
1 © 2022 by ASME 

Proceedings of ASME 2022 
International Offshore Wind Technical Conference 

IOWTC2022 
 December 7-8, 2022, Boston, Massachusetts 

IOWTC2022- 98217 

MOORING OPTIMIZATION USING ML TECHNIQUES 

Pau Trubat 
Universitat 

Politècnica de 
Catalunya 

Barcelona, Spain 

Adrián Herrera 
Universitat 

Politècnica de 
Catalunya 

Barcelona, Spain 

Climent Molins 
Universitat Politècnica 

de Catalunya 
Barcelona, Spain 

ABSTRACT 
The mooring optimization process for a FOWT is a complex 

study that involves a large number of simulations. All possible 

designs of the optimization process should be assessed and the 

operational and survival constrains verified for acceptance or 

disregard the solution. These constraints are mainly the design 

bases of the mooring lines, but also the FOWT operational and 

survival conditions, which are mooring system dependant as it is 

the governing component for surge, sway and yaw stiffness. 

Machine Learning (ML) algorithms are used to predict the 

simulations results by training the model from a set of defined 

simulations, allowing for a significant reduction of the 

computational cost of the large number of required simulations. 

The methodology’s main advantage is the high velocity once the 

model is trained. However, some uncertainties can arise from the 

exactness of the predicted values. 

The aim of the paper is to design an optimized mooring 

system for the WindCrete platform for a Gran Canary Island with 

a 200 m sea depth for ULS. To overcome the difficulties of the 

optimization process two ML models are developed. The first 

one, the static ML model, is based on the static response of the 

mooring system that allows to reduce the solution space of the 

optimization problem. The second one, the dynamic ML model, 

is based on the dynamic response of the FOWT and allows to 

assess the constraints applied to the objective function as 

penalties. The objective function is defined as the total mass of 

the mooring system. The variables of the optimization problem 

are the main line and delta line lengths, the radius to anchor and 

the chain diameters.  

The first ML model is set-up to predict the static mean line 

tension at rated wind speed, the vertical force on anchor at rated 

wind speed and the initial Yaw period of the FOWT. These 

parameters allow to discard a large number of possible solutions 

that do not fit with the following design bases: the maximum line 

tension and no vertical force on anchor. Moreover, a maximum 

yaw natural period threshold is set-up based on design 

experience. This is needed due to the lack of damping in yaw 

direction of Spar platforms. The static ML model is used to create 

an initial sample of feasible solutions to train the dynamic ML 

model. Also, during the optimization process is used as a 

classification model to exclude non-feasible solutions to ensure 

the performance of the second ML model.  

The second ML model is based on the dynamic response of 

the WindCrete platform and the mooring system using OpenFast 

simulation tool. The model is set-up to predict the maximum line 

tension, vertical force on anchor, maximum surge position and 

maximum pitch which are used as constraints parameters to be 

applied at the optimization function as penalties.  

The results show a good approximation of both ML models 

with a high potential to be applied in determining design load 

cases, including fatigue assessment in the optimization design 

process. 
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1. INTRODUCTION
Mooring systems have become one of the subsystems which

impacts on the reliability of a FOWT and constitute a non-

negligible part of its cost. Thus, cost consideration as part of the 

conceptual design is very important in order to improve the 

competitiveness of the technology. The mooring system design 

is often a trade-off between various considerations including 

platform offset limitations, yaw stiffness in spar type platforms, 

maximum line tension, span life and the overall cost[1]. 
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Time domain dynamic mooring line models are needed to 

capture the dynamic behaviour of the mooring lines and, 

therefore, play an important role in the design process, as inertial 

and hydrodynamic terms influence on the total tension on the 

line. In order to assess the behaviour of any component of a 

FOWT, a large number of long simulations are required for 

several operating and survival conditions. These requirements 

imply a large number of simulations with a high computational 

cost to assess the design loads and operational requirements such 

as motions and accelerations. Moreover, an optimization process 

will require the evaluation of any candidate solution required by 

the optimization problem. Therefore, the application of an 

optimization process for any FOWT component will require very 

large numbers of simulations.  

Optimization methods can be grouped in two: 1) gradient 

methods that use Jacobians or Hessians, and 2) heuristic methods 

that employ algorithms with a defined behaviour and strategy to 

find the result through multiple iterations and comparisons. 

