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Abstract 
High-performance data analytics (HPDA) is a current trend in e-science 
research that aims to integrate traditional HPC with recent data 
analytic frameworks. Most of the work done in this field has focused 
on improving data analytic frameworks by implementing their 
engines on top of HPC technologies such as Message Passing 
Interface. However, there is a lack of integration from an application 
development perspective. HPC workflows have their own parallel 
programming models, while data analytic (DA) algorithms are mainly 
implemented using data transformations and executed with 
frameworks like Spark. Task-based programming models (TBPMs) are 
a very efficient approach for implementing HPC workflows. Data 
analytic transformations can also be decomposed as a set of tasks and 
implemented with a task-based programming model. 
 
In this paper, we present a methodology to develop HPDA 
applications on top of TBPMs that allow developers to combine HPC 
workflows and data analytic transformations seamlessly. A prototype 
of this approach has been implemented on top of the PyCOMPSs task-
based programming model to validate two aspects: HPDA applications 
can be seamlessly developed and have better performance than 
Spark. We compare our results using different programs. Finally, we 
conclude with the idea of integrating DA into HPC applications and 
evaluation of our method against Spark.
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I. Introduction
High-performance computing (HPC) provides computational 
resources, software environments and programming models 
to enable the execution of large-scale e-science applications,  
i.e., with the objective of making predictions or simulations 
such as weather forecasting or protein interaction modelling.  
Recently, with the introduction of Big Data technologies,  
e-science applications have evolved to more complex work-
flows where traditional HPC simulations are combined with data  
analytic (DA) algorithms. However, implementing applica-
tions that combines both aspects requires a lot of engineering  
efforts in terms of deployment and of integration of the HPC 
and data analytic aspects. For HPC workflows, developers use  
parallel programming models, while DA algorithms are mainly 
implemented using DA transformations using frameworks 
such as Spark1. In addition, some glue code that coordinates the  
execution and exchanges of data between the application  
components needs to be implemented. At deployment and  
operation phase, the work doubles since both HPC and Big Data 
environments have to be installed, configured and run at the same 
time. What is more, Big Data frameworks have been designed 
to run in traditional data centres, and they do not get benefit  
from the specific HPC hardware, such as high-speed networks.

High-performance data analytics (HPDA) is a current trend  
in e-science research which aims at the integration of tradi-
tional HPC with the recent DA frameworks2. Most of the work 
done until now in this field has focused on improving the data 
analytic frameworks by implementing their engines on top of  
HPC technologies such as MPI to benefit from the HPC  
hardware and speed up the execution of DA algorithms3,4.  
However, as raised above, there is still a lack of integration  
from the programming interface point of view. In the literature 
of HPC programming models we find task-based programming  
models. These models provide a good abstraction for devel-
opers and they are an efficient approach for implementing  
parallel HPC workflows. On the other side, DA algorithms are 
mainly programmed by applying transformations and actions 
in a dataset (a set of data elements). Transformations are func-
tions which are applied for each element of the dataset (without  
modifying the number of elements) and actions are functions  
which are applied to the whole dataset and can modify the  
number of elements. To efficiently parallelise these algorithms,  
the dataset is divided into partitions (a group of elements), and  
transformations and actions are applied to these partitions.  
Therefore, data analytic algorithms can be decomposed as a  
set of tasks on top of task-based programming models.

In this paper, we present a methodology to develop HPDA  
applications on top of a task-based programming model. We  
propose the Distributed Data Set (DDS), an implementation of 
the data analytic transformations and actions on top of TBPMs.  
It allows developers to combine HPC workflows and data  
analytic transformations in a seamless way, developed as a single  
application, without requiring the use and deployment of several  
frameworks and achieving good performance. A prototype of  
this approach has been implemented on top of the PyCOMPSs 
task-based programming model. The prototype has been validated  

from a functional point of view by implementing a complex  
workflow that combines different DA transformations with 
other computational tasks. Moreover, we have executed big data  
benchmarks on top of the prototype to compare its performance  
with PySpark, which outperforms. The rest of the paper is 
organized as follows: Section II presents the related work;  
Section III introduces the proposed methodology to seamless  
integrate HPC workflows and data analytic algorithms; and  
Section IV describes how it has been implemented on top of 
PyCOMPSs. Then, Section V presents the evaluation; Finally,  
Section VI draws the conclusions.

