

Jaka Zavratnik

ANALYSIS OF WEB3 SOLUTION

DEVELOPMENT PRINCIPLES

Master's Degree Thesis

Barcelona, October 2022

Jaka Zavratnik

ANALYSIS OF WEB3 SOLUTION

DEVELOPMENT PRINCIPLES

Master's Degree Thesis

Barcelona, October 2022

 i

ANALYSIS OF WEB3 SOLUTION

DEVELOPMENT PRINCIPLES

Master's Degree Thesis

Jaka Zavratnik

Master's Degree

Informatics and communication technologies

doc.dr. Muhamed Turkanović, UM FERI

dr. Jaime Delgado, UPC FIB

Student:

Study Programm:

Mentor:

Co-mentor:

 ii

ACKNOWLEDGEMENTS

I would like to say a special Thank You to my

family for their continuous support, especially to my

parents, Andrej and Mojca, for investing in their son's

education and much needed motivational words.

Secondly, I would like to thank my mentor,

Muhamed Turkanović, for all the help, expertise, and

guidance, and for suggesting this interesting topic

related to blockchain, which made me really enjoy this

journey.

I would also like to thank my co-mentor, Jaime

Delgado, for his willingness and support provided in

writing this thesis.

 iii

ANALYSIS OF WEB3 SOLUTION DEVELOPMENT

PRINCIPLES

Keywords: decentralized app, blockchain, Ethereum, Web3

Abstract

In the master's thesis, we researched the principles of Web3 solution development. We

studied the blockchain and blockchain-related technology, development of the Web

including all versions of the Web and the differences between them. We presented the

popular technologies for Web3 development and the most common Web3 solutions with

examples. With help of systematic literature review we explored the state-of-art

technologies for Web3 solution development and proposed a full-stack for Web3. In the

final part we implemented a proof-of-concept Ethereum decentralized application and

compared it with equivalent concept of Web2 application. We proposed future work of

researching other popular blockchain protocols like Solana or Polygon.

 iv

CONTENTS

1. INTRODUCTION ... 1

1.1. Motivation ... 2

1.2. Identification and problem definition .. 3

1.3. Objectives .. 4

1.4. Hypotheses ... 4

1.5. Assumptions and limitations ... 4

2. BLOCKCHAIN ... 6

2.1. Decentralized applications .. 8

2.2. Ethereum ... 9

2.3. EVM ... 10

2.4. Smart contract .. 10

2.5. Crypto wallet .. 11

2.6. NFT... 12

2.7. Gas or transaction cost.. 13

3. DEVELOPMENT OF WEB ... 14

3.1. Static web or Web 1.0 ... 14

3.2. Semantic Web or Web 2.0 ... 15

3.3. Decentralized Web or Web 3.0 .. 16

3.4. Comparison between Web1, Web2 and Web3 ... 17

3.5. Technologies for Web3 development .. 20

4. WEB3 SOLUTION EXAMPLES .. 22

4.1. DeFi .. 22

4.2. Web3 gaming ... 22

4.3. Web3 social networks ... 23

 v

4.4. Web3 marketplaces .. 23

5. SYSTEMATIC LITERATURE REVIEW.. 25

5.1. Strategy .. 25

5.1.1. Preliminary search and identification of the need to conduct a systematic

literature review .. 25

5.1.2. Search string identification .. 27

5.1.3. Digital libraries specifics .. 28

5.1.4. Inclusion and exclusion criteria ... 29

5.2. Search results ... 30

5.3. Studies review .. 35

5.4. Discussion... 50

5.4.1. RQ2: What are the technologies, platforms, frameworks, and tools for

developing Web3 solutions? ... 50

5.4.2. RQ3: How connected and dependent is Web3 to blockchain and smart

contracts? .. 52

5.4.3. RQ4: What is the full-stack for Web3? .. 53

5.4.4. RQ5: Are non-fungible tokens (NFTs) necessary for Web3 development? 54

6. EXPERIMENT ... 56

6.1. Environment setup ... 56

6.2. Implementation .. 58

6.2.1. Implementation of Web3 solution .. 58

6.2.2. Concept of Web2 solution implementation .. 65

6.3. Discussion... 67

7. CONCLUSION ... 70

8. BIBLIOGRAPHY .. 73

Appendix A: Observed technologies used in each study. ... 80

Appendix B: Smart Contract WeddingFund. .. 89

Appendix C: Script to deploy smart contract. .. 92

Appendix D: Script for testing smart contract. ... 93

 vi

Appendix E: Hardhat.config.js configuration file.. 96

Appendix F: WeddingFund smart contract ABI. ... 97

Appendix G: Package.json file. .. 101

Appendix H: Wallet connection logic. ... 102

Appendix I: Frontend payWeddingDonation function implementation. 104

Appendix J: Frontend withdrawFunds function implementation. 106

Appendix K: Frontend getMemos function implementation. 107

Appendix L: Frontend IPFS client configuration. .. 108

 vii

LIST OF FIGURES

Figure 1. Structure of blocks in a blockchain. ... 6

Figure 2. Visual example of digital signature. ... 8

Figure 3. Mobile internet traffic as percentage of total Web traffic in June 2020, by

region. ... 16

Figure 4. Web3 development technology stack. .. 54

Figure 5. Role of NFTs in Web3. .. 55

Figure 6. WeddingFund dapp system architecture. ... 58

Figure 7. Hardhat generated project structure. ... 59

Figure 8. Example running the test script. .. 60

Figure 9. Alchemy create app example. ... 61

Figure 10. Creation of Goerli testnet using MetaMask. ... 62

Figure 11. Initial page of the solution. .. 63

Figure 12. Donation form on WeddingFund dapp. ... 64

Figure 13. Displayed donations from all donors. .. 64

Figure 14. Transactions on Block Explorer Etherscan. .. 65

Figure 15. System architecture concept of Web2 application. 67

LIST OF TABLES

Table 1. Comparison between Web1, Web2 and Web3. ... 19

Table 2. Inclusion criteria of the preliminary literature review...................................... 26

Table 3. The total number of research found by preliminary search. 26

Table 4. Definition of keywords and keyword groups for SLR.. 27

Table 5. Modified search strings for each digital library. ... 29

Table 6. Definition of inclusion and exclusion search criteria. 30

Table 7. Phases of the research with description. .. 31

Table 8. Search results after each phase. ... 31

Table 9. Summary of studies by years. ... 32

Table 10. Summary of studies by technology. .. 32

 viii

Table 11. Summary of studies by smart contract languages. ... 33

Table 12. Summary of studies by frontend technologies. .. 33

Table 13. Summary of studies by storage technologies. .. 34

Table 14. Summary of API technologies identified. .. 35

Table 15. Technology stack summary of selected studies.. 46

Table 16. Gas prices in ETH and USD. ... 68

 ix

ACRONYMS

dapp - Decentralized Application

NFT - Non-fungible token

URL - Uniform Resource Locator

P2P - Peer-to-peer

DAO - Decentralized Autonomous Organization

ETH - Ether

EVM - Ethereum Virtual Machine

GOR - Goerli Ether

IPFS - InterPlanetary File System

HTML - Hypertext Markup Language

FTP - File Transfer Protocol

CERN - The European Organization for Nuclear Research

CA - Central Authority

NLP - Natural Language Processing

IoT - Internet of Things

AR - Artificial Reality

VR - Virtual Reality

DeFi - Decentralized Finance

DeX - Decentralized Exchange

SLR - Systematic Literature Review

CSS - Cascading Style Sheets

API - Application Programming Interface

ABI - Application Binary Interface

 1

1. INTRODUCTION

This thesis aims to study the principles of Web3 solution development, with its focus on

the technologies, platforms, frameworks, and tools for developing solutions. With the

help of a systematic literature analysis, we compare development approaches between

different studies and answer research questions that relate to Web3 and Web3 solution

development. We demonstrate the collected knowledge on a proof-of-concept

application.

Within the theoretical background we introduce the blockchain and blockchain-related

technology, which is the foundation for this work. Then, we write about development

of the Web, where we describe each version of the Web and point out the differences

between them. We present the popular technologies for Web3 development. In the last

part of theoretical background, we present the most common Web3 solutions with

examples.

In the second part of the thesis, we perform a systematic literature review, which is a

way of synthesizing scientific evidence to answer the defined research questions in a

transparent and reproducible way, while seeking to include all published evidence on

the topic and appraising the quality of this evidence. The review is focused on identifying

the technologies for Web3 solution development and to find out which technologies

represent a full-stack for Web3. The data for performing the review is gathered from the

official websites of digital libraries from scientific articles and conference papers.

In the last part, we present our implementation of a Web3 proof-of-concept application

based on an identified stack of technologies from the previous chapters. We point out

which technologies were used for the implementation and why we chose them. Then

we present the concept for Web2 solution implementation of the same proof-of-

concept application, and we discuss the differences between the two. Finally, we

express our findings and propose future work in a conclusion.

 2

1.1. Motivation

Bitcoin was released in public in year 2009 and since then blockchain technologies

continued to show many advantages and applicability in different areas of industries.

The biggest advancement in blockchain technologies are smart contracts, which are self-

executable contracts containing the terms of agreement between two parts, without

the need for an intermediary. These contracts allow developers to build autonomous,

self-efficient and decentralized applications.

Blockchain technologies in the last years became incredibly popular, with much of this

credit going to cryptocurrency and NFT trading success stories, where certain individuals

made a significant amount of profit. This attracted the interest of big companies and

investors, who began to invest a lot of money in blockchain projects. As a result, the

intensive development of technologies, tools, frameworks, and platforms for the

development of Web3 solutions began. Even though the technologies seem mature

enough, the technology is still relatively new and a unique approach for the

development of Web3 solutions has not yet been established.

Gartner's hype cycle for blockchain and Web3 for the year 2022 indicates that

decentralized applications are currently on the slope of enlightenment and will reach

the plateau of productivity in between 2 and 5 years. On the other hand, the Web3 is

evaluated to be at the peak of inflated expectations and will require at least 5 to 10 years

before reaching the plateau of productivity. Cryptocurrency and token values crashed in

the first half of 2022, but the value of coins should not be conflated with the value of

blockchain technologies. The NFT games and commerce are driving the innovation as

companies begin to realize the business value. Gartner mentions there is still no killer

use case to be seen, but gradual improvements using blockchain technology have been

detected. [1]

According to Gartner's report, we can conclude that blockchain technology is still

relatively new, but it is gradually improving, and more and more companies are

 3

incorporating it in their businesses. With combination between Web3 and other

technologies like AI and IoT, we could easily see a revolution in technology, and it is just

a matter of time before we reach it.

1.2. Identification and problem definition

Nowadays, most online content and user data are under the control of a few large

technology companies (e.g., Apple, Google, Amazon, Facebook). These companies

collect users' data and then sell it, mostly in the form of user-tailored advertisements.

While there is nothing wrong with the idea of suggesting user only the products or

services, that might interest him, it is a major privacy breach when the company collects,

stores, and takes advantage of e.g., search history of that user, usually without their

consent. In current state of the Internet, the information is stored on single servers, and

users have little or no control over their data ownership or use. In 2013, Edward

Snowden exposed how the government in the United States was using these platforms

to spy on their citizens. Another case of corruption happened in 2016 when during

elections Facebook was deliberating suppressing conservative news stories. Lately,

there is a big issue of platform owners delegating censorship on their platforms, i.e.,

they ban people off their platforms if their expressed opinion does not match the

owner's ideals. That's why there is an increasing opinion that Web2 era is coming to an

end and that we need a new system solving the current issues.

In recent years, there has been a growing movement to relieve the current control over

data evenly across the Internet, with the help of blockchain technologies, thus

transitioning to a new era of the Internet, called Web3. For the successful

implementation of the movement, technologies and protocols must be developed that

allow users to use the Internet quickly, easily, safely, and without the need to trust a

central authority. Various technologies are already available for the development of

Web3 solutions, but the full-stack standard, as established for Web2, has not yet been

established, which can have a negative impact on new developers who are not yet

familiar with the good practices of developing Web3 solutions. Another problem is that

 4

technologies are still in development stage and frequently get updates, which means

the developers must constantly follow the news and keep upgrading their knowledge.

There is a need for mentioned full-stack standard to provide the new developers a

stepping point into the blockchain technologies and Web3 development.

Based on the identified problems, we formulated the following research questions:

• RQ1: What is Web3 and how what makes it different from Web2 and Web1?

• RQ2: What are the technologies, platforms, frameworks, and tools for

developing Web3 solutions?

• RQ3: How connected and dependent is Web3 to blockchain and smart contracts?

• RQ4: What is the full-stack for Web3?

• RQ5: Are non-fungible tokens (NFTs) necessary for Web3 development?

1.3. Objectives

The thesis focuses on identifying the technologies for the development of Web3

solutions and investigating which technologies would together form the full-stack for

Web3 development. To achieve that, we defined the following objectives:

• Objective 1: To present Web3 and technologies for the development of Web3

solutions.

• Objective 2: Investigate which technologies represent the full-stack for Web3.

• Objective 3: On a practical example, test and present the Web3 development

principles, described in this work.

1.4. Hypotheses

Based on the theoretical model, we propose the following hypotheses:

• H1: There is currently no unified full-stack technology for Web3.

• H2: Web3 depends on blockchain and smart contracts.

1.5. Assumptions and limitations

Next, we present the assumptions and limitations of the master's thesis.

 5

Assumptions:

• Technologies for Web3 development are already sufficiently developed.

Limitations:

• We will test the Web3 solution on the local test network.

• A practical solution will be developed with simple functionalities.

 6

2. BLOCKCHAIN

Blockchain popularization began after the year 2008, when an unknown person or a

group of people using the name Satoshi Nakamoto invented the cryptocurrency Bitcoin.

In 2009 its implementation was released in public as an open-source software. Bitcoin

is a decentralized cryptocurrency that works on a peer-to-peer network, where a

consensus is in place among users. [2] Consensus merely stands for the rules by which a

blockchain network operates and confirms the validity of information written in blocks.

Network consists of nodes, which's primary job is:

• to determine whether a block of transactions is legitimate and accept or reject

it,

• to save and store transaction blocks,

• to broadcast transaction history to other nodes that may need to synchronize

with the blockchain.

The transactions on the network are verified by nodes through cryptography and

recorded in a public distributed ledger - called a blockchain. This makes possible for

transactions to work between two participants without any intermediary or central

authority. [3]

The blockchain is a sequence of blocks, which holds a complete list of transaction

records like conventional public ledger. Each block points to the immediately previous

block via a reference that is essentially a hash value of the previous block called parent

block. The first block of a blockchain is called genesis block and has no parent block.

Figure 1 illustrates the example of a blockchain. [2]

Figure 1. Structure of blocks in a blockchain.

 7

A block in a blockchain consists of the block header and block body. The block header

contains:

• Block version: indicates which set of block validation rules to follow.

• Parent block hash: a 256-bit hash value that points to the previous block.

• Merkle tree root hash: the hash value of all the transactions in the block.

• Timestamp: current timestamp as seconds since the January 1st, 1970.

• nBits: a compressed representation of the target value, below which the block's

hash must be, to be valid.

• Nonce: a random whole number, which is a 4-byte field and usually starts with 0

and increases for every hash calculation. Nonce is a number that can be used

only once.

The block body is composed of a transaction counter and transactions. The maximum

number of transactions that a block can contain depends on the block size and the size

of each transaction. To validate the authentication of transaction in an untrustworthy

environment, blockchain uses a digital signature based on an asymmetric cryptography

mechanism. [2]

In digital signature, each user has a public and private key. Digital signature has two

phases, signing phase and verification phase, as can be seen on Figure 2. In signing phase

user generates a hash value derived from the transaction, encrypts it with private key

and sends the encrypted hash with original data to another user. That user verifies the

received transaction by comparison between decrypted hash (using sending user's

public key) and the hash value derived from the received data using the same hash

function as used by sending user. [2]

 8

Figure 2. Visual example of digital signature.

To understand blockchain, it is necessary to understand its key characteristics: [4]

• Decentralization: Transaction in blockchain network is conducted between any

two participants without the authentication by the central authority. This can

significantly reduce the server costs and mitigate the performance bottlenecks

that could appear at the central server.

• Persistency: It is nearly impossible to tamper a transaction, since each

transaction across the network needs to be confirmed and stored in blocks

distributed in the whole network. Apart from that, each block must be validated

by other nodes, so any forgery could be easily detected.

• Anonymity: In typical Web2 application a user is asked to create an account and

provide email address and some personal information. In blockchain users

interact with the blockchain network with a generated address and each user

can even generate multiple addresses to avoid identity exposure. This preserves

a certain amount of privacy, even though the perfect privacy preservation cannot

be guaranteed.

• Auditability: Each transaction on the blockchain is validated and recorded with a

timestamp, therefore users can verify and trace the previous records by

accessing any node in the network.

2.1. Decentralized applications

Decentralized applications or dapps are applications that exist and run on a blockchain

or peer-to-peer network of computers instead of a single computer. In the context of

 9

cryptocurrencies, dapps operate on the blockchain network in a public, open source,

decentralized environment and are free from the control and interference of any single

authority. [5] For example, a developer could create a Twitter clone dapp and put it on

a blockchain where any user can post messages. Once messages are posted, no one,

including the creators of the app, can delete them. An ideal dapp would be completely

hosted in P2P network and would need no maintenance and governance from original

developers. A blockchain application that is operable without any human intervention

forms a Decentralized Autonomous Organization or DAO. A DAO is an organization that

is governed by rules encoded as smart contracts that run on the blockchain. It is simply

a dapp with AI controlled decisions and humans on the edges. DAOs also have their own

internal capital. Due to its autonomous and automatic nature, the costs and profits of

the DAO are shared by all participants by simply recording all activities in blocks.

Decentralized applications are characterized by following properties:

• Open source: It is important to provide open access to the code, so that audits

from third parties become possible and consequently earn the trust of the users.

• Internal cryptocurrency support: Internal currency runs the ecosystem of a dapp.

It is also the source of profit for the developers of dapp.

• Decentralized consensus: It is the foundation for transparency.