The use of gradient-based methods is effective and 

traditionally used. Iterative methods main advantage is that 

require a reduced number of iterations [2], in particular when the 

partial derivatives of cost function are known. However, for non-

convex and highly constrained problems will need a large 

number of iterative calculations. Moreover, gradient search tries 

to find improved solutions near the initial data. Therefore, it may 

be useful to run the optimization with different initial data or 

variable ranges. Fylling and Berthelsen [3] presented an 

integrated design tool for the optimization of a moored spar buoy 

type support structures for wind turbines. More recently, L.Li et 

al. [1] use a Kriging model to replace the real time-domain 

dynamic simulations and apply the Sequential Quadratic 

Programming to minimize the objective function. 

Heuristic models allow a direct optimization of the objective 

function. The simplicity and practicality of these models make 

them an attractive and popular tool in the optimization 

framework. These methods, require the evaluation of the 

objective function in a sufficient number of iterations. In general, 

these do not establish a robust convergence criterion, as depend 

on a predetermined number of iterations. However, these models 

are less likely to fall into local minima than the gradient-based 

methods. To find a global solution for hard problems within an 

acceptable period of time, heuristic methods might guarantee a 

solution[4], however finding an exact global solution under these 

conditions is not assured. 

In the field of mooring system optimization, meta-heuristic 

methods have been employed for offshore oil platforms [5], [6], 

and for floating offshore wind turbines (FOWT) [7], [8],[9]. 

Within the O&G industry the objective function to be minimized 

is the motion of the platform, as is the main constraint to ensure 

the operation reliability of the risers. Whereas, the objective 

function for FOWT is usually the cost of the mooring system or 

a related parameter as the total weight for only chain systems. 

Moreover, penalty functions are included in the objective 

function to include the design constraints within the met-

heuristic models. 

During the optimization process, the searching algorithm 

normally requires a large number of function evaluations to 

assess the constraint parameters. The straight forward approach 

is to evaluate the objective function at each iteration. However, 

heuristic models imply a large number of valuations which 

increase significantly the computational cost. To overcome this 

difficulty, subrogate models based on Machine Learning (ML) 

technics are used to estimate of the response of the evaluated 

mooring-FOWT system. The estimated response is based on 

previously assessed simulations, allowing to reduce the 

computational costs dramatically [1], [7], [10], [11], [12], [13], 

[14], [15]. 

Subrogate models are built using machine learning 

technique in order to reduce the computational costs of the 

optimization evaluation process through a functional 

approximation architecture[7]. Machine learning techniques, 

such as Artificial Neural networks (ANN) have been used to 

predict the analysis outputs in the context of optimal design of 

structural systems, and in some other areas of structural 

engineering applications [16], [17]. ANN are powerful machine 

learning algorithms. That have also been applied in generating 

the response surfaces for system approximation [18]. 

The basic idea of ANNs is that we can represent multivariate 

functions through a hierarchy of features with high complexity. 

The most typical example of an ANN is a feedforward multilayer 

perceptron (MLP). A highly attractive property of MLP is that 

under mild assumptions on the underlying function being 

approximated, MPLs are universal approximators [16]. 

In the field of mooring design optimization using subrogate 

models L.Li et al. [1] apply an integrated optimization 

methodology to design a single-point mooring system for a 

vessel-shaped offshore fish farm. The methodology applies both 

simplified and advanced analysis methods, that employs 

metamodel-based evaluations when searching for the optimal 

solutions. Moreover, the integrated optimization method applies 

a simplified analysis to screen the design space. It is found that 

the screening analysis is advantageous to reduce the initial 

sample size before the time-consuming dynamic analysis 

Ajit C. Pillai et al.[7] explore the optimization of the 

geometry of a mooring system of a FOWT to reduce mooring 

line cost and fatigue damage. The variables used to optimize the 

problem are the anchor horizontal position, line segments 

lengths, line sections and anchor horizontal angle. Moreover, the 

optimization problem accounts for a maximum horizontal 

distance of the anchor, line length constraints related to water 

depth, MBL of the line segments and portion of the line resting 

on the seabed. A random forest (RF) ML algorithm was used in 

order to speed up the optimization process evaluations. In the 

implementation, the input features to the machine learning 

technique are the decision variables of the optimization problem 

and the output features are the objective functions, the 

cumulative fatigue damage and the cost of the line. Moreover, 

the optimization model uses a RF classifier to determine the 

constraint satisfaction component of the problem. 
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These results of [7] indicate that the use of this hybrid 

surrogate model achieves high accuracy results for both 

constraint satisfaction and the output feature values. This 

implementation of a trained random forest to replace the time-

intensive time domain simulations generally used in the design 

process reduces the average time required to evaluate a single 

mooring design (including time spent retraining the surrogate) 

from 692.2 to 6.1 s. Representing a time reduction approximately 

of 114 times. Subrogate models are proposed to represent the 

unknown relations between the interested dynamic responses 

and design variables.  

