code if it is correct.

As before, if we now check the configuration in the Netconf-Manager and Netconf-Server

(netopeer2) we will now see, that in the Netconf-Manager (left) it appears an xml

message with all the cell configuration, and in the Netconf-Server (netopeer) (right) when

we get the configuration, it returns a xml with the box and the cell configuration.

Figure 41: Netconf-Manager and Netconf-server logs 2

Moreover, if we check the OAI API, where the eNB is deployed, we can see the logs of

the initialization of the eNB.

Figure 42: OAI eNB log

With this five steps configuration, a cell is up and running, now it is time to introduce the

different services, the core network, PLMN and also the uplink and downlink quotes (if

needed).

Moreover, we can also check the eNB information in the real time controller FlexRAN.

 52

Figure 43: FlexRAN information

Before the creation of the services, it is mandatory to have core networks running in order

to have connectivity once those are introduced in the eNB.

Core network deployment

Core networks are deployed using Open5Gs, specifically inside docker-compose

containers. Even though , in section 4.1 it was said that core network was only deployed

in NUC1, for this test, it has been also deployed another core network in NUC2 to have

multiple core’s running and test the slicing part properly.

So, in order to deploy the core, we do it with the command

$ docker-compose -f nsa-deploy.yaml up -d

Where the nsa-deploy.yaml deploys both a 4G and 5G NSA core. Its content can be

found in the annexed part 2. As we need two different cores, we have to run this

command in both NUCs, with different nsa-deploy.yaml parameters, one for the Quectel,

and the other one for the SimCom, as related in table 2 and 3.

Moreover, once the core is up and running, we need to introduce the subscriber

information to stablish connection with UEs, as in figure 20. As we have two different UEs,

with two different SIMs and in consequence different information.

Once they are up and running, it is time to deploy services in RACOON.

Chunk and service configuration

But before doing that, as said before, in order to generate a service, we need to first

create a chunk.

 53

Figure 44: Chunk demo

To do so, we need to add the physical interface (cell id) inside the chunk call, so it is

referenced to the cell we want to add configurations. If the requested body is correct, it

will return a code 200 as well as a unique chunk id.

After this, it is possible to start configuring the different services. We will add two services,

to add both core networks with the PLMN ID and the dl and ul quotes.

Figure 45: Service demo

As can be seen, in the requested body, it is added a vlanId, and then the configuration of

the cell with the PLMN id, core IP address, the core port, vlan core, and also both

downlink and uplink quotes. This must be done twice, for both core networks, one placed

in NUC1 and the other one in NUC2.

If the service call is correct, it returns a 200 code and a response with a unique service id.

After that, we will have the eNB configuration completed. To see it, let’s check again the

netconf terminal information.

 54

Figure 46: Netconf-Manager and Netconf-server logs 2

On the left it is only possible to see the last message of the last service, and on the right,

in the netopeer configuration, we can see the xml configuration of the cell with both

PLMNs and also the different slicing.

Also, it is interesting to show the information throw FlexRAN to see if the 4G RAN has

been configured properly.

Figure 47: FlexRAN information 2

As can be seen both core networks have connected.

Now is time to add the two different UEs

UE connectivity

The UEs are connected into the Raspberry Pi, the Quectel module in the device ttyUSB7

and the SimCom module in the ttyUSB3.

 55

Next are the steps that needs to be done in order to stablish the communication with the

eNB cell.

1. Check the profiles to see if the correct APN is there:
$ qmicli --device=/dev/cdc-wdm0 --device-open-qmi -p --wds-

get-autoconnect-settings (the device could vary in your case)

$ qmicli --device=/dev/cdc-wdm0 --device-open-qmi -p --wds-

get-profile-list=3gpp

Example to modify the profiles:
$ qmicli -d /dev/cdc-wdm0 --wds-modify-

profile=3gpp,1,'apn=apntest'

2. After that, just reboot ther radio of the modem (disconnect it manually) or use

AT+CFUN=1,1 using "minicom -d /dev/ttyUSB3" (or /dev/ttyUSB7)

3. Put the modem in raw_ip mode:
$ echo Y > /sys/class/net/wwan0/qmi/raw_ip

4. If echo command fails, do:
$ sudo ifconfig wwan0 down

$ echo Y > /sys/class/net/wwan0/qmi/raw_ip

$ sudo ifconfig wwan0 up

Next is an screenshot of the reboot of the quectel, and its connection to the eNB.

