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ABSTRACT

In this work, a numerical model for the simulation of two-phase electrohydrodynamic (EHD) problems is proposed. It is characterized by a
physically consistent treatment of surface tension as well as a jump in the electric material properties. The formulation is based on a finite ele-
ment method enriched with special shape functions, capable of accurate capturing discontinuities both in the fluid pressure and the gradient
of the electric potential. Phase interface is, thus, represented as a zero-thickness boundary. The proposed methodology allows modeling the
electric force as an interfacial one, strictly abiding with the physics. The approach is tested using the droplet deformation benchmarks.
Moreover, application of the method to study a three-dimensional (3D) case, not characterized by symmetry of revolution, is shown. The
proposed methodology defines a basis for an enriched finite element method for a wide range of EHD problems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127274

I. INTRODUCTION

During the last decade, electrohydrodynamics (EHD) in multi-
phase microsystems has become a topic of active research.1–4 The
numerical modeling of such systems is becoming of particular impor-
tance for modern manufacturing techniques.5–7 In EHD studies, one is
typically interested in the analysis of droplet dynamics under the effect
of an electric field. Despite the progress made in the field, one of the
main complexities that typically undermines the quality of the numeri-
cal simulations of EHD problems is the presence of strong and/or
weak discontinuities in the fluid and electrical fields. These discontinu-
ities cannot be adequately represented by the majority of the existing
classes of numerical methods (finite elements, finite volumes, and
finite differences) per se and require introducing special additional
techniques.

Several classes of numerical schemes have been reported in
the literature for treating such discontinuities. Based on how the
interface is treated, the most common classes of methods are level-
set,8–12 volume-of-fluid,13–15 and phase-field.16,17 Other methods
include the lattice-Boltzmann,18,19 smoothed-particle-hydrodynam-
ics,20,21 Immerse Interface Method (IIM),9,22 embedded Eulerian–
Lagrangian,23,24 and Particle Finite Element Method (PFEM),25,26 to

name just a few. In addition to the most common techniques listed
above, some other methods applied to the problem of interest include
the Boundary Element Method (BEM);27,28 however, application of
this latter methodology is restricted to problems with minor topologi-
cal changes.

One of the critical issues related to the choice of the particular
scheme among the above-mentioned ones is the handling of the elec-
tric force, which corresponds to the discontinuity in Maxwell stress
tensor. The electric force can be computed either as an interfacial force
(“jump” in the Maxwell stress tensor across the interface ½½n �Te��) or
as a volume (body) force expressed as divergence, r �Te, of Maxwell
tensor.29,30 Most of the numerical studies cast the electric effect as a
volume force, smearing it over a region of finite thickness due to its
simplified computational treatment. However, in light of the early
studies of EHD, it was shown that the electro-hydrodynamic interac-
tions at the interface dominate the resulting two-phase system.31,32

Consequently, computing the electric force on the basis of Maxwell
tensor smoothed over a few cells/elements obliges using very fine
meshes at the interface, otherwise, a large error is introduced in the
interface proximity.22 Due to electro-mechanical coupling, this, in
turn, leads to inaccurate solution of the momentum equation.
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The errors become particularly severe if the difference in the electric
properties of the fluids involved is large.

In the present work, we strive to develop an efficient and robust
alternative to the existing approaches. Our model is based on the
Finite Element Method (FEM) equipped with the level-set approach33

for capturing the sharp material interface. The discontinuity in the
material properties (both mechanical and electric) is represented in
the Enriched Finite Element Method (EFEM) fashion,34–36 via intro-
ducing and then condensing additional degrees of freedom in the
elements cut by the interface between the fluids. The electro-
hydrodynamic coupling is implemented by incorporating the electric
force in the momentum equation of the fluid as a surface (and not vol-
umetric) integral ensuring the accurate representation of the corre-
sponding term even on coarse meshes.

The paper begins with the governing equations (Sec. II). The
enrichment of the finite element spaces is presented. Particular atten-
tion is paid to the electro-mechanical coupling. In Sec. III, the method
is validated and tested using several numerical examples. Its applica-
tion to analysis of droplets deforming under the effect of electric field
is shown in two and three dimensions. Finally, summary and conclu-
sions are given in Sec. IV.

II. NUMERICAL METHOD
A. Problem statement

Let us consider two immiscible fluids (X1 and X2) separated by
an interface (C) and exposed to electric field (E) as shown in Fig. 1.
Due to the action of the electric field, the fluid molecules may get
polarized and the charged ions/free electrons migrate to the interface,
thereby the fluids are set in motion.31,32 In order to model such phe-
nomenon, the system must be described by the conservation equations
governing the fluid flow on the one hand and the electric field on the
other hand.

The mass and momentum conservation equations for the fluid
flow read

r � u ¼ 0 (1)

and

@qu
@t
þ qu � ru ¼ r � rþ f ; (2)

respectively. Here, q is the density, u is the velocity vector, f is a vector
of external body forces, and r is the total stress tensor. In the case of
Newtonian fluids, the total stress tensor is

r ¼ �pIþ lðruþruTÞ; (3)

where p is the pressure, l is the dynamic viscosity, and I is the identity
tensor. Physical properties are determined according to the subdo-
mains, e.g., q ¼ q1 in X1 and q ¼ q2 in X2.

