
RESEARCH ARTICLE

DDS: integrating data analytics transformations in task-based

workflows [version 1; peer review: 1 approved, 2 approved

with reservations]

Nihad Mammadli 1, Jorge Ejarque 1, Javier Alvarez2, Rosa M. Badia 1

1Workflows and Distributed Computing, Barcelona Supercomputing Center, Barcelona, Catalunya, 08034, Spain
2IOVLabs, Gibraltar, Gibraltar

First published: 25 May 2022, 2:66
https://doi.org/10.12688/openreseurope.14569.1
Latest published: 25 May 2022, 2:66
https://doi.org/10.12688/openreseurope.14569.1

v1

Abstract
High-performance data analytics (HPDA) is a current trend in e-science
research that aims to integrate traditional HPC with recent data
analytic frameworks. Most of the work done in this field has focused
on improving data analytic frameworks by implementing their
engines on top of HPC technologies such as Message Passing
Interface. However, there is a lack of integration from an application
development perspective. HPC workflows have their own parallel
programming models, while data analytic (DA) algorithms are mainly
implemented using data transformations and executed with
frameworks like Spark. Task-based programming models (TBPMs) are
a very efficient approach for implementing HPC workflows. Data
analytic transformations can also be decomposed as a set of tasks and
implemented with a task-based programming model.

In this paper, we present a methodology to develop HPDA
applications on top of TBPMs that allow developers to combine HPC
workflows and data analytic transformations seamlessly. A prototype
of this approach has been implemented on top of the PyCOMPSs task-
based programming model to validate two aspects: HPDA applications
can be seamlessly developed and have better performance than
Spark. We compare our results using different programs. Finally, we
conclude with the idea of integrating DA into HPC applications and
evaluation of our method against Spark.

Keywords
Big Data High Performance, Data Analytics, Parallel Computing, Task
Based Programming Models

Open Peer Review

Approval Status

1 2 3

version 1
25 May 2022 view view view

Peggy Lindner , University of Houston,

Houston, USA

1.

Florina M. Ciorba , University of Basel,

Basel, Switzerland

Ahmed Eleliemy, University of Basel, Basel,

Switzerland

2.

Rafael Ferreira da Silva , Oak Ridge

National Laboratory, Oak Ridge, USA

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Open Research Europe

Page 1 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

https://open-research-europe.ec.europa.eu/articles/2-66/v1
https://open-research-europe.ec.europa.eu/articles/2-66/v1
https://orcid.org/0000-0001-8089-921X
https://orcid.org/0000-0003-4725-5097
https://orcid.org/0000-0003-2941-5499
https://doi.org/10.12688/openreseurope.14569.1
https://doi.org/10.12688/openreseurope.14569.1
https://open-research-europe.ec.europa.eu/articles/2-66/v1
https://open-research-europe.ec.europa.eu/articles/2-66/v1#referee-response-29379
https://open-research-europe.ec.europa.eu/articles/2-66/v1#referee-response-29376
https://open-research-europe.ec.europa.eu/articles/2-66/v1#referee-response-29377
https://orcid.org/0000-0002-0447-5690
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-1720-0928
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.14569.1&domain=pdf&date_stamp=2022-05-25

Corresponding authors: Nihad Mammadli (nihad.mammadli@bsc.es), Jorge Ejarque (jorge.ejarque@bsc.es), Javier Alvarez (
javier@iovlabs.org), Rosa M. Badia (rosa.m.badia@bsc.es)
Author roles: Mammadli N: Investigation, Software, Writing – Original Draft Preparation; Ejarque J: Methodology, Supervision, Writing
– Review & Editing; Alvarez J: Methodology, Supervision; Badia RM: Funding Acquisition, Supervision, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This research was financially supported by the European Union’s Horizon 2020 research and innovation programme
under the grant agreement No 780622; and the Spanish Government (PID2019-107255GB), Generalitat de Catalunya (2014-SGR-1051).
Copyright: © 2022 Mammadli N et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Mammadli N, Ejarque J, Alvarez J and Badia RM. DDS: integrating data analytics transformations in task-
based workflows [version 1; peer review: 1 approved, 2 approved with reservations] Open Research Europe 2022, 2:66
https://doi.org/10.12688/openreseurope.14569.1
First published: 25 May 2022, 2:66 https://doi.org/10.12688/openreseurope.14569.1

Open Research Europe

Page 2 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

mailto:nihad.mammadli@bsc.es
mailto:jorge.ejarque@bsc.es
mailto:javier@iovlabs.org
mailto:rosa.m.badia@bsc.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14569.1
https://doi.org/10.12688/openreseurope.14569.1