II. Related work
HPC applications are implemented using parallel program-
ming models, which allow developers to efficiently execute  
applications leveraging the supercomputer architecture. They 
are divided into two groups: shared memory models such as  
OpenMP5 focus on the intranode parallelism; and distributed 
memory models that support applications whose parallelism 
involves multiple computing nodes, such as MPI6 or Partitioned  
Global Address Space (PGAS). PGAS programming models 
assume a global memory address space logically partitioned and 
a portion of it is local to each process (e.g. UPC7 or GASPI8).  
Another interesting approach for HPC is the task-based  
programming model which can be applied either in shared 
or in distributed environments and provides a good trade-off  
between abstraction and performance. Since version 3.0,  
OpenMP supports tasking parallelism. Other programming  
models which allow this model are OmpSs9, StarPU10,  
Legion11 or COMPSs12 for distributed environments.

Regarding Big Data applications, Spark1 and MapReduce13  
are today’s well-known frameworks. Spark provides in-memory 
DA operations for several programming languages. Its Resilient 
Distributed Dataset (RDD)14 high-level abstraction has a rich set 
of methods for DA applications and eases the development for  
distributed data. On the other hand, MapReduce provides  
a programming model where developers define the computation  
with the map and reduce functions, and the parallelization  
is automatically done by the underlying runtime.

Most of the previous work on integrating Big Data and HPC 
are based on the implementation of Big data frameworks on  
top of the HPC technologies, especially on top of MPI. For 
instance, Alchemist3, Spark-DIY4 and Harp15 allow users to call  
MPI-based libraries directly from Spark applications allowing 
users to substitute inefficient computations with calls to efficient  
MPI-based implementations. The main advantage of these 
approaches is that they keep Spark as a programming model, 
so users do not need to change their codes. Other approaches 
like Dask16 offer a client API which can be used to implement  
big data applications together with other complex workflows. 
It could be interesting for new applications but it requires a  
refactor for existing applications. Finally, Twister217 focuses 
on redesigning the whole big-data stack in order to get a bal-
ance between performance and usability which allows the  
inclusion of proven HPC existing technologies in a unified  
environment. In our approach, we have focused on the integration  
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of HPC and Big Data technologies from a programming  
point of view, allowing developers to create applications which 
combine different types of algorithms in a single environment.

III. Methodology
This section presents the methodology proposed for  
programming HPDA applications on top of a task-based  
programming model. Figure 1 shows the overall approach of the  
methodology. On the left, we have the application code,  
composed of a part performing DA transformations and another 
part executing parallel code, implemented as task-based  
workflows. To allow users to seamlessly integrate data transfor-
mations in task-based workflows, we propose the Distributed  
Data Set (DDS). DDS is a library that provides an implementa-
tion of data transformations and actions (such as the defined 
in RDD’s Spark’s API) using task-based parallelism. Each 
transformation and action defined in the API will generate a  
task-dependency graph composed not only of other transfor-
mation graphs (such as in Spark) but also of graphs generated  
by the rest of the application. As depicted in the figure, the  
task-based runtime gets tasks from all application parts, generat-
ing a composed graph that includes the dependencies between 
the different parts. The generated Directed Acyclic Graph (DAG) 
of the whole application will be scheduled and executed in the  
available computing resources. We expect the following benefits:

     •      Developers do not need to perform significant changes  
to the DA algorithms since the API will almost be the  
same, and integrating them with other computations can  
be as easy as passing data between task invocations

     •      Since a DAG is generated for the whole application,  
there is no need for synchronization between DA parts  
and the rest of the parallel regions. The runtime will  
manage the data dependencies and data movements,  
avoiding unnecessary global synchronizations. 