The electromagnetism is described by Maxwell’s equations.
Nonetheless, for modeling the EHD flow, the magnetic effects are
commonly neglected and the electrostatic equations provide suffi-
ciently accurate results taking into account that the characteristic time-
scale for the magnetic field is significantly smaller than that of the
electric field.37 It should also be noted that common EHD applications
are basically studied in the absence of external magnetic fields.
Omitting the magnetic field, Maxwell–Faraday equation for electric
field E becomes

r� E ¼ 0; (4)

and, therefore, electric potential / can be introduced as

E ¼ �r/: (5)

For leaky dielectric model,14,31,37 that is known to realistically repre-
sent the behavior of liquids in common EHD applications, the conser-
vation of the electric current reads38

r � J ¼ 0; (6)

where J ¼ jE, with j being the electric conductivity. Note that the
convection of the bulk free charge density is neglected for the small
value of the so-called “electric Reynolds number.”38

Substituting Eq. (5) into Eq. (6), one obtains

r � jr/ð Þ ¼ 0: (7)

In this work, Eq. (7) is subject to Dirichlet boundary condition as
follows:

/ ¼ ~/ on @Xelec;D: (8)

For the sake of simplicity, trivial Neumann condition (n � r/ ¼ 0)
is considered for the rest of the domain boundary (@Xn@Xelec;D).

Moreover, the continuity of the electric potential and the electric
current is required at the interface (C ¼ X1 \ X2)

31

½½/�� ¼ 0; (9)

n � ½½J�� ¼ 0; (10)

where n is the normal unit vector toC and ½½��� is the “jump” operator.

B. Electro-hydrodynamic coupling

In EHD applications, the electric field and the hydrodynamics
are coupled via the electric force, which can be calculated using the
well-known electric Korteweg–Helmholz force.31 For an incompress-
ible electrically linear material, this coupling force isFIG. 1. A scheme of a two-phase domain exposed to electric field.
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fe ¼ qeE�
1
2
ðE � EÞr�; (11)

with qe being the electric charge density. Neglecting the convection of the
charge density, fe becomes zero everywhere in the domain except the
interface, which is characterized by a jump in the electric permittivity (�).

Equation (11) can equivalently be written as f e ¼ r �Te with
the Maxwell stress tensor defined as

Te ¼ �E� E� 1
2
�ðE � EÞI: (12)

Using this definition, the electric force can be directly calculated
as interfacial force per area14,37

~f e ¼ n � ½½Te��: (13)

C. Finite element formulation

The weak form of the governing equations [Eq. (7) (conservation
of electric current), Eq. (1) (mass conservation), and Eq. (2) (momen-
tum conservation)] can be written, respectively, asð

X
rs � jr/ð ÞdX ¼ 0; (14)

ð
X
qqðr � uÞdX ¼ 0; (15)

ð
X
q
@u
@t
þ u � ru

� �
� wdX ¼ �

ð
X
pr � wdX

þ
ð

X
lðruþruTÞ : rwdX

þ
ð

C
w � tdC; (16)

where s, q, and w are the test functions.
The last term on the right-hand-side of Eq. (16) accounts for

Neumann condition, representing the net traction at the interface
between the two material domains

tðx; tÞ ¼ ~f e � cKðxÞn; (17)

where c is the surface tension coefficient and K is the curvature.
Definition of an accurate Finite Element model on the basis of Eqs.
(14)–(16) on a fixed mesh requires special treatment of discontinuities
in the gradient of the electric potential (/) and the pressure (p) at the
material interface. The former occurs due to the jump in the electric
material properties (conductivity/permittivity), while the latter one is
the result of the presence of surface tension. In order to tackle this
challenge, in the present work, the finite element spaces used for the
approximation of / and p are enriched by shape functions that are
specifically developed for representing mentioned discontinuities.36,39

The proposed enriched approximations in cut elements (i.e., elements,
crossed by the interface, C) are

/hðxÞ ¼
X
i2e:n

NiðxÞ/i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
standard

þ �N/ðxÞ/�|fflfflfflfflffl{zfflfflfflfflffl}
enriched

; (18)

phðx; tÞ ¼
X
i2e:n

NiðxÞpiðtÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

standard

þ
X
i2e:n

�Np;iðxÞp�i ðtÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
enriched

; (19)

where Ni is the standard finite element shape function, and /i and pi
are the values corresponding to node i of the element. The enrichment
terms are defined by the enrichment shape functions �N/ðxÞ; �Np;iðxÞ
and the additional degrees of freedom, /�i and p�i . The corresponding
enrichment functions for the electric potential and pressure are pre-
sented in Eqs. (20) and (21), respectively. Note that the electric poten-
tial space is enriched with only one additional degree of freedom,
while the pressure field with three additional degrees following Refs.
36 and 39, respectively. The enriched shape functions are defines as

�N/ðxÞ ¼
X
i2e:n

NiðxÞjwiðxÞj �
����X
i2e:n

NiðxÞwiðxÞ
���� (20)

and

�Np;iðxÞ ¼
1
2
HðxÞðHðxÞ �HðxiÞÞNiðxÞ; (21)

with

HðxÞ ¼ 1 if wðxÞ > 0
�1 if wðxÞ � 0

;

�
(22)

where wðxÞ is the signed distance function. The evolution of w is cap-
tured via the level-set method33 following the standard scheme based
on the advection equation as

dw
dt
þ u � rw ¼ 0: (23)

The schematic representation of the enrichment functions is
illustrated in Fig. 2. Figure 2(a) illustrates the finite element mesh and
the position of the phase interface. Figure 2(b) shows the enrichment
shape functions for capturing the weak discontinuity in the electric
potential across the interface in the cut element. Figure 2(c) illustrates
the enrichment of strong pressure discontinuity.

D. Solution algorithm

To this end, the main ingredients of the model are specified. In
the following, the overall solution algorithm is presented. Note that
the system of equations solved at each solution step is obtained based
on the standard finite element scheme using the weak forms of the
governing equations and the finite element spaces presented above.
The details of the time discretization as well as the stabilization of the
momentum equation can be consulted in Ref. 39.