Figure 48: Minicom Quectel Information

Moreover, and finally, in order to expose all these metrics, it has been developed a

Grafana dashboard, with the next parameters.

In eNB_metrics:

PhyCellId, Number of UE connected, Downlink and uplink frequencies, Downlink and

uplink bandwidth and Slicing information.

In UE_metrics:

MacStats, Physical Resource Block (prb), Transport Block Size (tbs), Total Transport

Size (totalTbs), rrMeasurements, pcellRsrp, pcellRsrq, pdcpStats, System Frame Number

(sfn), Packets sent and received and Packets sent and received (Bytes).

 56

Figure 49: OAI Exporter demo

 57

As can be seen, OAI exporter, is in real time, and shows the different information of both
the eNB and UEs.
In the dashboard the information can be filtered by two different elements, first of all by
eNB id, and second of all, by UEs IMSI id.
Moreover, the eNB has been built with the name eNB_ENBid, where ENBid is the id of
the cell, and the UE with the name UE_IMSInum_eNB_ENBid, where IMSInum is the
UE’s IMSI number and ENBid is the id of the cell where it is connected.
In the figure above, appears one eNB (eNB_1023) and two different UEs
(UE_0_eNB_1023 and UE_001031136032709_eNB_1023). The first UE, corresponds to
the Quectel UE, and it appears 0 as its IMSI, because it needs a reboot to appear the
correct number, the second UE does not need this reboot.

 58

5. Budget

The different costs of this work can be divided into the main components that are needed

to deploy the service, the salary and the different amortization of the computer. Table 6

shows the cost different components and table 7 shows the salary and amortization costs.

In this project everything that has been used is open-source so there is no need to

include it.

Regarding the salary, it has been taking into consideration an i2cat research intern

engineer performing 800 hours job with a salary of 10€ for hour worked, taxes included.

Moreover, about the amortization of the computer, it has been considered a 700€ PC with

a residual value of 70€ and life span of 5 year

Product Price / Unit (€) Number of units Total cost

Raspberry Pi 2 40 1 40

SimCom Module 23 1 23

Quectel Module 30 1 39

USRP b210 1720 2 3440

Total cost 3542

Table 6: Components cost

Concept Cost (€)

Salary (including social charges) 8000

Amortization 70

Total cost 8070

Table 7: Salary and amortization costs

The total cost of the project for 7 months has been 11612€

 59

6. Conclusions and future development

This project has been developed with the intention of implement a centralized radio

controller to manage different 4G and 5G small cells with OpenAirInterface technology for

the creation of an automated deployment of the different network services over the

different cells. To this end, a 4G OAI small cells management has been implemented in

the i2cat radio controller RACOON, and 5G OAI small cells will be implemented in a near

future when the different bugs are fixed.

This implementation has shown that FlexRAN is a powerful tool that allows to perform

many operations. Firstly, it allows to monitor the different RAN infrastructure, with the

different eNBs and UEs, both in a high level, for example, with the monitoring of the

different number of packets or bytes sent by each UE, and in a low level, for example,

with the monitoring of the different core networks, PLMN ids or slicing quotes from an

eNB. And secondly, it allows to configure the different eNB parameters, for example, the

core network, PLMN or network slicing. Moreover, in order to visualize this FlexRAN data

interactively, it has been possible to store the data in a Prometheus server and visualize it

in a Grafana Dashboard in real-time.

Moreover, it has shown that it is possible to automate the OpenAirInterface technology

throw the RAN controller tool RACOON, which was already developed for other devices

such as Amarisoft or Accellerant.

And finally, RAN configurations, can be largely automated using both Netconf and an OAI

REST API. This separation allows to have a centralized and distributed system at the

same time, as RAN deployments are managed separately from its service management.

6.1. Future Work

There is a lot of effort to have a fully functional 5G network with no bugs from part of

OpenAirInterface Software Alliance and finally have the opportunity to integrate it into the

centralized ran controller.

Also, next generation FlexRAN, called FlexRIC, should be implemented, because it is a

software suite that contains two components, first, a RAN agent that allows for interfacing

with the radio stack, and also a real-time controller for 5G.

Moreover, with the OAI network scenario completed, it opens a lot of new opportunities to

develop and test with 4G and 5G networks, such as, add different types of frameworks of

a virtualized network, or the possibility of separate the Centralized Unit (CU) and

Distributed Unit (DU) to reduce different parameters such as latency.