     •      Thanks to the composed DAG, the runtime will do better  
resource management, overlapping reduction regions 
whose resource usage is low with other independent  
parallel regions where the resource demand is higher.

A naïve approach for DDS can be proposed by creating a  
separate workflow of tasks for each transformation or action  
method that the user invokes. In this case, as described in  
Figure 2a, when the user calls a DDS method a set of tasks  
(one per partition) is added to the DAG for each transformation  

and a workflow of tasks per action. This approach has two 
main disadvantages: first, every new DDS method included in  
the library requires the implementation of a specific workflow.  
This requires a lot of effort for implementing and maintaining  
DDS. Second, DDS will create a new set of tasks for each  
method, which implies a high overhead to manage many tasks at 
runtime and to distribute them between the computing nodes.

To overcome the issues mentioned above, we have designed  
an optimized version of the DDS library. The main goal of the 
new approach is to minimize the number of generated tasks.  
First of all, we improved the data loader methods and imple-
mented them in a way that there are no particular tasks only to  
load data. Partitions are loaded inside transformation or 
action tasks. Moreover, we also changed the behaviour of  
transformation tasks. Contrary to the naive implementa-
tion, we have incorporated the idea of combining consecutive  
transformation tasks and running them within a single task.  
In other words, multiple transformation methods are wrapped 
together and executed inside the same task that loads the  
partition. Furthermore, the invocation of that kind of transfor-
mation tasks is triggered when one of the action methods is  
called. Additionally, since multiple tasks are combined into  
one, the runtime overhead of managing multiple small tasks 
has been lowered. Figure 2b depicts the optimized version’s  
behaviour, where we can observe the differences referred  
to earlier. Looking at the examples illustrated by Figure 2, in 
the optimized solution there is only one task per partition added  
to the DAG for the first three operations – data load and  
transformations 1 and 2 – whereas, in the naive solution, there 
would be three. Likewise, transformations 3 and 4 are com-
bined and executed within a single task before the final synchro-
nization. Finally, Figure 3 shows the code and the graph of a  
Word-Count application. In the code part, we compare the  
DDS and Spark implementations, where we can see the changes 
are minimal. In the generated graph, we can see the load and  
maps are executed in the first tasks (blue circles), and the  
count by value is implemented as a reduction in two phases  
(white circles).

IV. Implementation
To validate the proposed methodology we have implemented  
a prototype of the DDS on top of the PyCOMPSs programming 
model. Next paragraphs provide an overview of PyCOMPSs  
and the details of the DDS prototype implementation.

Figure 1. Overview of the proposed integration.
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Figure 2. Distributed Data Set approaches.

Figure 3. Word Count implemented with DDS.

PyCOMPSs18 is the Python binding of the COMPSs framework12  
that facilitates the development of parallel computational  
workflows for distributed infrastructures. It offers a programming  
model based on sequential development – the application  
is a plain sequential Python script – where the user annotates 
the functions to be run as asynchronous parallel tasks. This  
decorator also contains a description of the function parameters,  
such as type and direction, which are vital for building  
the dependency graph. In this graph, tasks are represented 
as nodes and data dependencies between tasks as edges.  
At execution time, asynchronous tasks are created for each  
decorated function and forwarded to the COMPSs Runtime  
which handles data dependency analysis, task scheduling  
and data transfers. The task creation is performed in an  
asynchronous way, and once the runtime has added a given 
task to the dependency graph, the execution of the main Python  
code continues, possibly generating new tasks. With this aim, 
PyCOMPSs manages future objects: a representant object 
is immediately returned to the main program when a task is  
invoked. A future object returned by a task can be involved  
in subsequent asynchronous task calls and PyCOMPSs will  
automatically find the corresponding data dependencies without  
requiring to wait for the actual result of the task. PyCOMPSs  
applications are deployed as master-worker applications, where  

the master executes the main code and invokes the runtime,  
and the workers execute the tasks.