The solution of the EHD problem following the present model is
shown in Table I. Note that after adding the enrichment contributions
in the cut elements, these are statically condensed prior to assembly as
shown in Ref. 39 (for the fluid problem) and Ref. 40 (for the electric
potential).

III. NUMERICAL EXAMPLES

In this section, we first present examples for assessing the pro-
posed enriched finite element method/level-set approach, estimating
the error in the electric field and interfacial electric force. Afterward,
we simulate droplets exposed to electric field in both two- and three-
dimensional. The model was implemented by the authors in Kratos
Multiphysics, an in-house Open Source Cþþ object-oriented Finite
Element framework.41,42
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A. Domain with a horizontal interface in an electric
field

The first test validates the electric equations in one dimension. It
is performed following the configuration proposed in Refs. 13 and 14.
Here, the domain contains two different homogeneous and immiscible
media separated by a horizontal interface located at the mid-height of
the domain as shown in Fig. 3. Electric potentials of 1 and 0V are
applied to the two parallel electrodes coinciding with the bottom and
top walls of a unit square, resulting in an electric force that can be
described by the conductivity ratio R ¼ j1=j2 and permittivity ratio
Q ¼ �1=�2. The indices 1 and 2 correspond to the lower and upper
sub-domain, respectively. For the numerical test, the parameters have
been set to the values presented in Table II.

The comparison between the results obtained using the proposed
EFEM and the exact solution (see Table II) is shown in Fig. 4. As can be
seen from the analytic solution the electric potential decreases linearly

along Y direction, however, the slope changes precisely at the cut
(Y¼ 0.5 m). This kink in the electric potential brings in a jump in its
gradient (E). Note that the additional degree of freedom (/�) is adjoined
to the results of the EFEM. It was “recovered” after solving the system
so that the value can be evaluated exactly at the cut (where no actual
node is located). The benefit of the additional degree of freedom
becomes evident when looking at the electric field distribution [dashed
lines in Fig. 4(b)]. One can see that the “jump” is reproduced exactly.

For the purpose of analysis, the interfacial electric force
(n � ½½Te��) was calculated and compared with the exact value that is
inferred from the traction vector as follows:

½½n �Te��ex ¼
1
2
�2ðE2 � nÞ2 � �1ðE1 � nÞ2
� �

: (24)

The numerical results for both the electric potential distribution
[Fig. 4(a)] and the gradient of electric potential [Fig. 4(b)] stand out

FIG. 2. Schematic representation of the solution space enrichment. (a) FE mesh and interface position. (b) Enrichment shape function for electric potential. (c) Enrichment
shape function for the pressure field.

TABLE I. Summary of the proposed method.

Algorithm 1: Summary of the proposed EFEM for EHD problems

while time < run-time do
solve Level Set Eq. (23) to find new position of the phase interface w;
compute elemental Laplace Eq. (14);
for cut elements do

add enrichment contributions for electric potential / (following Eq. (20));
assemble and solve Laplace Eq. (14) for /;
compute electric field E following Eq. (5);
compute elemental mass/momentum conservation system [Eqs. (15) and (16)];
for cut elements do

add enrichment contributions for the pressure p [following Eq. (19)];
add the electric force and surface tension contributions Eq. (17) to momentum Eq. (16);

assemble and solve mass/momentum system [Eqs. (15) and (16)] for velocity u and pressure p;
go to next time step
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because they do not exhibit deviations from the exact solution, even
though they were obtained on a very coarse grid. The errors in the
computed electric field are shown in Table III).

B. Electric force around a droplet

In the following example, we analyze the interfacial electric force
distribution using the settings shown in Fig. 5. A droplet of radius

FIG. 3. Planar problem: two materials with different electric properties.

TABLE II. Analytic dimensionless solution for the bi-material planar cases following
Ref. 14.

Property /ex
1 /ex

2 Eex
1 Eex

2 ½½n �Te��

R ¼ 1e6, Q¼ 3 1 �2y þ 1 0 2 2

FIG. 4. Numerical results of the planar problem along the vertical cut (Y¼ 0.5). (a) Distribution of the electric potential (/). (b) Electric field (E).

TABLE III. Deviations from the exact solution of E and ½½n �Te�� at the cut elements.
Note: that the zero means that the simulation meet up the floating-point accuracy of
the computer.

Grid size

Error (%) j1� E=Eexj Error (%)
j1� ½½n �Te��=
½½n �Te��exjE1 E2

3� 3 (h 	 0:3) � � � 0 0
5� 5 (h 	 0:2 � � � 0 0
33� 33 (h 	 0:03) � � � 0 0

FIG. 5. Square domain with a circular droplet.
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Ro ¼ 0:1ðmÞ is located at the middle of a unit square domain. In all
simulations, the electric potentials of 1 and 0V are applied to the top
(þ/) and bottom (�/) walls, respectively. The solution was assayed
for three case-studies: Q¼R (S1), Q>R (S2), and Q< S (S3). Table
IV provides the physical properties of each medium for all the cases
studied. The contours of the electric potential for the three systems are
presented in the first row of Figs. 6(a)–6(c). One can see, for S1 and

S2, the contours of electric potential are relatively straight equispaced
horizontal lines, which suggest that the electric potential varies almost
linearly in the direction of the field. For S3, the contour lines are lest
concentrated in the cylinder and they tend to conform the cylinder
shape,

Tex
e ¼

2�2E2
1

ðRþ 1Þ2
Q� 1þðR2þ 1� 2QÞcos2 h
� �

nþ Q�Rð Þsin2h½ �t
	 


:

(25)

The distribution of the interfacial electric force is shown in the
second row of Figs. 6(d)–6(f). For the system S1, where the ratios of
permittivity and conductivity are equal (Q¼R), the tangential compo-
nent of the electric force is zero. Therefore, the electric force is perpen-
dicular to the droplet interface. Being Q and R equal, the sign of the
force depends on the value of Q. The normal electric force is directed

TABLE IV. Electric properties of the media used.