I. Introduction
High-performance computing (HPC) provides computational
resources, software environments and programming models
to enable the execution of large-scale e-science applications,
i.e., with the objective of making predictions or simulations
such as weather forecasting or protein interaction modelling.
Recently, with the introduction of Big Data technologies,
e-science applications have evolved to more complex work-
flows where traditional HPC simulations are combined with data
analytic (DA) algorithms. However, implementing applica-
tions that combines both aspects requires a lot of engineering
efforts in terms of deployment and of integration of the HPC
and data analytic aspects. For HPC workflows, developers use
parallel programming models, while DA algorithms are mainly
implemented using DA transformations using frameworks
such as Spark1. In addition, some glue code that coordinates the
execution and exchanges of data between the application
components needs to be implemented. At deployment and
operation phase, the work doubles since both HPC and Big Data
environments have to be installed, configured and run at the same
time. What is more, Big Data frameworks have been designed
to run in traditional data centres, and they do not get benefit
from the specific HPC hardware, such as high-speed networks.

High-performance data analytics (HPDA) is a current trend
in e-science research which aims at the integration of tradi-
tional HPC with the recent DA frameworks2. Most of the work
done until now in this field has focused on improving the data
analytic frameworks by implementing their engines on top of
HPC technologies such as MPI to benefit from the HPC
hardware and speed up the execution of DA algorithms3,4.
However, as raised above, there is still a lack of integration
from the programming interface point of view. In the literature
of HPC programming models we find task-based programming
models. These models provide a good abstraction for devel-
opers and they are an efficient approach for implementing
parallel HPC workflows. On the other side, DA algorithms are
mainly programmed by applying transformations and actions
in a dataset (a set of data elements). Transformations are func-
tions which are applied for each element of the dataset (without
modifying the number of elements) and actions are functions
which are applied to the whole dataset and can modify the
number of elements. To efficiently parallelise these algorithms,
the dataset is divided into partitions (a group of elements), and
transformations and actions are applied to these partitions.
Therefore, data analytic algorithms can be decomposed as a
set of tasks on top of task-based programming models.

In this paper, we present a methodology to develop HPDA
applications on top of a task-based programming model. We
propose the Distributed Data Set (DDS), an implementation of
the data analytic transformations and actions on top of TBPMs.
It allows developers to combine HPC workflows and data
analytic transformations in a seamless way, developed as a single
application, without requiring the use and deployment of several
frameworks and achieving good performance. A prototype of
this approach has been implemented on top of the PyCOMPSs
task-based programming model. The prototype has been validated

from a functional point of view by implementing a complex
workflow that combines different DA transformations with
other computational tasks. Moreover, we have executed big data
benchmarks on top of the prototype to compare its performance
with PySpark, which outperforms. The rest of the paper is
organized as follows: Section II presents the related work;
Section III introduces the proposed methodology to seamless
integrate HPC workflows and data analytic algorithms; and
Section IV describes how it has been implemented on top of
PyCOMPSs. Then, Section V presents the evaluation; Finally,
Section VI draws the conclusions.

II. Related work
HPC applications are implemented using parallel program-
ming models, which allow developers to efficiently execute
applications leveraging the supercomputer architecture. They
are divided into two groups: shared memory models such as
OpenMP5 focus on the intranode parallelism; and distributed
memory models that support applications whose parallelism
involves multiple computing nodes, such as MPI6 or Partitioned
Global Address Space (PGAS). PGAS programming models
assume a global memory address space logically partitioned and
a portion of it is local to each process (e.g. UPC7 or GASPI8).
Another interesting approach for HPC is the task-based
programming model which can be applied either in shared
or in distributed environments and provides a good trade-off
between abstraction and performance. Since version 3.0,
OpenMP supports tasking parallelism. Other programming
models which allow this model are OmpSs9, StarPU10,
Legion11 or COMPSs12 for distributed environments.

Regarding Big Data applications, Spark1 and MapReduce13
are today’s well-known frameworks. Spark provides in-memory
DA operations for several programming languages. Its Resilient
Distributed Dataset (RDD)14 high-level abstraction has a rich set
of methods for DA applications and eases the development for
distributed data. On the other hand, MapReduce provides
a programming model where developers define the computation
with the map and reduce functions, and the parallelization
is automatically done by the underlying runtime.

Most of the previous work on integrating Big Data and HPC
are based on the implementation of Big data frameworks on
top of the HPC technologies, especially on top of MPI. For
instance, Alchemist3, Spark-DIY4 and Harp15 allow users to call
MPI-based libraries directly from Spark applications allowing
users to substitute inefficient computations with calls to efficient
MPI-based implementations. The main advantage of these
approaches is that they keep Spark as a programming model,
so users do not need to change their codes. Other approaches
like Dask16 offer a client API which can be used to implement
big data applications together with other complex workflows.
It could be interesting for new applications but it requires a
refactor for existing applications. Finally, Twister217 focuses
on redesigning the whole big-data stack in order to get a bal-
ance between performance and usability which allows the
inclusion of proven HPC existing technologies in a unified
environment. In our approach, we have focused on the integration

Page 3 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

of HPC and Big Data technologies from a programming
point of view, allowing developers to create applications which
combine different types of algorithms in a single environment.