DDS has been implemented on top of PyCOMPSs following the 
ideas presented in Section III. DA applications normally start 
with loading some data, then applying several transformation 
and action functions. Data loader and transformation operations 
are lazy operations in DDS. When the user calls a data loader  
function, DDS simply creates one DataLoader object per  
partition without retrieving the actual data. These DataLoader 
objects are later sent to the tasks to load the data at execution  
time. Then, when the user code ’maps’ a transformation to the  
elements of the DDS, the DDS class creates a helper ’mapper’  
function as shown in Figure 4a. The helper ’mapper’ is meant to 
take the user’s transformation function as a parameter, and apply 
it to each element inside the partition. Thus, it is equivalent to 
the user’s transformation operation with the only difference  
that the ’parameter’ is the partition itself, instead of the  
elements. Moreover, every new transformation method creates  
a new ChildDDS object. A ChildDDS object is a DDS object 
that inherits its parent’s transformation function and wraps it  
with the new-coming transformation. Following this structure,  
DDS can combine several transformations and operate them at 
once. The invocation of the combined transformations happens  
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1MareNostrum 4,https://www.bsc.es/marenostrum/, Accessed: Feb. 18, 2021

2COMPSs GitHub, https://github.com/bsc-wdc/compss, Accessed: Feb.18, 2021

3Spark GitHub,https://github.com/apache/spark, Accessed: Feb. 18, 2021

Figure 4. Code snippets of the DDS implementation in PyCOMPSs.

when a ’collect’ or any other action method is called.  
As detailed in Figure 4b, DDS creates one ’map partition’  
task per partition, provided with a DataLoader object and  
wrapped transformations. At execution time, each ’map  
partition’ task loads its own part of the initial data by calling  
DataLoader’s ’retrieve data’ method and then performs the 
combined transformations. Through the ’future objects’  
parameter of the ’collect’ method, results of those tasks can  
be synchronized in the main program, or directly passed to other 
DDS or PyCOMPSs tasks.

V. Evaluation
We have performed two experiments to validate that the  
prototype is valid for implementing integrated HPDA applica-
tions and does not underperform current Big Data framework 
such as PySpark. The results presented in this section have been 
obtained using the MareNostrum 4 (MN4) Supercomputer 
where each node has two Intel®Xeon Platinum 8160 (24 cores  
at 2.1 GHz each) and 96 GB of main memory1. Regarding  
the software, we have used COMPSs version 2.82 for the DDS  
executions, and for PySpark executions, we have used Spark  
version 3.0.03 in standalone mode on MareNostrum 4 with a  
basic configuration to fully exploit the cluster nodes.

A. HPDA Integrated application
To demonstrate that our approach can seamlessly integrate  
HPDA, we have implemented an application to detect similar 
documents. This application consists of different phases which  
combine multiple algorithms. Figure 5a shows a code snippet  
and the task dependency graph generated for the mentioned  

application (Figure 5b). It starts with a DA part generating a 
list containing all the words from the input files (vocabulary).  
It can be easily retrieved using DDS methods such as  
’load-files-from-dir’, ’map-partition’, and ’distinct’. For the  
second step, we pass this vocabulary to regular PyCOMPSs tasks  
to generate an appearance matrix for each file in the  
initial dataset. In these matrices, columns represent the words in  
alphabetical order, and values are their occurrences. Later 
on, in the third step, we run a distributed K-Means algorithm  
with the appearance matrices as input to detect clusters of  
files with a closer keyword affinity. Once we have the clusters,  
new tasks are called to compare each file with its cluster  
’neighbours’, and identify the most similar files. File compari-
sons are performed with the ’spaCy’ Python module4. Finally, 
Figure 6 shows the execution trace automatically generated by  
PyCOMPSs. In this view, we can see how the PyCOMPSs 
runtime is scheduling and managing the execution of the  
DDS-generated tasks together with the rest of the application  
tasks. This example demonstrates how DDS can seamlessly  
integrate DA algorithms together with other types of computations 
in the same application.