System Q ¼ �1=�2 R ¼ j1=j2 Reference

S1 (Q¼R) 0.5 0.5 � � �
S2 (Q>R) 0.821 0.252 43
S3 (Q<R) 1.218 3.970 43

FIG. 6. Different droplet systems (S1, S2, and S3) under an electric field (E1 ¼ 1). (a) and (b) electric potential for systems S1, S2, and S3, respectively.
(d)–(f) Corresponding distribution of the electric force at the interface.
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from the media of higher permittivity toward the one with lower per-
mittivity [see Fig. 6(d)]. On the other hand, in systems S2 and S3, a
non-zero tangential component can appear. Depending on the relative
magnitude of Q and R, the droplet undergoes tension or compression
[see Figs. 6(e)–6(f)]. This observation confirms that both R and Q
affect the droplet deformation mode.

A further comparison between the exact solution [Eq. (25)] and
the numerical one obtained on a mesh with element size (h¼ 0.075,
0.018 75, and 0.009 375) was performed. The measured error at the
pole (h ¼ 0) is provided in Table V. One can see that with mesh
refinement the accuracy increases, reaching the value of �2% for the
finest mesh used. Note that smeared interface approach requires sub-
stantially finer meshes in the vicinity of the interface in order to reach
results with similar accuracy.44

C. Deformation of a droplet subjected to an electric
field

In this example, the impact of electric field on the droplet dynam-
ics is analyzed using a square domain X ¼ ð0; 1Þ � ð0; 1Þ equivalent
to the one shown in Fig. 5. The circular subdomain represents the
droplet with the radius Ro ¼ 0:1ðmÞ, suspended in a continuous phase
(outer fluid). Both phases are separated by an interface (discontinuous
line) with surface tension coefficient c. The droplet and the continuum
phase are assumed to be immiscible with homogeneous physical prop-
erties (�, j, q, and l). Based on these properties, the following parame-
ters can be defined: Q ¼ �1=�2; R ¼ j1=j2 and b ¼ l1=l2, where b
is the viscosity ratio. An additional dimensionless parameter is the
electric capillary number (CaE ¼ E2

1Ro�2=c), which compares the
electric stress and the capillary force. The used values of the afore-
mentioned parameters will be defined below.

Once the electric potential is applied to the parallel electrodes
þ/ and �/, the droplet begins to deform reaching eventually either
oblate- or prolate-type shape, or may remain spherical. However, if
the value of the electric potential is large enough, the droplet no longer
reaches a steady configuration. In such case large deformations and/or
droplet breakup are expected. The literature devoted to the droplet sys-
tems usually quantifies the droplet deformation by D ¼ ðb� aÞ=
ðbþ aÞ, where b and a are the droplet lengths parallel and perpendic-
ular to the electric field, respectively. Note that prolate-type deforma-
tion corresponds to the positive value (D> 0), while a negative
(D< 0) value corresponds to an oblate-type deformation.

In order to validate the model, the deformation of a castor
oil droplet embedded in silicone oil was simulated reproducing the
experimental study reported in Ref. 45. The parameters are given in

Table VI (corresponding to NN21 case in Ref. 45). According to the
reported experimental data, the droplet with initial radius of 1.6mm is
located at the middle of the domain spanned between two parallel
electrodes. Upon the imposition of the electric field, the droplet
becomes elongated and reaches a terminal elliptical shape for constant
electric field.

Figure 7 shows the variation of the deformation parameter as a
function of the electric capillary number. For the largest value of
CaE ¼ 0:13, the error is approximately 6%. Overall, the obtained
results show good agreement with the experimental data.

What follows is a further validation of the proposed method,
here, the deformation parameter D obtained in the numerical simula-
tion is compared with the theoretical value, obtained by applying an
expression developed for small droplet deformations according to the
following equation:46

DFeng ¼
R2 þ Rþ 1� 3Q

3ð1þ RÞ2
CaE: (26)

The numerical solution is obtained for the values of dimension-
less parameters proposed in Ref. 47 (which correspond to an oblate-
type deformation): CaE ¼ 0:1, Q¼ 3.5, R¼ 1.75, b ¼ 1, and c ¼ 0:1.
The same case is simulated using two meshes: a coarser (Ro=h 	 8)
and finer (Ro=h 	 16) one. The resulting deformations are
D ¼ �0:0193 and D ¼ �0:0202 for Ro=h ¼ 8 and Ro=h ¼ 16,
respectively. One can see in Table VII that similar results were
reported in the literature. Comparing our results with the reference
solution DFeng 	 �0:0207, one can see that numerical result agrees

TABLE V. Deviation from the exact solution of the electric force at the interface along
h ¼ 0 transect.

S1 S2 S3

Ro=h
j1� ½½n �Te��=

Tex
e j Ro=h

j1� ½½n �Te��=
Tex
e j Ro=h

j1� ½½n �Te��=
Tex
e j

	 1.5 0.221 	 1.5 0.361 	 1.5 0.193
	 5.5 0.107 	 5.5 0.131 	 5.5 0.109
	 11 0.02 	 11 0.006 	 11 0.003

TABLE VI. Physical properties of the system extracted from Ha and Yang’s experi-
mental study.45

System Q R b c (N/m)

NN21 	10 1.37 0.874 3.3 �10�3

FIG. 7. Deformation as function of CaE of NN21 system.
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well with the theoretical prediction. Since the results obtained with
Ro=h ¼ 8 are acceptable (	 6% error), this mesh resolution will be
used henceforth due to the lower computational cost associated.

