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A B S T R A C T   

The objective of this paper is to analyse the capability of a spherical thermoprobe, recently proposed as a 3D heat 
flux sensor for regoliths, and additionally to characterize the thermophysical properties of regoliths. The sensor is 
based on the spherical structure of a Mars wind sensor. The characterization is carried out using frequency 
methods. Extensive experimental results have been obtained with eight regolith simulants made of glass 
microbeads. Errors in thermal conductivity and diffusivity are smaller than ± 7%, for these simulants.   

1. Introduction 

The characterization of the thermophysical properties of regoliths is 
one key measurement in planetary exploration [1–4]. This character-
ization can be made in situ, typically using an insertion mechanism or 
drilling [5,6], which can sometimes be complex [7]. Additionally, 
remote characterization is also possible through, for example, the 
interpretation of thermal inertia data [8]. Recently a 3D heat flux sensor 
has been proposed for thermal property determinations for regoliths [9]. 
The sensor is based on the spherical structure of a Mars wind sensor [10, 
11]. The objective of this study is to analyse the capability of this 3D 
heat flux sensor to additionally characterize the thermophysical prop-
erties of the regolith (thermal conductivity and diffusivity). 

In order to characterize the thermal properties of the regolith fre-
quency methods will be used. These methods are based on the inter-
pretation of thermal impedances in the frequency domain of, typically, 
Pt resistors. It is possible to obtain dynamical models related to the 
sensor geometry [12,13]. One of the main advantages of frequency 
methods, compared to static measurements, is that a reference temper-
ature for the regolith is not needed since the impedance measurements 
are obtained only from the amplitude and phase of the temperature/-
power signals, or indirectly, from the electrical impedance of Pt resistors 
in the frequency domain. 

The objective of this paper is therefore to show that the thermo-
physical properties of the regolith may be characterised using the 
spherical geometry of the thermoprobe. Experiments are presented in 

which thermal properties of eight different regolith simulants, made of 
hollow glass spheres, are characterized. The inferred thermal conduc-
tivity and diffusivity values are compared against reference values ob-
tained in the laboratory using a KD2 Pro Thermal Properties Analyzer 
from Decagon Devices, Inc. 

2. Sensor description 

The thermoprobe is a 10 mm diameter sphere divided into four 
equally shaped sectors made of silver. The sectors are assembled on two 
superimposed printed circuit boards (PCBs). Each PCB provides me-
chanical support and signal routing, as shown in Fig. 1. A customized 
silicon die, manufactured in-house, with a deposited Pt resistor, is 
attached to each sector allowing temperature sensing and power injec-
tion. Two additional Pt resistors have been placed at the core of the 
sphere to mitigate and monitor heat conduction from the spherical 
sectors to the supporting structure. 

In order to carry out the measurements presented in this paper, it is 
not necessary to have the sphere divided into sectors. The main 
advantage of this configuration is to use the probe also as a 3D heat flux 
sensor, as well as offering the possibility of exploring more complex 
measurements focused on the analysis of regolith inhomogeneity, which 
will be the objective of future work. 

Fig. 2 shows a block diagram of the experimental setup and simpli-
fied schematic of the electronics used to measure the thermal impedance 
of the thermoprobe. An operational amplifier (OA) in inverting 
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configuration is used to measure the impedance of each Pt resistor (DUT, 
device-under-test). The resistor R allows measurement of the injection of 
a sinusoidal current with bias into each DUT. By knowing the injected 
current and the voltage drop at each DUT, it is possible to obtain the 
value of each Pt resistor, and therefore its instantaneous temperature 
and injected power. Signals are monitored using a 16-bit ADC converter 
(NI USB-6212 acquisition system). 

Fig. 3 shows the temperature and power signals in the Pt resistors in 
the sectors of the sphere and in the center of the sphere for a driving 
frequency of 3.973 mHz. a. Time evolution of the temperature in all four 
sectors (solid lines) and in the center of the sphere (dashed lines). b. 
Time evolution of temperature in sector 1 A. c. FFT of the absolute value 

of the temperature in sector 1 A: major contributions to the signal shown 
to be at the actuation frequency and at its second harmonic at double 
this frequency. d. and e. Time evolution of the applied power to sector 
1 A and its FFT amplitude, respectively. For the power, the first three 
harmonics can be identified in the FFT. The thermal impedance at the 
actuation frequency is obtained as the quotient of the FFT temperature 
and the power signals at that frequency. 

