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a b s t r a c t

Many materials of interest and processes relevant to life are based in disordered phases. This disorder can
be either positional, orientational or both as in the case of liquids. Unfortunately, the study of disordered
phases is inherently difficult given the lack of periodicity as in ordered crystals. In this work we use neu-
tron and X-ray diffraction experiments together with molecular dynamics simulations to study the local
order and molecular movements in the disordered phases of hexachloroethane both in the liquid phase
and in its plastic phase. The latter is a phase in which the molecular centres of mass form a long-range
ordered crystalline lattice but molecules can rotate more or less freely. The concurrent use of diffraction
experiments (Neutron and X-ray) and molecular dynamics simulations show that liquid structure mimics
that of the disordered crystal at short distances. In order to extend the analysis to long distances, we have
borrowed magnitudes from information theory that allow us to measure disorder and correlation. We
also use the Kullback-Leibler divergence, an indicator of how similar two structures are to study the dif-
ferences between plastic and liquid phases, as well as the structural difference at varying temperatures.
We thus also offer in this work a common framework to characterize the structure of any disordered
phase firmly based on probability and information theory. The advantage of our proposed methodology
is that it can be used both to characterize the disorder and to perform comparisons of disordered mate-
rials with different degrees of freedom such as liquids and disordered crystals.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many biochemical processes of interest like protein folding or
molecular recognition occur immersed in a disordered phase such
as liquid water [1,2]. Furthermore, many materials of technological
interest have an intrinsic disorder. Indeed, in some of the most
promising new materials the centre of mass of the molecules form
a crystalline phase being the molecules orientationally disordered,
forming the so called Orientationally Disordered Crystals (ODIC) or
plastic phases [3,4]. The utilization of disordered ODIC phases con-
stitutes a new technology, still in development, that can be found
in solid-state based cryogenic techniques [5,6]. Plastic phases are
also an alternative to the dangerous and highly pollutant liquid-
based electrolytes in lithium ion batteries [7].

Despite the importance of disordered phases, there is not a
common frame to study the structure of those materials in any dis-
ordered phase such as the aforementioned liquids or ODICs.
Indeed, many times the investigation of those structures, and the
comparison between them, is not based on clear, quantitative
foundations. In other words, questions such as ‘‘how similar two
disordered structures are?” are usually answered in a vague and
qualitative way or using low sensitive quantities such as the radial
distribution function.

Hexachloroethane (C2Cl6) is a very interesting material because,
due to its molecular symmetry, it shows a plastic phase in addition
to the fully disordered liquid and the completely ordered crys-
talline phases. Fig. 1 shows a cartoon of the molecule. Liquid
C2Cl6 is considered as a non-associated liquid because the steric
effects are the most important to understand its structure, which
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Fig. 1. Reference axis definition for the Euler angles study on the molecule C2Cl6.
Angles hpos and upos describe the position of any molecule relative to a reference
molecule (with darker chlorides in the figure) using the vector � vCM that joins their
centers of masses. Axis definition is the same as in our previous study on the liquid
phase in order to ease comparison [20].
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are well described by the van der Waals picture. Hexachloroethane
presents three different solid phases [8,9]: orthorombic between 4
and 318 K, monoclinic [10] between 318 and 344 K and a plastic
phase which is stable from 344 K up to the melting temperature
Tm = 458 K [11]. This plastic phase has a body centered cubic unit
cell (BCC). The positional disorder in the plastic phase comes from
the fact that the space group is Im�3m and a corresponding site
group

m3m, but the molecule has a lower symmetry �3m. Therefore,
the orientational disorder appears for the molecule to fulfill with
the site group symmetry [12].