 60

Bibliography

[1] Juan Pedro Tomás, Carrier aggregation es clave para coexistencia entre 4G y

5G: Ericsson, 2020

[2] Jim Zyren, Overview of the 3GPP Long Term Evolution Physical Layer

[3] Advantages of 4G-LTE. 4G LTE <https://about4glte.wordpress.com/advantages/>

[4] LTE Network Infrastructure and Elements

<https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-

elements> [consulted: 12 of June 2022]

[5] Marcin Dryjanski, Ph.D., Mobile network architecture – 4G design issues, 2015

[6] 5G Non Standalone Solution Overview

<https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21-10_6-4/5G-NSA-

Solution/21-10-5G-NSA-Solution-Guide/21-10-5G-NSA-Solution-

Guide_chapter_01.pdf> [consulted: 12 of June 2022]

[7] Olaonipekun Oluwafemi Erunkulu et al, 5G Mobile Communication Applications:

A Survey and Comparison of Use Cases, 2021

[8] OAI website <https://openairinterface.org/> [consulted: 10 of June 2022]

[9] Functional Split Architecture repository

<https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SE

T.md#openairinterface-4g-lte-enb-feature-set> [consulted: 12 of June 2022]

[10] Xenofon Foukas et al. FlexRAN: A Flexible and Programmable Platform for

Software-Defined Radio Access Networks, 2016

[11] FlexRAN web page <https://mosaic5g.io/flexran/> [consulted: 10 of June 2022]

[12] Stefan Vallin, Automating network and service configuration using NETCONF

and YANG, 2011

[13] Open5GS Quick Start <https://open5gs.org/open5gs/docs/guide/01-quickstart/>

[consulted: 10 of March 2022]

[14] Grafana Support for Prometheus website

<https://prometheus.io/docs/visualization/grafana/> [consulted: 2 of June 2022]

[15] Github Open5Gs <https://github.com/open5gs> [consulted: 2 of June 2022]

[16] GitHub docker Open5Gs <https://github.com/herlesupreeth/docker_open5gs>

[consulted: 2 of June 2022]

[17] FlexRAN Mosaic5G Github repository

<https://gitlab.eurecom.fr/mosaic5g/mosaic5g/-/wikis/tutorials/flexran>

[18] OpenAirInterface5G Github repository

<https://gitlab.eurecom.fr/oai/openairinterface5g>

[19] Saleh Alrkiyan, Cyclic Redundancy Check CRC, 2017

[20] Lucas Nóvoa, Virgínia Tavares, et al. RAN Slicing using OpenAirInterface and

FlexRAN in a Virtualized Scenario, 2020

[21] Yu Abiko; Takato Saito, et al. Flexible Resource Block Allocation to Multiple

Slices for Radio Access Network Slicing Using Deep Reinforcement Learning

[22] Cristina-Elena Vintilă Victor-Valeriu Patriciu, Ion Bica. Security Analysis of LTE

Access Network. 2011

 61

Annex 1 – Open5Gs environment files

In this part, it is presented the two different environment files with all the relevant

parameters for both core’s deployed. One with the Quectel information, and the other one

with the SimCom information. In bold is highlighted the different mobile subscriber

information.

.env core1 (NUC1 192.168.40.132)