In this paper, a new approach of mooring system 

optimization is presented. The model seeks to optimize the 

mooring system for the WindCrete platform in Gran Canaria 

location. The optimization problem is based on the Differential 

Evolution optimization heuristic scheme. The objective function 

to optimize is the mooring system weight plus a series of penalty 

functions related to mooring constraints to reduce an un-

constraint optimization problem. In order to reduce the 

computational cost, three ML models were set up to estimate the 

platform response for constraint verification. The first ML model 

is a classification ANN-MLP model based on the static solution 

to filter feasible solutions within the solution range. The second 

and third ML models are regression ANN-MLP models that 

predict the constraints for DLC 16 using two wind speeds (rated 

wind speed and cut-off wind speed) based on OpenFast [19] 

simulations. 

The paper is structured as follows: first the properties of the 

FOWT, the mooring system and site location are described. 

Second, the optimization problem is described in terms of the 

objective functions, cost function and penalty terms. Third the 

classification ANN model is described and its main 

characteristics presented. Forth, the regression ANN models and 

its main characteristics are presented. Finally, the results of the 

optimization problem are presented. 

 

2. WINDCRETE PLATFORM AND MOORING SYSTEM 
OVERVIEW 
The platform used in this study is the WindCrete [20] 

designed to support the IEA-15MW reference wind turbine [21]. 

A sketch of the WindCrete platform is shown in Figure 1. The 

structure is a monolithic prestressed concrete platform with a 

tower of 129.5 m tall, from the MSL, and a draft of 155 m [22]. 

The hub height is at 135 m above the MSL, allowing a 15 m 

clearance between the blades and the mean sea level. The tower 

starts at the MSL and has a base diameter of 13.2 m and a top 

diameter of 6.5 m at the yaw bearing. The thickness of the tower 

is set constant of 0.4m. The substructure consists on three pieces 

with a constant thickness of 0.5m: the tapered transition piece, 

the cylindrical buoy and the bottom hemi-sphere. The transition 

piece is a 10 m tapper element with a top diameter of 13.2 m and 

a bottom diameter of 18.6 m where the cylindrical section is 

connected. The cylinder buoy allows the placement of the ballast 

and gives the needed buoyancy. The cylinder has a length of 

135.7 m and a diameter of 18.6 m. The 9.3 m radius hemi-sphere 

at the bottom distributes the hydrostatic pressures in a 

compression field around the base. The ballast added to achieve 

the needed Pitch/Roll stiffness has a weigh 25.07 kTons and 

consists on an aggregate with a specific weight of 25 kN/m3 

located at the bottom of the cylinder. 

The main geometric properties of the platform are 

summarized in Table 1. The inertia terms are assessed from the 

CM and include the RNA. The hydrostatic stiffness values also 

account for the weight [23].  

Table 1. WindCrete main properties 

Displaced volume [m3] 4.054e+04 

Draft [m] 155 

Concrete mass [kg] 1.474e+07 

Ballast [kg] 2.507e+07 

Wind turbine mass [kg] 8.211e+05 

CM [m] -93.72 

CB [m] -77.29 

Total Mass [kg] 4.063e+07 

I44 [kg·m2] 1.986e+11 

I55 [kg·m2] 1.987e+11 

I66 [kg·m2] 1.947e+09 

C33 [N/m] 1.376e+06 

C44 [N·m/rad] 6.713e+09 

C55 [N·m/rad] 6.713e+09 

 

The mooring system consists of three catenary lines (line #) 

spaced 120º apart with a delta line connection to the buoy to 

provide yaw stiffness to the system, as shown in Figure 2. For 

simplicity, all lines and anchors are symmetrically distributed 

and composed with two different chain diameters for the main 

and delta lines respectability. The inputs to describe the mooring 

configuration are the anchor radius (𝑟𝑎𝑛𝑐ℎ) and the lengths and 

diameters for each line type (𝑙𝑚𝑎𝑖𝑛 , 𝑙𝑑𝑒𝑙𝑡𝑎 , 𝑑𝑚𝑎𝑖𝑛 , 𝑑𝑑𝑒𝑙𝑡𝑎). 
Table 2: Reference mooring system properties 