The core Pt resistors can be used to measure temperature and inject 
power at the center of the sphere. This capability is particularly 
important if using the structure as a wind sensor, [10,11]. In this case, 
the same current magnitude is applied in the cores as in the sectors. This 
way, the temperature evolution of the cores is similar to that of the 
sectors, as can be seen in Fig. 3.a, and heat transfer from the sectors to 
the supporting structure is mitigated. Additionally, before calculating 
the thermal impedance at each Pt resistor in the sector, an estimation of 
the heat transfer from the sector to the cores is obtained as: Pi− core =

δ
(
Ti − Tavg− cores

)
, which represents the phasor of the heat transfer from 

sector i to the core of the sphere, and where Tavg− cores is the average 
temperature phasor of both core resistors. Therefore, the thermal 
impedance of sector i, Zi, is calculated as: 

Zi =
Ti

Pi − Pi− core
(1) 

Finally, the total measured impedance of the sphere, Zmeas, is ob-
tained as the parallel impedance of the four sector impedances. The 
associated power transfer coefficient (δ = 0.4 mW/K) was calculated 
in the fitting procedure explained in the next section. 

3. Regolith characterization 

Eight different regolith simulants made of hollow glass microbeads 
from SiLi® have been used to test the proposed measurement procedure. 
Each simulant was a mix of borosilicate glass microbeads of three 
different sizes, as specified in Table 1, together with other physical 
properties. The thermal conductivity and diffusivity reference values of 
the samples have been measured using the KD2 Pro Thermal Properties 
Analyzer operating with a dual-needle sensor (SH-1). The performance 
of the SH-1 was verified prior to measurements with the Delrin block 
provided by the manufacturer. The individual values of thermal 

Fig. 1. (Left) Thermoprobe before filling the gaps between sectors. (Center) 
Diagrammatic cross-section of the thermoprobe showing the relative position of 
Pt sensors (Rxx) and the printed circuit boards (PCBx), (Right) Image showing 
the thermoprobe being deployed into a regolith simulant. 

Fig. 2. Block diagram of the experimental setup and simplified schematic of the 
electronics used to measure the thermal impedance of the thermoprobe. 

Fig. 3. Details of the measurement at frequency 3.973 mHz. (a) Temperature evolution at the Pt sector resistors (1A, 1B, 2A, 2B) and cores (1C, 2C). (b) Temperature 
evolution of sector 1A and its FFT amplitude (c). (d) Power signal applied to sector 1A and its FFT amplitude (e). 
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conductivity kDB, volumetric specific heat capacity CDB and diffusivity 
DDB were compared to ones from the Certificate of Quality Assurance 
and did not deviate more than ± 3%. The device utilizes a transient line 
heat source with a dual probe analysis of the temperature vs time 
dependence. According to the equipment specifications, the expected 
accuracy is ± 5%. As it is mentioned in [14], the error analysis on the 
technique produces accuracy bounds depending on accuracy of the 
temperature measurements and positioning of the needles. The specifics 
of the measuring method and its error analysis may be found in [14,15]. 

Measurements were performed after a minimum 15 min of equili-
bration of the sensor after inserting it into the investigated specimen. 
The contact resistance, relatively higher in granular materials, was kept 
at a minimum level without using any additional thermal grease on the 
sensor. Due to the heat pulse generated by the sensor during the reading 
in order to achieve the best accuracy a layer of at least 2 cm of the 
investigated material was provided parallel to the sensor in all di-
rections. The temperature of the sample was kept as constant as possible 
during the whole measurement. For each sample, 3 measurements were 
taken, and the time between individual readings was around 15 min. A 
default read time of two minutes was applied, during which 60 tem-
perature records were taken. The direct values of thermal conductivity 
and thermal diffusivity are defined according to equations 8 and 10 of 
[15]. The mean values for specific regolith simulants are summarized in 
Table 1. 

4. Experimental results 

All eight regolith simulants have been measured with the spherical 
thermoprobe. The frequency ranged from approximately 1 mHz to 1 Hz. 
The number of signal periods per frequency was between 10 and 20 
cycles. In the low frequency range, 10 cycles were used to avoid mea-
surements longer than 24 h. 

The total measured impedance of the thermoprobe, Zmeas(ω), was 
estimated as the parallel of the thermal impedances measured at the four 
Pt resistors of the sectors. To obtain the thermal conductivity, kr, and 
diffusivity, Dr, of the regolith, a fitting procedure was used in which the 
measured value was modelled by the expected thermal impedance of a 
sphere placed in the regolith, in parallel with the thermal capacitance 
associated to the four sectors themselves. The heat capacitance associ-
ated to each sector was calculated taking into account the mass (0.431 g) 
and the heat capacitance of the alloy (93% Ag, 3.5% Cu, 3.5% Zn): 
0.1059 J/K per sector. A contact resistance of 3.01 K/W was also 
calculated in the fitting procedure, as explained below. 

According to [16, Section 3.6, page 121], the analytical expression of 
the Fourier transform of the thermal impedance of a sphere in a medium 
is: 

Zr[k,D](s) =
1

4πkr0
•

1
1 + r0

̅̅̅s
D

√ , (2)  

where s is the Laplace complex variable, r0 the sphere radius, k and D the 
thermal conductivity and thermal diffusivity of the medium, 

respectively. 
Finally, the complete thermal model includes the thermal capaci-

tance of the sectors and contact resistance between the sectors and the 
medium (regolith), is shown in Fig. 4. 