• No central point of failure: All components are hosted and executed in the

blockchain on multiple nodes. [6]

2.2. Ethereum

Ethereum, launched in 2015, is the first platform that supported smart contracts (we

describe smart contracts later). It was built on Bitcoin's innovation, but with some big

differences. Where Bitcoin is only a payment network, Ethereum is programmable, so

you can build and deploy decentralized applications on its network. It incorporates

Turing complete language, allowing it to support all types of computations, including

loops. [7] It provides an abstract layer that allows anyone to create their own rules for

ownership, transaction formats, and state transition functions. This is done by

incorporating smart contracts, a set of cryptographic rules that are only executed when

 10

certain conditions are met. [8] Every action on the Ethereum network requires a certain

amount of computational power. This fee is paid in the form of ether (ETH), which is

Ethereum's native cryptocurrency. Originally, Ethereum blockchain was using proof-of-

work consensus mechanism, however on 15 September 2022 in an upgrade process

"The Merge", it transitioned to proof-of-stake consensus and reduced the energy

consumption by approximate 99.95%. In the process the original execution layer of

Ethereum was joined with its new proof-of-stake consensus layer, the Beacon Chain.

This eliminated the need for energy-intensive mining and instead enabled the network

to be secured using staked ETH. [9]

2.3. EVM

Ethereum Virtual Machine is a runtime environment for transaction execution in

Ethereum (deployment and execution of smart contracts). It is used to predict the

general state of Ethereum for each block on the blockchain as it is added to the chain.

EVM uses its own assembly-like, stack based and Turing complete language and consists

of approximately 150 unique opcodes, which are machine-level instructions that

computer can execute. [10] As opcodes are not developer friendly, Solidity

programming language is used to write code and is then compiled in EVM bytecode

before deployment on the blockchain. EVM is not completely decentralized since

overwhelming amount of Ethereum nodes are hosted on virtual machines like Amazon

Web Services. [11]

2.4. Smart contract

The term "Smart contract" was coined by Nick Szabo in mid 1990s, by suggesting

translating the clauses of a contract into a code and embed them into software or

hardware by making them self-executable, to minimize contracting cost between the

involved parties and to avoid accidental exception or malicious actions during contract

performance. [12] Smart contract in different disciplines has a different meaning, in our

case it stands for a low-level code script running on blockchain. Smart contracts are

stored on blockchain and can be automatically executed when certain pre-conditions

 11

are met. They are implemented in programming language Solidity. Main characteristics

of smart contracts are autonomy, self-sufficiency, and decentralization. Autonomy

means, that after they are deployed, they require no additional monitoring. [13] They

are self-sufficient because of the ability to raise funds by providing services and spending

them when needed. They are decentralized as they are distributed and self-executed

across network nodes. Smart contract system is what makes it possible to build DAOs.

[14]

2.5. Crypto wallet

Crypto wallets are software application used to view cryptocurrency balances and make

transactions on the blockchain. [15] They store users' public and private keys while

providing a straightforward interface to manage crypto balances. Public key is like a bank

account number and can be shared publicly, while private key is like a bank account

password and should be kept secret. Cryptocurrency is not physically held on the wallet,

instead the wallets read the public ledger and show the users the balances in their

addresses and hold the private keys that enable making transactions. The wallets store

one or more cryptocurrency-unique public addresses. A public address is a hexadecimal

string with a combination of numbers and letters, lower and upper case. It must be

shared publicly to receive cryptocurrency. A private key is also a hexadecimal string.

Since it is difficult to remember, it is stored in wallet software. Instead to access wallet,

user must know a pin associated with each private key. For additional security users can

also use multi-signature wallets that require two or more private key signatures to

authorize transactions. [16] There are different criteria to differentiate crypto wallets,

we will focus on the one that is based on device used to store keys:

• Desktop wallet: A software that can be downloaded and installed on a computer.

They offer one of the maximum tiers of security.

• Online wallet: A software that runs on the cloud and can be used from anywhere.

They are easy to access, but private and public keys are stored by a third-party.

• Mobile wallet: A software that runs as an application on a mobile phone.

 12

• Hardware wallet: A physical storage of keys on a device that works similar to USB

devices. They make transactions online, but public and private keys are stored

offline.

Another type of wallets worth mentioning is NFT wallet, which is specially designed to

store non-fungible tokens. All mentioned wallets offer some or all features like

authorization of user, key generation, key management, anonymity, multicurrency

support, coin or token conversion rates, crypto-exchange, QR code scan to transact

cryptocurrency, push notifications and backup and restoration facility of keys. [17]

2.6. NFT

Non-fungible token (NFT) is defined as cryptographically unique, indivisible,

irreplaceable and verifiable token that represents a given asset, be it digital, or physical,

on a blockchain. An owner of an NFT can easily prove the existence and ownership of an

asset, furthermore all the previous owners can be tracked as well. NFTs are created and

managed by smart contracts. [18] There is a lot of confusion among people, that NFT is

an asset, e.g., that a digital artwork is an NFT, which is incorrect. NFT is merely a data

structure on blockchain that holds the information of ownership of that artwork, with

some additional information including a location address of where the asset is stored.

Since digital artwork is usually a large file, too large to store it on a blockchain, an

alternative way is used for storage. Most common way to store the assets is by using an

Interplanetary File System (IPFS), which is a distributed peer-to-peer file-sharing

network. A huge burst of popularity of tokens happened in 2021, when certain

individuals made a huge amount of profit by trading NFTs. NFTs are mostly associated

with digital art, however they are useful for any case where an ownership of some

unique asset is required. There is a lot of potential in video game industry, where every

item obtained by a player in the game could be represented as an NFT. NFT is created

by minting an asset and then uploading it on a blockchain. Minting is a process of

creating and producing an NFT and often costs a fee called gas, of which price depends

on a platform and a blockchain, where it is deployed. [18] Before Ethereum's upgrade

to proof-of-stake, an average gas cost for minting an artwork was around 100$. On other

 13

hand, NFTs have a feature to add in a royalty fee that pays creator a percentage of the

transaction each time that NFT is sold, and it is an additional incentive for artists to

contribute to the NFT community.

2.7. Gas or transaction cost

Nodes running the EVM cannot foresee the amount of resources required for validating

a transaction, which enables denial-of-service attacks. To counter that, a pricing

mechanism is incorporated. Every computational step in EVM is priced in units of gas.

For each transaction the sender must specify the maximum amount of gas that is

expected to be consumed by the computation and the price that the user wishes to pay

per unit of gas. The price of a gas unit in ether is defined by the market. The transaction

fee equals to the gas limit multiplied by the gas price. [2]

 14

3. DEVELOPMENT OF WEB

Our first research question was: What is Web3 and how what makes it different from

Web2 and Web1? This chapter is dedicated answering that. The Internet is probably one

of the most important technological revolutions in the history of mankind, where the

Web, as one of the representations of the Internet, is still in development. People often

mistakenly use the terms internet and Web as synonyms, even though they have

different meanings. The Internet is a global network of interconnected servers,

computers, and other devices where each device can connect to another, provided that

both devices are connected to the Internet with a valid IP address. The Internet, on the

other hand, is only one of the methods of spreading information over the Internet,

others include email, File Transfer Protocol (FTP) and instant messaging service). The

Internet consists of a huge number of digital documents that we access using Web

browsers. In its relatively short history, the Internet has already experienced some major

milestones, the biggest being Web1 and Web2. At the moment there is a lot of talk about

Web3, which is supposed to be the next revolution of the Web, and which is also the

central topic of this work. To better understand what Web3 represents, it is first

necessary to understand how the Web has developed throughout history. [19]

3.1. Static web or Web 1.0

Web1 or the World Wide Web or simply put the Web, represents the first evolution of

the Web, known as the read-only Web, where there were fewer creators of websites

and a greater number of consumers accessing these pages. Tim Berners-Lee innovated

the Web in 1989 while working for CERN. He developed the first Web server, the first

Web browser and the document formatting protocol Hypertext Markup Language

known as HTML. The beginning of the Web is the year 1991, when Berners-Lee released

HTML to the public. Web1 was mostly used to represent static content with no or

minimal interaction capabilities. Websites were used for displaying information and user

could easily access it by visiting the publisher's website. [20] During Web1, Web server

performance and bandwidth had to be considered, since multiple pages and enormous

content would slow down the entire site. Nevertheless, Web1 included some

 15

capabilities of Web2, but they were implemented differently. Namely, comment section

in Web1 was present in the form of a guestbook page, where visitors were able to put

down comments.

3.2. Semantic Web or Web 2.0

The transition from Web 1.0 to 2.0 took place over time as servers were upgraded,

average connection speeds increased, and developers learned new skills and

techniques. The term Web2 was first introduced by Darcy DiNucci in her article

"Fragmented Future" in the year 1999. In her article she described how in future the

basic information structure and hyper-linking mechanism would be used across a variety

of devices and platforms. However, her representation of Web2 does not directly relate

to term's current use. The term Web2 became popular in year 2004, when O'Reilly

Media and MediaLive hosted the first Web2 conference. At the conference, John Batelle

and Tim O'Reilly defined "Web as Platform", where software applications are built upon

the Web instead of upon the computer. They proposed that user activity on the website

could be harnessed to create value. [19] If Web1 was called read-only Web, we could

define Web2 as a read-write Web or participative social Web, where users are invited

to interact with dynamic content and contribute to it.

Some important features of Web2 are:

• users as a first-class entity in the system, with correlating profile pages,

• the ability to form connections between users, via links to other users tagged as

friends or membership in groups of various kinds or subscription to RSS feeds of

updates of other users,

• the ability to post content in multiple forms, as photos, videos, blogs, comments,

and ratings,

• other more technical features like public API to allow third-party enhancement

or communication with other users using internal email or instant messaging

systems. [19]

 16

One of the biggest contributors to Web2 is the mobile internet access and the rise of

social networks as we can see from Figure 3 in June of 2022 60% of total Web traffic

comes from mobile internet traffic. [21]

Figure 3. Mobile internet traffic as percentage of total Web traffic in June 2020, by
region.

The Web as we know it today, is indeed social and collaborative, but it comes at the cost.

The cost that most of the users ignore or are even unaware of. The user data is

centralized and exploited by big corporations, it is then used without user's consent for

marketing purposes and users have no control over it. Collecting user data, processing

it, and using it to make profit is what Web2 stands for.

3.3. Decentralized Web or Web 3.0

The core idea of Web3 is that big corporations (CA) should not have control over user

data, but each user should be able to control his own data. As such, Web3 focuses on

decentralized data structure, AI driven services and edge computing infrastructure. The

term Web3 was coined by Polkadot founder and Ethereum co-founder Gavin Wood in

2014 referring to decentralized online ecosystem based on blockchain. [22, p. 3] The

idea of Web3 gained a lot of popularity in 2021, largely due to interest from

cryptocurrency enthusiasts and investments from high-profile technologists and

companies. Typical characteristics of Web3 are:

 17

• It's a semantic Web, as it lets users create, share, and connect content via search

and analysis.

• It is decentralized. Instead of being controlled and owned by centralized entities,

ownership gets distributed amongst its builders and users.

• It involves Artificial Intelligence and Machine Learning. If these are combined

with Natural Language Processing (NLP), the result is a computer that becomes

smarter and more responsive to user needs.

• It offers the connectivity of multiple devices and applications through the

Internet of Things (IoT). Semantic metadata enables this process and enables

efficient use of all available information. In addition, people can connect to the

Internet anytime, anywhere, without the need for a computer or smart device.

• It offers users the freedom to interact publicly or privately without exposing

them to risk through an intermediary, thus providing people with "trustless"

data.

• Enables participation without requiring permission from an administrative

authority. It’s permissionless. [23]

Even though Web3 is not completely developed yet, there are already many elements

of Web3 available and used on daily basis, such as NFTs, Blockchain, Distributed ledgers,

and the AR cloud. We will discuss these later.

3.4. Comparison between Web1, Web2 and Web3

For better comprehension of the differences between Web1, Web2 and Web3 can be

seen on Table 1. The first difference between versions of the Web was their purpose. As

Web1 was focused on information sharing the content type consisted of static web

pages and was meant to be read-only with offering no interaction. Web2 was based on

dynamic web content where the objective was user interaction with the content, that's

why we name this version a participative social web. The websites often ask users to

interact with the content in terms of likes and comments. While Web2 promised

interactivity and engagement, it was always according to the rules and monetization

strategies of the existing platforms. Web3 offers far more immersive and engaging

 18

experience, where users have control of their data and content. While in Web1 and

Web2 the data is owned by centralized organizations, in Web3 data is owned by users.

In Web1 centralized infrastructures i.e., Web servers were used to host websites, which

was migrated to Cloud computing infrastructures later with Web2. [24, p. 3] Web3 aims

to be decentralized, where everyone can be a participant of the network by hosting their

own node. In terms of accessibility, Web1 and Web2 were convenient and easily

accessible using Web browsers, with Web Browsers sometimes not supporting the

newest features. In Web1 there was no need to registration of its users, while in Web2

almost every website tries to register new users or at least using Single Sign On (SSO)

that allows users to use one set of identity-verifying user credentials for authentication

on multiple websites. With accessibility in Web3 there is a lack of integration with

modern Web Browsers, since user authentication is implemented by connecting user's

wallet there is a need of using browser extensions or browser that natively support

wallets. In Web1 the advertising was made using simple banners on the website, that's

why page views were crucial to generate income. Web2 improved advertising by

collecting user data and processing it with recommender systems to create user-tailored

ads. This created a system of profit per click, where website owner would earn money

based on clicks on ads displayed on their websites. In Web3 we could see a new type of

advertising where individuals would opt-in to share their data with companies and for

that be compensated. The technologies used for implementing Web1 websites were

HTML with basic CSS without considering responsiveness. Web2 was aiming to create

websites responsive, so the website would adjust accordingly to devices, i.e., different

dimensions and adapted components when displaying website on computer browser or

mobile device. HTML5 and CSS3 were used in combination with AJAX and Javascript to

enable on-page load, which loads dynamic content without the need to refresh the page.

Web3 is based on blockchain, artificial intelligence technologies, and decentralized

protocols, and is yet to show what the user interaction will look like. One of the

predictions is the users will connect to Web3 using AR or VR technologies. [25]

 19

Table 1. Comparison between Web1, Web2 and Web3.

 Web1 Web2 Web3

Purpose Read-only Read-write Read, write,

interact

Content type Static web content Dynamic web

content

Semantic content

Content Home pages Blogs, wikis Live-streams,

waves

Data owner Centralized

organization

Centralized

organization

User

Objective Information

sharing

Interaction Immersion

Authentication None Creating new

account or SSO

Connect with

crypto wallet

Infrastructure Centralized

infrastructure

Cloud computing

infrastructure

which is mainly

centralized

Decentralized

infrastructure

Accessibility Convenient and

accessible

Convenient and

accessible

Lack of integration

with modern

browsers

Advertising Banner advertising Interactive and

behavioral

advertising

Opt-in value

exchange

advertising

Technologies HTML, HTTP, URL AJAX, Javascript,

CSS3, HTML5

Blockchain,

artificial

intelligence and

decentralized

protocols

Income / Profit Page Views Profit per click Creating value

 20

3.5. Technologies for Web3 development

A distributed ledger works on pre-defined rules which are agreed upon by all the

participating nodes in the network. These rules are referred to as a protocol. The most

known blockchain protocol for creation of decentralized application is Ethereum,

which was the first protocol incorporating smart contracts. Ethereum is a public

blockchain and permissionless network which means that it can be accessible to

anyone for both read and write operations. The other public networks are Polygon and

Solana. On the other hand, Hyperledger Fabric is a private and permissioned network.

This means only privileged entities and nodes can participate. To gain access a

permission from a trusted Membership Service Provider must be granted. Additionally,

in Hyperledger Fabric there is no need for gas, since every participant knows all the

other participants in the network and malicious users can easily get detected and

removed from the network. [26]

During development developers use development environments to test the contracts

in local or public test networks. Popular tools for establishing Ethereum development

environment are Hardhat, Truffle, Geth and Remix IDE, where the latter is running in

the browser and is also a code editor. Hyperledger Fabric development environment is

established using Docker.

User interface or frontend serves as a bridge between users and blockchain. The

technologies for developing Web3 solution's frontend are the same as the ones used

for Web2 solutions. For developing browser applications most popular are React.js,

Vue.js and Django. Example for mobile applications is Android platform.

Frontend communication with blockchain network is implemented using different

libraries. The most common one is Web3.js, which is the most popular Javascript based

library for interaction with Ethereum network. Others are ethers.js, web3.py, Infura

API, Hyperledger Fabric Node SDK etc.

 21

Sometimes we want to explore transactions on the blockchain. For that purpose, the

block explorers like Etherscan or Polygonscan can be utilized. These tools allow anyone

to browse through blocks, view wallet addresses, network hash rate, transaction data

and other key information on the blockchain.

As we mentioned, Web3 aims to be decentralized, and for that decentralized storage

must be used. Interplanetary File System (IPFS) is a distributed and decentralized

storage network for storing and accessing files, websites, data, and applications, using

P2P network to connect a serious of nodes across the world. Content stored on IPFS

can be accessed from any IPFS gateway. Swarm is another similar distributed and

decentralized network.

For user to interact with blockchain he must authenticate with some sort of identity. In

Web3 user authentication is accomplished by connecting the blockchain wallet. The

easiest and most common way is by using MetaMask blockchain wallet application

which can be installed as a browser extension and a mobile app. It takes care of wallet

keys, secure login, token wallet, and token exchange. In addition, a specialized browser

like Brave can be used. Brave is a browser that natively supports blockchain wallets.

 22

4. WEB3 SOLUTION EXAMPLES

4.1. DeFi

DeFi stands for decentralized finance, and it was a first popular example of web3

solution. It represents Web3's version of a more transparent financial system with main

goal to not be influenced by regulators or the human factor. Most of DeFi solutions allow

users to manage their funds in a non-custodial manner using a crypto wallet. Typical

DeFi solution is a decentralized exchange (DEX), which is a peer-to-peer marketplace

that lets cryptocurrency buyers and sellers interact. One of the most reputed ones is

MakerDAO, launched in 2017. It is a P2P lending and borrowing platform for

cryptocurrency with all transactions being controlled by smart contracts. Another

example is Uniswap, an open-source protocol for providing liquidity and trading ERC20

tokens on Ethereum. In contrast to other popular exchanges like Coinbase or Binance,

Uniswap is entirely decentralized. [27]

4.2. Web3 gaming

A Web3 game is a decentralized version of traditional video game where player have

complete ownership over their assets and experiences earned in the decentralized

Web3 game ecosystem. This enables players an innovative benefit of play-to-earn, since

in-game assets can be traded using cryptocurrency. Web3 games also don't have a single

point of failure due to their distributed nature, which ensures high availability. Apart

from that, they use voting consensus for changes in the gaming process and make

players real contributors to the game ecosystem. Another hot topic in Web3 gaming is

an idea of a Metaverse, the virtual reality world humans would connect to using virtual

reality (VR) or augmented reality (AR) devices and would mimic the real world in every

way possible. An example of Web3 game is Axie Infinity, a pokemon-like game, where

player collects creatures called Axies and owns them as NFTs. Axies can be bred, traded,

or go to battles. It is a free browser-based game, but to play you need to purchase a

team of three Axies. The lowest tier Axies used to cost around $350 each, but after a

$615 million hack of their network on March 23, 2022, their price fell to a few dollars.