Next test case simulated corresponds the prolate-type deforma-
tion with the following parameters: CaE ¼ 0:1, Q¼ 2, R¼ 2.5, and b
¼ 1. For this case, the numerical solution on the coarse mesh
(Ro=h 	 8) is D¼ 0.0118, while the reference deformation is
DFeng 	 0:0102. Again, the obtained deformation acceptably agrees
with the reference one. It is worth noting that comparable accuracy
could be achieved using existing approaches reported in the literature
for much finer meshes, Ro=h 
 2050,51 or even finer.52

Further simulations were conducted for prolate- and oblate-type
deformations by increasing CaE. Figure 8(a) shows the summary of
the results and the comparison with the analytical expressions pro-
posed by Feng,46 Taylor,53 and Ajavi.54 The latter model includes the
second-order terms and further improves the accuracy of Taylor’s
model for the finite droplet deformation. In Fig. 8(a), the results of the
proposed method are compared with the above-mentioned analytical
models as well as several numerical approaches reported in the litera-
ture.47–49 Both prolate and oblate cases are included.

It is seen that the results of the proposed method agree well with
the three theoretical expressions up to CaE ¼ 0:1. However, by
increasing the electric capillary number, the discrepancy between the
predictions of the linear theories (Feng46 and Taylor53) and the
numerical solutions becomes more significant. This is particularly evi-
dent for CaE > 0:3. Beyond CaE ¼ 0:7, the results further deviate
from those of the second-order variant of the Taylor’s theory.54 A sim-
ilar trend is seen in Fig. 8(a) for the results of other numerical
approaches included in this figure. It is worth to mention that the ana-
lytical models were developed under the assumption of small deforma-
tion that is not fulfilled for large CaE.

9,52,55 The initial and equilibrium

configurations of the droplet are shown in Fig. 8(b) for three values of
CaE. The results in the present work have been obtained in the present
work for up to CaE ¼ 2, while for the other numerical methods,
reported in the references the maximum electric capillary number con-
sidered was CaE¼ 1. Therefore, the result corresponding to CaE¼ 2 is
shown only in Fig. 8(b).

Figure 9 illustrates the velocity vectors (left half) and velocity
field contour (right half) for three different values of CaE (0.5, 1,
and 2). The velocity vector (left) and colored contours of velocity
magnitude (right) are plotted under steady state deformation for
CaE ¼ 0:5 (first column), CaE ¼ 1 (second column), and CaE ¼ 2
(third column).

The first and the second rows correspond to the prolate- and
oblate-type deformation, respectively. The convective flow that occurs
due to a re-circulation inside and outside the droplet is from the pole
to the equator when R<Q (prolate-type). On the contrary, when
R>Q (oblate-type) a reversed flow is generated. In addition, note that
the convective flow becomes stronger with increasing CaE. These
results agree with previous findings.47,50–52,55

D. 3D simulations of a droplet subjected to an electric
field

Next, we simulate the droplet deformation in 3D. In this exam-
ple, the computational domain is X ¼ ð0; 1Þ � ð0; 1Þ � ð0; 1Þ where
the droplet with radius Ro ¼ 0:1 is centered at ð0:5; 0:5; 0; 5Þ. The test
is solved varying the ratio of the conductivity of the two fluids (droplet
and the surrounding). The external electric field is imposed by setting
the electric potential to þ/ and �/ at top and bottom faces, respec-
tively. Figure 10 shows the initial configuration of the 3D domain.
Two settings are considered: in the first one, droplet is located exactly

TABLE VII. Quantitative comparison of the deformation factor from the present work with the analytical solution and previous numerical results.

Deformation factor D

Q R CaE Analytical46 Ref. 47 Ref. 48 Ref. 49 Present (Ro=h ¼ 8) Present (Ro=h ¼ 16)

3.5 1.75 0.1 �0.0207 �0.0200 -0.0220 �0.0223 �0.0193 �0.0202

FIG. 8. Deformation as function of
CaE for oblate-type (Q¼ 3.5 and
R¼ 1.75) and prolate-type (Q¼ 2
and R¼ 2.5). (a) Solid and dashed
lines are the theoretical predictions.
(b) Initial (dashed line) and equilib-
rium (continuous line) droplet shapes.
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at the center of the domain, and in the second one the droplet is
moved toward one of the vertical walls (parallel to the XY plane).

The parameters of the test are set as CaE ¼ 1, Q¼ 3.5, and b ¼ 1
in order to ensure large deformation of the droplet. In case the con-
ductivity of the droplet dominates that of the surrounding, the accu-
mulation of charges at the liquid-gas interface leads to attractive forces
predominantly in the direction toward the electrodes. Consequently,
the droplet stretches and for rather large conductivity ratios, e.g.,
R¼ 10 as used here, a stick-like shape is formed as shown in Fig. 11.
In the opposite situation, i.e., for dominant gas conductivity, repulsive
forces pushes the droplet toward the center along with the imposed
external electric field. Thus, a compressed wheel-like shape is formed
for R¼ 0.1 (see Fig. 12). Similar observations were reported in the
literature.56

In general, modeling either disk-type or the elongated deforma-
tion by approaches that couple the electric body force is challenging,
because its solution requires higher grid refinements in order to

capture the sharp variations of physical quantities. The present results
are significant since they demonstrate the ability of the present
approach of resolving these challenging cases without incurring into
necessity of using excessively refined meshes.