#TZ=Europe/Berlin

MCC=001

MNC=02

TEST_NETWORK=172.22.0.0/24

DOCKER_HOST_IP=192.168.41.68

MONGODB

MONGO_IP=172.22.0.2

HSS - open5gs

HSS_IP=172.22.0.3

PCRF

PCRF_IP=172.22.0.4

SGW

SGWC_IP=172.22.0.5

SGWU_IP=172.22.0.6

SGWU_ADVERTISE_IP=172.22.0.6

SMF

SMF_IP=172.22.0.7

UPF

UPF_IP=172.22.0.8

UPF_ADVERTISE_IP=172.22.0.8

 62

MME

MME_IP=172.22.0.9

AMF

AMF_IP=172.22.0.10

AUSF

AUSF_IP=172.22.0.11

NRF

NRF_IP=172.22.0.12

UDM

UDM_IP=172.22.0.13

UDR

UDR_IP=172.22.0.14

IMS DNS

DNS_IP=172.22.0.15

RTPENGINE

RTPENGINE_IP=172.22.0.16

MYSQL

MYSQL_IP=172.22.0.17

FHOSS

FHOSS_IP=172.22.0.18

ICSCF

ICSCF_IP=172.22.0.19

SCSCF

SCSCF_IP=172.22.0.20

 63

PCSCF

PCSCF_IP=172.22.0.21

SRSLTE ENB

SRS_ENB_IP=172.22.0.22

UERANSIM

NR_GNB_IP=172.22.0.23

NR_UE_IP=172.22.0.24

UE1_IMEI=356938035643803

UE1_IMEISV=4370816125816151

UE1_IMSI=001025432100004

UE1_KI=00112233445566778899AABBCCDDEEFF

UE1_OP=000102030405060708090A0B0C0D0E0F

UE1_AMF=8000

OAI ENB

OAI_ENB_IP=172.22.0.25

OPEN5GS WEBUI

WEBUI_IP=172.22.0.26

PCF

PCF_IP=172.22.0.27

NSSF

NSSF_IP=172.22.0.28

BSF

BSF_IP=172.22.0.29

 64

.env core2 (NUC1 192.168.40.97)

#TZ=Europe/Berlin

MCC=001

MNC=03

TEST_NETWORK=172.22.0.0/24

DOCKER_HOST_IP=192.168.40.97

MONGODB

MONGO_IP=172.22.0.2

HSS - open5gs

HSS_IP=172.22.0.3

PCRF

PCRF_IP=172.22.0.4

SGW

SGWC_IP=172.22.0.5

SGWU_IP=172.22.0.6

SGWU_ADVERTISE_IP=192.168.40.97

SMF

SMF_IP=172.22.0.7

UPF

UPF_IP=172.22.0.8

UPF_ADVERTISE_IP=192.168.40.97

MME

MME_IP=172.22.0.9

AMF

AMF_IP=172.22.0.10

 65

AUSF

AUSF_IP=172.22.0.11

NRF

NRF_IP=172.22.0.12

UDM

UDM_IP=172.22.0.13

UDR

UDR_IP=172.22.0.14

IMS DNS

DNS_IP=172.22.0.15

RTPENGINE

RTPENGINE_IP=172.22.0.16

MYSQL

MYSQL_IP=172.22.0.17

FHOSS

FHOSS_IP=172.22.0.18

ICSCF

ICSCF_IP=172.22.0.19

SCSCF

SCSCF_IP=172.22.0.20

PCSCF

PCSCF_IP=172.22.0.21

SRSLTE ENB

 66

SRS_ENB_IP=172.22.0.22

UERANSIM

NR_GNB_IP=172.22.0.23

NR_UE_IP=172.22.0.24

UE1_IMEI=356938035643803

UE1_IMEISV=4370816125816151

UE1_IMSI=001011234567895

UE1_KI=8baf473f2f8fd09487cccbd7097c6862

UE1_OP=11111111111111111111111111111111

UE1_AMF=8000

OAI ENB

OAI_ENB_IP=172.22.0.25

OPEN5GS WEBUI

WEBUI_IP=172.22.0.26

PCF

PCF_IP=172.22.0.27

NSSF

NSSF_IP=172.22.0.28

BSF

BSF_IP=172.22.0.29

ENTITLEMENT SERVER

ENTITLEMENT_SERVER_IP=172.22.0.30

OSMOMSC

OSMOMSC_IP=172.22.0.31

OSMOHLR

 67

OSMOHLR_IP=172.22.0.32

SMSC

SMSC_IP=172.22.0.33

 68

Annex 2 – Open5Gs nsa-deploy.yaml

Next it is exposed a part of the .yaml file in order to deploy a nsa network with open5gs.
Moreover, it is only exposed the part for the mme, hss, sgw, pgw and webui as are the
main components used and modified from open5gs for the 4G Core Network deployment.

version: '3'

services:

 webui:

 image: docker_open5gs

 container_name: webui

 depends_on:

 - mongo

 env_file:

 - .env

 environment:

 - COMPONENT_NAME=webui

 volumes:

 - ./webui:/mnt/webui

 - /etc/timezone:/etc/timezone:ro

 - /etc/localtime:/etc/localtime:ro

 expose:

 - "3000/tcp"

 ports:

 - "3000:3000/tcp"

 networks:

 default:

 ipv4_address: ${WEBUI_IP}

 hss:

 image: docker_open5gs

 container_name: hss

 env_file:

 - .env

 69

 environment:

 - COMPONENT_NAME=hss-1

 volumes:

 - ./hss:/mnt/hss

 - ./log:/open5gs/install/var/log/open5gs

 - /etc/timezone:/etc/timezone:ro

 - /etc/localtime:/etc/localtime:ro

 depends_on:

 - mongo

 expose:

 - "3868/udp"

 - "3868/tcp"

 - "3868/sctp"

 - "5868/udp"

 - "5868/tcp"