 23

However, this "accident" didn't cause an end of Web3 games era, there are many other

Web3 games available and even more in development. [27]

4.3. Web3 social networks

Big corporations like Facebook, Twitter and Instagram currently dominate in social

network market and make profits by collecting users’ data, selling it, and running

targeted advertising. In the past there were numerous complaints and lawsuits against

such companies for invading privacy of their users and having too much control over

users' personal information. Web3 contributors aim to create different social network,

where the platforms are operated by communities and users have control over their

personal information, content, and identities. Lens Protocol is an example of advanced

Web3 social media solutions. It allows multiple social media and messaging services be

built on separate clients but use same open-source smart contract protocol. In Lens,

social identities are stored as NFTs in user wallets and can be ported across all dapps

that integrate its protocol. [27]

4.4. Web3 marketplaces

Web3 marketplace can be described as a system where a collection of smart contracts

coordinates service providers and clients as well as facilitates their interaction. Providers

could offer many different levels of customized services or products. Both clients and

service providers would earn the same governance token based on their contribution to

the system. Braintrust is a good example of such marketplace. It is branded as user-

owned talent network and it connects users, who want to work as freelancers with

enterprises, which want to quickly find the right talent for their project. It is still early to

determine if such business model will be successful in the future and be able to compete

with Web2 business that offer the same services, it depends on its community. [27]

It is important to point out a type of Web3 marketplace, that grew so much in the past

years it deserves separate mentioning. It is called the NFT marketplace, and it is a

 24

gateway to trade NFTs. There are various such marketplaces, some of biggest include:

[28]

• OpenSea: The largest NFT marketplace at the time of this writing. It is very user-

friendly and can let users get set up with account within minutes. It offers trading

of art, music, photography, trading cards and virtual worlds.

• Rarible: Users can trade art, collectibles, and video game assets. They created its

own native token RARI. Apart from that, they are partnered with Adobe to easier

verify and protect metadata of digital content.

• NBA Top Shot: It is a marketplace of highlights in basketball history managed by

the NBA. It is an example of major companies participating in NFT trend.

• Binance: This is originally a cryptocurrency exchange, but it added NFT

marketplace to its features and it offers trading of art, gaming assets and

collectibles.

• Nifty Gateway: The platform is known to host expensive and exclusive NFT sales,

including digital artist Pak's "The Merge", which sold for $91.8 million. They focus

on selling only artwork, especially from celebrities and top artists.

 25

5. SYSTEMATIC LITERATURE REVIEW

We identified and analyzed the existing principles of the development of Web3

technologies through a systematic literature review (SLR). It is a research method by

which we evaluate and interpret all available research that relates to a specific research

question, topic area, or interest. Based on the guidelines, we conducted a systematic

review of the literature in three phases: SLR strategy, results, and discussion.

5.1. Strategy

The systematic literature review was carried out with the aim of obtaining a broader

overview of the research area. We wanted to answer RQ2, RQ3, RQ4 and RQ5:

• RQ2: What are the technologies, platforms, frameworks, and tools for

developing Web3 solutions?

• RQ3: How connected and dependent is Web3 to blockchain and smart contracts?

• RQ4: What is full stack for Web3?

• RQ5: Are non-fungible tokens (NFTs) necessary for Web3 development?

In the systematic literature review, we focused on the following digital databases, IEEE

Explore, SpringerLink and ScienceDirect.

5.1.1. Preliminary search and identification of the need to conduct a

systematic literature review

Before carrying out a systematic review of the literature, we carried out a so-called

preliminary search, with which we wanted to discover the research area broadness and

determine whether there is enough literature available and whether the area is

interesting for research. The preliminary search used the same databases as planned for

the full systematic literature review. The criteria used is presented in Table 2.

 26

Table 2. Inclusion criteria of the preliminary literature review.

Inclusion criteria

Criteria Criteria description

C1 The research includes keyword Web3 or

dapp

C2 The research includes keyword platform,

tool, framework, technology, or

development

Exclusion criteria

C3 The research was conducted before 2018

The preliminary search was carried out on September 16, 2022. The search was

performed by metadata and full text. The search string was created according to the

previously presented criteria "(web3 OR dapp) AND (platform OR tool OR framework OR

technology OR development)" and only results from 2018 onwards were considered.

The number of research found is presented in Table 3.

Table 3. The total number of research found by preliminary search.

Digital library Search results

IEEEXplore 211

SpringerLink 1646

ScienceDirect 760

Total 15417

In the previous research, we did not find any research that carried out a systematic

literature review in the field of Web3 solution development principles. The latter,

together with enough literature related to the target concepts, indicates the need to

conduct a systematic literature review.

 27

5.1.2. Search string identification

To obtain the most relevant research possible, we created 3 groups of keywords for a

detailed review of the literature, which can be viewed in Table 4. Group G1 focuses on

narrowing the field to decentralized applications. During initial search, we observed

both "decentralized" and "decentralised" were used, also just "dapp" was commonly

used. Group G2 is trying to verify the study is focusing blockchain. Group G3 is narrowing

the field to studies that performed any kind of testing on their solution. The idea is to

find studies, that tested their solution on a blockchain test network. Group G4 is

verifying if a dapp was implemented or developed during the research. Group G5 is

further verifying if a user interface was implemented, since one of the focuses of this

study is to find a stack of technologies for Web3 development and not solely blockchain

development.

Table 4. Definition of keywords and keyword groups for SLR.

Group Keyword Keyword

derivatives

Keyword

expression

Purpose

G1 dapp dapp,

decentralized

application,

decentralised

application

dapp Narrowing the field

to decentralized

applications. decentrali*ed

application*

G2 blockchain blockchain blockchain Study has to

mention

blockchain.

G3 test test, tested,

testing, testnet

test* Narrowing the field

to studies that

performed any sort

of testing (includes

testnet).

 28

G4 implementation implementation,

implemented,

development,

developed

implement*,

develop*

Focusing on

implemented or

developed

solutions.

G5 frontend frontend, front-

end, front end

frontend We are searching

for

implementations

that include

frontend.

front?end

Based on the groups of keywords, we made the decision that relevant research must

contain at least one derivative from each group of keywords. Based on the selected

groups, we defined the following search string:

((dapp OR "decentrali*ed application*")

AND

blockchain

AND

test*

AND

(implement* OR develop*)

AND

(frontend OR "front?end" OR GUI OR interface))

5.1.3. Digital libraries specifics

SLR was conducted on multiple digital libraries, which each has its own database search

engine, so an additional search string modifications were necessary. The modifies search

strings for each digital library is shown in Table 5.

 29

Table 5. Modified search strings for each digital library.

Digital library Search string after modifications Comment

IEEE Explore ((dapp OR "decentrali*ed

application*") AND blockchain AND

Search_All_Text:test* AND

(implement* OR develop*) AND

("Full Text & Metadata":frontend OR

"Full Text & Metadata":"front?end"

OR "Full Text & Metadata":GUI OR

"Full Text & Metadata":interface))

We narrowed the scope by

filtering years of publication

between 2018 and 2022.

Some of keyword were

additionally set up to

search full text.

SpringerLink ((web3* OR dapp OR "decentrali?ed

application?") AND (platform OR tool

OR framework OR technology) AND

(implementation OR implemented

OR development OR developed OR

solution))

We further narrowed the

scope by filtering years of

publication between 2018

and 2022 and choosing

English as a preferred

language.

ScienceDirect ((dapp OR "decentrali?ed

application") AND blockchain AND

(implementation OR implemented OR

development) AND (frontend OR

"front?end" OR "user interface"))

We had to modify the

search string to use

maximum of 8 boolean

connectors. We also filtered

years between 2018 and

2022.

5.1.4. Inclusion and exclusion criteria

To select suitable research from the multitude of research that we obtained from

selected digital databases based on the search string, we defined inclusion and exclusion

search criteria. These are presented in Table 6. The criteria allow a more precise

limitation of the contents, which are also consistent with the defined research area.

Studies that did not meet the inclusion criteria (C1-C3) or included the exclusion criteria

(C4-C7) were eliminated and not discussed further.

 30

Table 6. Definition of inclusion and exclusion search criteria.

Inclusion criteria

Inclusion criteria Criteria description

C1 The research is related to the development or technologies for

the development of Web3 solutions.

C2 During the research, a Web3 solution was developed and/or

analyzed.

C3 The technologies used to implement the solution are clearly

and fully specified.

Exclusion criteria

C4 Access to the research is not available.

C5 The research was conducted before 2018.

C6 The research does not fit any of the types: scientific or

professional article, PhD, thesis, conference paper.

C7 The survey is not available in English.

5.2. Search results

The review of the collected research was carried out in several stages, which are shown

in Table 7, for greater clarity.

• In the first phase of the research, based on the search string, we determined a

set of researches that correspond to the selected keywords.

• In the second phase of the research, we excluded from the set research that met

the exclusion criteria C4-C7.

• In the third phase of the research, we focused on meeting the conditions of

criteria C1-C2 and reviewed the title, abstract and keywords of the research. If,

based on these, we determined that the research was not suitable, we removed

it from the set.

• In the fourth phase, we carried out a detailed review of the entire content of the

research. If, after reviewing the entire content of the research, we found that

the research is not suitable or does not meet the C3 criteria, we removed it from

 31

the set, otherwise we classified it in the group of primary research. After

obtaining a mass of primary research, we removed from it duplicates that

appeared due to the use of different databases. In doing so, we attributed the

research to the database in which we first found it.

Table 7. Phases of the research with description.

Phase Description

P1 Selection based on search string.

P2 Narrowing the results based on exclusion criteria K3-K6.

P3 Selection based on appropriateness of title, abstract and keywords.

P4 Selection based on the entire content of the research. Elimination of

duplicates.

Table 8 shows the numerical results of the found primary research by individual phases.

After the last stage of the review, 55 studies remained on which analysis was conducted.

Table 8. Search results after each phase.

Digital

library

Search date Number of

studies

after P1

Number of

studies

after P2

Number of

studies

after P3

Number of

studies

after P4

IEEE Explore 20.9.2022 133 128 54 23

Springerlink 24.9.2022 1152 254 66 19

Science

Direct

22.9.2022 148 111 46 13

Total number 55

In Table 9 are represented articles ordered by year of publishing. We can observe there

were more articles meeting the conditions of criteria in the years 2020, 2021 and 2022,

than previous years. There was only 1 suitable article found for the year 2018 and only

4 articles for the year 2019. Most suitable articles were found in years 2021 and 2022.

 32

This could be due to technology still being new and studies were focusing more on

methodologies and mechanisms, than implementing complete solutions.

Table 9. Summary of studies by years.

Year Articles Articles (%)

2018 1 1,82%

2019 4 7,27%

2020 9 14,55%

2021 21 38,18%

2022 20 34,55%

On Table 10, we can observe the leading blockchain technology used in the studies was

Ethereum blockchain. There were 4 studies found, that implemented their solution on

Hyperledger Fabric and there was only 1 study that implemented their solution on EOS

blockchain. Surprisingly, there were no studies found that would incorporate any other

popular blockchain, like Solana, Polygon or BNB chain.

Table 10. Summary of studies by technology.

Blockchain technologies

Ethereum 50

Hyperledger Fabric 4

EOS blockchain 1

Following the blockchain technologies used in studies, it was expected Solidity would be

the most popular choice for implementing smart contracts. Solidity was used in all

studies, that were built on Ethereum blockchain. The studies using Hyperledger Fabric

were using either Golang or Javascript to implement their contracts. One of the studies

using Hyperledger Fabric did not define, which language was used. The study using EOS

blockchain implemented their smart contracts in C++. The overview of languages can be

seen in Table 11.

 33

Table 11. Summary of studies by smart contract languages.

Smart contract languages

Solidity 50

Golang 2

Javascript 1

C++ 1

Not given 1

For implementation of the user interface, various technologies were used across the

studies. The results reflect on the popularity of frontend technologies of Web2

development. Most of the user interfaces were implemented by Javascript, or Javascript

based framework or library. As seen on Table 12, 16 of the studies chose Javascript

combined with HTML and CSS for implementing the frontend. React.js, a Javascript

based library, was also a popular choice with 11 studies using it. Other, non-Javascript

frontend technologies were Django, Python and ASP.net. There were 2 studies, that

implemented a mobile dapp using Android and one study using React Native. Lastly, one

of the studies was using Ganache GUI as a user interface. In 6 of the studies, it was not

mentioned, which frontend technologies were used.

Table 12. Summary of studies by frontend technologies.

Frontend technologies

Javascript, HTML, CSS 16

React.js 11

Vue.js 6

Angular 3

Django 2

Python 2

Android 2

Next.js 2

 34

React Native 1

ASP.net 1

Ganache GUI 1

Not given 6

Decentralized storage technologies used in the studies include IPFS and Swarm. The

majority of studies did not include any decentralized data storage apart from the one on

blockchain. On Table 13, we can observe the most used technology for decentralized

storage in the studies was IPFS. We found 18 studies implementing IPFS for various

solution types, e.g., sharing credentials, marketplaces, ticketing system, data

repositories, or live streaming. What they have in common is storing files that are too

large to be stored on blockchain - it would be inefficient to store them, or it would cost

too much gas. Another technology used for storage was Swarm and it was used in 3

studies.

Table 13. Summary of studies by storage technologies.

Storage Technologies

IPFS 18

Swarm 3

None 34

The following Error! Reference source not found. focuses on exploring, which

technologies were used to communicate between user interface and contracts on

blockchain. Here it is important to note, that multiple of these technologies could be

used in the same study. The most used was web3.js, being used in 31 studies. From this,

we can conclude, it is the most popular and easy to use API for connecting with smart

contracts. On the second place was Infura API, which apart from connecting to

Ethereum, offers support to connect with IPFS. It was often observed Infura was used in

combination with web3.js. Web3.py and web3j function similar to web3.js, only for

different platforms, Python and Java/Android respectively. The found technologies for

 35

connecting with Hyperledger Fabric were Hyperledger Fabric Node SDK, Fablo REST API

and Hyperledger Composer API. It is interesting that each study using Hyperledger Fabric

chose a different API for implementation of their solution. This could indicate that there

is no standard choice for Hyperledger Fabric API, or that developers are more open to

use different APIs for implementation. However, there is not enough studies researched

to confirm any of these. Finally, some additional APIs were found in the studies. Firstly,

OpenZeppelin was used in the study that implemented NFTs. Secondly, Whisper API was

used to communicate with the Whisper protocol, which was used to implement a

messaging dapp.

Table 14. Summary of API technologies identified.

API technologies

web3.js 31

Infura 8

web3.py 3

web3j 2

Hyperledger Fabric Node SDK 1

Fablo REST API 1

Hyperledger Composer API 1

OpenZeppelin 1

Whisper 1

5.3. Studies review

For each study that passed the quality assessment, we examined the following further

aspects: the motivations for which it was written, which contributions it gave to

research, which results it has achieved, and which challenges it posed for the future.

Finally, a spreadsheet was filled with the following information for each paper:

• title of the study,

• developed solution,

 36

• blockchain technology,

• smart contract language,

• environment tool,

• testnet,

• frontend technology,

• API,

• storage,

• use of smart contracts,

• use of NFTs.

This information was especially useful to structure the relevant aspects of each study

necessary for our systematic literature review. Next, we will continue with analysis of

the collected studies. For better comprehension, we have grouped some of the studies

based on their characteristics or research focus.

Altamimi et al. in the article [29] propose a framework for deploying mobile applications

using Ethereum blockchain. The proposed system demonstrates the promise of

decentralized systems in enhancing the time and reducing the cost to deploy a mobile

application, compared to current platforms e.g., Apple and Google Play stores. The

system was tested on Ropsten and Rinkeby testnets and it was observed the gas costs

were highest when adding new app information to the blockchain and the lowest when

deleting the app. IPFS decentralized storage was used to store and download

applications, which offer better optimization of network utilization and shorten the

download times.

In the next group of studies, all authors implemented their version of decentralized

voting application. In 2019, the authors in the article [30] developed a sample voting app

with ASP.net. Canessane et al. [31] proposed to decentralize voting system to increase

privacy and to remove the constraints of time and location by allowing users to vote

from their own blockchain nodes. Rosa-Bilbao and Boubeta-Puig [32] in contrast to other

voting systems, proposed a system, where each voter has a different weight of vote,

 37

depending on university staff type. Additionally, they offer ability to obtain partial and

total election results in real time. In 2022, Alvi et al. [33] proposed a mechanism for

security in digital voting systems. The implemented system provided voter anonymity

by keeping the voter information as a hash in the blockchain. It also provided fairness

by keeping the casted vote encrypted till the ending time of the election. After ending

time, the voter could verify their casted vote, ensuring verifiability. All 4 studies

implemented the systems on Ethereum blockchain and tested the prototype on with

Truffle.

In 2022, Sasikala et al. [34] did a survey on latest technologies on decentralized

applications, where they implemented a full and a partial decentralized app and carried

out performance comparison. The tests were performed utilizing Locust, a Python

program for Web application performance testing, and Mocha, a Javascript test

framework for creating test scenarios. Results showed fully decentralized app was

delivering frontend 41.46% faster, than the partial one. However, when it came to

customer solicitations, partial dapp had a faster response time.