III. Methodology
This section presents the methodology proposed for
programming HPDA applications on top of a task-based
programming model. Figure 1 shows the overall approach of the
methodology. On the left, we have the application code,
composed of a part performing DA transformations and another
part executing parallel code, implemented as task-based
workflows. To allow users to seamlessly integrate data transfor-
mations in task-based workflows, we propose the Distributed
Data Set (DDS). DDS is a library that provides an implementa-
tion of data transformations and actions (such as the defined
in RDD’s Spark’s API) using task-based parallelism. Each
transformation and action defined in the API will generate a
task-dependency graph composed not only of other transfor-
mation graphs (such as in Spark) but also of graphs generated
by the rest of the application. As depicted in the figure, the
task-based runtime gets tasks from all application parts, generat-
ing a composed graph that includes the dependencies between
the different parts. The generated Directed Acyclic Graph (DAG)
of the whole application will be scheduled and executed in the
available computing resources. We expect the following benefits:

 • Developers do not need to perform significant changes
to the DA algorithms since the API will almost be the
same, and integrating them with other computations can
be as easy as passing data between task invocations

 • Since a DAG is generated for the whole application,
there is no need for synchronization between DA parts
and the rest of the parallel regions. The runtime will
manage the data dependencies and data movements,
avoiding unnecessary global synchronizations.

 • Thanks to the composed DAG, the runtime will do better
resource management, overlapping reduction regions
whose resource usage is low with other independent
parallel regions where the resource demand is higher.

A naïve approach for DDS can be proposed by creating a
separate workflow of tasks for each transformation or action
method that the user invokes. In this case, as described in
Figure 2a, when the user calls a DDS method a set of tasks
(one per partition) is added to the DAG for each transformation

and a workflow of tasks per action. This approach has two
main disadvantages: first, every new DDS method included in
the library requires the implementation of a specific workflow.
This requires a lot of effort for implementing and maintaining
DDS. Second, DDS will create a new set of tasks for each
method, which implies a high overhead to manage many tasks at
runtime and to distribute them between the computing nodes.

To overcome the issues mentioned above, we have designed
an optimized version of the DDS library. The main goal of the
new approach is to minimize the number of generated tasks.
First of all, we improved the data loader methods and imple-
mented them in a way that there are no particular tasks only to
load data. Partitions are loaded inside transformation or
action tasks. Moreover, we also changed the behaviour of
transformation tasks. Contrary to the naive implementa-
tion, we have incorporated the idea of combining consecutive
transformation tasks and running them within a single task.
In other words, multiple transformation methods are wrapped
together and executed inside the same task that loads the
partition. Furthermore, the invocation of that kind of transfor-
mation tasks is triggered when one of the action methods is
called. Additionally, since multiple tasks are combined into
one, the runtime overhead of managing multiple small tasks
has been lowered. Figure 2b depicts the optimized version’s
behaviour, where we can observe the differences referred
to earlier. Looking at the examples illustrated by Figure 2, in
the optimized solution there is only one task per partition added
to the DAG for the first three operations – data load and
transformations 1 and 2 – whereas, in the naive solution, there
would be three. Likewise, transformations 3 and 4 are com-
bined and executed within a single task before the final synchro-
nization. Finally, Figure 3 shows the code and the graph of a
Word-Count application. In the code part, we compare the
DDS and Spark implementations, where we can see the changes
are minimal. In the generated graph, we can see the load and
maps are executed in the first tasks (blue circles), and the
count by value is implemented as a reduction in two phases
(white circles).

IV. Implementation
To validate the proposed methodology we have implemented
a prototype of the DDS on top of the PyCOMPSs programming
model. Next paragraphs provide an overview of PyCOMPSs
and the details of the DDS prototype implementation.

Figure 1. Overview of the proposed integration.

Page 4 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

Figure 2. Distributed Data Set approaches.

Figure 3. Word Count implemented with DDS.