Radius to anchor [m] 600 

Chain line length [m] 565 

Delta line length [m] 50 

Chain nominal diameter [mm] 160 

Chain apparent diameter [mm] 301 

Chain wet weight [N/m] 4.8e+03 

Chain Axial stiffness [N] 2.3e+9 

The mooring system predesign for WindCrete 15 MW at 

Gran Canaria [24] will be used as a reference mooring system to 

compare with the optimization solution. The properties of 

reference mooring system are shown in Table 2. It has to be 

noted, that the mooring system was designed using a static 

approach, where the limiting constraints were a natural yaw 

period of the system of 11s, and that the maximum tension on the 
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lines assessed as a the most tensioned line for a mean surge due 

to rated wind speed plus a dynamic offset of 3 meters. Also, no 

vertical force on the anchor must be verifies in the same 

condition.  

 

 

Figure 1: WindCrete sketch with main dimensions 

 

Figure 2. WindCrete mooring system disposition 

3. SITE LOCATION 
The location for the WindCrete is based on the southeast part 

of Gran Canaria in the Canary Islands [24], as show in Figure 3. 

The Southeast part of the Canary Islands is set to 200 m depth 

and it will be considered constant for the mooring system 

optimization design process.  

The wind data is provided by the SIMAR point 4038006 

from the Spanish port authority on the coordinate’s latitude 

15o19’48” W, longitude 27o45’00” N. Table 3 shows the wind 

speed profile for the mean wind speed and for the extreme wind 

at 1 year and 50 years return period. 

 

 
Figure 3. WindCrete Gran Canaria location 

Table 4 shows the extreme wave characterization based on 

the data provided by the same SIMAR point. The 

characterization is shown for return periods of 1, 10, 20 and 50 

years. 

 

Table 3. Normal and extreme wind speed profile at different 

heights. 

 Normal 

mean wind 

profile 

Extreme 

wind profile 

Tr=50 yr. 

Extreme 

wind profile 

Tr=1 yr. 

Height [m] Wind Speed [m/s] 

10 9.83 29.77 16.00 

20 10.48 32.35 17.39 

50 11.33 36.11 19.41 

100 11.98 39.24 21.09 

119 12.14 40.07 21.54 

150 12.36 41.20 22.14 

 

Table 4. Wave data for SIMAR point 4038006 [24] 

Return period 

(years) 

Hs (m) Tp (s) 

50 5.11 9.0 - 11.0 

20 4.69 9.0 – 11.0 

10 4.40 9.0 – 11.0 

1 3.35 8.0 – 10.0 
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4. OPTIMIZATION PROBLEM 
The optimization problem is defined by the minimization of 

the objective function Eq. (1) subjected to certain restrictions 

expressed as inequalities, Eq. (2), where 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁) are 

the decision variables. As stated in Section 2 the decision 

variables in this problem are the anchor radius (𝑟𝐴𝑛𝑐ℎ) and the 

lengths and diameters for each line type (𝑙𝑚𝑎𝑖𝑛 ,  𝑙𝑑𝑒𝑙𝑡𝑎 ,
𝑑𝑚𝑎𝑖𝑛 ,  𝑑𝑑𝑒𝑙𝑡𝑎). 

.  

𝑓(𝑋) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) (1) 
𝑔𝑗(𝑥1, 𝑥2, … , 𝑥𝑁) ≤ 0 (2) 

 

Moreover, in order to limit the solution space, the decision 

variables are constrained by imposing a feasible solution range 

based on previous experiences. The Table 5 shows the lower and 

upper limit range of the variables. In order to ensure all feasible 

solutions, multiple non-feasible solutions will be present because 

of the limits for the radius to anchor and the length of the main 

line. As an example, a combination of the minimum radius to 

anchor and the maximum main line length will lead to a total 

slack mooring line as the sea depth from the fairlead is 110 m.  