The next group of articles focused on developing a decentralized healthcare system on

Ethereum blockchain. Santhanakirshnan et al. [35] proposed a proof-of-concept

healthcare system for secure healthcare information transfer. They found the number

of benefits to be equal to the number of drawbacks, however, they believed with

research advancements the benefits could outweigh the drawbacks. They concluded the

assurance of immutability, traceability, transparency, and decentralization would

provide a huge boon to the healthcare industry. The authors in article [36] implemented

a system for secure storage of healthcare data using Ethereum blockchain with

additional analytical capabilities utilizing Machine Learning. They proposed 2 possible

improvements to build a more promising system, introducing new consensus algorithms

to enhance speed and efficiency, and better architecture of storing medical records,

with more up-to-date and accurate data available for training Machine Learning models.

Satamraju and Malarkodi [37] in their work propose a decentralized framework for IoT

 38

devices using physically unclonable features (PUFs) and blockchain. They showcased

their model on a smart healthcare management system and successfully achieved the

overall security goals of the IoT applications. The PUFs used in the design have 48.46%

uniqueness (50% ideal) and 2.38% reliability. The system was tested on 2 Raspberry Pi

based medical devices.

Abdulaziz et al. [38] proposed a secure and anonymous decentralized messaging

application built on Ethereum platform using Whisper protocol. The application could

send end-to-end encrypted messages while ensuring anonymity of the sender and

receiver. Peer-to-peer communication was achieved with Whisper protocol serves to

encrypt a message and, in theory, send it to every Whisper node. The messages had to

be encrypted asymmetrically using Elliptic Curve Integrated Encryption Scheme or

symmetrically encrypted using Advanced Encryption Standard Galios/Counter Mode.

However, there were some unexplored issues found, where messages intended for a

specific user could expire while user was offline or during an unexpected network

failure.

TogEther, was an idea of application for crowd funding by Nagadeep et al. [39]. They

implemented a user-friendly app for funding a start-up campaign in a decentralized way

on Ethereum blockchain. They compare blockchain transactions with centralized bank

transactions, where in case of failed transaction, blockchain would immediately refund

ethers into sender's account, opposite of centralized banks where it would take time to

process transactions and it could take few days to return the money. The work proposed

a technology stack for implementing dapps consisting of React.js, web3.js and Solidity.

Muth and Tschorsch [40] had a vision of a dapp named SmartDHX, supporting Diffie-

Hellman key exchange (DHKE) scheme fully implemented as a smart contract. The

cryptographic logic was implemented in Solidity, and client-side logic in web3.js. They

measured performance based on blockchain specific metric instead of network metrics.

Two-party and multi-party SmartDHX were compared, and it was observed, the costs to

 39

perform DHKE on-chain was high. However, other costs e.g., exchanging a shared key,

could be negligible.

Both of next articles were focusing on sharing students' credentials. Mishra et al. in 2020

[41] proposed architecture for sharing student's credentials comprising of five major

stakeholders, government body, students, companies, schools, and professors. Each of

them was given different set of functionalities offered using different dashboards on

dapp. They used IPFS to store credentials and the generated hash value together with

metadata was stored on Ethereum blockchain. The test of dapp were performed on

Rinkeby testnet and it was observed the average upload of credentials was around 16s.

Mishra et al. in 2021 [42] focused on security analysis of their solution. They compared

architectures with and without privacy protection. The proposed dapp was then

evaluated based on top 10 Open Web Application Security Project (OWASP)

vulnerabilities. For each vulnerability there was a countermeasure proposed. The

findings indicated that in most cases already the use of blockchain technology ruled out

the possibility of these security risks. Additionally, the performance experiments

showed that the performance of dapp remains almost the same without or with privacy

integration. For future, they intend to deploy architecture on permissioned blockchain

and integrating the ability of revoking credentials.

One of the most popular uses of blockchain technologies are marketplaces. We will

continue with analysis of 6 studies related to marketplaces. In the article, Ivankovic et

al. [43] proposed an auction system framework based on Hyperledger Fabric. They

subdivided the smart contracts in 3 subtypes, create operations, read operations, and

update operations. The KPIs measured were throughput, meaning the rate at which

valid transactions are committed, and transaction latency, meaning the amount of time

for the effect of a transaction to be acknowledged by other network nodes. Results

shown the average latency increases in accordance with the send rate. Comparing the

read operations to that of the create operations, there was a significantly higher

throughput and significantly lower latency. Shakila and Sultana [44] in their work,

 40

describe the process of migrating existing centralized marketplace to decentralized

marketplace. Centralized marketplace was consisting of a frontend application in

Javascript and a backend central system with database. The new proposed architecture

was frontend in Javascript, Ethereum for storing transaction data, and IPFS for uploading

product detail files. Interaction with IPFS was programmed with Infura API and it was

tested on local Kovan testnet. After analyzing gas consumption, the authors concluded

it was an acceptable amount. Profit margin was higher, compared to traditional

centralized systems, Amazon, and Ebay. They concluded that decentralized

marketplaces have huge potential, but further tests should be implemented on public

blockchain. Although cyber threat intelligence exchange is a theoretically useful

technique for improving security of a society, the potential participants are often

reluctant to share their knowledge. Riesco et al. [45] proposed a decentralized cyber

threat intelligence marketplace on Ethereum blockchain. They implemented CTI token

based on ERC20 token standard, which could help attract investors. Additionally, they

implemented safe math libraries written in Solidity to implement math operations with

safety checks that revert on error. In conclusion, they write the decentralized

marketplace provides new economic incentives to all roles involved and its value is

depending on the quality of data. Third article by Menges et al. [46] involved

implementation of threat intelligence sharing platform, and a prototype was developed

based on the EOS blockchain and IPFS. During implementation there were however a

few obstacles, EOS developer studio frequently crashed during tests, some features did

not work as advertised or did not work at all, and there was no debugging available

within the environment. They suggest, future work should ensure privacy and

compliance with legal requirements (i.e., GDPR) in practice. Sober et al. [47] propose a

decentralized marketplace for IoT data built on Ethereum. The marketplace also includes

a proxy, a broker, and user interface to enable data trading. When measuring

advantages and disadvantages, they point out the implemented solution achieved

transparency, integrity, and verifiability of the data. Discovered disadvantage was it was

more difficult to query the data compared to traditional databases. To query the data

stored through the various smart contracts, it was necessary to iterate over the entire

 41

storage of a smart contract and filter out the data that is of interest. It would be possible

to implement certain filter methods in the smart contract, but this would cause

additional costs. Nardini et al. [48] in 2020 proposed a decentralized electronic

marketplace for computing resources. The idea was that anyone with spare capacities

can offer them on this marketplace. Here the blockchain would act as an escrow service,

making sure that the payment was there to begin with and that it gets released once the

computational task has been completed and accepted. One of discovered issues was the

financial overhead imposed by the blockchain. The system had some non-negligible

costs for the users, which would probably make the fees higher than those of large cloud

providers. They finalize by mentioning that improving response times would be

necessary to have a positive impact on users adopting their framework.

In 2021, Sreedevi et al. [49] proposed a decentralized application for managing the

disaster with blockchain, cloud and IoT. In the background the app would run on

Hyperledger Fabric blockchain, and smart contracts would be implemented in Golang.

Google Maps API was used to plot the disaster affected areas and GPS for navigation.

IoT was used to track the movement of the assets in the network by showing, who is the

owner of the assets and history of the transactions of the assets. In conclusion, they

write that combination of blockchain, cloud and IoT is the best solution for managing

disaster, by providing easy management and better communication.

Authors in the article [50] proposed a document uploading and verification dapp on

Ethereum blockchain. They presented the architecture of the solution and

implementation process. Decentralized app was tested on Ropsten testnet. The

communication between user and the network was implemented with web3.js and

Infura API.

The next 2 articles both utilized blockchain to solve a problem of data sharing. Putz et

al. [51] in their study implement EtherTwin dapp that meets the complex digital twin

sharing requirements of the Industry 4.0 landscape. Digital twins are complex digital

 42

representations of assets that are used by a variety of organizations across the industry

4.0 value chain. For the implementation, Ethereum blockchain and Swarm have been

used. Smart contracts were analyzed for vulnerabilities using the SmartCheck

vulnerability scanner. The twin and document creation rates estimated by the experts

did not present a challenge, as even the maximum values were within the performance

limits of Ethereum and Swarm. They suggest the solution may be extended to other

areas, including healthcare data sharing, data marketplaces and machine certifications.

The second article [52] tried to solve privacy issues of the users in the context of social

networks. They point out that in traditional systems, the privacy settings of a user are

stored by the social network, which acts as a privileged party and could modify the user’s

choices to spread his/her data at any time without a user being able to prove this

violation. They proposed a blockchain technology-based approach combined with a

highly adaptable model to define the privacy settings of users in social networks. User

can define their own privacy settings and store them on blockchain. Only the social

network and user can link these settings to the user, which would make it pseudo-

anonymous. The costs for obtaining such features are a few cents per user and makes

the implementation cheap and effective.

Another popular use of blockchain was in traceability of various value chains. Alves et

al. [53] proposes an architecture for tracing sustainability indicators in textile and

clothing industry using Hyperledger Fabric. A traceability platform allows companies and

consumers to gain insights into product items or lots by linking previously recorded data.

The development environment was created using Fablo tool for generating Hyperledger

Fabric blockchain network and it was run on Docker containers. Smart contracts were

written in Golang because it is the main supported language in Fabric. For frontend,

Vue.js was used together with Fablo API to communicate with the network. Miehle et

al. [54] in 2019 proposed a decentralized app named PartChain for multi-tier supply

chain in automotive industry. The vision of the PartChain system was to enable

participants of supply chain networks to create and transfer a unique digital twin of a

physical part using a mobile device. Unlike previous discussed study, they used CouchDB

 43

with Docker and communication with blockchain was implemented using Hyperledger

Composer API. The articles [55] [56] [57] all used the same technologies for

implementation of their dapps, namely Ethereum blockchain, Javascript or React and

web3.js. The main concern of the study [56] was the adoption of proposed solution for

prescription drug surveillance, mainly because blockchain and smart contracts are still

in their early stages of development. The study [55] points out to how hashed encryption

and decentralized storage make data tampering difficult and hence increasing security

of the system. Lastly, the study [57] compared their solution of medical supply chain

with 3 other medical supply chains and achieved improvements on transparency,

decentralization, scalability and user-friendliness.

Authors in next study [58] is a first study that integrated robot operating system with

Ethereum blockchain. For that they implemented a specialized smart contract

framework called “Swarm Contracts” that rely on blockchain technology in real-world

applications for robotic agents with human interaction to perform collaborative tasks

while ensuring trust by motivating the agents with incentives using a token economy

with a self-governing structure. The user interface was implemented using Python and

connected to blockchain web3.py. Swarm was used for storing the data from robots.

Nikhil et al. [59] implemented a use case example lottery dapp, where users can

participate in lottery by paying a predefined amount. They observed that execution time

is no longer an issue in the Ethereum network because the gas values may be modified.

They conclude that blockchain is the most promising technology for security and storage

in the future.

Mhamdi et al. [60] tackled the problem of communication between connected vehicles

and surrounding objects. As a solution, they integrated the blockchain system on the

internet of vehicles (IoV) network. In such network, several entities transfer information

to each other. The smart contract adds the automatic and secure aspect of this transfer

thanks to the transparency and immutability of the blockchain.

 44

The following articles found the use of blockchain for the Covid19 situation. Goel et al.

[61] suggested a contact tracing system for restricting the transmission of any infectious

disease using Ethereum blockchain. They used Bluetooth technology to identify

contacts, and their data was stored in the blockchain. The study [62] proposed a solution

to decrease overproduction and underutilization waste of Covid19 vaccine by using

Ethereum blockchain and IPFS. They point out the following challenges of the proposed

solution: high power consumption and scalability issues, lack of industry 4.0 experts,

privacy of sensitive data on blockchain, and finally interoperability with legacy systems.

Madine et al. [63] proposed a cross-chain interoperability system based on the

Electronic Medical Record document sharing across two hospitals. Cross-chain

interoperability represents the ability for one blockchain network to interact and share

data with another blockchain network. Their algorithm implementation was based on

Ethereum network, but it could be generalized for any other network that supports

smart contracts. For testing, they used 2 different Ethereum network for representing 2

different hospitals. They outline limitations of their system in the form of open

challenges: increasing cost of deployment, limited upgradability, and cross-industry

interoperability.

Authors in the study [64] described usability of blockchain technology in a public

participatory geographical information systems. They suggested blockchain should be

used to have a fully open, transparent, and accountable environment for public

participation. They developed a prototype dapp, where users could participate in the

site selection of urban facilities. Because blockchain makes their solution tamperproof,

the citizens would consider it as an accountable and trustworthy application that merely

reflects their collective decision. They mention the constraints of Solidity language and

lack of support for geospatial data types.

 45

Carvalho [65] in his article proposed bringing transparency and trustworthiness to loot

boxes in video game industry. Ever-increasing reliance on loot boxes in video games has

been criticized for its lack of transparency since, before purchasing a loot box, players

do not necessarily know the possible items they can win and the associated

probabilities. They present their idea in proof-of-concept application, built on Ethereum

blockchain with Javascript frontend. After the player opens a loot box, an Etherscan link

is generated to assure that transaction was created. They evaluate their solution based

on accuracy, security, and costs and conclude that it is accurate, secure, and

inexpensive.

Yu et al. [66] and Arulprakash and Jebakumar [67] implemented use of blockchain in

crowdsensing. Crowdsensing is a paradigm, where, in exchange for rewards, mobile

users collect and share location-specific data values. Because traditional centralized

systems are prone to attacks, intrusions, single point of failure, manipulations, and low

reliability, they proposed an Ethereum-based system. In [66] they carried out extensive

experiments on a real-world crowdsensing system to demonstrate their smart contract

protocol’s effective-ness and practical performance by developing a full-stack on-chain

and off-chain dapp. They used IPFS for off-chain privacy-preserving data storage. In [67]

they additionally incorporated a reward system for workers. Moti et al. [68] proposed

an Android-based crowdsensing framework for mobile devices. They proposed the

proof-of-location protocol to assist their solution on guaranteeing that agents

participating in information elicitation mechanisms were at the expected locations when

reporting their measurements.

Padghan et al. [69] proposed a business model for cooperative energy sharing using

Ethereum blockchain for an appropriate and fair accounting of the energy transferred.

A case study with four prosumers using realistic data was presented to demonstrate the

usefulness of the proposed framework. The total bill for four prosumers was $527.7 per

month, which was reduced to $285.15 per month when using the proposed framework.

 46

They concluded that their framework guaranteed the energy buying or selling of each

prosumer in an efficient manner.

Construction industry worldwide suffers from poor payment practices. In [70] the

authors proposed a smart contract system for security of payment of construction

contracts. Their solution guarantees availability of the funds for a progress payment

period by blocking the projected progress payment amount at the beginning of the

progress payment period. posed system were revealed through a real construction

project. The main contribution of the proposed smart contract payment security system

is that it provides a secure, efficient, and trustworthy platform for security of payments

of construction contracts, without requiring a trusted intermediary such as lawyers or

banks. The system is based on Ethereum blockchain with user interface being developed

in Javascript.

The next group of articles was focusing on sharing and storing data. For better

comprehension we presented the technology stack in Table 15. All studies built their

solution on Ethereum blockchain using Solidity for smart contract development.

Table 15. Technology stack summary of selected studies.

Ref. Environment tool Testnet Frontend API Storage

[71] Geth Rinkeby Django web3.py /

[72] / Ethereum

Mainnet

Javascript web3.js Swarm

[73] Truffle, Ganache Metamask React web3.js IPFS

[74] Ganache Metamask React web3.js IPFS

[75] local test

network

/ Android Infura,

web3j

IPFS

From the table we can observe different approaches have been used for implementation

and how the technology stack changed based on their choice. We can observe the only

 47

interdependent layers were frontend and API, where API was in based on the same

programming language as frontend language. Django framework is based on Python;

therefore, API was in python as well. React is based on Javascript, so the API selected

was written in Javascript. The same goes for Android, which is Java/Kotlin based, and

web3j is written in Java. We can observe that other technologies like storage or testnets

could be used with different platforms. In [71] they observe that with an increasing

demand for data re-use their solution scaled similarly to any Ethereum based network

in private and in public configurations of the network. In general, mining a transaction

took between 10-20 seconds and concluded their model introduced low computational

cost. In [72] the authors proposed an architecture involving the encryption of data with

strong encryption ciphers and decryption keys that are specific to each user. A smart

contract was used for requesting and providing access to data uploaded to the Swarm

decentralized network storage. The challenge they mentioned was access revocation, if

a user that has received access to a file is now considered untrustworthy, or the file-key

has been otherwise compromised, access to the original file should be revoked. In their

proof-of-concept implementation they included functionality of re-encrypting the file,

to partially solve this issue. Wong and Heng [73] in their study suggest to use React

frontend library for more secure solution instead of plain HTML, CSS and Javascript.

Furthermore, React library was nominated as the top Javascript trends in 2019. Cheng

and Heng [74] demonstrated how Ethereum blockchain and IPFS can be used as a

decentralized alternative to centralized storage systems. They performed a comparison

between centralized and decentralized storage, where identified strong points of

decentralized system were anonymity and inalterability, and weak points were low

scalability and vulnerability of malware spreading by disguising it as valid content. Tang

et al. [75] proposed a data storage based on Ethereum blockchain and IPFS for Android

mobile devices. Additionally, they implemented Diffie-Hellman key exchange as

encryption scheme to protect user data. In the conclusion, they added that their model

can guarantee the high throughput of data storage and has the characteristics of

traceability and tamper-proof design.

 48

Most of the existing blockchain frameworks are unsuitable for miniature Internet of

medical things (IoMT) devices due to high computational and storage requirements.

Authors in [76] aimed to overcome this challenge by proposing a private blockchain

framework in which different stakeholders of a medical system such as patients,

doctors, IoMT devices, etc. act as nodes, creating a decentralized network in which

physiological data output by IoMT devices can be stored securely and tamper-free

forever. They proposed an implementation in a Raspberry Pi network, using Proof of

Authority (PoA) consensus mechanism which has minimal computational requirements.

They ensured data confidentiality with double-encryption mechanism using Elliptic

Curve Integrated Encryption Scheme. They mentioned that for a standard Ethereum

network, the block gas limit is 8000000, and transaction gas limit is 21000. They have

used the same for the proposed system to achieve a minimum transaction speed of 25

transactions per second. The solution consists of a Python module to fetch sensor data,

a Javascript frontend module and web3.js API to invoke smart contract function.