PyCOMPSs18 is the Python binding of the COMPSs framework12
that facilitates the development of parallel computational
workflows for distributed infrastructures. It offers a programming
model based on sequential development – the application
is a plain sequential Python script – where the user annotates
the functions to be run as asynchronous parallel tasks. This
decorator also contains a description of the function parameters,
such as type and direction, which are vital for building
the dependency graph. In this graph, tasks are represented
as nodes and data dependencies between tasks as edges.
At execution time, asynchronous tasks are created for each
decorated function and forwarded to the COMPSs Runtime
which handles data dependency analysis, task scheduling
and data transfers. The task creation is performed in an
asynchronous way, and once the runtime has added a given
task to the dependency graph, the execution of the main Python
code continues, possibly generating new tasks. With this aim,
PyCOMPSs manages future objects: a representant object
is immediately returned to the main program when a task is
invoked. A future object returned by a task can be involved
in subsequent asynchronous task calls and PyCOMPSs will
automatically find the corresponding data dependencies without
requiring to wait for the actual result of the task. PyCOMPSs
applications are deployed as master-worker applications, where

the master executes the main code and invokes the runtime,
and the workers execute the tasks.

DDS has been implemented on top of PyCOMPSs following the
ideas presented in Section III. DA applications normally start
with loading some data, then applying several transformation
and action functions. Data loader and transformation operations
are lazy operations in DDS. When the user calls a data loader
function, DDS simply creates one DataLoader object per
partition without retrieving the actual data. These DataLoader
objects are later sent to the tasks to load the data at execution
time. Then, when the user code ’maps’ a transformation to the
elements of the DDS, the DDS class creates a helper ’mapper’
function as shown in Figure 4a. The helper ’mapper’ is meant to
take the user’s transformation function as a parameter, and apply
it to each element inside the partition. Thus, it is equivalent to
the user’s transformation operation with the only difference
that the ’parameter’ is the partition itself, instead of the
elements. Moreover, every new transformation method creates
a new ChildDDS object. A ChildDDS object is a DDS object
that inherits its parent’s transformation function and wraps it
with the new-coming transformation. Following this structure,
DDS can combine several transformations and operate them at
once. The invocation of the combined transformations happens

Page 5 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

1MareNostrum 4,https://www.bsc.es/marenostrum/, Accessed: Feb. 18, 2021

2COMPSs GitHub, https://github.com/bsc-wdc/compss, Accessed: Feb.18, 2021

3Spark GitHub,https://github.com/apache/spark, Accessed: Feb. 18, 2021

Figure 4. Code snippets of the DDS implementation in PyCOMPSs.

when a ’collect’ or any other action method is called.
As detailed in Figure 4b, DDS creates one ’map partition’
task per partition, provided with a DataLoader object and
wrapped transformations. At execution time, each ’map
partition’ task loads its own part of the initial data by calling
DataLoader’s ’retrieve data’ method and then performs the
combined transformations. Through the ’future objects’
parameter of the ’collect’ method, results of those tasks can
be synchronized in the main program, or directly passed to other
DDS or PyCOMPSs tasks.

V. Evaluation
We have performed two experiments to validate that the
prototype is valid for implementing integrated HPDA applica-
tions and does not underperform current Big Data framework
such as PySpark. The results presented in this section have been
obtained using the MareNostrum 4 (MN4) Supercomputer
where each node has two Intel®Xeon Platinum 8160 (24 cores
at 2.1 GHz each) and 96 GB of main memory1. Regarding
the software, we have used COMPSs version 2.82 for the DDS
executions, and for PySpark executions, we have used Spark
version 3.0.03 in standalone mode on MareNostrum 4 with a
basic configuration to fully exploit the cluster nodes.

A. HPDA Integrated application
To demonstrate that our approach can seamlessly integrate
HPDA, we have implemented an application to detect similar
documents. This application consists of different phases which
combine multiple algorithms. Figure 5a shows a code snippet
and the task dependency graph generated for the mentioned

application (Figure 5b). It starts with a DA part generating a
list containing all the words from the input files (vocabulary).
It can be easily retrieved using DDS methods such as
’load-files-from-dir’, ’map-partition’, and ’distinct’. For the
second step, we pass this vocabulary to regular PyCOMPSs tasks
to generate an appearance matrix for each file in the
initial dataset. In these matrices, columns represent the words in
alphabetical order, and values are their occurrences. Later
on, in the third step, we run a distributed K-Means algorithm
with the appearance matrices as input to detect clusters of
files with a closer keyword affinity. Once we have the clusters,
new tasks are called to compare each file with its cluster
’neighbours’, and identify the most similar files. File compari-
sons are performed with the ’spaCy’ Python module4. Finally,
Figure 6 shows the execution trace automatically generated by
PyCOMPSs. In this view, we can see how the PyCOMPSs
runtime is scheduling and managing the execution of the
DDS-generated tasks together with the rest of the application
tasks. This example demonstrates how DDS can seamlessly
integrate DA algorithms together with other types of computations
in the same application.

B. Performance Comparison Spark’s RDD versus DDS
We have compared the performance of DDS with PySpark’s
RDD with different benchmark applications: the Word Count,
Terasort and Transitive Closure. The first one is the Word
Count program that consists of two phases; in the first step,
files are read from the disk as partitions and words of each file
are counted locally. After that, local results are being merged
within multiple reduce tasks. For these experiments, we run
the Word Count with the classic books in English included in
the Gutenberg Project5 as input. Figure 7 shows the execution
times for PySpark and DDS using a variable number of nodes.