B. Performance Comparison Spark’s RDD versus DDS
We have compared the performance of DDS with PySpark’s  
RDD with different benchmark applications: the Word Count, 
Terasort and Transitive Closure. The first one is the Word  
Count program that consists of two phases; in the first step, 
files are read from the disk as partitions and words of each file  
are counted locally. After that, local results are being merged  
within multiple reduce tasks. For these experiments, we run 
the Word Count with the classic books in English included in 
the Gutenberg Project5 as input. Figure 7 shows the execution 
times for PySpark and DDS using a variable number of nodes.  

4spaCy, https://pypi.org/project/spacy/, Accessed: Feb. 18, 2021

5Gutenberg Project, https://www.gutenberg.org/, Accessed: Feb. 18, 2021
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Figure 5. HPDA integrated application.  Blue and white circles represent DDS tasks, red circles are count locally tasks, pink, red and green 
circles are the k-means algorithm tasks, and yellow circles correspond to get similar files tasks.

Figure 6. HPDA application execution trace. Y-axis shows the computing nodes threads and x-axis show the execution time. Each color 
line represents a task executed in a thread.

Page 7 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022



Figure 7. Word Count executions comparison for Gutenberg dataset.

We can see that DDS performs better than PySpark but  
both of them are not scaling well due to the characteristics 
of the dataset (the speedup is computed using as baseline the  
execution time with PySpark and one worker node). The 
reduce part takes most of the time and it does not scale linearly  
with the number of resources. Figure 8 shows the same  
execution with the Lorem-Ipsum dataset. This dataset uses  
a reduced number of words and a better scalability is achieved  
in both cases, with slightly better results for DDS.

The second benchmark we used for performance comparison is 
TeraSort. Even though the original algorithm widely used for 
benchmarks consists of two additional steps for data generation  
and validation, in our experiments, we only ran the sorting 
phase. TeraSort is tested with datasets containing key-value 
pairs where keys are 10 bytes of data to be sorted, and values are  
90 bytes of data corresponding to each key. The algorithm’s 
idea is to create multiple buckets for different key ranges with  
non-overlapping bounds and use a ‘divide and conquer’ strat-
egy for the sorting process. First, each of the original data  
partitions assigns its elements to the corresponding buckets.  
When all the data has been distributed in the buckets, buckets 
are locally sorted. Considering that sorting the buckets by their  
bounds will also sort the whole dataset, no further computa-
tion is required after that step. Figure 9 shows the execution  
times and scalability results obtained when running the  
Terasort application with PySpark and DDS in a variable  
number of MN4 nodes. Again, DDS has better performance than 
PySpark and also better scalability.

As the last example, we have implemented the Transitive  
Closure (TC) which is a simple reachability matrix within  
a given graph. The input data are ”source” and ”destination”  
nodes for each vertex, and the algorithm builds a final 
matrix where all possible connections are represented. In our  
implementation, we followed the PySpark’s approach where 

in each iteration paths grow by one edge. For example, for 
edges (x,y) and (y,z), after the first round, (x,z) edge will be 
added to the discovered paths. The loop stops when the number  
of discovered edges does not change at the end of the  
iteration. Figure 10 shows the results obtained when running 
the program with 15-GB dataset with PySpark and DDS in a  
variable number of MN4 nodes. In this case, while DDS has 
better performance than PySpark, PySpark has slightly better  
scalability. However, not sufficient to perform better than DDS.  
The time achieved by Pyspark with 16 nodes can be achieved  
by DDS with just 4 nodes.