 

Table 5: Decision variable range limits 

Variable Lower 

Limit 

Upper 

Limit 

𝒓𝑨𝒏𝒄𝒉 [m] 680 800 

𝒍𝒎𝒂𝒊𝒏 [m] 680 800 

𝒍𝒅𝒆𝒍𝒕𝒂 [m] 30 80 

𝒅𝒎𝒂𝒊𝒏 [mm] 30 200 

𝒅𝒅𝒆𝒍𝒕𝒂 [mm] 30 200 

 

The objective function, Eq (3), is defined as the summation 

of the cost function of the mooring system and the penalty 

functions to include the constraints within the objective function. 

 

𝑓𝑜𝑏𝑗 = 𝑓𝑐𝑜𝑠𝑡 + 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦  (3) 

 

The cost function, Eq. (4) is defined as the total weight of 

the mooring system normalized by the weight of a reference 

mooring line with a length of three times the depth and a chain 

diameter of 100mm.  

 

𝑓𝑐𝑜𝑠𝑡 =
𝑙𝑚𝑎𝑖𝑛 · 𝜔𝑚𝑎𝑖𝑛 + 2 · 𝑙𝑑𝑒𝑙𝑡𝑎 · 𝜔𝑑𝑒𝑙𝑡𝑎

3 · 𝑑𝑒𝑝𝑡ℎ · 𝜔100𝑚𝑚
 (4) 

 

Where: 

𝜔 is the mass per meter length of the desired chain 

 

The constraints of the problem are applied through the 

penalty function that increases the value of objective function if 

the constraints are not fulfilled in order to transform a constraint 

problem into an unconstrained one. This method was selected 

due to the impossibility to apply direct equations of the 

constraints into the metaheuristic optimization model. In this 

case, the constraints are assessed through the postprocessing of 

the simulations. The constraints applied to the problem are the 

following, which are based on operational limits and mooring 

design criteria based on DNV-ST-0119: 

• Surge motion  < 15 m → 𝑔1 =
𝑟1

15
− 1 ≤ 0 

• Pitch rotation < 5.5 deg → 𝑔2 =
𝑟5

5.5
− 1 ≤ 0 

• Yaw rotation < 15 deg → 𝑔3 =
𝑟6

15
− 1 ≤ 0 

• 𝑇𝑑 = 1.3 𝑇𝑚𝑒𝑎𝑛 + 1.75𝑇𝑑𝑦𝑛 < 0.95𝑀𝐵𝐿   

  𝑔4 = 1.3 𝑇𝑚𝑒𝑎𝑛 + 1.75𝑇𝑑𝑦𝑛 − 0.95𝑀𝐵𝐿 ≤ 0  

• 𝐹𝑉,𝑎𝑛𝑐ℎ𝑜𝑟 = 0 𝑁   → 𝑔5 = 𝐹𝑉,𝑎𝑐𝑛ℎ𝑜𝑟 ≤ 0 

 

These constrains are applied to the problem by including its 

penalty term (𝑓𝑝,𝑠𝑢𝑟𝑔𝑒; 𝑓𝑝,𝑝𝑖𝑡𝑐ℎ,; 𝑓𝑝,𝑇;  𝑓𝑝,𝐹𝑉) for surge, pitch 

maximum tension, and vertical force on anchor respectively at 

Eq (5) 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓𝑝,𝑠𝑢𝑟𝑔𝑒 + 𝑓𝑝,𝑝𝑖𝑡𝑐ℎ, + 𝑓𝑝,𝑇 + 𝑓𝑝,𝐹𝑉 (5) 

 

The penalty terms for each constraint are assessed by Eq. 

(6), where 𝑞𝑗(𝑋) denotes the magnitude of violation of the 𝑗𝑡ℎ 

constraint in Eq. (7). The function 𝜃 (𝑞𝑗(𝑋))  shown in Eq. (8), 

is a continuous multi-stage assignment function, and  𝛾 (𝑞𝑗(𝑋)) 

is the power of the violated function, shown in Eq.(9). 

 

𝑓𝑝 = 𝜃 (𝑞𝑗(𝑋)) 𝑞𝑗(𝑋)
𝛾(𝑞𝑗(𝑋)) (6) 

𝑞𝑖(𝑋) = max{0, 𝑔𝑗(𝑋)} (7) 

𝜃 (𝑞𝑗(𝑋)) =

{
 
 

 
 10,         𝑖𝑓 𝑞𝑗(𝑋) < 0.001

20,        𝑖𝑓 𝑞𝑗(𝑋) < 0.1     

100,      𝑖𝑓 𝑞𝑗(𝑋) < 1         

300,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 (8) 

𝛾 (𝑞𝑗(𝑋)) = {
1     𝑖𝑓      𝑞𝑗(𝑋) ≤ 1

2     𝑖𝑓     𝑞𝑗(𝑋) > 1
 (9) 

The optimization problem is solved using a Differential 

Evolution (DE) optimization scheme. The DE is a metaheuristic 

method that optimizes a problem by creating new candidate 

solutions by combining old ones and keeping the best candidate 

solutions. 