 - "5868/sctp"

 networks:

 default:

 ipv4_address: ${HSS_IP}

 sgwc:

 image: docker_open5gs

 depends_on:

 - smf

 - upf

 container_name: sgwc

 env_file:

 - .env

 environment:

 - COMPONENT_NAME=sgwc-1

 volumes:

 70

 - ./sgwc:/mnt/sgwc

 - ./log:/open5gs/install/var/log/open5gs

 - /etc/timezone:/etc/timezone:ro

 - /etc/localtime:/etc/localtime:ro

 expose:

 - "2123/udp"

 - "8805/udp"

 networks:

 default:

 ipv4_address: ${SGWC_IP}

 sgwu:

 image: docker_open5gs

 depends_on:

 - smf

 - upf

 container_name: sgwu

 env_file:

 - .env

 environment:

 - COMPONENT_NAME=sgwu-1

 volumes:

 - ./sgwu:/mnt/sgwu

 - ./log:/open5gs/install/var/log/open5gs

 - /etc/timezone:/etc/timezone:ro

 - /etc/localtime:/etc/localtime:ro

 expose:

 - "8805/udp"

 - "2152/udp"

 ports:

 - "2152:2152/udp"

 71

 networks:

 default:

 ipv4_address: ${SGWU_IP}

 mme:

 image: docker_open5gs

 depends_on:

 - hss

 - sgwc

 - sgwu

 - smf

 - upf

 container_name: mme

 env_file:

 - .env

 environment:

 - COMPONENT_NAME=mme-1

 volumes:

 - ./mme:/mnt/mme

 - ./log:/open5gs/install/var/log/open5gs

 - /etc/timezone:/etc/timezone:ro

 - /etc/localtime:/etc/localtime:ro

 expose:

 - "3868/udp"

 - "3868/tcp"

 - "3868/sctp"

 - "5868/udp"

 - "5868/tcp"

 - "5868/sctp"

 - "36412/sctp"

 - "2123/udp"

 72

 ports:

 - "36412:36412/sctp"

 networks:

 default:

 ipv4_address: ${MME_IP}

 73

Annex 3 – OAI eNB configuration file

In this annexed part, it is exposed the enb.fdd.conf file with all the relevant parameters for
a eNB deployment. Moreover, most of the parameters are dynamic, using an
environment file with the variables presented in the section 4, but in the next configuration,
the different environment variables have already been replaced.

Active_eNBs = ("i2cat");

Asn1_verbosity, choice in: none, info, annoying

Asn1_verbosity = "none";

eNBs =

(

 {

 ////////// Identification parameters:

 eNB_ID = 555; #123;

 cell_type = "CELL_MACRO_ENB";

 eNB_name = "i2cat";

 // Tracking area code, 0x0000 and 0xfffe are reserved values

 tracking_area_code = 1;

 plmn_list = ({ mcc = 0; mnc = 0; mnc_length = 2; });

 tr_s_preference = "local_mac"

 nr_cellid = 1023;

 // In seconds

 rrc_inactivity_threshold = 0;

 ////////// Physical parameters:

 component_carriers = (

 {

 node_function = "3GPP_eNODEB";

 node_timing = "synch_to_ext_device";

 node_synch_ref = 0;

 frame_type = "FDD";

 tdd_config = 3;

 tdd_config_s = 0;

 prefix_type = "NORMAL";

 eutra_band = 1;

 downlink_frequency = 2150000000L;

 uplink_frequency_offset = -190000000;

 Nid_cell = 123;

 N_RB_DL = 25;

 Nid_cell_mbsfn = 500;#123;

 nb_antenna_ports = 1;

 nb_antennas_tx = 1;

 nb_antennas_rx = 1;

 tx_gain = 90;

 rx_gain = 125;

 pbch_repetition = "FALSE";

 prach_root = 0;

 prach_config_index = 0; #100;

 74

 prach_high_speed = "DISABLE";

 prach_zero_correlation = 1;

 prach_freq_offset = 2;

 pucch_delta_shift = 1;

 pucch_nRB_CQI = 0;

 pucch_nCS_AN = 0;

 pucch_n1_AN = 0;

 pdsch_referenceSignalPower= -25;

 pdsch_p_b = 0;

 pusch_n_SB = 1;

 pusch_enable64QAM = "DISABLE";

 pusch_hoppingMode = "interSubFrame";

 pusch_hoppingOffset = 0;

 pusch_groupHoppingEnabled = "ENABLE";

 pusch_groupAssignment = 0;

 pusch_sequenceHoppingEnabled = "DISABLE";

 pusch_nDMRS1 = 1;

 phich_duration = "NORMAL";

 phich_resource = "ONESIXTH";

 srs_enable = "DISABLE";