The fitting procedure therefore finds the values kr and Dr, as: 

[kr Dr] = Argmin
[k,D]

{
∑

n
|Ztotal(k,D)(i2πfn) − Zmeas(fn) |

2

}

, (3)  

where fnis the set of frequency points used in the measurement. The 
power transfer coefficient δ and the contact resistance Rc were the 
common values of these parameters leading to minimum global error 
when comparing the estimated values of thermal conductivity and 
diffusivity with the reference values for the eight regolith simulants 

Table 1 
Physical properties of the regolith samples and numerical values associated to the measurements of Fig. 7.   

Bulk Particle Crush Thermal Conductivity Thermal Diffusivity 

Sample Density 
[g/cm3]

sizes 
[µm]

strength 
[MPa]

Reference 
[W/mK]

Measured 
[W/mK]

Error 
[%]

Reference 
[mm2/s]

Measured 
[mm2/s]

Error 
[%]

8015  0.10 30 / 70 / 90  2  0.0493  0.04851  -1.6  0.17178  0.16943  -1.4 
8020  0.12 32 / 68 / 106  4  0.0467  0.04737  1.4  0.15901  0.14798  -6.9 
8025  0.15 30 / 65 / 100  5  0.0520  0.05178  -0.4  0.15917  0.15971  0.3 
8032  0.19 30 / 56 / 74  14  0.0510  0.05338  4.6  0.15804  0.15107  -4.4 
8046  0.26 22 /45 / 65  41  0.0640  0.06377  -0.4  0.16068  0.15435  -3.9 
8060  0.35 18 /40 / 60  55  0.0713  0.07574  6.2  0.15890  0.16291  2.5 
8070  0.42 15 / 30 /40  124  0.0847  0.08196  -3.2  0.16081  0.15313  -4.8 
8082  0.35 18 / 40 / 60  82  0.0723  0.07545  4.4  0.16056  0.16364  1.9  

Fig. 4. Thermal model of the sphere. Cs corresponds to the capacitance of the 
sectors, Rc is the contact resistance between the sectors and the regolith, and Zr 
is the thermal impedance of the regolith modelled by Eq. (2). 

Fig. 5. Estimation of Real (top) and Imaginary (bottom) part of the thermal 
impedance of the thermoprobe obtained from the measurements with sample 
8025 (red circles). The blue line has been obtained using the model and the 
reference values obtained in Section 3 for this regolith simulant. 
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used. 
Fig. 5 compares the thermal impedance seen from the Pt resistors 

with simulant 8025 obtained from the measurements (red circles) with 
its estimation using expression (2) above, including the parallel capac-
itance of the sectors and taking the reference values obtained in Section 
3 for this regolith simulant (solid line). As can be observed, the experi-
mental values clearly follow the trend predicted by the analytical model 
using the reference values. 

Fig. 6 shows the estimation of the thermal impedances of five rego-
lith simulants, as obtained from measurements (Zmeas, circles), super-
imposed with the analytical model and the estimated values obtained 
from fittings using Eq. (3) (Zfit, solid line), as well as with the analytical 
model and the reference values (Zref, x symbols). As it can be observed, 
the impedances present different trends for different regoliths, and the 
fitted model and the measurement values are very close. 

A comparison between reference and measured values of both the 
thermal conductivity and the diffusivity for eight different regolith 
simulants is shown in Fig. 7, while Table 1 reports the numerical values. 
As it can be seen, there is a good match between measured and reference 
values in all cases. The error is below ± 7% in both the thermal con-
ductivity and the thermal diffusivity. 

5. Conclusions 

The results presented in this paper indicate that it is possible to 
extend the use of the spherical thermoprobe, beyond its capability of 
measuring 3D heat fluxes, to measure thermophysical properties of 
granular materials. By estimating the thermal impedance of the sphere 
in the frequency domain with the model used, it is possible to infer the 
thermal conductivity and diffusivity of regoliths. Experiments have been 

Fig. 6. Comparison between the measured thermal impedance of the thermoprobe (Zmeas, circles), the thermal model with the thermal conductivity and diffusivity 
values obtained from fittings using Eq. (3) (Zfit, solid line), and the thermal model using the reference values for kr and Dr (Zref, x symbols), for five regolith simulants. 

Fig. 7. Comparison between reference and measured values of the thermal conductivity (left) and diffusivity (right) for all simulant samples.  
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carried out with eight different regolith simulants made of hollow glass 
microbeads, differing in density, crush strength and particle size. The 
results show that, for this set of regolith simulants, estimation errors are 
below ± 7% for both the thermal conductivity and diffusivity. Future 
work will be focused on analysing how the method works with multi-
component regolith simulants and in the pressure conditions of the 
environment applicable to planetary bodies. 
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