4spaCy, https://pypi.org/project/spacy/, Accessed: Feb. 18, 2021

5Gutenberg Project, https://www.gutenberg.org/, Accessed: Feb. 18, 2021

Page 6 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

http://www.bsc.es/marenostrum/
https://github.com/bsc-wdc/compss
https://github.com/apache/spark
https://pypi.org/project/spacy/
http://www.gutenberg.org/

Figure 5. HPDA integrated application. Blue and white circles represent DDS tasks, red circles are count locally tasks, pink, red and green
circles are the k-means algorithm tasks, and yellow circles correspond to get similar files tasks.

Figure 6. HPDA application execution trace. Y-axis shows the computing nodes threads and x-axis show the execution time. Each color
line represents a task executed in a thread.

Page 7 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

Figure 7. Word Count executions comparison for Gutenberg dataset.

We can see that DDS performs better than PySpark but
both of them are not scaling well due to the characteristics
of the dataset (the speedup is computed using as baseline the
execution time with PySpark and one worker node). The
reduce part takes most of the time and it does not scale linearly
with the number of resources. Figure 8 shows the same
execution with the Lorem-Ipsum dataset. This dataset uses
a reduced number of words and a better scalability is achieved
in both cases, with slightly better results for DDS.

The second benchmark we used for performance comparison is
TeraSort. Even though the original algorithm widely used for
benchmarks consists of two additional steps for data generation
and validation, in our experiments, we only ran the sorting
phase. TeraSort is tested with datasets containing key-value
pairs where keys are 10 bytes of data to be sorted, and values are
90 bytes of data corresponding to each key. The algorithm’s
idea is to create multiple buckets for different key ranges with
non-overlapping bounds and use a ‘divide and conquer’ strat-
egy for the sorting process. First, each of the original data
partitions assigns its elements to the corresponding buckets.
When all the data has been distributed in the buckets, buckets
are locally sorted. Considering that sorting the buckets by their
bounds will also sort the whole dataset, no further computa-
tion is required after that step. Figure 9 shows the execution
times and scalability results obtained when running the
Terasort application with PySpark and DDS in a variable
number of MN4 nodes. Again, DDS has better performance than
PySpark and also better scalability.

As the last example, we have implemented the Transitive
Closure (TC) which is a simple reachability matrix within
a given graph. The input data are ”source” and ”destination”
nodes for each vertex, and the algorithm builds a final
matrix where all possible connections are represented. In our
implementation, we followed the PySpark’s approach where

in each iteration paths grow by one edge. For example, for
edges (x,y) and (y,z), after the first round, (x,z) edge will be
added to the discovered paths. The loop stops when the number
of discovered edges does not change at the end of the
iteration. Figure 10 shows the results obtained when running
the program with 15-GB dataset with PySpark and DDS in a
variable number of MN4 nodes. In this case, while DDS has
better performance than PySpark, PySpark has slightly better
scalability. However, not sufficient to perform better than DDS.
The time achieved by Pyspark with 16 nodes can be achieved
by DDS with just 4 nodes.

VI. Conclusion
This paper has presented a methodology to develop inte-
grated HPDA applications where data analytics (DA) and HPC
algorithms are combined on top of the task-based program-
ming model. To achieve seamless integration of these two types
of codes, we have presented the distributed data set (DDS)
library, which implements the main used DA transformations
and actions on top of a task-based programming model. From
the different DA transformation and actions, the DDS produces a
task graph whose input results can be seamlessly integrated with
the rest of the task-based parallel codes, creating a composed
task-dependency graph which is managed by the task-based
runtime as a single application. A prototype of the DDS
has been implemented on top of the PyCOMPSs program-
ming model and its validation has been focused on two aspects.
On one hand, we have developed an HPDA application where
a DA algorithm is combined with a K-means clustering
algorithm and an algorithm to find text similarities. On the
other hand, we have evaluated the performance of our DDS
implementation comparing it with PySpark. Results from the
evaluation demonstrate that

DDS performs better than PySpark with similar scalability
and DA codes can be seamlessly integrated with other

Page 8 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

Figure 8. Word Count executions with Lorem Ipsum dataset.

Figure 9. TeraSort executions comparison (200GB dataset).

Figure 10. Transitive Closure executions comparison (15GB dataset).

Page 9 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

task-based parallel codes allowing the users to create complex
HPDA applications.

VII. Data availability
Classical books from Gutenberg project that were used for
Word Count experiments19. News articles that were used for

HPDA application can be accessed on20. Other datasets can
be generated using generators on21–23.