 

5. STATIC CLASSIFICATION MODEL  
The solution space of the decision variables has to be enough 

wide to ensure all feasible anchor positions, line lengths, and 

chain diameters combinations. However, a large portion of the 

combinations are non-feasible solutions only based on static 

violation of the constraints. 

The classification model is set-up in order to verify the 

feasibility of the possible solutions. This model is used in two 

phases of the work. First, the classification is used to get feasible 

solutions for training and validating sets of decision variables for 
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the regression ANN. Second, the classification model is used 

within the optimization problem in order to discard function 

evaluations for decision variables out of the training range that 

can lead to wrong solutions within the subrogated model. 

The static classification model classifies the decision 

variables set are or not feasible solutions based on the following 

constraints: 

• 𝑇6 < 15𝑠 

• 𝐹𝑉,𝑎𝑛𝑐ℎ𝑜𝑟 < 0 at mean surge location at rated wind 

• 𝑇 < 𝑀𝐵𝐿 at mean surge location at rated wind 

The first constraint limit is the yaw natural period (𝑇6) that 

should be below 15 seconds. This constraint is based on previous 

experiences, where at least a yaw natural period of 12s was 

needed for the spar WindCrete 15MW platform to balance the 

low damping produced in yaw direction [23]. The second and 

third constraint are the vertical force on anchor (𝐹𝑉,𝑎𝑛𝑐ℎ𝑜𝑟) and 

maximum line tension (𝑇). These values have to lower than 0 

and Mooring Breaking Load respectively at mean surge location 

for rated wind. 

 

5.1 Static model 
The static model is based on the catenary equations of the 

mooring lines. The catenary equation can be solved accounting 

for the axial stiffness of the line by the Eq. (10). 

𝑥 − 𝑥0 =
𝑇𝐻
𝜔
[𝑙𝑛 (

1

𝑐𝑜𝑠(𝜙)
+ 𝑡𝑎𝑛(𝜙))

− 𝑙𝑛 (
1

𝑐𝑜𝑠(𝜙0)
+ 𝑡𝑎𝑛(𝜙0))]

+
𝑇𝐻
𝐸𝐴

𝑙 

𝑧 − 𝑧0 =
𝑇𝐻
𝜔
[

1

𝑐𝑜𝑠(𝜙)
−

1

𝑐𝑜𝑠(𝜙0)
] +

1

2

𝜔

𝐸𝐴
𝑙2 

(10) 

Where 𝑥, 𝑧 are the in plane horizontal and vertical positions, 

𝑇𝐻  is the horizontal component of the line tension, 𝜔 is the wet 

weight per meter length of the line, 𝜙 is the angel between the 

vertical and horizontal tension, 𝑙 is the length of the line and 𝐸𝐴 

is the axial stiffness of the line. 

The constraints are assessed by applying the catenary 

equations to the mooring system for an imposed surge excursion 

and for an imposed yaw platform rotation. From the surge 

excursion, an interpolation process is performed to get the mean 

position for the rated wind speed, and further interpolation is 

used to obtain the vertical force on anchor and the tension. 

Figure 4 shows the mooring system response, the line tension 

and the vertical force on anchor response and the interpolation 

points. From the platform yaw rotation, the yaw stiffness of the 

mooring system is obtained. The yaw natural period is assessed 

by Eq. (10). Figure 4 b shows the yaw response of the mooring 

system. 

 

a)

 
b)

 
Figure 4: Static model approach 

𝑇6 = 2𝜋√
𝐼66
𝐾6

 (11) 

 

 

5.1 Classification model implementation 
 

30,000 sets of decision variables where analysed in order to 

train the classification model based on an ANN. In this set 116 

feasible solutions were found through the static analysis, only a 

0.3%. Table 6 shows the confusion matrix obtained from the 

training results of the classification ANN following the 60/40 

validation criterion. Then, 60% of the data is used for training 

the model, while the remaining 40% is used for the validation 
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stage. The index ROC-AUC obtained in the validation subset is 

0.957. 