/*

 srs_BandwidthConfig =;

 srs_SubframeConfig =;

 srs_ackNackST =;

 srs_MaxUpPts =;

*/

 pusch_p0_Nominal = -96;

 pusch_alpha = "AL1";

 pucch_p0_Nominal = -104;

 msg3_delta_Preamble = 6;

 pucch_deltaF_Format1 = "deltaF2";

 pucch_deltaF_Format1b = "deltaF3";

 pucch_deltaF_Format2 = "deltaF0";

 pucch_deltaF_Format2a = "deltaF0";

 pucch_deltaF_Format2b = "deltaF0";

 rach_numberOfRA_Preambles = 64;

 rach_preamblesGroupAConfig = "DISABLE";

 rach_powerRampingStep = 4;

 rach_preambleInitialReceivedTargetPower = -108;

 rach_preambleTransMax = 10;

 rach_raResponseWindowSize = 10;

 rach_macContentionResolutionTimer = 48;

 rach_maxHARQ_Msg3Tx = 4;

 pcch_default_PagingCycle = 128;

 pcch_nB = "oneT";

 bcch_modificationPeriodCoeff = 2;

 ue_TimersAndConstants_t300 = 1000;

 ue_TimersAndConstants_t301 = 1000;

 ue_TimersAndConstants_t310 = 1000;

 ue_TimersAndConstants_t311 = 10000;

 ue_TimersAndConstants_n310 = 20;

 75

 ue_TimersAndConstants_n311 = 1;

 ue_TransmissionMode = 1;

 //Parameters for SIB18

 rxPool_sc_CP_Len =

"normal";

 rxPool_sc_Period =

"sf40";

 rxPool_data_CP_Len =

"normal";

 rxPool_ResourceConfig_prb_Num = 20;

 rxPool_ResourceConfig_prb_Start = 5;

 rxPool_ResourceConfig_prb_End = 44;

 rxPool_ResourceConfig_offsetIndicator_present =

"prSmall";

 rxPool_ResourceConfig_offsetIndicator_choice = 0;

 rxPool_ResourceConfig_subframeBitmap_present =

"prBs40";

 rxPool_ResourceConfig_subframeBitmap_choice_bs_buf =

"00000000000000000000";

 rxPool_ResourceConfig_subframeBitmap_choice_bs_size = 5;

 rxPool_ResourceConfig_subframeBitmap_choice_bs_bits_unused =

0;

/*

 rxPool_dataHoppingConfig_hoppingParameter = 0;

 rxPool_dataHoppingConfig_numSubbands =

"ns1";

 rxPool_dataHoppingConfig_rbOffset = 0;

 rxPool_commTxResourceUC-ReqAllowed =

"TRUE";

*/

 // Parameters for SIB19

 discRxPool_cp_Len

= "normal"

 discRxPool_discPeriod

= "rf32"

 discRxPool_numRetx

= 1;

 discRxPool_numRepetition

= 2;

 discRxPool_ResourceConfig_prb_Num

= 5;

 discRxPool_ResourceConfig_prb_Start

= 3;

 discRxPool_ResourceConfig_prb_End

= 21;

 discRxPool_ResourceConfig_offsetIndicator_present

= "prSmall";

 discRxPool_ResourceConfig_offsetIndicator_choice

= 0;

 discRxPool_ResourceConfig_subframeBitmap_present

= "prBs40";

 discRxPool_ResourceConfig_subframeBitmap_choice_bs_buf

= "f0ffffffff";

 76

 discRxPool_ResourceConfig_subframeBitmap_choice_bs_size

= 5;

discRxPool_ResourceConfig_subframeBitmap_choice_bs_bits_unused =

0;

 //SSB central frequency of NR secondary cell group (for ENDC

NSA)

 nr_scg_ssb_freq = 641272;

 }

);

 srb1_parameters :

 {

 # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300,

350, ... 500]

 timer_poll_retransmit = 80;

 # timer_reordering = (ms) [0,5, ... 100, 110,

120, ... ,200]

 timer_reordering = 35;

 # timer_reordering = (ms) [0,5, ... 250, 300,

350, ... ,500]

 timer_status_prohibit = 0;

 # poll_pdu = [4, 8, 16, 32 , 64, 128, 256,

infinity(>10000)]

 poll_pdu = 4;