In order to show the capability of the proposed method in a
more complex configuration, a 3D test case is solved placing the
droplet being close to one of the walls, centered at ð0:5; 0:5; 0; 175Þ
[see Fig. 10(b)]. The parameters used are CaE ¼ 1, Q¼ 3.5, R¼ 10,
and b ¼ 1. The droplet is intentionally displaced away from the
center in order to induce an asymmetry in the problem. For the
present case, the direction of the electric force is similar to the pre-
vious example, which is toward the poles [see Fig. 13(a)]. As was
expected, the presence of the wall disturbs the symmetry of the
electric field and consequently leads to an unevenly distributed
electric force as observed in Figs. 13(e)–13(i). This deviation from
the symmetry creates an eccentricity along the longitudinal line as
shown in Fig. 13(i)–13(l).

FIG. 9. Induced convective flow pattern in prolate-type [first row (a)–(c)] and oblate-type [second row (d)–(f)].

FIG. 10. Sketch of the 3D problem. (a) Droplet placed at the center and (b) droplet placed in the vicinity of a wall.
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In order to further investigate the effect of the wall, in Fig. 14, the
pressure and magnitude of the velocity along the principal axes [see
insets of Figs. 14(a)–14(c)] of the droplet are shown for three time
instances t¼ 0.01, t¼ 0.65, and t¼ 1.3 s.

Upon the effect of the electric field, at the initial stage
(t¼ 0.1 s), following the pulling of the tips, droplet experiences a
circumferential shrinkage. Due to the constraint imposed by the
no-slip wall on the surrounding medium, a suction toward the wall
is produced in z-direction. This is evidenced by a large negative
pressure in the proximity of the wall, i.e., at z close to 0 [see Fig.
14(a)]. This justifies the bulk movement of the entire droplet
toward the wall, leading to reduction of the gap between the drop-
let and the wall. At later instances, as the rate of circumferential
deformation becomes less significant [see Fig. 14(d)], the suction is
also relaxed. The pressure difference on both sides of the droplet
(next to the wall and the reciprocal side) is the reason for the crea-
tion of a “hump,” observed in Figs. 13(j)–13(l).

In y-direction (which coincides with the direction of the exter-
nally applied electric field), in the first instance one can observe a large
pressure drop inside the droplet and a significant pressure increment
outside the droplet adjacent to the droplet surface [see Fig. 14(b)].
This occurs due to the large value of electric force, which is not coun-
terbalanced at the beginning of the simulation, when the droplet is
nearly undeformed. This effect becomes less significant as the time
evolves, since the surface tension eventually counter-balances the elec-
tric force. This corresponds to a very large curvature value at the tips
of the deformed droplet [see Figs. 13(d), 13(h), and 13(l)]. It can be
noted that droplet deforms predominantly in the y-direction (i.e., tips
move toward the electrodes) following the direction of the imposed
electric field.

The fact that the electric force acts only at the interface is also
reflected in the velocity graphs, where large velocities are observed
at the tips, while at the barycenter of the droplet, the velocity is
negligible. Note that the magnitude of the velocity decreases from step

FIG. 11. Sequence of snapshots show-
ing the elongation of droplet for R¼ 10.

FIG. 12. Sequence of snapshots showing the elongation of droplet for R¼ 0.1.
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t ¼ 0:65ðsÞ to t ¼ 1:3ðsÞ as electric force, pressure, and surface ten-
sion tend to reach equilibrium.

Ultimately, in x-direction, as shown in Fig. 14(c), variation of the
pressure inside the droplet is relatively small as the electric field is per-
pendicular to this direction. Thereby, the jump in the pressure is pre-
dominantly caused by surface tension.

The above-mentioned observations confirm that adjusting the
proximity of the droplet to one of the walls influences the balance
of the dominant forces and can be considered a means for controlling
the droplet deformation. Similar observations have been reported in
the literature.52,57 Establishing quantitative correlation between the
initial geometrical configuration (particularly, distance-to-the-walls)
and the shape of the deformed droplet can be a basis for adaptation of
droplets to the desired predefined shapes, which may be useful for

microfluidic-based manufacturing, where specific morphology is
sought for.

IV. CONCLUSIONS

A numerical model for electrohydrodynamics (EHD) is intro-
duced within the framework of the Enriched Finite Element Method
(EFEM). To the best of authors’ knowledge, this is the first attempt of
developing an EFEM formulation for the EHD flows. The main
advantage of the proposed approach is the sharp (zero-thickness)
treatment of the phase interface in both the electric and hydrodynamic
problems. This leads to the realistic (physically consistent) modeling
of the jump in the Maxwell stress (due to different electric material
properties) as well as the pressure discontinuity (due to the surface
tension).