VIII. Software availlability
Source code available on12: Archived source code at time
of publication on24 Licence: Open Access

References

1. Zaharia M, Chowdhury M, Franklin MJ, et al.: Spark: Cluster Computing with
Working Sets. in Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10. (Berkeley, CA USA), USENIX Association, 2010.
Reference Source

2. Asch M, Moore T, Badia R, et al.: Big data and extreme-scale computing:
Pathways to convergence-toward a shaping strategy for a future software
and data ecosystem for scientific inquiry. Int J High Perform Comput Appl.
SAGE Publications Sage UK: London, England, 2018; 32(4): 435–479.
Publisher Full Text

3. Gittens A, Rothauge K, Wang S, et al.: Alchemist: An apache spark- mpi
interface. Concurr Comput Pract Exp. 2019; 31(16): e5026.
Reference Source

4. Caíno-Lores S, Carretero J, Nicolae B, et al.: Spark-diy: A framework for
interoperable spark operations with high performance block-based data
models. in 5th International Conference on Big Data Computing Applications and
Technologies. IEEE, 2018; 1–10.
Publisher Full Text

5. Dagum L, Menon R: Openmp: an industry standard api for shared-memory
programming. IEEE Comput Sci Eng. 1998; 5(1): 46–55.
Publisher Full Text

6. Gropp WD, Lusk E, Skjellum A, et al.: Using MPI: portable parallel
programming with the message-passing interface. MIT press, 1999; 1.
Reference Source

7. El-Ghazawi T, Carlson W, Sterling T, et al.: UPC: distributed shared memory
programming. John Wiley & Sons, 2005; 40.
Reference Source

8. Grünewald D, Simmendinger C: The gaspi api specification and its
implementation gpi 2.0. in 7th International Conference on PGAS Programming
Models. 2013; 243.
Reference Source

9. Duran A, Perez JM, Ayguadé E, et al.: Extending the OpenMP tasking model
to allow dependent tasks. International Workshop on OpenMP. Springer, 2008;
111–122.
Publisher Full Text

10. Augonnet C, Thibault S, Namyst R, et al.: StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures. CCPE - Concurrency
and Computation: Practice and Experience, Special Issue: Euro-Par 2009. 2011;
23(2): 187–198.
Publisher Full Text

11. Bauer M, Treichler S, Slaughter E, et al.: Legion: Expressing locality and

independence with logical regions. in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2012; 1–11.
Publisher Full Text

12. Badia RM, Conejero J, Diaz C, et al.: COMP superscalar, an interoperable
programming framework. SoftwareX. 2015; 3–4: 32–36.
Publisher Full Text

13. Dean J, Ghemawat S: Mapreduce: simplified data processing on large
clusters. Communications of the ACM. 2008; 51(1): 107–113.
Publisher Full Text

14. Zaharia M, Chowdhury M, Das T, et al.: Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. in 9th Symposium on
Networked Systems Design and Implementation. 2012; 15–28.
Reference Source

15. Zhang B, Peng B, Chen L, et al.: Introduction to harp: when big data meets
hpc. Indiana University. 2017.
Reference Source

16. Rocklin M: Dask: Parallel computation with blocked algorithms and task
scheduling. in Proceedings of the 14th python in science conference. 2015; 126.
Publisher Full Text

17. Kamburugamuve S, Govindarajan K, Wickramasinghe P, et al.: Twister2: Design
of a big data toolkit. Concurr Comput Pract Exp. 2020; 32(3): e5189.
Publisher Full Text

18. Tejedor E, Becerra Y, Alomar G, et al.: PyCOMPSs: Parallel Computational
Workflows in Python. Int J High Perform Comput Appl. 2017; 31(1): 66–82.
Publisher Full Text

19. The Gutenberg Foundation: Gutenberg Project. Accessed: Feb. 18, 2021.
20. News Articles. Accessed: May. 2, 2022.

http://www.doi.org/10.5281/zenodo.6420719
21. Terasort dataset generator. Accessed: May. 2, 2022.

http://www.doi.org/10.5281/zenodo.6424846
22. Transitive Closure dataset generator. Accessed: May. 2, 2022.

http://www.doi.org/10.5281/zenodo.6424848
23. Lorem Ipsum dataset generator. Accessed: May. 2, 2022.

http://www.doi.org/10.5281/zenodo.6424837
24. Barcelona Supercomputing Center: COMPSs. Accessed: May 2, 2022.