Table 6: Confusion matrix of the classification model 

True Not Feasible:11 946 False Not Feasible:7 

False Feasible: 4 True Feasible: 43 

The classification model allowed to create the feasible set of 

mooring line parameters to be simulated in OpenFast. From a set 

of 200.000 population, 1000 feasible solutions were obtained in 

order to train the ML regression model. 

Figure 5 shows the graphs of the cumulative distribution 

function of the initial sample of training set of the classification 

model, and the feasible solutions to be tested in OpenFast. It can 

be seen that the initial sampling has a random distribution. 

However, the feasible solution set, has a much narrow 

distribution due to the imposed constraints. 

 
Figure 5: Cumulative distribution comparison of the initial 

set of population and the subset that fits with the classification 

ANN 
 

 

6. SUBROGATED MODELS FOR DLC1.6 
The subrogate models used for predicting the constraint 

values for each set of design variables evaluations are based on 

two different LC of DLC1.6. The DLC1.6 aims to analyse the 

wind turbine in operation conditions combined with a severe sea 

state. UPC [25] found that this DLC is the most demanding for 

mooring design verification. The chosen LC are defined for a 

𝑉ℎ𝑢𝑏 of 10.5 m/s at rated conditions and for a 𝑉ℎ𝑢𝑏  25m/s at cut-

out conditions. These wind speeds are chosen because generates 

the large thrust for the rated wind speed and the large yaw torque 

when misalignment is produced due to yaw motion for the cut-

off wind speed. The sea state used is for a return period of 50 

years with a Hs of 5.11m and a Tp of 10s. The wind speeds time 

series were generated by TurbSim software. The sea wave 

surface used for the all the simulations was the same and also the 

wind time series were the same for each wind speed value. This 

approach helps to reduce the computation effort as the wind is 

already created, and reduces the results dispersion to better 

implementation the ML model. 

Once the simulations are assessed, a postprocess analysis is 

performed to obtain the constrain values using a python code. 

These values are the maximum of the surge position, the 

maximum of the pitch rotation, the maximum yaw rotation, the 

maximum main line and delta line tensions and the maximum 

vertical force on the anchor. The models are trained with a set of 

1000 different mooring systems designs that fit with the static 

classification model. The simulations are performed with 

OpenFast WindCrete models [23] with a duration of 5400s plus 

600s for avoiding transient effects. The wind turbine is modelled 

using the dynamic blade element momentum theory. The 

hydrodynamics of the platform are assessed by PF theory adding 

distributed drag terms at the spar. Moreover, 2nd order wave 

forces are assessed for the difference frequency range from 

Wamit Quadratic Transfer Function. The mooring lines are 

simulated using MoorDyn module and the hydrodynamic 

parameters used are shown in Table 7. More details of OpenFast 

WindCrete Files can be obtained at [26]. In order to increase the 

reliability of the simulations, the mass and inertia of the 

substructure is updated at each simulation to balance the 

difference of buoyancy produced for the difference on initial 

vertical force on the fairleads. 

 

Table 7: Mooring line hydrodynamic properties 

Parameter Can Cat Cdn 𝑪𝒅𝒕 
Value 1 0.5 1.33 0.64 

 

The models are ANN with three hidden layers of 120, 120, 

and 60 neurons. The ANN used is based on the Sckit-learn library 

[27]. Figure 6 shows the bias-variance analysis of the 𝑅2 

parameter for different ratios of training validation sets. The 

results show that a training/validation ratio of 60/40 presents an 

R2 of 0.98 for the validation model that verifies the good 

performance of the model. Considering a R2 of 1 means that the 

model can predict perfectly the problem. Then, it can be stated 

that a training/validation set of 500 cases can be enough to 

generate a regression ANN ML model with an accuracy over 

95% using a ratio of 60/40. 
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Figure 6. Bias-Variance analysis for the R2 index 

 

The models used for the optimization problem are trained 

with the 60% of the simulated data and the 40% is used for the 

verification process. The input data for training the models are 

the decision variables presented in Section 4 and the outputs are 

the maximum values of the required constraints, the maximum 

surge, the maximum pitch, the maximum yaw, the maximum 

tension on the main line and the maximum tension on the delta 

line. 

 

6.1 Model results and analysis 
The Figure 7 shows the cumulative distribution of the 

results predicted by the regression ANN model comparing with 

the data obtained with the OpenFast results. The results show the 

good performance of the model to predict all the studied 

parameters. 