Praitheeshan et al. [77] proposed private and trustworthy distributed lending model

using Hyperledger Besu, which is an Ethereum client that enables private smart contract

transactions and permissioning in a private Ethereum network. They chose Besu

because it is more suitable to develop financial applications that require security or high

performance in private transaction processing since it is scalable, reliable, and offers

secured off-chain privacy. Secondly, they used Orion, a private contract manager, to

maintain transactions private and distribute transaction data among the participants

only.

Author in [78] suggested the use of Ethereum blockchain and IoT in a fund management

of financial poverty alleviation system. Their solution records personnel information,

poverty alleviation data and funds in the blockchain to ensure the data credibility and

security. IPFS was used to query and store large text data. They implemented a complete

application platform, with a few concerns. They mention that performance

improvements are necessary and additional encryption to protect the data privacy.

 49

The raw volume of live streaming video continues to expand rapidly as a critical

component of the creator economy. In centralized video streaming platforms, the

platform owner controls most of the content uploaded on the centralized video

platform, not the content producer. Lopes et al. in [79] implemented an Ethereum-

based live streaming service with pay-as-you-watch business model. What was

interesting in this study, was the stack of technologies used. Their solution was based

on Voodfy, which is a decentralized video hosting platform utilizing Filecoin combined

with IPFS and Livepeer. Textile ThreadDB API was used to upload content on IPFS

decentralized storage. Libp2p protocol, a protocol for developing peer-to-peer network

was used for implementing decentralized chat. Superfluid Finance protocol framework

was used to enable real-time finance transfer between users' accounts. Every content a

streamer creates is minted as a non-fungible token (ERC-721 NFT) and stored to IPFS. To

grant access to this content only when a user is subscribed, the Unlock protocol is used,

which allows locking/unlocking the content. For providing real time insights of money

streamed a decentralized query protocol Graph is used, which allows indexing, querying,

and caching the data stored on decentralized data systems.

Another study based on NFTs was written by Arora et al. [70] and they demonstrated

NFTs in an Ethereum-based tile-guessing game implemented in React.js. A player earns

an NFT by successfully matching 2 matching tiles. After the match, the player is informed

about the gas price required for minting the NFT and after confirmation, the NFT is

minted and added to the player's wallet. For implementation of NFT they used

OpenZeppelin library.

Sedrati et al. [80] pointed out that existing governance frameworks were not sufficient

in the IoT context, so they proposed a solution incorporating blockchain. For proving the

feasibility of their concept, they implemented a hospital smart parking system using

attribute-based access control (ABAC) deployed on Ethereum blockchain. They

 50

concluded that delegating access control policies to the Blockchain ensures a

transparent and non-editable system, where no information can be overwritten.

Rafati Niya et al. [81] highlighted that current systems for selling digital event ticket are

subjects to counterfeiting, profiteering, and black markets. To overcome these issues,

the authors proposed a decentralized ticketing platform using Ethereum blockchain. To

avoid ticket frauds, they set a rule that price of resold ticket cannot be higher than

original price of the ticket, and the validity of the ticket can always be verified on the

blockchain. They used IPFS for storing metadata of the events and tickets. Frontend was

implemented in Vue.js.

Authors in [82] pointed out the issues India has when it comes to maintaining land

ownership and land records. For that, they proposed to store the ownership of land in

blockchain. They implemented a decentralized framework for land registry, that can

authorize the originality of the land registration documents and convert them into data

to be stored on Ethereum blockchain. Additionally, the framework allows fiat currency

for transaction. Angular framework was used for frontend development. They suggested

the system could be improved incorporating tokenization.

5.4. Discussion

Based on the articles read and analyzed, we continue to answer 4 research questions.

We answer each question individually in a separate subsection. To help and to facilitate

the review of the results of the systematic literature review, we created a table located

in the Listings, under Appendix A.

5.4.1. RQ2: What are the technologies, platforms, frameworks, and tools

for developing Web3 solutions?

During our systematic literature review, a total of 55 studies were analyzed, which at

the same time represent 55 unique Web3 solution examples. We carefully examined

which technologies were used for implementation of each solution and collected them

 51

in a spreadsheet, look Appendix A. We will follow with answering RQ2 and holding a

discussion in separated paragraphs for each of technologies, platforms, frameworks,

and tools.

According to the studies, the most popular technology was Ethereum, where most of

the studies implemented their solution on Ethereum blockchain. There were 3 studies

found, that built their solution on Hyperledger Fabric blockchain, and only one study

that used EOS blockchain. The programming language used for developing smart

contracts for Ethereum blockchain was Solidity in all studies, for Hyperledger Fabric we

detected use of Golang, which is preferred by the community, and one usage of

Javascript. EOS blockchain smart contracts were implemented in C++. We suspect the

reason for so many studies to use Ethereum blockchain comes from its API

implementations available for the popular frontend development frameworks. In the

studies, we detected Ethereum API libraries written in various programming languages

e.g., web3.js in Javascript, web3.py in Python and web3j in Java. Additionally, at the time

of writing, Ethereum has the second highest market cap in cryptocurrency and there are

almost 56,000 repositories on GitHub. In comparison there are only around 8,000

Hyperledger Fabric repositories. We were surprised there were no studies found

building their solution on Polygon or Solana, which have around 16,700 and around

12,500 repositories, respectively.

There were 3 platforms found in total, namely Infura, Voodfy and OpenZeppelin. Infura

was mostly used for its API to easily connect with IPFS. However, in [68] it was used for

hosting Ethereum node cluster, because hosting a node on mobile device is energy

demanding and demotivating for user agents. Voodfy is another platform, that was used

in [79] for storing the live streamed videos. As of today, it seems this platform is no

longer supported as there have not been any update since Summer 2021. Lastly,

OpenZeppelin was used in [83] for implementation of NFTs. The platform provides

predefined smart contracts to reduce coding complexity.

 52

Frameworks found mostly consist of the frontend frameworks, and it seemed like any

frontend framework could be used to develop Web3 applications. The most popular

frameworks were Javascript based, with Vue.js leading, following with Angular, Next.js

and React Native. We would include React.js here, but it is a library and not a framework.

Other frontend frameworks used were ASP.net, Android, and Django. Finally, the

important framework that was used by many studies is Truffle, which is used for

compiling and migrating smart contracts. It was used by at least 28 studies.

The tools for Web3 development observed in the studies were used for creating a

blockchain client i.e., blockchain node. The most used was Ganache, which is used to

create Ethereum client node. Other Ethereum-based tools were Geth, Parity Ethereum

and Remix IDE. We suspect most researchers chose Ganache, because of its convenient

and easy-to-use GUI, where Geth is a command-line tool and might be more

complicated to use. Hyperledger Fabric involving studies used Docker tool to establish

the blockchain network.

We would like to point out another subject that was not mentioned in the research

question i.e., approach to decentralized storage. We found 2 different approaches of

implementing decentralized storage. The more common one was storing files on IPFS

decentralized storage, and second one was using Swarm decentralized storage.

5.4.2. RQ3: How connected and dependent is Web3 to blockchain and

smart contracts?

To answer this question, we must go back to the definition of what Web3 is. We defined

that Web3 focuses on decentralized data structure, AI driven services and edge

computing infrastructure. Blockchain is a decentralized distributed ledger, and that

already covers decentralized data structure and edge computing infrastructure. Then

we are missing AI driven services, and here the smart contracts step in. Smart contracts

are autonomous, which means once they are deployed, they will operate on their own.

We could say blockchain is a foundation for Web3 and smart contracts are the AI

 53

workers creating value. As expected, the results of SLR showed that all analyzed studies

used blockchain technology to implement their solutions. Therefore, we can conclude

that Web3 depends on blockchain and smart contracts.

5.4.3. RQ4: What is the full-stack for Web3?

By analyzing the current literature on development of Web3 solutions, we got better

understanding on how the full-stack of technologies for Web3 development should look

like. First, we gathered the technology stack from the examined studies, ordered it into

logical layers and added them to a mind map for better presentation. This can be seen

on Figure 4. Then we did additional research of gray literature and our own experience

and included the findings in the existing mind map. On the figure can be seen our

proposed mind map of the full-stack technologies for Web3 development. We defined

8 layers, with 5 of them, highlighted with green border, being the minimal stack for

developing a complete Web3 solution. Network layer presents the blockchain and

should be the starting point for developers when they are choosing the technologies to

build a solution. Developer environment is an important aspect, because most of the

smart contract testing will be performed there. The choice of frontend framework is left

to developer's preferences and would usually be chosen based on whether the

developer already had experience working with it. Communication layer is the bridge

between frontend and smart contracts. This is where frontend interacts with smart

contract's functions. The last of minimal required stack for development is identity layer,

which enables connecting the wallet with the application. The most important additional

layer is storage layer, which is required in any scenario where large data must be stored.

Block explorers’ layer adds the ability to scan the blockchain and see details of any

transaction on the network. Finally, there is Web3 supporting platforms' layer which is

lately gaining the most attention and the whole communities get built around it. Web3

platforms provide developers the necessary tools to make the process of building Web3

application easier and faster. While the layers presented will likely stay the same, the

projects and with them communities have a potential to evolve drastically.

 54

Figure 4. Web3 development technology stack.

5.4.4. RQ5: Are non-fungible tokens (NFTs) necessary for Web3

development?

While NFT cannot exist without a blockchain, a blockchain does not necessarily require

an NFT. We have observed during the analysis of literature that most studies did not

implement NFTs in their solution, to be exact, only 2 of the studies implemented NFTs.

There was a use case for implementing a live video streaming platform, where content

is stored as NFT. [79] The other implementation used NFTs as a reward for successfully

playing their puzzle game. [83] We concluded that NFTs in Web3 development have a

role in specific niche of Web3. A good demonstration of the role NFT plays in Web3 was

proposed in a short article by All NFT Space [84] and can be seen on Figure 5. Currently,

the most common use of NFTs is in presenting ownership of a digital asset, usually of

digital art or an item earned in a video game. However, there is an increasing number of

practices using NFT in different areas i.e., ticketing systems or personal identification.

 55

Figure 5. Role of NFTs in Web3.

 56

6. EXPERIMENT

The differences between Web2 and Web3 have already been discussed in chapter 3.

However, we wanted to further explore how the differences reflect on development of

the applications. For that purpose, we implemented a decentralized application using a

full-stack for Web3 development that was previously presented. We aimed to use at

least one technology from each stack layer, for the experiment to be wholesome. We

then suggest how the same solution would be implemented using Web2 full-stack

technologies, how the architecture of the system would look like, and which

technologies would be used to implement it. Finally, we discuss the observed differences

between Web2 and Web3 solutions.

As a proof-of-concept application, we developed WeddingFund, which is a decentralized

application designed for collecting wedding presents in form of cryptocurrencies and

wedding card wishes. The idea for a solution comes from the fact that the newlyweds

can be young couples without big savings and often prefer to receive money rather than

meaningless gifts from the invitees, in addition, the wedding itself is expensive and they

would like to afford a pleasant honeymoon. Our suggested solution offers donating any

amount of Ether to a created fund for newlyweds, which must be accompanied by a

digital wedding card wish in an image format. The donations are transferred to the fund

on a smart contract and can be collected anytime by the owner of the contract. Wedding

card wishes are stored on IPFS decentralized storage.

6.1. Environment setup

In this chapter we discuss the technologies used for setting up the environment and

implementing the solution. Most of the technologies were selected based on our

previous experience using them. Tools and frameworks for development were installed

and ran using Node Package Manager (npm) version 8.5.5. and Node.js version 16.13.1.

The Integrated Developer Environment (IDE) tool we chose for our solution was Visual

Studio Code. The important extensions we installed were Solidity and React extensions.

For the local testing environment, we used Hardhat, which offers deploying smart

 57

contracts, running tests and debugging Solidity code on a local Ethereum blockchain. It

is a great tool for Solidity debugging and it displays Solidity stack traces, console.log and

explicit error messages when transactions fail. Smart contracts were implemented in

Solidity and compiled with Hardhat built-in compiler. They were deployed to Hardhat

network and tested using scripts written in Javascript. For public testing, Alchemy was

used to host our Ethereum node on the Goerli test network. Alchemy also provided us

with developer dashboard for the in-depth statistics insight. For developing on the

Goerli testnet we had to own some of its cryptocurrency Goerli ETH (GOR), which we

obtained from Goerli Faucet. It allows to obtain 0.2 GOR each day. To connect our wallet

with Goerli testnet we used MetaMask browser extension on Google Chrome Web

Browser. For testing our solution, we created multiple MetaMask wallets.

Our application required of storing wedding card wishes in image format and storing

them on blockchain would be inefficient and expensive. We decided to use IPFS

decentralized storage and Infura platform to host our IPFS node. Infura, like Alchemy,

provides detailed usage statistics of the hosted node. Frontend framework we decided

to use was Next.js, a Javascript framework built on React. The reason for this decision

was that we had previous experience with React.js, and we believed Next.js would meet

all the requirement of our project. Since Next.js is Javascript framework, we had to

choose a Javascript-based APIs for API layer. We decided to use ethers.js for interacting

with the smart contracts and ipfs-http-client to interact with IPFS. To observe the

transactions on public Goerli testnet, we used Goerli Etherscan block explorer. Figure 6

demonstrates the designed system architecture of WeddingFund decentralized

application.

 58

Figure 6. WeddingFund dapp system architecture.

6.2. Implementation

6.2.1. Implementation of Web3 solution

We began by creating a sample project using Hardhat. From the given options we

selected the basic sample project. On Figure 7, we can see the project structure that was

created. Important folder created are "contracts", this is where we store our contract

files, "scripts", this is where we store our scripts for interacting with smart contract, and

finally "hardhat.config.js", where the configurations for Solidity version and deployment

 59

settings are defined. The folders "artifacts" and "cache" were generated after deploying

the smart contract.

Figure 7. Hardhat generated project structure.

The first thing we implemented was WeddingFund smart contract, which can be found

under Appendix B. Here we defined the Memo object, where we will store the address

of the sender, timestamp, name, message and IPFS file path. All the operations that

smart contract can execute are defined here, namely, paying the wedding donation,

withdrawing funds, and retrieving all Memo objects. Then, we implemented the script

for deploying the contract on the network, look Appendix C. Here we use methods

getContractFactory() and deploy(), which Hardhat provides us. Next, we implemented

the script for testing the smart contract on a local Hardhat network. The script can be

found under Appendix D. Here, we used Hardhat to generate a few dummy accounts for

us, so we can test the contract with multiple participants. Hardhat by default assigns

every account with 10000 ETH. We use one account to deploy the contract and become

the contract's owner, and the other 3 accounts to pay wedding donations. After that we

withdraw all donations and transfer it to owner's account. Lastly, we print all stored

Memos. We print the balances of all addresses before the payment, after the payment,

and after the withdrawal. We can see the example of running the test script on the

Figure 8. Address 0 represents contract owner, address 1 is one of donor accounts, and

address 2 is the address of the deployed smart contract. We can observe that small

 60

amount was paid from owner's account for deploying the contract. After the payments

we can see address 1 is missing a bit over 1 ETH, because 1 ETH is paid, and small amount

is deducted as gas price for the transaction. The balance of address 2 is 3.0 ETH, because

3 dummy accounts donated 1 ETH each. After withdrawal we can observe the balance

of contract is back to 0 ETH and the owner received a bit less than 3 ETH, since small

amount was deducted as gas.

Figure 8. Example running the test script.

After we had seen the implementation was working, we began with implementation of

the user interface i.e., frontend. First, we configured new projects on Alchemy and

Infura platforms. The process of creating a project on Alchemy platform is seen on Figure

9. The platform at the time of writing supported 6 blockchains, from which we chose

Ethereum. Networks available for Ethereum were Mainnet or Goerli network, other

networks were marked as deprecated and were disabled. We selected Goerli network,

so we don't have to spend real currency for our solution. After we created new project,

we can access the API key to connect to the platform. To be able to connect to Goerli

network, we had to configure Hardhat config file to use the connection URL that

Alchemy generated for us. This can be seen on Appendix E.

 61

Figure 9. Alchemy create app example.

Next, we had to configure MetaMask to use Goerli test network. The creation of the

network is demonstrated on the Figure 10. During creation of a new network, we start

by naming the network. Then we must provide a new RPC URL, which was generated by

Alchemy for us. The chain ID is used by Goerli network is 5 and the name of the currency

is Goerli ETH (GOR). For the block explorer we select Etherscan block explorer. Because

at the time we owned 0 GOR cryptocurrency, we had to visit Goerli Faucet website and

request it. After the request we almost instantly received 0.2 GOR.

After that we had to create a new project on Infura platform. We used Infura to host our

IPFS node and to provide us a developer dashboard to easily gain insight into our files

uploaded to IPFS. Infura offers different pricing, depending on your needs, but for us

their free plan was sufficient. It allows 100,000 of total requests per day and 5GB of

storage on IPFS. We planned to host only images on IPFS, and 5GB is more than enough

for a proof-of-concept application.

 62

Figure 10. Creation of Goerli testnet using MetaMask.

For the frontend framework we chose Next.js. We used the create-next-app CLI

command, to generate our project structure. Then we first installed the necessary

dependencies that we would require, and they can be seen under Appendix G. We

installed bootstrap to provide us with styling components, ethers.js for implementing

the communication with the blockchain, and ipfs-http-client to communicate with IPFS.

For enabling ethers.js to call communicate with smart contract, we had to generate

Application Binary Interface (ABI) of WeddingFund smart contract and import it in the

index.js file. ABI is a JSON file that holds the information about the precise names and

types associated with the smart contract's operations. Appendix F shows the generated

ABI of WeddingFund contract.

 63

The first thing we implemented on the frontend part was checking if the user's wallet is

connected. If it is not connected, the user will be asked to connect it. This is basically an

authentication in Web3. The implemented functions for checking if wallet is connected

and to connect the wallet are demonstrated in Appendix H. We can see the initial page

on Figure 11. When user clicks on the button, he will be asked to connect his wallet using

MetaMask. Initial page also displays the current value of the fund because we don't

require the user's wallet for querying the network.

Figure 11. Initial page of the solution.