FIG. 13. Sequence of snapshots showing the nonsymetric deformation. The electric forces that act on the droplet are displayed in the first column. The four columns show
the deformation at time instance, 0, 0.1, 0.65, and 1.3 s, respectively. (a)–(d) the evolution of deformation in x–y plane. (e)–(h) the evolution of deformation in x–z plane.
(i) and (l) the evolution of deformation in y–z plane.
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A series of two- and three-dimensional benchmark tests involv-
ing fluids with different permittivity and conductivity ratios were sim-
ulated. The results of the numerical simulations were compared with
those obtained by a small deformation theory. The introduced method
was further validated against the results of other numerical methods
reported in the literature. In all test-cases, the results are in good agree-
ment with the reference solutions. Comparing to the conventional
smeared interface approaches, it is revealed that the proposed method
provides more accurate results on coarser meshes. This, as the direct
outcome of the realistic discontinuity treatment, leads to a significant
improvement in the performance in the context of the numerical
modeling of EHD problems, particularly important for cases where
three-dimensional simulations are mandatory. Simulation of the
spherical droplet exposed to an electric field in 3D revealed various
deformation modes (straight stretching, curved stretching, and com-
pression into a disk-like shape) depending on the conductivity ratio of
the two fluids and initial conditions. The proposed model is particu-
larly advantageous for problems, where symmetry of revolution can-
not be ensured and, thus, where intrinsically 3D phenomena are
expected. The approach can be applied for efficient fundamental anal-
ysis of EHD phenomena in problems where electrical stresses and
wall-induced effects play an essential role. This can be used as a basis
for establishing mechanisms of droplet shape control.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Ministerio
de Ciencia, Innovaci�on e Universidades of Spain via the “Severo
Ochoa Programme” for Centres of Excellence in R&D (Referece No.
CEX2018-000797-S) given to the International Centre for Numerical
Methods in Engineering (CIMNE). The work of C. Narvaez-Mu~noz was
supported by the “Severo Ochoa Ph.D. Scholarship” Reference No.
PRE2020-096632. Parts of this work were done in the framework of
DIDRO project (Toward establishing a Digital twin for manufacturing
via drop-on-demand inkjet printing. Proyectos Estrat�egicos Orientados
a la Transici�on Ecol�ogica y a la Transici�on Digital. Reference No.
TED2921-130471B-I00) supported by the Ministerio de Ciencia,
Innovaci�on e Universidades of Spain. M. Hashemi acknowledges the
funding received from European Union’s Horizon 2020 Research and
Innovation Programme (European High-Performance Computing Joint
Undertaking Grant Agreement No. 955558) as part of EFLOWS4HPC
project. P. Ryzhakov and J. Pons-Prats are Serra Hunter fellows.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

FIG. 14. Pressure and magnitude of velocity along the principal axes for three time instances t¼ 0.01, t¼ 0.65, and t¼ 1.3 s. (a) and (d) the pressure and magnitude of veloc-
ity along the z direction. (b) and (e) the pressure and magnitude of velocity along the y direction. (c) and (f) the pressure and magnitude of velocity along the x direction.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 012004 (2023); doi: 10.1063/5.0127274 35, 012004-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Author Contributions

Christian Narv�aez-Mu~noz: Conceptualization (equal); Formal analy-
sis (equal); Validation (equal); Writing – original draft (equal);
Writing – review & editing (equal). Mohammad Reza Hashemi:
Conceptualization (equal); Formal analysis (equal); Writing – original
draft (equal); Writing – review & editing (equal). Pavel B. Ryzhakov:
Conceptualization (equal); Formal analysis (equal); Methodology
(equal); Supervision (equal); Writing – review & editing (equal). Jordi
Pons-Prats: Methodology (equal); Supervision (equal); Validation
(equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.

REFERENCES
1E. D. Fylladitakis, M. P. Theodoridis, and A. X. Moronis, “Review on the his-
tory, research, and applications of electrohydrodynamics,” IEEE Trans. Plasma
Sci. 42, 358–375 (2014).

2L. J. Segura, C. N. Mu~noz, C. Zhou, and H. Sun, “Sketch-based tensor decom-
position for non-parametric monitoring of electrospinning processes,” in
International Manufacturing Science and Engineering Conference (American
Society of Mechanical Engineers, 2020), Vol. 84263.

3Z. Jiang, Y. Gan, and Y. Luo, “Effect of viscosity ratio on the dynamic response
of droplet deformation under a steady electric field,” Phys. Fluids 32, 053301
(2020).

4Y. Guan, S. Wu, M. Wang, Y. Tian, W. Lai, and Y. Huang, “Numerical analysis
of electrohydrodynamic jet printing under constant and step change of electric
voltages,” Phys. Fluids 34, 062005 (2022).

5H. J. Kwon, J. Hong, S. Y. Nam, H. H. Choi, X. Li, Y. J. Jeong, and S. H. Kim,
“Overview of recent progress in electrohydrodynamic jet printing in practical
printed electronics: Focus on variety of printable materials for each
component,” Mater. Adv. 2, 5593–5615 (2021).

6D. Gao and J. Zhou, “Designs and applications of electrohydrodynamic 3D
printing,” Int. J. Bioprint. 5, 172 (2018).

7C. P. Narvaez-Mu~noz, L. M. Carrion-Matamoros, K. Vizuete, A. Debut, C. R.
Arroyo, V. Guerrero, C. E. Almeida-Naranjo, V. Morales-Fl�orez, D. J.
Mowbray, and C. Zamora-Ledezma, “Tailoring organic–organic poly (vinyl-
pyrrolidone) microparticles and fibers with multiwalled carbon nanotubes for
reinforced composites,” ACS Appl. Nano Mater. 2, 4302–4312 (2019).

8B. P. Van Poppel, O. Desjardins, and J. W. Daily, “A ghost fluid, level set meth-
odology for simulating multiphase electrohydrodynamic flows with application
to liquid fuel injection,” J. Comput. Phys. 229, 7977–7996 (2010).

9J.-J. Xu, W. Shi, W.-F. Hu, and J.-J. Huang, “A level-set immersed interface
method for simulating the electrohydrodynamics,” J. Comput. Phys. 400,
108956 (2020).

10P. S. Casas, M. Garzon, L. J. Gray, and J. A. Sethian, “Numerical study on elec-
trohydrodynamic multiple droplet interactions,” Phys. Rev. E 100, 063111
(2019).

11K. E. Teigen and S. T. Munkejord, “Sharp-interface simulations of drop defor-
mation in electric fields,” IEEE Trans. Dielectr. Electr. Insul. 16, 475–482
(2009).