VI. Conclusion
This paper has presented a methodology to develop inte-
grated HPDA applications where data analytics (DA) and HPC  
algorithms are combined on top of the task-based program-
ming model. To achieve seamless integration of these two types  
of codes, we have presented the distributed data set (DDS) 
library, which implements the main used DA transformations 
and actions on top of a task-based programming model. From 
the different DA transformation and actions, the DDS produces a 
task graph whose input results can be seamlessly integrated with 
the rest of the task-based parallel codes, creating a composed  
task-dependency graph which is managed by the task-based  
runtime as a single application. A prototype of the DDS  
has been implemented on top of the PyCOMPSs program-
ming model and its validation has been focused on two aspects.  
On one hand, we have developed an HPDA application where  
a DA algorithm is combined with a K-means clustering  
algorithm and an algorithm to find text similarities. On the 
other hand, we have evaluated the performance of our DDS  
implementation comparing it with PySpark. Results from the  
evaluation demonstrate that

DDS performs better than PySpark with similar scalability  
and DA codes can be seamlessly integrated with other  
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Figure 8. Word Count executions with Lorem Ipsum dataset.

Figure 9. TeraSort executions comparison (200GB dataset).

Figure 10. Transitive Closure executions comparison (15GB dataset).
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task-based parallel codes allowing the users to create complex 
HPDA applications.

VII. Data availability
Classical books from Gutenberg project that were used for  
Word Count experiments19. News articles that were used for  

HPDA application can be accessed on20. Other datasets can  
be generated using generators on21–23.

VIII. Software availlability
Source code available on12: Archived source code at time  
of publication on24 Licence: Open Access
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This paper provides a methodology for enabling the development of high-performance data 
analytics (HPDA) applications using task-based programming models (TBPMs). Specifically, authors 
propose a distributed data set (DDS) approach for implementing efficient data transformations 
and actions using task-based parallelism. The proposed methodology is evaluated using 
benchmark applications (word count, TeraSort, and transitive closure), and compared to the 
current widely used PySpark approach. Overall, DDS yields relatively significant better 
performance when handling data analytics applications. 
 
General comments:

The proposed methodology could be (to some extent) compared to in situ processing 
technologies. I would recommend authors to provide a brief discussion (potentially on the 
introduction and related work sections) about in situ data analytics and how it differs from 
the proposed methodology. 
 

○

Could authors provide a description of the proposed method using pseudo-algorithms? 
 

○

The experimental evaluation would benefit from some additional experiments/discussions 
to demonstrate how the DDS yields better resource management. Maybe authors could 
leverage some efficiency metrics? 
 

○

Experimental results are based on strong scaling, which demonstrates relevant 
improvement using DDS when compared to PySpark. The paper could also benefit from a 
weak scaling experiment in which results may lead to conclusions that could clearly provide 
insights about PySpark’s low performance.

○

Minor comments:
Consider replacing “What is more” by something like “Furthermore” or “Additionally”. 
 

○

Typo in first paragraph section 3: “such as the defined” ==> “such as the ones defined”. 
 

○
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In Figs 7-10, maybe you can only show speed up, as the elapsed time plots provide relatively 
similar information. 
 

○

I would suggest authors to replace the term “master-worker” by “coordinator-worker” in an 
attempt to suppress oppressive language (see more at https://tools.ietf.org/id/draft-knodel-
terminology-00.html#rfc.section.1.1).
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Summary 
HPC Workflows use specific parallel programming models, while data analytic (DA) applications 
mainly exploit data transformations. Among those HPC parallel programing models, task-based 
programming models (TBPMs) are very efficient for HPC workflows. The authors proposed a 
methodology to develop HPDA applications on top of TBPMs. The authors proposed a library 
called Distributed Data Set (DSS) that implements data transformations and actions (such as the 
defined in RDD’s Spark’s API) using the PyCOMPs task-based library. The authors implemented 
multiple benchmarks, and the results showed that the proposed library outperforms the 
corresponding version implemented via PySpark. 
 
Strengths 
The authors close a gap in the state of practice for developing HPDA applications. 
 
The proposed library (DDS) offers similar APIs to well-known data processing frameworks (Spark), 
i.e., applications will require minimal changes. 
 
The manuscript is well written and structured. 
 
Weaknesses 
In the Evaluation section, the authors report the obtained results rather than discussing and 
giving insights on why these results, i.e., the Evaluation Section leaves the reader with more 
questions than insights about the work. 
 