http://www.doi.org/10.5281/zenodo.6362651

Page 10 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

https://openreview.net/forum?id=1-PyHHjUwA6
http://dx.doi.org/10.5555/1863103.1863113
http://dx.doi.org/10.1177/1094342018778123
https://openreview.net/forum?id=1-PyHHjUwA6
http://dx.doi.org/10.1109/BDCAT.2018.00010
http://dx.doi.org/10.1109/99.660313
https://ieeexplore.ieee.org/book/6267273
https://www.wiley.com/en-us/UPC%3A+Distributed+Shared+Memory+Programming-p-9780471478379
https://www.semanticscholar.org/paper/The-GASPI-API-specification-and-its-implementation-Gr%C3%BCnewald-Simmendinger/6bec44d32d4d090be89d8ab22a2aaa691d326d28
http://dx.doi.org/10.1007/978-3-540-79561-2_10
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1109/SC.2012.71
http://dx.doi.org/10.1016/j.softx.2015.10.004
http://dx.doi.org/10.1145/1327452.1327492
https://dl.acm.org/doi/10.5555/2228298.2228301
http://dx.doi.org/10.5555/2228298.2228301
http://dsc.soic.indiana.edu/publications/Harp-Report.pdf
http://dx.doi.org/10.25080/Majora-7b98e3ed-013
http://dx.doi.org/10.1002/cpe.5189
http://dx.doi.org/10.1177/1094342015594678
http://www.doi.org/10.5281/zenodo.6420719
http://www.doi.org/10.5281/zenodo.6424846
http://www.doi.org/10.5281/zenodo.6424848
http://www.doi.org/10.5281/zenodo.6424837
http://www.doi.org/10.5281/zenodo.6362651
https://www.wiley.com/en-us/UPC+Distributed+Shared+Memory+Programming-p-9780471478379

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 12 July 2022

https://doi.org/10.21956/openreseurope.15731.r29377

© 2022 Ferreira da Silva R. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Rafael Ferreira da Silva
Oak Ridge National Laboratory, Oak Ridge, TN, USA

This paper provides a methodology for enabling the development of high-performance data
analytics (HPDA) applications using task-based programming models (TBPMs). Specifically, authors
propose a distributed data set (DDS) approach for implementing efficient data transformations
and actions using task-based parallelism. The proposed methodology is evaluated using
benchmark applications (word count, TeraSort, and transitive closure), and compared to the
current widely used PySpark approach. Overall, DDS yields relatively significant better
performance when handling data analytics applications.

General comments:

The proposed methodology could be (to some extent) compared to in situ processing
technologies. I would recommend authors to provide a brief discussion (potentially on the
introduction and related work sections) about in situ data analytics and how it differs from
the proposed methodology.

○

Could authors provide a description of the proposed method using pseudo-algorithms?

○

The experimental evaluation would benefit from some additional experiments/discussions
to demonstrate how the DDS yields better resource management. Maybe authors could
leverage some efficiency metrics?

○

Experimental results are based on strong scaling, which demonstrates relevant
improvement using DDS when compared to PySpark. The paper could also benefit from a
weak scaling experiment in which results may lead to conclusions that could clearly provide
insights about PySpark’s low performance.

○

Minor comments:
Consider replacing “What is more” by something like “Furthermore” or “Additionally”.

○

Typo in first paragraph section 3: “such as the defined” ==> “such as the ones defined”.

○

Open Research Europe

Page 11 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

https://doi.org/10.21956/openreseurope.15731.r29377
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1720-0928

In Figs 7-10, maybe you can only show speed up, as the elapsed time plots provide relatively
similar information.

○

I would suggest authors to replace the term “master-worker” by “coordinator-worker” in an
attempt to suppress oppressive language (see more at https://tools.ietf.org/id/draft-knodel-
terminology-00.html#rfc.section.1.1).

○

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Distributed Computing, HPC, Scientific Workflows

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Reviewer Report 07 July 2022

https://doi.org/10.21956/openreseurope.15731.r29376

© 2022 Ciorba F et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Florina M. Ciorba
Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
Ahmed Eleliemy
University of Basel, Basel, Switzerland

Open Research Europe

Page 12 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

https://tools.ietf.org/id/draft-knodel-terminology-00.html#rfc.section.1.1
https://tools.ietf.org/id/draft-knodel-terminology-00.html#rfc.section.1.1
https://doi.org/10.21956/openreseurope.15731.r29376
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2773-4499

Summary
HPC Workflows use specific parallel programming models, while data analytic (DA) applications
mainly exploit data transformations. Among those HPC parallel programing models, task-based
programming models (TBPMs) are very efficient for HPC workflows. The authors proposed a
methodology to develop HPDA applications on top of TBPMs. The authors proposed a library
called Distributed Data Set (DSS) that implements data transformations and actions (such as the
defined in RDD’s Spark’s API) using the PyCOMPs task-based library. The authors implemented
multiple benchmarks, and the results showed that the proposed library outperforms the
corresponding version implemented via PySpark.

Strengths
The authors close a gap in the state of practice for developing HPDA applications.