12M. R. Hashemi, P. B. Ryzhakov, and R. Rossi, “Toward droplet dynamics simu-
lation in polymer electrolyte membrane fuel cells: Three-dimensional numerical
modeling of confined water droplets with dynamic contact angle and hys-
teresis,” Phys. Fluids 33, 122109 (2021).

13G. Tomar, D. Gerlach, G. Biswas, N. Alleborn, A. Sharma, F. Durst, S. W. J.
Welch, and A. Delgado, “Two-phase electrohydrodynamic simulations using a
volume-of-fluid approach,” J. Comput. Phys. 227, 1267–1285 (2007).

14J. M. L�opez-Herrera, S. Popinet, and M. A. Herrada, “A charge-conservative
approach for simulating electrohydrodynamic two-phase flows using volume-
of-fluid,” J. Comput. Phys. 230, 1939–1955 (2011).

15C. Narv�aez-Mu~noz, P. Ryzhakov, and J. Pons-Prats, “Determination of the
operational parameters for the manufacturing of spherical PVP particles via
electrospray,” Polymers 13, 529 (2021).

16A. Panahi, A. R. Pishevar, and M. R. Tavakoli, “Experimental investigation of
electrohydrodynamic modes in electrospraying of viscoelastic polymeric sol-
utions,” Phys. Fluids 32, 012116 (2020).

17X. Zhao, D. Wang, Y. Lin, Y. Sun, T. Ren, J. Liang, and M. Madou, “Numerical
simulation of coaxial electrohydrodynamic jet and printing nanoscale
structures,” Microsyst. Technol. 25, 4651–4661 (2019).

18J. Zhang and D. Y. Kwok, “A 2D lattice Boltzmann study on electrohydrody-
namic drop deformation with the leaky dielectric theory,” J. Comput. Phys.
206, 150–161 (2005).

19L. Wang, Z. Wei, T. Li, Z. Chai, and B. Shi, “A lattice Boltzmann modelling of
electrohydrodynamic conduction phenomenon in dielectric liquids,” Appl.
Math. Modell. 95, 361–378 (2021).

20A. Rahmat, N. Tofighi, and M. Yildiz, “Numerical simulation of the electrohy-
drodynamic effects on bubble rising using the SPH method,” Int. J. Heat Fluid
Flow 62, 313–323 (2016).

21F. Almasi, M. S. Shadloo, A. Hadjadj, M. Ozbulut, N. Tofighi, and M. Yildiz,
“Numerical simulations of multi-phase electro-hydrodynamics flows using a
simple incompressible smoothed particle hydrodynamics method,” Comput.
Math. Appl. 81, 772–785 (2021).

22W.-F. Hu, M.-C. Lai, and Y.-N. Young, “A hybrid immersed boundary and
immersed interface method for electrohydrodynamic simulations,” J. Comput.
Phys. 282, 47–61 (2015).

23P. B. Ryzhakov and A. Jarauta, “An embedded approach for immiscible
multi-fluid problems,” Int. J. Numer. Methods Fluids 81, 357–376
(2016).

24A. Jarauta, P. Ryzhakov, M. Secanell, P. R. Waghmare, and J. Pons-Prats,
“Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas
channel using an embedded Eulerian-Lagrangian approach,” J. Power Sources
323, 201–212 (2016).

25S. Idelsohn, M. Mier-Torrecilla, and E. O~nate, “Multi-fluid flows with the parti-
cle finite element method,” Comput. Methods Appl. Mech. Eng. 198,
2750–2767 (2009).

26P. B. Ryzhakov, A. Jarauta, M. Secanell, and J. Pons-Prats, “On the application
of the PFEM to droplet dynamics modeling in fuel cells,” Comput. Part. Mech.
4, 285–295 (2017).

27K. Adamiak, “Interaction of two dielectric or conducting droplets aligned in
the uniform electric field,” J. Electrost. 51–52, 578–584 (2001).

28H. Dastourani, M. R. Jahannama, and A. Eslami-Majd, “A physical insight into
electrospray process in cone-jet mode: Role of operating parameters,” Int. J.
Heat Fluid Flow 70, 315–335 (2018).

29C. Rinaldi and H. Brenner, “Body versus surface forces in continuum mechan-
ics: Is the maxwell stress tensor a physically objective Cauchy stress,” Phys.
Rev. E 65, 036615 (2002).

30C.-H. Chen, “Electrohydrodynamic stability,” in Electrokinetics and
Electrohydrodynamics in Microsystems (Springer, 2011), pp. 177–220.

31J. R. Melcher and G. I. Taylor, “Electrohydrodynamics: A review of the role of
interfacial shear stresses,” Annu. Rev. Fluid Mech. 1, 111–146 (1969).

32J. R. Melcher, Continuum Electromechanics (MIT Press, Cambridge, MA,
1981), Vol. 2.

33S. Osher and R. P. Fedkiw, “Level set methods: An overview and some recent
results,” J. Comput. Phys. 169, 463–502 (2001).

34R. F. Ausas, G. C. Buscaglia, and S. R. Idelsohn, “A new enrichment space for
the treatment of discontinuous pressures in multi-fluid flows,” Int. J. Numer.
Methods Fluids 70, 829–850 (2012).

35S. R. Idelsohn, J. M. Gimenez, J. Marti, and N. M. Nigro, “Elemental enriched
spaces for the treatment of weak and strong discontinuous fields,” Comput.
Methods Appl. Mech. Eng. 313, 535–559 (2017).

36C. Narv�aez-Mu~noz, M. R. Hashemi, P. Ryzhakov, J. Pons-Prats, and H. Owen,
“Enriched finite element formulation for discontinuous electric field in electro-
hydrodynamic problems,” in XIV Iberian Meeting on Computational
Electromagnetics (Universitat Politècnica de Catalunya, 2022).
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