 # poll_byte = (kB)

[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinit

y(>10000)]

 poll_byte = 99999;

 # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32]

 max_retx_threshold = 4;

 }

 # ------- SCTP definitions

 SCTP :

 {

 # Number of streams to use in input/output

 SCTP_INSTREAMS = 2;

 SCTP_OUTSTREAMS = 2;

 };

 enable_measurement_reports = "no";

 ////////// MME parameters:

 mme_ip_address = ({ ipv4 = "0.0.0.0";

 ipv6 = "192:168:30::17";

 port = 36412 ;

 active = "yes";

 77

 preference = "ipv4";

 }

);

 ///X2

 enable_x2 = "no";

 t_reloc_prep = 1000; /* unit: millisecond */

 tx2_reloc_overall = 2000; /* unit: millisecond */

 t_dc_prep = 1000; /* unit: millisecond */

 t_dc_overall = 2000; /* unit: millisecond */

 NETWORK_INTERFACES :

 {

 ENB_INTERFACE_NAME_FOR_S1_MME = "eno1";

 ENB_IPV4_ADDRESS_FOR_S1_MME =

"192.168.40.97";

 ENB_INTERFACE_NAME_FOR_S1U = "eno1";

 ENB_IPV4_ADDRESS_FOR_S1U =

"192.168.40.97";

 ENB_PORT_FOR_S1U = 2152; # Spec

2152

 ENB_IPV4_ADDRESS_FOR_X2C =

"192.168.40.97";

 ENB_PORT_FOR_X2C = 36422; # Spec

36422

 };

 }

);

MACRLCs =

(

 {

 num_cc = 1;

 tr_s_preference = "local_L1";

 tr_n_preference = "local_RRC";

 phy_test_mode = 0;

 puSch10xSnr = 160;

 puCch10xSnr = 160;

 }

);

L1s =

(

 {

 num_cc = 1;

 tr_n_preference = "local_mac";

 }

);

RUs =

(

 {

 local_rf = "yes"

 nb_tx = 1

 78

 nb_rx = 1

 att_tx = 0

 att_rx = 0;

 bands = [7];

 max_pdschReferenceSignalPower = -27;

 max_rxgain = 95;

 eNB_instances = [0];

clock_src = "external";

 sdr_addrs = "serial=31DB5A3"

 }

);

THREAD_STRUCT =

(

 {

 #three config for level of parallelism

"PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or

"PARALLEL_RU_L1_TRX_SPLIT"

 parallel_config = "PARALLEL_SINGLE_THREAD";

 #two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"

 worker_config = "WORKER_ENABLE";

 }

);

NETWORK_CONTROLLER :

{

 FLEXRAN_ENABLED = "yes";

 FLEXRAN_INTERFACE_NAME = "eno1";

 FLEXRAN_IPV4_ADDRESS = "192.168.40.97";

 FLEXRAN_PORT = 2210;

 FLEXRAN_CACHE = "/mnt/oai_agent_cache";

 FLEXRAN_AWAIT_RECONF = "no";

};

log_config :

 {

 global_log_level ="info";

 global_log_verbosity ="high";

 hw_log_level ="info";

 hw_log_verbosity ="medium";

 phy_log_level ="info";

 phy_log_verbosity ="medium";

 mac_log_level ="info";

 mac_log_verbosity ="high";

 rlc_log_level ="info";

 rlc_log_verbosity ="high";

 pdcp_log_level ="info";

 pdcp_log_verbosity ="high";

 rrc_log_level ="info";

 rrc_log_verbosity ="medium";

};

 79

Annex 4 – E-UTRA band

Next can be found a list with the different 4G LTE frequency band. There are only the

bands with the geographical area: Global, EMEA (Europe, Middle East, and Africa) and

EU, as if not, the list would be too large. Moreover, the list does not include the channel

bandwidth, which include frequency bands of 1.4, 3, 5, 10, 15, 20 MHz. In fact, the two

different bands that have been used in this project are 1 and 7, and both includes 5, 10,

15, 20 MHz.