More details and suggestions for improvements 
A detailed section about how the library internally works would be appreciated. What tasks are 
fusible and why? 
 
Evaluation section: how many threads are configured per worker node? Do Spark and COMPs have 
the same number of threads per node? 
 
More experiments would be beneficial that take into consideration the option of oversubscription 
for the number of threads per node (in the case of Spark). 
 
The authors attributed the performance superiority of their library to the ability to combine 
multiple tasks and have one data loader task. Please time individual parts within the code for both 
implementations, DDS and PySpark, to confirm your performance superiority claims. 
 
Are the reported results based on one or several repetitions per experiment? Reporting this will 
increase the trustworthiness statistically. 
 
Figures 7 and 8 show the performance of DSS and PySpark implementations of the Word Count 
benchmark. The obtained results require clarifications, i.e., both implementations have the same 
performance in the case of the Ipsum dataset, while DSS extremely outperforms PySpark in the 
case of Gutenberg. 
 
Irrespective of the experiment, the performance of PySpark implementations is poor for a few 
nodes (1, 2, 4). But, it seems that PySpark implementations scale better than DSS. The 
performance of PySpark implementations improves beyond 4 nodes. Would it be better than DSS 
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if we go beyond 32 nodes? 
 
Why do specific experiments use 32 nodes while others use up to 16 nodes? 
 
It is important to also include the limitations of the proposed DSS, at least those inherited from 
COMPs. 
 
How does the DDS approach differ from recent approaches such as DAPHNE 
(https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf)?1 
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1. Damme P, Birkenbach M, Bitsakos C, Boehm M, et al.: DAPHNE: An Open and Extensible System 
Infrastructurefor Integrated Data Analysis Pipelines. Conference on Innovative Data Systems 
Research. 2022. Reference Source  
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The paper presents an approach to combining data analytical tasks with high-performance 
computing. The introduction provides a good, generalized background of the topic that quickly 
gives the reader an appreciation of the applicability of integrating a task-based programming 
model suitable for HPC environments with data analytics algorithms. The authors present the 
motivation and background for such an approach very well. The related work section is clear and 
sufficient. 
 
The methodology section explains in an effective way how the distributed data set approach can 
be optimized for generated tasks. The implementation details are laid out detailed enough to 
follow the approach presented. 
 
The evaluation section demonstrates a prototypical application implementation which is also used 
for performance evaluation.  It needs minor revisions and clarifications:

I would not call Part A) an “experiment” (see the first sentence in Part V. “We have performed 
two experiments …”.) Please clarify the language used to introduce the evaluation section. 
 

1. 

Please add some better explanations for the reader to describe the trace file (figure 6). 
While I appreciate the inclusion of the trace file, it would be good to refer to the color 
coding to tell readers which parts refer to “see how the PyCOMPSs runtime is scheduling and 
managing the execution of the DDS-generated tasks together with the rest of the application 
tasks.” 
 

2. 

Please add more details to the summary of Part A “This example demonstrates how DDS can 
seamlessly integrate DA algorithms together with other types of computations in the same 
application. “ 
 

3. 

The performance evaluation section should be enhanced with further details about the 
sample sizes used in the experiments (e.g., number of books/words etc.). Currently, it’s hard 
to judge the experiments for their applicability to real-world scenarios (the selected 
algorithms are a good representation).

4. 

The conclusion section summarizes the presented work very well but is missing a discussion about 
limitations and/or future work. 
 
Data Availability section: “News articles that were used for HPDA application can be accessed on20. 
“ It is not very clear that this dataset is used in the prototype implementation example. Please 
mentioned the usage in the HDPA integrated application section. 
 
I was not able to access the source code used for the evaluation. The source code link given under 
[12] points to 
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00010 which is not accessible. That has to be 
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fixed. The link for COMPSS 2.8.1 is fine. 
 
Minor formatting issues: the first paragraph in the conclusion breaks up in the middle of a 
sentence. “Results from the evaluation demonstrate that 
DDS performs better than PySpark with similar scalability …”
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