After user connects the wallet, he can send the donation and the wedding card wish

using the form shown on Figure 12. First, we had to configure IPFS client, which is shown

under Appendix L. Implementation of sending the donation can be seen under Appendix

I. The donation amount is in Ethers and the minimum amount that can be sent is 0.001

ETH. This function includes the implementation of uploading the wedding card wish

image to the IPFS. After the image is successfully uploaded, we retrieve the IPFS path

created for this image, and we store it to the smart contract combined with other data

from the form. If the connected wallet is the owner of the smart contract, he can also

withdraw from the fund. The code snippet of withdraw function is shown under

Appendix J. When the owner withdraws the funds, the balance of the contract goes back

to 0 ETH, but the Memos with images stay on the blockchain and displayed on the page.

 64

Connected users can also see all the donations from the other donors, as it is visible on

Figure 13. The implementation of retrieving all Memos from the smart contract is

included under Appendix K. We first retrieve the list of Memos from the smart contract,

and we iterate over each of them and display them on the webpage. For displaying the

images, we use the IPFS path of the image to find where each image was stored.

Figure 12. Donation form on WeddingFund dapp.

Figure 13. Displayed donations from all donors.

 65

We used block explorer Etherscan to watch the transactions of our solution on a public

test network Goerli. On Figure 14, we can see all the transactions that were executed

with corresponding gas prices of the transaction. First transaction starting from the

bottom represents the contract deployment to the network, where we can see from

which address the transaction was sent and the transaction value. Here we can observe

the initial value of the contract was 0. The 3 transactions in the middle represent

donations to the fund, where each donation was 0.001 ETH. From these transactions we

can already find the address of the contract under column "To". The transaction on the

top is the withdrawal of the funds, and we can notice the gas amount (i.e., Txn Fee) is

lowest during this operation, which is because we don't require a lot of computational

power for withdrawing funds. The highest gas price was during donations, because here

we were adding Memos to the block.

Figure 14. Transactions on Block Explorer Etherscan.

6.2.2. Concept of Web2 solution implementation

To be able to compare the implemented Web3 solution with the equivalent Web2

solution, we prepared a concept of system architecture of Web2 application. For the

frontend implementation we selected the same framework Next.js. In developing Web2

solution we would additionally have to implement backend. For that we would use

Node.js, more specifically Express.js, which is a de facto standard server framework for

 66

Node.js. While designing a Web2 solution concept we wanted to cover the following

functionalities:

• authentication: We would only allow authenticated users to donate wedding

present. For this we proposed using OAuth with Firebase API. OAuth is an

authentication protocol that allows users to approve one application interacting

with another on their behalf without giving away their password. Google

Firebase is a platform that provides API for the implementation of OAuth and a

developer dashboard that shows users' statistics.

• donating funds: For donating funds we would use PayPal API for securely

sending the funds to a designated PayPal account. PayPal is a company that

operates as a payment processor for online payments, for which it charges a fee.

After a user would confirm the donation by pressing the button, a PayPal

window would open with further instructions to login to PayPal account and

confirming the donation.

• storing wedding card wishes: Here we had two options. We could store the

images on our backend server, in which case we, as the owner of the server

would have total control over the stored data. However, it would provide bad

user experience for the users that try to connect to our application, but live far

away from the server, because of the big latency. The second was using Amazon

Cloud storage, namely, Amazon S3, for hosting our data and taking care of

selecting the best server, when a user tries to connect to the application. We

selected the latter for our concept.

• storing other data: The information from the users' authentication and details

from donations would be stored on our server's storage in a MySQL relational

database. This data would be hosted and controlled by us.

 67

Figure 15. System architecture concept of Web2 application.

6.3. Discussion

The implemented WeddingFund solution is a fully decentralized application built on

Ethereum blockchain, with its main purpose of donating funds and wedding card wishes

for the newlyweds.

The main benefits of our dapp are:

• It is decentralized: There is no central authority that could control the data of the

users. There is no single point of failure, which means the details of donation and

wedding card wishes should be always accessible with no downtime. There is no

service fee to be paid for processing the donation, apart from the small fee of

transaction gas.

• It is anonymous: The interaction with the application is created using MetaMask

wallet, where only user's public address is shared. If that address has not been

compromised, the anonymity is guaranteed.

 68

• It is transparent: All donations are publicly visible.

• It is tamperproof: The data is safely stored on Ethereum blockchain and cannot

be tampered. Additionally, it is stored permanently.

Our dapp was tested on Goerli test network. In the Table 16 we can see the gas prices

of each operation and their value in USD at the time of writing. The lowest transaction

fee was during withdrawing funds, and the highest during sending the donation, which

makes sense, because we were writing data to the block.

Table 16. Gas prices in ETH and USD.

Operation Gas price in ETH Gas price in USD

Deploying smart contract 0.000083 0.11

Donation 1 0.000248 0.32

Donation 2 0.000222 0.29

Donation 3 0.000292 0.38

Withdrawing funds 0.000046 0.06

When we compare the Web3 and Web2 system architectures, we immediately see that

in Web2 there is no decentralization. Every component is centralized, where we use

centralized backend server, and 3 centralized services, namely PayPal, Amazon S3 and

Google Firebase. This means that data from the application is shared with other 3

companies, and we are not in control of that data. Apart from data, we usually must pay

these companies to use their services or cloud, even though they might offer free limited

plans. In the Web2 there is also no anonymity, because we require some sort of

authentication and we are using Google Firebase, which already provides us at least

email address of the user. Another difference is there is no transparency, as PayPal is

handling the payments, only the donor and the owner of the fund can know the amount

of the donation. The storage of the wedding card wishes on both solutions is distributed,

where IPFS uses peer-to-peer node network for storing files, and Amazon is using

Content Distribution Networks (CDNs). The difference between the approaches is

 69

Amazon S3 is centralized and controlled by Amazon, while IPFS is decentralized and

controlled by users. We cannot precisely determine the complexity of the development

of Web2 solution to compare it to the complexity of Web3 solution development but

based on the concept of system architecture and our own experience with developing

Web2 applications, we could even argue that Web2 is more complex, since it

additionally incorporates MySQL backend storage.

One of the observed issues of our dapp was occasional slow loading speed of the images

from IPFS. This would commonly happen right after sending the donation and if the

image was a large file. Another disadvantage is that on average transaction time is 15s

and this must be considered when implementing frontend, to achieve a fluid user

experience.

There are some propositions for future work. The application could be upgraded into a

platform that would allow everyone to create multiple funds, with few ideas including

charity, crowdfunding for project or weekly/monthly allowance. Another proposition is

to implement a function that would allow to close the fund from future donations, for

example when the wedding is over, there is no more reason for the fund. Additionally,

we could implement timed transaction, that would withdraw funds at the exact

predefined date and time, for example as a birthday present or at the end of a concert

or charity event. In terms of improving the application, more detailed performance

analysis could be conducted.

 70

7. CONCLUSION

This final chapter will depict the main highlights of the work together with the initial

objectives that were achieved and propose improvements for future work.

The main purpose of this thesis was to study the technologies for the development of

Web3 solutions and investigating which technologies would together form the full-stack

for Web3 development. To support this study, the concepts of blockchain technologies

and Web3 were explored. We introduced concepts such as Ethereum, smart contracts,

crypto wallets, non-fungible tokens, and gas or transaction cost. We continued with the

description of the development of the Web, where we presented in detail each version

of the Web separately, and then compared them with each other for an easier

understanding of the differences. In this chapter, we also presented the technologies

used for the development of Web3 solutions. Then we presented the most common

types of Web3 solutions and highlighted a few examples of each.

In the core of the master's thesis, we conducted a systematic literature review, which

was divided into search strategy, search results, studies review, and discussion. During

the search strategy, we determined the inclusion and exclusion criteria and defined the

search string and adjusted it according to the specifications of each digital database. In

the search results, we presented the gradual search phases to limit the results to those

that would answer the selected research questions. For easier transparency, we

collected the results in a table, where for each article we presented which technologies

were used to develop the solution. Then we presented individual articles, where we

grouped some of them together according to the similarity of the implemented solution.

In the discussion, we used all the acquired knowledge to answer the research questions.

Finally, we conducted an experiment where we implemented a proof-of-concept

solution based on the identified technologies. We named the resulting decentralized

application WeddingFund and its purpose is to collect funds for newlyweds. First, we

presented the preparation of the experiment, where we presented the development

 71

environment and all the technologies used. Then we presented in detail the process of

implementing the solution and the result. Furthermore, we compared the resulting

application with the equivalent concept of a Web2 application, for an easier

presentation of the differences between Web2 and Web3. At the end, we discussed

possible improvements to our solution.

Regarding the hypotheses that were explained in chapter 1:

• H1: (i.e., There is currently no unified full-stack technology for Web3.) We can

confirm this hypothesis. While the literature analysis has clearly shown the

pattern of technologies used for implementing their solutions, the differences

between individual approaches were still present.

• H2: (i.e., Web3 depends on blockchain and smart contracts.) We can confirm this

hypothesis, since all the studies implemented their solutions on top of

blockchain and smart contracts, as it can be seen under Appendix A.

Blockchain technology has changed and continues to change the world. It has brought

innovation to many different industries, and it is enabling companies to introduce new

and exciting services and capabilities. Decentralized applications are one of the by-

products of blockchain technology that offer secure open-source software for everyday

users and businesses. As with all advancements, it is inevitable that many of the

practices currently in use will become obsolete, however, the basic approach should

likely stay the same. The results of systematic literature review gave us an overview of

state-of-art Web3 development technologies, which we collected and analyzed to

propose a mind map of full-stack technologies for Web3 solution development. We

strongly believe that the proposed stack is valid, and that the layers' concept can stay

valid in future as technologies develop even further. By implementing a proof-of-

concept solution we additionally confirmed the validity of the mentioned stack.

The dominant blockchain protocol in analyzed studies was Ethereum, with few mentions

of Hyperledger Fabric and EOS blockchain. There was no article found implementing

 72

other popular protocols like Solana or Polygon, that would be matching our search

criteria. For the future work it would be interesting to investigate, what is the reason

that there are no studies incorporating these protocols. Another idea is to conduct a

comparison between the popular blockchain protocols either building the equivalent

solution using all of them or comparing the concepts of the system architecture, similar

to what we did in our thesis.

 73

8. BIBLIOGRAPHY

[1] “Gartner Hype Cycle for Blockchain and Web3, 2022,” Avivah Litan, Jul. 22, 2022.
https://blogs.gartner.com/avivah-litan/2022/07/22/gartner-hype-cycle-for-
blockchain-and-web3-2022/ (accessed Oct. 09, 2022).

[2] Z. Zheng, S. Xie, H. N. Dai, X. Chen, and H. Wang, “Blockchain challenges and
opportunities: a survey,” Int. J. Web Grid Serv., vol. 14, no. 4, p. 352, 2018, doi:
10.1504/IJWGS.2018.095647.

[3] “Blockchain Nodes: How They Work (All Types Explained) - Nodes.com.”
https://nodes.com/ (accessed Oct. 10, 2022).

[4] “Developer Glossary - Bitcoin.” https://btcinformation.org/en/developer-glossary
(accessed Oct. 10, 2022).

[5] S. Raval, Decentralized Applications: Harnessing Bitcoin’s Blockchain Technology.
O’Reilly Media, Inc., 2016.

[6] “Decentralized Applications: The Blockchain-Empowered Software System | IEEE
Journals & Magazine | IEEE Xplore.” https://ieeexplore-ieee-
org.recursos.biblioteca.upc.edu/abstract/document/8466786 (accessed Oct. 10,
2022).

[7] A. Imine, J. M. Fernandez, J.-Y. Marion, L. Logrippo, and J. Garcia-Alfaro, Eds.,
Foundations and Practice of Security: 10th International Symposium, FPS 2017,
Nancy, France, October 23-25, 2017, Revised Selected Papers, vol. 10723. Cham:
Springer International Publishing, 2018. doi: 10.1007/978-3-319-75650-9.

[8] D. Vujičić, D. Jagodić, and S. Ranđić, “Blockchain technology, bitcoin, and
Ethereum: A brief overview,” in 2018 17th International Symposium INFOTEH-
JAHORINA (INFOTEH), Mar. 2018, pp. 1–6. doi: 10.1109/INFOTEH.2018.8345547.

[9] “The Merge,” ethereum.org. https://ethereum.org (accessed Oct. 10, 2022).
[10] E. Hildenbrandt et al., “KEVM: A Complete Formal Semantics of the Ethereum

Virtual Machine,” in 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), Jul. 2018, pp. 204–217. doi: 10.1109/CSF.2018.00022.

[11] “What Is an Ethereum Virtual Machine (EVM)? A Beginner’s Guide | Bybit Learn.”
https://learn.bybit.com/deep-dive/what-is-ethereum-virtual-machine-evm/
(accessed Oct. 10, 2022).

[12] W. Zou et al., “Smart Contract Development: Challenges and Opportunities,” IEEE
Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021, doi:
10.1109/TSE.2019.2942301.

[13] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, “An Overview of Smart
Contract: Architecture, Applications, and Future Trends,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), Jun. 2018, pp. 108–113. doi: 10.1109/IVS.2018.8500488.

[14] B. K. Mohanta, S. S. Panda, and D. Jena, “An Overview of Smart Contract and Use
Cases in Blockchain Technology,” in 2018 9th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), Jul. 2018, pp.
1–4. doi: 10.1109/ICCCNT.2018.8494045.

[15] S. Suratkar, M. Shirole, and S. Bhirud, “Cryptocurrency Wallet: A Review,” in 2020
4th International Conference on Computer, Communication and Signal Processing
(ICCCSP), Sep. 2020, pp. 1–7. doi: 10.1109/ICCCSP49186.2020.9315193.

 74

[16] M. di Angelo and G. Salzer, “Characteristics of Wallet Contracts on Ethereum,” in
2020 2nd Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), Sep. 2020, pp. 232–239. doi:
10.1109/BRAINS49436.2020.9223287.

[17] “What is a Crypto Wallet? A Beginner’s Guide.”
https://crypto.com/university/crypto-wallets (accessed Oct. 10, 2022).

[18] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-Fungible Token (NFT): Overview,
Evaluation, Opportunities and Challenges.” arXiv, Oct. 24, 2021. Accessed: Oct.
10, 2022. [Online]. Available: http://arxiv.org/abs/2105.07447

[19] “View of Key differences between Web 1.0 and Web 2.0 | First Monday.”
https://journals.uic.edu/ojs/index.php/fm/article/view/2125/1972 (accessed Oct.
10, 2022).

[20] G. Kuck, “Tim Berners-Lee’s Semantic Web,” South Afr. J. Inf. Manag., vol. 6, Dec.
2004, doi: 10.4102/sajim.v6i1.297.

[21] “Statista - The Statistics Portal,” Statista.
https://www.statista.com/markets/424/topic/538/mobile-internet-apps//
(accessed Oct. 10, 2022).

[22] “What is Web 1.0, Web 2.0, and Web 3.0? Definition, Difference & Similarities,”
Simplilearn.com, Apr. 25, 2022. https://www.simplilearn.com/what-is-web-1-0-
web-2-0-and-web-3-0-with-their-difference-article (accessed Oct. 10, 2022).

[23] S. Alam, “Challenges And Benefits Of WEB3 Technology.” https://www.c-
sharpcorner.com/article/challenges-and-benefits-of-web3-technology/ (accessed
Oct. 10, 2022).

[24] “What is Web 3? Difference Between Web1 vs Web2 vs Web3.”
https://www.becomebetterprogrammer.com/web1-vs-web2-vs-web3/ (accessed
Oct. 10, 2022).

[25] “Comparison Between Web 1.0, Web 2.0 and Web 3.0,” GeeksforGeeks, Sep. 24,
2018. https://www.geeksforgeeks.org/web-1-0-web-2-0-and-web-3-0-with-their-
difference/ (accessed Oct. 10, 2022).

[26] S. Paszun, “Blockchain - Hyperledger vs Ethereum: a deep comparison,” Espeo
Blockchain, Jul. 24, 2018. https://espeoblockchain.com/blog/hyperledger-vs-
ethereum/ (accessed Oct. 10, 2022).

[27] “Decentralization for Web3 Builders: Principles, Models, How,” Future, Apr. 07,
2022. https://future.com/web3-decentralization-models-framework-principles-
how-to/ (accessed Aug. 02, 2022).

[28] “Top 10 Best NFT Marketplaces for 2022,” www.top10.com, Feb. 07, 2022.
https://www.top10.com/best-nft-marketplaces (accessed Oct. 10, 2022).

[29] F. Altamimi, W. Asif, and M. Rajarajan, “DADS: Decentralized (Mobile)
Applications Deployment System Using Blockchain : Secured Decentralized
Applications Store,” in 2020 International Conference on Computer, Information
and Telecommunication Systems (CITS), Oct. 2020, pp. 1–8. doi:
10.1109/CITS49457.2020.9232506.

[30] R. Taş and Ö. Ö. Tanrıöver, “Building A Decentralized Application on the Ethereum
Blockchain,” in 2019 3rd International Symposium on Multidisciplinary Studies

 75

and Innovative Technologies (ISMSIT), Oct. 2019, pp. 1–4. doi:
10.1109/ISMSIT.2019.8932806.

[31] R. A. Canessane, N. Srinivasan, A. Beuria, A. Singh, and B. M. Kumar,
“Decentralised Applications Using Ethereum Blockchain,” in 2019 Fifth
International Conference on Science Technology Engineering and Mathematics
(ICONSTEM), Mar. 2019, vol. 1, pp. 75–79. doi:
10.1109/ICONSTEM.2019.8918887.

[32] J. Rosa-Bilbao and J. Boubeta-Puig, “RectorDApp: Decentralized Application for
Managing University Rector Elections,” in 2021 IEEE International Conference on
Service-Oriented System Engineering (SOSE), Aug. 2021, pp. 161–165. doi:
10.1109/SOSE52839.2021.00024.

[33] S. T. Alvi, M. N. Uddin, L. Islam, and S. Ahamed, “DVTChain: A blockchain-based
decentralized mechanism to ensure the security of digital voting system voting
system,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 6855–6871, Oct.
2022, doi: 10.1016/j.jksuci.2022.06.014.

[34] N. Sasikala, B. M. Sundaram, S. Biswas, A. Sai Nikhil, and V. S. Rohith, “Survey of
latest technologies on Decentralized applications using Blockchain,” in 2022
Second International Conference on Artificial Intelligence and Smart Energy
(ICAIS), Feb. 2022, pp. 1432–1436. doi: 10.1109/ICAIS53314.2022.9742768.