Bandwidth Duplex spacing Geographical 3GPP

Low Middle High DL/UL (MHz) Low Middle High (MHz) area release

2110 2140 2170 1920 1950 1980

0 300 599 18000 18300 18599

1805 1842.5 1880 1710 1747.5 1785

1200 1575 1949 19200 19575 19949

2620 2655 2690 2500 2535 2570

2750 3100 3449 20750 21100 21449

925 942.5 960 880 897.5 915

3450 3625 3799 21450 21625 21799

791 806 821 832 847 862

6150 6300 6449 24150 24300 24449

3510 3550 3590 3410 3450 3490

6600 7000 7399 24600 25000 25399

758 780.5 803 703 725.5 748

9210 9435 9659 27210 27435 27659

462.5 465 467.5 452.5 455 457.5

9870 9895 9919 27760 27785 27809

1452 1474 1496

9920 10140 10359

1900 1910 1920

36000 36100 36199

2010 2017.5 2025

36200 36275 36349

2570 2595 2620

37750 38000 38249

2496 2593 2690

39650 40620 41589

3400 3500 3600

41590 42590 43589

3600 3700 3800

43590 44590 45589

5150 5537.5 5925

46790 50665 54539

5855 5890 5925

54540 54890 55239

3550 3625 3700

55240 55990 56739

3550 3625 3700

56740 57490 58239

1432 1474.5 1517

58240 58665 59089

1427 1429.5 1432

59090 59115 59139

3300 3350 3400

59140 59640 60139

2483.5 2489.5 2495

60140 60197 60254

2110 2155 2200 1920 1965 2010

65536 65986 66435 131072 131522 131971

738 748 758

67336 67436 67535

753 768 783 698 713 728

67536 67686 67835 132672 132822 132971

461 463.5 466 451 453.5 456

68936 68961 68985 133472 133497 133521

420 422.5 425 410 412.5 415

70546 70571 70595 134182 134207 134231

422 424.5 427 412 414.5 417

70596 70621 70645 134232 134257 134281

757 757.5 758 787 787.5 788

70646 70651 70655 134282 134287 134291
103 NB-IoT FDD 1 -30 17.5

EMEA 16.288 410+ FDD 5 10

87 410 FDD 5 10 EMEA 16.2

72 450 PMR/PAMR FDD 5 10 EMEA 15.0

68 700 ME FDD 30 55 EMEA 13.3

EMEA 13.267 700 EU SDL 20 Downlink only

Global 13.265 2100+ FDD 90 190

53 TD 2500 TDD 11.5 16.0

15.252 TD 3300 TDD 100

51 TD 1500- TDD 5 15.0

15.050 TD 1500+ TDD 85

49 TD 3600r TDD 150 Global 15.1

Global 14.248 TD 3600 TDD 150

47 TD V2X TDD 70 Global 14.1

Global 13.246 TD Unlicensed TDD 775

43 TD 3700 TDD 200 10

1042 TD 3500 TDD 200

41 TD 2600+ TDD 194 Global 10

EMEA 838 TD 2600 TDD 50

EMEA 834 TD 2000 TDD 15

33 TD 1900 TDD 20 EMEA 8

EMEA 12.432 1500 L-band SDL 44 Downlink only

31 450 FDD 5 10 Global 12.0

APAC,EU 11.128 700 APT FDD 45 55

22 3500 FDD 80 100 EMEA 10.4

20 800 DD FDD 30 -41 EMEA 9

8 900 GSM FDD 35 45 Global 8

EMEA 8

Global 8

Global 8

7 2600 FDD 70 120

3 1800+ FDD 75 95

1 2100 FDD 60 190

and Name Mode

Downlink (MHz) Uplink (MHz)

Earfcn Earfcn

 80

Annex 5 – USRP b210 specifications

In the next figures, it is presented the different features, the product overview,

specifications, and a diagram with the different components of the USRP b210 used in

this project.

 81

 82

Glossary

CN Core Network

eNB evolved NodeBs

EPC Evolved Packet Core

E-UTRAN Evolved Terrestrial Radio Access Network

FDD Frequency División Duplexing

gNB gNodeB

GSM Global System for Mobile Communications

GUMMEI Globally Unique MME Identity

HSS Home Subscriber Server

IMSI International Mobile Subscriber Identity

LTE Long Term Evolution

MCC Mobile Country Code

MIMO Multiple Input Multiple Output

MME Mobility Management Entity

MNC Mobile Network Code

OAI OpenAirInterface

OPc Operator key or code

OSA OpenAirInterface Software Alliance

P-GW PDN Gateway

PLMN Id Public Land Mobile Network Identifier

QoS Quality of Service

RAN Radio Access Network

RPC Remote Procedure Calls

S-GW Serving Gateway

TAI List Tracking Area Identity List

TCP Transmission Control Protocol

TDD Time División Duplexing

UE User Equipment

UMTS Universal Mobile Telecommunications System

USRP Universal Software Radio Peripheral