 

7. MOORING SYSTEM DESIGN AND VALIDATION 
The optimized solution using the DE algorithm and the three 

metamodels: the classification model, and the regression ANN 

models for DLC 16 𝑉ℎ𝑢𝑏 = 10.5 𝑎𝑛𝑑 25 𝑚/𝑠 is shown in Table 

8. The optimization problem took 58 iterations with an initial 

population of 50 cases. This means, that a total of 2900 

evaluations for each regression ANN were performed, 5800 in 

total. Then, the total time used is almost 3 times lower than if 

fully time domain analysis with OpenFast were performed 

during the optimization process. 

Table 8: DE optimization solution 

𝒓𝒂𝒏𝒄𝒉 𝒍𝒎𝒂𝒊𝒏 𝒍𝒅𝒆𝒍𝒕𝒂 𝒅𝒎𝒂𝒊𝒏 𝒅𝒅𝒆𝒍𝒕𝒂 

750 m 682.7 m 75 m 128 mm 107 mm 

+25% +21% +50% -20% -33% 

 
Figure 7: Cumulative distribution for the studied output 

variables of the OpenFast model and regression ANN model 

The optimized solution has a larger radius to anchor than the 

reference mooring system. This leads to larger line lengths but 

also a reduction of the chain diameters to get a lighter mooring 

system. Also, it is worth to note that the delta length is increased 

up to 75m. A more in deep analysis of this results may lead to 

new configurations of delta line arrangements, as for example 

the validation against DLC 61 and 62.. 

The optimized solution is then analyzed by simulating the 

response of the WindCrete 15MW for the design LC used, LC16 

for 𝑉𝑟𝑒𝑓  of 10.5m/s and 25m/s in OpenFast. The Table 9 shows 

the constraints of the simulation results of the studied cases. The 

results show the good performance of the regression ML models 

because the simulation of the optimization solution fulfill the 

constrain criteria. They also show that the maximum yaw 

rotation is produced for the larger wind speed as expected. 

However, maximum line tension is found in both LC depending 

on the analyzed line segment. The MBL for the chain diameters 

of the main line and delta line are 1.52·104kN and 1.15·104kN 

respectively. Then, the maximum design tensions fulfill the 

requirements of the design. 

The total cost of the mooring system in terms of mass is 851 

Tons. The initial reference mooring system has a mass of 1,122 

Tons, which mean a reduction of 25% of the total mass of the 

mooring system. 
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Table 9: Summary of the design constraints of DLC 

simulations 

Property Value 𝑽𝒓𝒆𝒇
Max Surge [m] 11.32 10.5 

Max Pitch [deg] 4.94 10.5 

Max Yaw [deg] 1.93 25 

Td Main Line [kN] 7.50E+03 25 
Td Delta Line [kN] 5.90E+03 10.5 

Max Vertical Force Anchor [kN] 0.00E+00 10.5/25 

8. CONCLUSIONS
The paper presents a methodology to perform mooring

system optimization using a classification ANN model and two 

regression ANN models to predict the response of the FOWT 

constraints. 

The classification ANN model is trained from the static 

response of the mooring system. This model is used in order to 

create feasible solutions based on static mooring tension, vertical 

force on anchor, and platform surge at rated wind speed. Then, a 

1000 population of feasible solutions are created to be simulated 

using OpenFast. Moreover, the classification model is used 

during the optimization process to discard non-feasible 

solutions. This methodology allows to discard sets of design 

variables that can be miss-predicted by the regression ANN, as 

they are out of the training space. 

The responses from the simulations are used as the training 

values of the regression ANN models. The models show enough 

accuracy to predict the desired values. Moreover, the initial 

amount of data could be reduced in a factor of 2. 

The optimization problem performed 5800 evaluations of 

the response of the mooring system, that should be performed by 

OpenFast simulations. This leads to a time reduction of 65%, 

which was one of the main objectives of using ML techniques. 

The optimized solutions lead to a cost reduction of 44% from 

the initial reference mooring system. Design requirements were 

verified by OpenFast simulations of the optimized mooring 

system. All the results fit with the initial design basis. 

Future work will include more DLC as 6.1 and 6.2 including 

some wind misalignment. Also, fatigue analysis prediction could 

be implemented to get a more reliable mooring system optimal 

design. 
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