The proposed library (DDS) offers similar APIs to well-known data processing frameworks (Spark),
i.e., applications will require minimal changes.

The manuscript is well written and structured.

Weaknesses
In the Evaluation section, the authors report the obtained results rather than discussing and
giving insights on why these results, i.e., the Evaluation Section leaves the reader with more
questions than insights about the work.

More details and suggestions for improvements
A detailed section about how the library internally works would be appreciated. What tasks are
fusible and why?

Evaluation section: how many threads are configured per worker node? Do Spark and COMPs have
the same number of threads per node?

More experiments would be beneficial that take into consideration the option of oversubscription
for the number of threads per node (in the case of Spark).

The authors attributed the performance superiority of their library to the ability to combine
multiple tasks and have one data loader task. Please time individual parts within the code for both
implementations, DDS and PySpark, to confirm your performance superiority claims.

Are the reported results based on one or several repetitions per experiment? Reporting this will
increase the trustworthiness statistically.

Figures 7 and 8 show the performance of DSS and PySpark implementations of the Word Count
benchmark. The obtained results require clarifications, i.e., both implementations have the same
performance in the case of the Ipsum dataset, while DSS extremely outperforms PySpark in the
case of Gutenberg.

Irrespective of the experiment, the performance of PySpark implementations is poor for a few
nodes (1, 2, 4). But, it seems that PySpark implementations scale better than DSS. The
performance of PySpark implementations improves beyond 4 nodes. Would it be better than DSS

Open Research Europe

Page 13 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

if we go beyond 32 nodes?

Why do specific experiments use 32 nodes while others use up to 16 nodes?

It is important to also include the limitations of the proposed DSS, at least those inherited from
COMPs.

How does the DDS approach differ from recent approaches such as DAPHNE
(https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf)?1

References
1. Damme P, Birkenbach M, Bitsakos C, Boehm M, et al.: DAPHNE: An Open and Extensible System
Infrastructurefor Integrated Data Analysis Pipelines. Conference on Innovative Data Systems
Research. 2022. Reference Source

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: High performance computing, high performance data analysis, scheduling
and load balancing, tasking

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 27 June 2022

https://doi.org/10.21956/openreseurope.15731.r29379

Open Research Europe

Page 14 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-29376-1
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://doi.org/10.21956/openreseurope.15731.r29379

© 2022 Lindner P. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peggy Lindner
Department of Information & Logistics Technology, University of Houston, Houston, TX, USA

The paper presents an approach to combining data analytical tasks with high-performance
computing. The introduction provides a good, generalized background of the topic that quickly
gives the reader an appreciation of the applicability of integrating a task-based programming
model suitable for HPC environments with data analytics algorithms. The authors present the
motivation and background for such an approach very well. The related work section is clear and
sufficient.

The methodology section explains in an effective way how the distributed data set approach can
be optimized for generated tasks. The implementation details are laid out detailed enough to
follow the approach presented.

The evaluation section demonstrates a prototypical application implementation which is also used
for performance evaluation. It needs minor revisions and clarifications:

I would not call Part A) an “experiment” (see the first sentence in Part V. “We have performed
two experiments …”.) Please clarify the language used to introduce the evaluation section.

1.

Please add some better explanations for the reader to describe the trace file (figure 6).
While I appreciate the inclusion of the trace file, it would be good to refer to the color
coding to tell readers which parts refer to “see how the PyCOMPSs runtime is scheduling and
managing the execution of the DDS-generated tasks together with the rest of the application
tasks.”

2.

Please add more details to the summary of Part A “This example demonstrates how DDS can
seamlessly integrate DA algorithms together with other types of computations in the same
application. “

3.

The performance evaluation section should be enhanced with further details about the
sample sizes used in the experiments (e.g., number of books/words etc.). Currently, it’s hard
to judge the experiments for their applicability to real-world scenarios (the selected
algorithms are a good representation).

4.

The conclusion section summarizes the presented work very well but is missing a discussion about
limitations and/or future work.

Data Availability section: “News articles that were used for HPDA application can be accessed on20.
“ It is not very clear that this dataset is used in the prototype implementation example. Please
mentioned the usage in the HDPA integrated application section.

I was not able to access the source code used for the evaluation. The source code link given under
[12] points to
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00010 which is not accessible. That has to be

Open Research Europe

Page 15 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0447-5690
https://open-research-europe.ec.europa.eu/articles/2-66/v1#ref-20
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00010

fixed. The link for COMPSS 2.8.1 is fine.

Minor formatting issues: the first paragraph in the conclusion breaks up in the middle of a
sentence. “Results from the evaluation demonstrate that
DDS performs better than PySpark with similar scalability …”

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Workflows for Data Science applications

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Open Research Europe

Page 16 of 16

Open Research Europe 2022, 2:66 Last updated: 29 NOV 2022