[35] B. Santhanakrishnan, A. K. Tyagi, and T. F. Fernandez, “Blockchain Network based
Decentralized Applications for Healthcare Sector,” in 2022 International
Conference on Computer Communication and Informatics (ICCCI), Jan. 2022, pp.
1–6. doi: 10.1109/ICCCI54379.2022.9740743.

[36] M. A S, A. S, G. M. Mufeed, A. K R, and Gahana, “Converging Blockchain and
Artificial-Intelligence Towards Healthcare: A Decentralized-Private and
Intelligence Health Record System,” in 2022 2nd International Conference on
Intelligent Technologies (CONIT), Jun. 2022, pp. 1–8. doi:
10.1109/CONIT55038.2022.9847762.

[37] K. P. Satamraju and B. Malarkodi, “A decentralized framework for device
authentication and data security in the next generation internet of medical
things,” Comput. Commun., vol. 180, pp. 146–160, Dec. 2021, doi:
10.1016/j.comcom.2021.09.012.

[38] M. Abdulaziz, D. Çulha, and A. Yazici, “A Decentralized Application for Secure
Messaging in a Trustless Environment,” in 2018 International Congress on Big
Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Dec. 2018, pp. 1–
5. doi: 10.1109/IBIGDELFT.2018.8625362.

[39] C. Nagadeep, M. V. V. S. Durga, S. M. Reddy, and M. A. Jabbar, “TogEther - A
Decentralized Application Connects Ideas and Investors,” in 2021 International
Conference on Decision Aid Sciences and Application (DASA), Dec. 2021, pp. 813–
818. doi: 10.1109/DASA53625.2021.9682273.

[40] R. Muth and F. Tschorsch, “SmartDHX: Diffie-Hellman Key Exchange with Smart
Contracts,” in 2020 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPS), Aug. 2020, pp. 164–168. doi:
10.1109/DAPPS49028.2020.00022.

 76

[41] R. A. Mishra, A. Kalla, N. A. Singh, and M. Liyanage, “Implementation and Analysis
of Blockchain Based DApp for Secure Sharing of Students’ Credentials,” in 2020
IEEE 17th Annual Consumer Communications & Networking Conference (CCNC),
Jan. 2020, pp. 1–2. doi: 10.1109/CCNC46108.2020.9045196.

[42] R. A. Mishra, A. Kalla, A. Braeken, and M. Liyanage, “Privacy Protected Blockchain
Based Architecture and Implementation for Sharing of Students’ Credentials,” Inf.
Process. Manag., vol. 58, no. 3, p. 102512, May 2021, doi:
10.1016/j.ipm.2021.102512.

[43] V. Ivankovic, Z. Shi, and Z. Zhao, “A Customizable dApp Framework for User
Interactions in Decentralized Service Marketplaces,” in 2022 IEEE International
Conference on Smart Internet of Things (SmartIoT), Aug. 2022, pp. 224–231. doi:
10.1109/SmartIoT55134.2022.00043.

[44] U. K. Shakila and S. Sultana, “A Decentralized Marketplace Application based on
Ethereum Smart Contract,” in 2021 24th International Conference on Computer
and Information Technology (ICCIT), Dec. 2021, pp. 1–5. doi:
10.1109/ICCIT54785.2021.9689879.

[45] R. Riesco, X. Larriva-Novo, and V. A. Villagra, “Cybersecurity threat intelligence
knowledge exchange based on blockchain,” Telecommun. Syst., vol. 73, no. 2, pp.
259–288, Feb. 2020, doi: 10.1007/s11235-019-00613-4.

[46] F. Menges, B. Putz, and G. Pernul, “DEALER: decentralized incentives for threat
intelligence reporting and exchange,” Int. J. Inf. Secur., vol. 20, no. 5, pp. 741–761,
Oct. 2021, doi: 10.1007/s10207-020-00528-1.

[47] M. Sober, G. Scaffino, S. Schulte, and S. S. Kanhere, “A blockchain-based IoT data
marketplace,” Clust. Comput., Sep. 2022, doi: 10.1007/s10586-022-03745-6.

[48] M. Nardini, S. Helmer, N. El Ioini, and C. Pahl, “A Blockchain-based Decentralized
Electronic Marketplace for Computing Resources,” SN Comput. Sci., vol. 1, no. 5,
p. 251, Aug. 2020, doi: 10.1007/s42979-020-00243-7.

[49] B. Sreedevi, S. K. Kumar, and S. Samraj E, “Decentralized Application for managing
the Disaster with Block chain, Cloud &IOT,” in 2021 International Conference on
Computer & Information Sciences (ICCOINS), Jul. 2021, pp. 328–332. doi:
10.1109/ICCOINS49721.2021.9497189.

[50] Mrs. L. S. S, Mrs. P. N, and Mrs. A. Shettar, “Block chain Based Framework for
Document Verification,” in 2022 2nd International Conference on Artificial
Intelligence and Signal Processing (AISP), Feb. 2022, pp. 1–5. doi:
10.1109/AISP53593.2022.9760651.

[51] B. Putz, M. Dietz, P. Empl, and G. Pernul, “EtherTwin: Blockchain-based Secure
Digital Twin Information Management,” Inf. Process. Manag., vol. 58, no. 1, p.
102425, Jan. 2021, doi: 10.1016/j.ipm.2020.102425.

[52] G. Lax, A. Russo, and L. S. Fascì, “A Blockchain-based approach for matching
desired and real privacy settings of social network users,” Inf. Sci., vol. 557, pp.
220–235, May 2021, doi: 10.1016/j.ins.2021.01.004.

[53] L. Alves, E. F. Cruz, and A. M. Rosado Da Cruz, “Tracing Sustainability Indicators in
the Textile and Clothing Value Chain using Blockchain Technology,” in 2022 17th
Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2022,
pp. 1–7. doi: 10.23919/CISTI54924.2022.9820241.

 77

[54] D. Miehle, D. Henze, A. Seitz, A. Luckow, and B. Bruegge, “PartChain: A
Decentralized Traceability Application for Multi-Tier Supply Chain Networks in the
Automotive Industry,” in 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON), Apr. 2019, pp. 140–145. doi:
10.1109/DAPPCON.2019.00027.

[55] S. W. Sheng and S. Wicha, “The Proposed of a Smart Traceability System for Teak
Supply Chain Based on Blockchain Technology,” in 2021 Joint International
Conference on Digital Arts, Media and Technology with ECTI Northern Section
Conference on Electrical, Electronics, Computer and Telecommunication
Engineering, Mar. 2021, pp. 59–64. doi:
10.1109/ECTIDAMTNCON51128.2021.9425780.

[56] M. Alnafrani and S. Acharya, “SecureRx: A blockchain-based framework for an
electronic prescription system with opioids tracking,” Health Policy Technol., vol.
10, no. 2, p. 100510, Jun. 2021, doi: 10.1016/j.hlpt.2021.100510.

[57] S. K. Panda and S. C. Satapathy, “Drug traceability and transparency in medical
supply chain using blockchain for easing the process and creating trust between
stakeholders and consumers,” Pers. Ubiquitous Comput., Jul. 2021, doi:
10.1007/s00779-021-01588-3.

[58] S. Mallikarachchi, C. Dai, O. Seneviratne, and I. Godage, “Managing Collaborative
Tasks within Heterogeneous Robotic Swarms using Swarm Contracts,” in 2022
IEEE International Conference on Decentralized Applications and Infrastructures
(DAPPS), Aug. 2022, pp. 48–55. doi: 10.1109/DAPPS55202.2022.00014.

[59] Nikhil, S. Panday, A. Saini, and N. Gupta, “Instigating Decentralized Apps with
Smart Contracts,” in 2022 International Conference on Advances in Computing,
Communication and Applied Informatics (ACCAI), Jan. 2022, pp. 1–5. doi:
10.1109/ACCAI53970.2022.9752568.

[60] H. Mhamdi, A. Zouinkhi, and H. Sakli, “Smart contracts for decentralized vehicle
services,” in 2021 International Wireless Communications and Mobile Computing
(IWCMC), Jun. 2021, pp. 1846–1851. doi: 10.1109/IWCMC51323.2021.9498954.

[61] R. Goel, U. Singh, and D. Sadhya, “Privacy Preserving Contact Tracing using
Ethereum Blockchain Network,” in 2022 IEEE Region 10 Symposium (TENSYMP),
Jul. 2022, pp. 1–6. doi: 10.1109/TENSYMP54529.2022.9864380.

[62] A. Musamih, K. Salah, R. Jayaraman, I. Yaqoob, Y. Al-Hammadi, and J. Antony,
“Blockchain-based solution for COVID-19 vaccine waste reduction,” J. Clean.
Prod., vol. 372, p. 133619, Oct. 2022, doi: 10.1016/j.jclepro.2022.133619.

[63] M. Madine, K. Salah, R. Jayaraman, Y. Al-Hammadi, J. Arshad, and I. Yaqoob,
“appXchain: Application-Level Interoperability for Blockchain Networks,” IEEE
Access, vol. 9, pp. 87777–87791, 2021, doi: 10.1109/ACCESS.2021.3089603.

[64] M. Farnaghi and A. Mansourian, “Blockchain, an enabling technology for
transparent and accountable decentralized public participatory GIS,” Cities, vol.
105, p. 102850, Oct. 2020, doi: 10.1016/j.cities.2020.102850.

[65] A. Carvalho, “Bringing transparency and trustworthiness to loot boxes with
blockchain and smart contracts,” Decis. Support Syst., vol. 144, p. 113508, May
2021, doi: 10.1016/j.dss.2021.113508.

 78

[66] R. Yu, A. M. Oguti, D. R. Ochora, and S. Li, “Towards a privacy-preserving smart
contract-based data aggregation and quality-driven incentive mechanism for
mobile crowdsensing,” J. Netw. Comput. Appl., vol. 207, p. 103483, Nov. 2022,
doi: 10.1016/j.jnca.2022.103483.

[67] M. Arulprakash and R. Jebakumar, “Enhanced Data Privacy Preservation Model
for Mobile Crowdsensing System Using Blockchain Technology,” in Ambient
Communications and Computer Systems, Singapore, 2022, pp. 563–576. doi:
10.1007/978-981-16-7952-0_53.

[68] M. H. Moti, D. Chatzopoulos, P. Hui, B. Faltings, and S. Gujar, “Orthos: A
Trustworthy AI Framework for Data Acquisition,” in Engineering Multi-Agent
Systems, Cham, 2020, pp. 100–118. doi: 10.1007/978-3-030-66534-0_7.

[69] P. R. Padghan, S. Arul Daniel, and R. Pitchaimuthu, “Grid-tied energy cooperative
trading framework between Prosumer to Prosumer based on Ethereum smart
contracts,” Sustain. Energy Grids Netw., vol. 32, p. 100860, Dec. 2022, doi:
10.1016/j.segan.2022.100860.

[70] S. Ahmadisheykhsarmast and R. Sonmez, “A smart contract system for security of
payment of construction contracts,” Autom. Constr., vol. 120, p. 103401, Dec.
2020, doi: 10.1016/j.autcon.2020.103401.

[71] V. Urovi, V. Jaiman, A. Angerer, and M. Dumontier, “LUCE: A blockchain-based
data sharing platform for monitoring data license accoUntability and
CompliancE,” Blockchain Res. Appl., p. 100102, Sep. 2022, doi:
10.1016/j.bcra.2022.100102.

[72] M. Siopi, G. Vlahavas, K. Karasavvas, and A. Vakali, “DeCStor: A Framework for
Privately and Securely Sharing Files Using a Public Blockchain,” in Discovery
Science, Cham, 2020, pp. 280–293. doi: 10.1007/978-3-030-61527-7_19.

[73] Z.-K. Wong and S.-H. Heng, “Blockchain-Based Image Sharing Application,” in
Advances in Cyber Security, Singapore, 2020, pp. 46–59. doi: 10.1007/978-981-15-
2693-0_4.

[74] K.-W. Cheng and S.-H. Heng, “Blockchain-Based Content Sharing and Data
Repository System,” in Advances in Cyber Security, Singapore, 2021, pp. 207–224.
doi: 10.1007/978-981-33-6835-4_14.

[75] X. Tang, H. Guo, H. Li, Y. Yuan, J. Wang, and J. Cheng, “A DAPP Business Data
Storage Model Based on Blockchain and IPFS,” in Artificial Intelligence and
Security, Cham, 2021, pp. 219–230. doi: 10.1007/978-3-030-78612-0_18.

[76] D. Mohan, L. Alwin, P. Neeraja, K. D. Lawrence, and V. Pathari, “A private
Ethereum blockchain implementation for secure data handling in Internet of
Medical Things,” J. Reliab. Intell. Environ., Aug. 2021, doi: 10.1007/s40860-021-
00153-2.

[77] P. Praitheeshan, L. Pan, and R. Doss, “Private and Trustworthy Distributed
Lending Model Using Hyperledger Besu,” SN Comput. Sci., vol. 2, no. 2, p. 115,
Feb. 2021, doi: 10.1007/s42979-021-00500-3.

[78] X. Zhang, “The use of ethereum blockchain using internet of things technology in
information and fund management of financial poverty alleviation system,” Int. J.
Syst. Assur. Eng. Manag., Apr. 2022, doi: 10.1007/s13198-022-01644-y.

 79

[79] E. J. Lopes et al., “Live video streaming service with pay-as-you-use model on
Ethereum Blockchain and InterPlanetary file system,” Wirel. Netw., vol. 28, no. 7,
pp. 3111–3125, Oct. 2022, doi: 10.1007/s11276-022-03009-6.

[80] A. Sedrati, A. Ouaddah, A. Mezrioui, and B. Bellaj, “IoT-Gov: an IoT governance
framework using the blockchain,” Computing, vol. 104, no. 10, pp. 2307–2345,
Oct. 2022, doi: 10.1007/s00607-022-01086-1.

[81] S. Rafati Niya, S. Bachmann, C. Brasser, M. Bucher, N. Spielmann, and B. Stiller,
“DeTi: A Decentralized Ticketing Management Platform,” J. Netw. Syst. Manag.,
vol. 30, no. 4, p. 62, Jul. 2022, doi: 10.1007/s10922-022-09675-3.

[82] Md. A. Ahmad, P. Singh, M. Sushmitha, H. A. Sanjay, and N. Madhu, “Profit Driven
Blockchain Based Platform for Land Registry,” in Emerging Research in
Computing, Information, Communication and Applications, Singapore, 2022, pp.
911–922. doi: 10.1007/978-981-16-1342-5_72.

[83] A. Arora, Kanisk, and S. Kumar, “Smart Contracts and NFTs: Non-Fungible Tokens
as a Core Component of Blockchain to Be Used as Collectibles,” in Cyber Security
and Digital Forensics, Singapore, 2022, pp. 401–422. doi: 10.1007/978-981-16-
3961-6_34.

[84] E. Team, “NFTs and web3. The complete guide to NFTs & Web3,” All NFT Space,
Jan. 24, 2022. https://allnftspace.com/2022/01/24/nfts-and-web3-the-complete-
guide-to-nfts-web3/ (accessed Oct. 06, 2022).

 80

Appendix A: Observed technologies used in each study.

Ref. Solution Technology Smart

Contract

Development

Environment

Testnet Frontend API Storage Smart

contract

NFT

IEEE Explore

[29] Framework for

deploying mobile

apps

Ethereum Solidity Truffle,

Ganache

Metamask

(Ropsten,

Rinkeby)

Vue.js web3.js,

graphql

IPFS ✓ /

[30] Voting app Ethereum Solidity Truffle,

Ganache

/ ASP.net / / ✓ /

[34] Comparison

between full and

partial dapp

Ethereum Solidity Truffle,

Ganache

Metamask

(Ropsten)

 web3.js IPFS ✓ /

[35] Healthcare

system

Ethereum Solidity Truffle / React web3.js / ✓ /

[38] Messaging dapp Ethereum Solidity Geth / React web3.js,

Whisper

/ ✓ /

[39] TogEther - Crowd

funding dapp

Ethereum Solidity Truffle / React web3.js,

Infura

IPFS ✓ /

 81

[40] SmartDHX -

Diffie-Hellman

key exchange

with smart

contracts

Ethereum Solidity Truffle / Javascript web3.js / ✓ /

[41] Student

credential

sharing dapp

Ethereum Solidity / Metamask

(Rinkeby)

Next.js web3.js IPFS ✓ /

[36] AI supported

health record

system dapp

Ethereum Solidity Ganache Metamask React web3.js IPFS ✓ /

[43] Auction system

framework

Hyperledger

Fabric

Javascript Docker

CouchDB

/ Vue.js Hyperledger

Fabric Node

SDK

/ ✓ /

[31] Voting dapp Ethereum Solidity Truffle,

Ganache

Metamask / / / ✓ /

[49] Disaster

managing dapp

Hyperledger

Fabric

Golang Docker Swarm / Javascript CURL

requests

Swarm ✓ /

 82

[32] RectorDApp -

Rector voting

dapp

Ethereum Solidity Truffle Metamask / / / ✓ /

[44] Decentralization

of existing

centralized

marketplace

Ethereum Solidity Truffle,

Ganache

Metamask

(Kovan)

React web3.js,

Infura

IPFS ✓ /

[50] Dapp for

uploading and

verifying

documents

Ethereum Solidity Truffle Metamask

(Ropsten)

React web3.js,

Infura

/ ✓ /

[53] Dapp for tracking

sustainability

indicators

Hyperledger

Fabric

Golang Docker Fablo / Vue.js Fablo REST

API

/ ✓ /

[58] Connecting

Robots with

blockchain

Ethereum Solidity Ganache / Python web3.py Swarm ✓ /

[59] Lottery dapp Ethereum Solidity / Metamask

(Binancechain)

Vue.js web3.js / ✓ /

 83

[60] Dapp for Internet

of vehicles (IoV)

Ethereum Solidity Truffle,

Ganache

Metamask / / / ✓ /

[54] PartChain -

traceability for

supply chain

Hyperledger

Fabric

/ Docker

CouchDB

 Angular Hyperledger

Composer

REST API

/ ✓ /

[61] BlockTracer -

Covid contact

tracing mobile

dapp

Ethereum Solidity Truffle,

Ganache

Metamask React

Native

web3.js / ✓ /

[55] Teak traceability

platform

Ethereum Solidity Truffle,

Ganache

Metamask Javascript web3.js / ✓ /

[63] AppXchain for

cross-chain

interoperability

Ethereum Solidity Truffle,

Ganache

/ / / IPFS ✓ /

ScienceDirect

[64] Dapp for public

participatory

geographical

information

systems

Ethereum Solidity Truffle,

Ganache

/ Javascript web3.js / ✓ /

 84

[51] EtherTwin -

Information

managment

Ethereum Solidity Parity

Ethereum

/ Vue.js web3.js / ✓ /

[42] Dapp for sharing

students'

credentials

Ethereum Solidity / Metamask

(Rinkeby)

Next.js web3.js IPFS ✓ /

[52] Privacy manager

dapp

Ethereum Solidity Truffle,

Ganache

Metamask

(Ropsten)

Javascript Javascript / ✓ /

[65] Dapp for buying

lootboxes

Ethereum Solidity / Ropsten Javascript web3.js / ✓ /

[66] Crowdsensing

dapp

Ethereum Solidity Truffle Metamask

(Ropsten)

Javascript Infura IPFS ✓ /

[37] Smart Healthcare

Management

system

Ethereum Solidity Truffle,

Ganache

Metamask Python web3.py / ✓ /

[69] Cooperative

energy sharing

dapp

Ethereum Solidity Truffle,

Ganache

Metamask Ganache

GUI

web3.js / ✓ /

 85

[62] Covid19 vaccine

waste reduction

dapp

Ethereum Solidity Remix VM Metamask

(Kovan)

 Infura IPFS ✓ /

[70] SMTSEC -

Payment security

system for

constructing

sector

Ethereum Solidity Ganache / Javascript web3.js / ✓ /

[56] SecureRx -

Electronic

prescription

tracking

Ethereum Solidity / Metamask

(Ropsten)

React web3.js / ✓ /

[71] LUCE - Data

sharing platform

Ethereum Solidity Geth Rinkeby Django web3.py / ✓ /

[33] DVTChain -

Digital voting

system dapp

Ethereum Solidity Truffle,

Ganache

Metamask React web3.js / ✓ /

SpringerLink

 86

[76] Private

blockchain

implementation

Ethereum Solidity Truffle, Geth Metamask

(Geth local)

Javascript web3.js / ✓ /

[45] Marketplace for

cybersecurity

threat

intelligence

Ethereum Solidity Truffle,

Ganache

Metamask

(Ropsten)

/ / / ✓ /

[46] DEALER

marketplace

EOS

blockchain

C++ / EOS Kylin

testnet

Javascript / IPFS ✓ /

[47] IoT data

marketplace

Ethereum Solidity Truffle Metamask Angular / IPFS ✓ /

[57] Medical supply

chain platform

Ethereum Solidity Truffle,

Ganache

Local, Kovan Javascript web3.js / ✓ /

[77] Loan transaction

processing

system

Ethereum Solidity Hyperledger

Besu

Metamask Django web3.js / ✓ /

[78] Poverty

alleviation

system

Ethereum Solidity Truffle, Geth / Javascript web3.js,

Infura

IPFS ✓ /

 87

[79] NiftySubs - Live

streaming service

Ethereum Solidity / Metamask

(Rinkeby)

/ Textile

ThreadDB

(IPFS), libp2p

(chat),

Superfluid,

Unlock, The

Graph,

Voodfy

IPFS ✓ ✓

[48] Marketplace for

computing

resources

Ethereum Solidity Truffle, Geth / Javascript JSON-RCP / ✓ /

[80] IoT-Gov - IoT

governance

framework

Ethereum Solidity Geth Metamask Javascript web3.js / ✓ /

[81] DeTi - ticketing

management

platform

Ethereum Solidity / / Vue.js web3.js IPFS ✓ /

[82] Land Registry

process dapp

Ethereum Solidity Truffle,

Ganache

Metamask Angular web3.js / ✓ /

 88

[67] Crowdsensing

dapp

Ethereum Solidity / CrowdBC Javascript web3.js / ✓ /

[72] DeCStor - Sharing

files dapp

Ethereum Solidity / Ethereum

Mainnet

Javascript web3.js Swarm ✓ /

[73] Image sharing

dapp

Ethereum Solidity Truffle,

Ganache

Metamask React web3.js IPFS ✓ /

[83] Prototype of

interaction ERC-

721 token with

dapp

Ethereum Solidity Ganache Metamask React OpenZeppelin / ✓ ✓

[74] Remain - Content

sharing and data

repository

system

Ethereum Solidity Ganache Metamask React web3.js IPFS ✓ /

[68] Orthos - Data

aquisition

framework

Ethereum Solidity / Rinkeby Android Infura, web3j / ✓ /

[75] Data storage

dapp

Ethereum Solidity Local test

network

/ Android Infura, web3j IPFS ✓ /

 89

Appendix B: Smart Contract WeddingFund.
// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.9;

contract WeddingFund {

 // event to emit when a memo is created

 event NewMemo(

 address indexed from,

 uint256 timestamp,

 string name,

 string message,

 string ipfsPath

);

 //memo struct

 struct Memo {

 address from;

 uint256 timestamp;

 string name;

 string message;

 string ipfsPath;

 }

 //list of all memos received

 Memo[] memos;

 // address of contract deployer

 address payable owner;

 // constructor logic on deploy

 constructor(){

 owner = payable(msg.sender);

 }

 /**

 * @dev pay donation for contract owner

 * @param _name name of the donor

 * @param _message a message from the donor

 90

 * @param _ipfsPath ipfs file path address

 */

 function payWeddingDonation(string memory _name,

 string memory _message, string memory _ipfsPath) public payable{

 // donation must be positive value

 require(msg.value > 0, "Can't donate with 0 ETH");

 // add memo to storage

 memos.push(Memo(

 msg.sender,

 block.timestamp,

 _name,

 _message,

 _ipfsPath

));

 // emit a log event when a new memo is created

 emit NewMemo(

 msg.sender,

 block.timestamp,

 _name,

 _message,

 _ipfsPath

);

 }

 /**

 * @dev send entire stored balance in this contract

 * to the contract owner

 */

 function withdrawFund() public {

 require(owner.send(address(this).balance));

 }

 /**

 91

 * @dev retrieve all memos stored on the blockchain

 */

 function getMemos() public view returns(Memo[] memory) {

 return memos;

 }

}

 92

Appendix C: Script to deploy smart contract.

const {ethers} = require("hardhat");

async function main(){

 // get the contract to deploy and deploy it

 const WeddingFund = await ethers.getContractFactory("WeddingFund");

 const weddingFund = await WeddingFund.deploy();

 await weddingFund.deployed();

 console.log("WeddingFund deployed to ", weddingFund.address);

}

main().catch((error) => {

 console.error(error);

 process.exitCode = 1;

});

 93

Appendix D: Script for testing smart contract.

const {ethers} = require("hardhat");

// return balance of a given address

async function getBalance(address){

 const balanceBigInt = await ethers.provider.getBalance(address);

 return ethers.utils.formatEther(balanceBigInt);

}

// console.log ether balances from a list of addresses

async function printBalances(addresses){

 let idx = 0;

 for(const address of addresses){

 console.log(`Address ${idx} balance: `, await getBalance(address));

 idx++;

 }

}

// console.log memos stored on-chain from donations

async function printMemos(memos){

 for(const memo of memos){

 const timestamp = memo.timestamp;

 const supporter = memo.name;

 const supporterAddress = memo.from;

 const message = memo.message;

 const ipfsPath = memo.ipfsPath;

 console.log(`At ${timestamp}, ${supporter} (${supporterAddress})

 said: "${message}" + hash: ${ipfsPath}`);

 }

}

async function main() {

 // get example accounts

 const [owner, account, account2, account3] = await ethers.getSigners();

 // get the contract to deploy and deploy it

 94

 const WeddingFund = await ethers.getContractFactory("WeddingFund");

 const weddingFund = await WeddingFund.deploy();

 await weddingFund.deployed();

 console.log("WeddingFund deployed to ", weddingFund.address);

 // check balances before the donation payment

 const addresses = [owner.address, account.address,

 account2.address,account3.address, weddingFund.address];

 console.log("--- start ---")

 await printBalances(addresses);

 // pay few donations for the owner

 const payment = {value: ethers.utils.parseEther("1")};

 await weddingFund.connect(account)

 .payWeddingDonation("Sarah","Loved your dress!","hash1", payment);

 await weddingFund.connect(account2)

 .payWeddingDonation("Samantha","Enjoy the honeymoon!","hash2", payment);

 await weddingFund.connect(account3)

 .payWeddingDonation("George","Have fun. :D","hash3", payment);

 // check all balances after paying donations

 console.log("--- after payments ---")

 await printBalances(addresses);

 // withdraw funds

 await weddingFund.connect(owner).withdrawDonations();

 // check all balances after withdraw

 console.log("--- after withdrawal ---")

 await printBalances(addresses);

 // print all received memos

 95

 console.log("--- memos ---")

 const memos = await weddingFund.getMemos();

 printMemos(memos);

 }

// Recommended pattern to be able to use async/await everywhere

// and properly handle errors.

main().catch((error) => {

 console.error(error);

 process.exitCode = 1;

});

 96

Appendix E: Hardhat.config.js configuration file.

require("@nomicfoundation/hardhat-toolbox");

require("@nomiclabs/hardhat-ethers");

require("dotenv").config()

const GOERLI_URL = process.env.GOERLI_URL;

const PRIVATE_KEY = process.env.PRIVATE_KEY;

/** @type import('hardhat/config').HardhatUserConfig */

module.exports = {

 solidity: "0.8.17",

 networks:{

 goerli:{

 url: GOERLI_URL,

 accounts: [PRIVATE_KEY]

 }

 }

};

 97

Appendix F: WeddingFund smart contract ABI.

{

 "_format": "hh-sol-artifact-1",

 "contractName": "WeddingFund",

 "sourceName": "contracts/WeddingFund.sol",

 "abi": [

 {

 "inputs": [],

 "stateMutability": "nonpayable",

 "type": "constructor"

 },

 {

 "anonymous": false,

 "inputs": [

 {

 "indexed": true,

 "internalType": "address",

 "name": "from",

 "type": "address"

 },

 {

 "indexed": false,

 "internalType": "uint256",

 "name": "timestamp",

 "type": "uint256"

 },

 {

 "indexed": false,

 "internalType": "string",

 "name": "name",

 "type": "string"

 },

 {

 "indexed": false,

 "internalType": "string",

 "name": "message",

 "type": "string"

 98

 },

 {

 "indexed": false,

 "internalType": "string",

 "name": "ipfsPath",

 "type": "string"

 }

],

 "name": "NewMemo",

 "type": "event"

 },

 {

 "inputs": [],

 "name": "getMemos",

 "outputs": [

 {

 "components": [

 {

 "internalType": "address",

 "name": "from",

 "type": "address"

 },

 {

 "internalType": "uint256",

 "name": "timestamp",

 "type": "uint256"

 },

 {

 "internalType": "string",

 "name": "name",

 "type": "string"

 },

 {

 "internalType": "string",

 "name": "message",

 99

 "type": "string"

 },

 {

 "internalType": "string",

 "name": "ipfsPath",

 "type": "string"

 }

],

 "internalType": "struct WeddingFund.Memo[]",

 "name": "",

 "type": "tuple[]"

 }

],

 "stateMutability": "view",

 "type": "function"

 },

 {

 "inputs": [

 {

 "internalType": "string",

 "name": "_name",

 "type": "string"

 },

 {

 "internalType": "string",

 "name": "_message",

 "type": "string"

 },

 {

 "internalType": "string",

 "name": "_ipfsPath",

 "type": "string"

 100

 }

],

 "name": "payWeddingDonation",

 "outputs": [],

 "stateMutability": "payable",

 "type": "function"

 },

 {

 "inputs": [],

 "name": "withdrawDonations",

 "outputs": [],

 "stateMutability": "nonpayable",

 "type": "function"

 }

],

 "bytecode": "0x60806......5234",

 "deployedBytecode": "0x6080.......6040",

 "linkReferences": {},

 "deployedLinkReferences": {}

 }

 101

Appendix G: Package.json file.

{

 "name": "support-this-project",

 "version": "0.1.0",

 "private": true,

 "scripts": {

 "dev": "next dev",

 "build": "next build",

 "start": "next start",

 "lint": "next lint"

 },

 "dependencies": {

 "bootstrap": "^5.2.2",

 "ethers": "^5.7.1",

 "ipfs-http-client": "^58.0.1",

 "next": "12.3.1",

 "react": "18.2.0",

 "react-bootstrap": "^2.5.0",

 "react-dom": "18.2.0"

 },

 "devDependencies": {

 "eslint": "8.24.0",

 "eslint-config-next": "12.3.1"

 }

}

 102

Appendix H: Wallet connection logic.

// Wallet connection logic

 const isWalletConnected = async () => {

 try {

 const { ethereum } = window;

 const accounts = await ethereum.request({method: 'eth_accounts'})

 console.log("accounts: ", accounts);

 if (accounts.length > 0) {

 const account = accounts[0];

 console.log("wallet is connected! " + account);

 } else {

 console.log("make sure MetaMask is connected");

 }

 } catch (error) {

 console.log("error: ", error);

 }

 }

 const connectWallet = async () => {

 try {

 const {ethereum} = window;

 if (!ethereum) {

 console.log("please install MetaMask");

 }

 const accounts = await ethereum.request({

 method: 'eth_requestAccounts'

 });

 setCurrentAccount(accounts[0]);

 } catch (error) {

 console.log(error);

 }

 }

 103

 104

Appendix I: Frontend payWeddingDonation function
implementation.

const payWeddingDonation = async () => {

 try {

 const {ethereum} = window;

 let ipfsPathResult = "";

 if(ethereum){

 if(amount>0){

 const provider = new ethers.providers.Web3Provider(ethereum, "any");

 const signer = provider.getSigner();

 const weddingFund = new ethers.Contract(

 contractAddress,

 contractAbi,

 signer

);

 // logic for ipfs

 try {

 let ipfs = await ipfsClient();

 let options = {

 warpWithDirectory: false,

 progress: (prog) => console.log(`Saved ${prog}`)

 }

 let result = await ipfs.add(selectedFile,options);

 ipfsPathResult=result.path;

 } catch (error) {

 console.log(error);

 return;

 }

 // pay donation loggic

 const donationTxn = await weddingFund.payWeddingDonation(

 105

 name ? name : "anonymous",

 message ? message : "Enjoy this donation!",

 ipfsPathResult ? ipfsPathResult : "error",

 {value: ethers.utils.parseEther(amount+"")}

);

 await donationTxn.wait();

 // clear form

 setName("");

 setMessage("");

 setIpfsHash("");

 setSelectedFile("");

 setIsSelected(false);

 }

 }

 } catch (error) {

 console.log(error);

 }

 }

 106

Appendix J: Frontend withdrawFunds function implementation.

const withdrawFunds = async () => {

 try {

 const {ethereum} = window;

 if(ethereum){

 const provider = new ethers.providers.Web3Provider(ethereum, "any");

 const signer = provider.getSigner();

 const weddingFund = new ethers.Contract(

 contractAddress,

 contractAbi,

 signer

);

 const contractBalance = await getBalance(provider, weddingFund.address);

 console.log("Current balance of contract: ", await getBalance(provider, weddingFund.address),

"ETH");

 // Withdraw funds if there are funds to withdraw.

 if (contractBalance !== "0.0") {

 console.log("withdrawing funds..")

 const withdrawTxn = await weddingFund.withdrawDonations();

 await withdrawTxn.wait();

 } else {

 console.log("No funds to withdraw!");

 }

 console.log("Funds withdrawn!");

 }

 } catch (error) {

 console.log(error);

 }

 }

 107

Appendix K: Frontend getMemos function implementation.

// Function to fetch all memos stored on-chain.

 const getMemos = async () => {

 try {

 const { ethereum } = window;

 if (ethereum) {

 const provider = new ethers.providers.Web3Provider(ethereum);

 const signer = provider.getSigner();

 const weddingFund = new ethers.Contract(

 contractAddress,

 contractAbi,

 signer

);

 console.log("fetching memos from the blockchain..");

 const memos = await weddingFund.getMemos();

 console.log("fetched!");

 setMemos(memos);

 } else {

 console.log("Metamask is not connected");

 }

 } catch (error) {

 console.log(error);

 }

 };

 108

Appendix L: Frontend IPFS client configuration.

const auth =

 'Basic ' + Buffer.from(projectId + ':' + projectSecret).toString('base64');

 async function ipfsClient (){

 const ipfs = await create({

 host: 'ipfs.infura.io',

 port: 5001,

 protocol: 'https',

 headers: {

 authorization: auth,

 },

 });

 return ipfs;

 }

	1. Introduction
	1.1. Motivation
	1.2. Identification and problem definition
	1.3. Objectives
	1.4. Hypotheses
	1.5. Assumptions and limitations

	2. Blockchain
	2.1. Decentralized applications
	2.2. Ethereum
	2.3. EVM
	2.4. Smart contract
	2.5. Crypto wallet
	2.6. NFT
	2.7. Gas or transaction cost

	3. Development of web
	3.1. Static web or Web 1.0
	3.2. Semantic Web or Web 2.0
	3.3. Decentralized Web or Web 3.0
	3.4. Comparison between Web1, Web2 and Web3
	3.5. Technologies for Web3 development

	4. Web3 solution examples
	4.1. DeFi
	4.2. Web3 gaming
	4.3. Web3 social networks
	4.4. Web3 marketplaces

	5. Systematic literature review
	5.1. Strategy
	5.1.1. Preliminary search and identification of the need to conduct a systematic literature review
	5.1.2. Search string identification
	5.1.3. Digital libraries specifics
	5.1.4. Inclusion and exclusion criteria

	5.2. Search results
	5.3. Studies review
	5.4. Discussion
	5.4.1. RQ2: What are the technologies, platforms, frameworks, and tools for developing Web3 solutions?
	5.4.2. RQ3: How connected and dependent is Web3 to blockchain and smart contracts?
	5.4.3. RQ4: What is the full-stack for Web3?
	5.4.4. RQ5: Are non-fungible tokens (NFTs) necessary for Web3 development?

	6. Experiment
	6.1. Environment setup
	6.2. Implementation
	6.2.1. Implementation of Web3 solution
	6.2.2. Concept of Web2 solution implementation

	6.3. Discussion

	7. Conclusion
	8. Bibliography