Regarding the structure of the plastic phase, in 1981 Gerlach
et al. [12] conducted a neutron powder and single-crystal investi-
gation and later Gerlach et al. [13] compared the previous results
to a model structure of the plastic phase from a Monte Carlo
(MC) method. In 1988 Gerlach and Prandl [14] studied the orienta-
tional ordering in the plastic phase using diffuse X-ray scattering
and later (Gerlach et al. [15]) with elastic and quasielastic neutron
scattering. Criado and Muñoz [8] performed Molecular Dynamics
(MD) simulations on the plastic phase of C2Cl6 and they used their
results to interpret inelastic neutron scattering experiments [9].
Negrier et al. also studied the symmetry of the plastic phase [10].
In this work we have improved the agreement with diffraction
experiments with respect to that of Criado and Muñoz.

The intramolecular geometry of C2Cl6 has been previously
investigated by means of electron diffraction in the gaseous and
solid states [16,17]. In those works, the authors obtained bonds
and angles that define the geometry of C2Cl6, but those parameters
were not able to reproduce the structure of the molecule obtained
from neutron diffraction experiments in the plastic phase. Later,
using a Bayesian fit to the experiment the intramolecular geometry
was determined [18]. This produced a better set of molecular
parameters to use as an input for molecular dynamics (MD)
2

simulations, in better agreement with the experimental plastic
phase structure.

No experimental studies on the structure of liquid C2Cl6 have
been performed (to our knowledge). Given its van der Waals sym-
metry (as explored by Slovokhotov et al. [19]) the boiling temper-
ature is 1 K above the melting point at ambient pressure,
producing the C2Cl6 sublimation and making any attempt to per-
form experiments unsuccessful. Therefore a simulation study is
ideal to gain knowledge on the liquid and to obtain further com-
parisons to the plastic phase. We have already presented a molec-
ular dynamics study on the structure of the liquid phase of C2Cl6
[20].

Information theory is a powerful approach for establishing a set
of magnitudes to study and compare any disordered phase, even
with different degrees of freedom. In this work we add to the mag-
nitudes already introduced by some of us [21] the Kullback–Leibler
divergence (KL divergence hereafter). This magnitude allows to
investigate in a quantitative way differences between N-
dimensional Probability Density Functions (PDFs), as those encod-
ing the structure of disordered phases. KL divergence has been
used before for other purposes, for instance to analyze similarities
and change of conformations in protein ensembles [22] or to deci-
pher fine structural properties of DNA [23]. Here we use it as a gen-
eral measure that accounts for differences between the structure of
disordered phases. This magnitude is to be added to the Shannon
entropy (H) and mutual information (MI) quantities already
defined in the context of disordered phases for the study of a single
phase [21].

We will focus in this work on the study of the local structure
and dynamics of the plastic phase, using both experiments and
simulations. In addition we will use information theory in order
to gain insights on its local ordering at short and long separation
lengths between molecules, and we will perform a comparison
with the liquid phase structure.
2. Methods

2.1. Experimental

A sample of C2Cl6 with a 99% purity was purchased from Sigma-
Aldrich and used to perform the diffraction experiments without
any further purification. The details of the neutron scattering
experiments have been reported by us elsewhere [18].

2.1.1. X-ray diffraction
X-ray powder diffraction experiments were performed using a

horizontally mounted INEL cylindrical positionsensitive detector
(CPS120) equipped with a liquid nitrogen 600 series Cryostream
cooler from Oxford Cryosystems with a temperature accuracy of
0.1 K. We have chosen a Debye–Scherrer geometry to perform
the experiments. The detector is equipped with 4096 channels,
providing an angular step of 0.029� (2h) between 2� and 120�.
Monochromatic Cu Ka1 radiation (k = 1.54056 Å) was used with
an asymmetric focusing incident-beam curved quartz monochro-
mator. The channel-angle conversion was calibrated by means of
cubic spline fittings in order to correct the deviation from angular
linearity in a position-sensitive detector using the cubic phase Na2-
Ca3Al2F14 mixed with silver behenate [24,25] as an external cali-
bration standard. The samples were introduced into 0.3 mm-
diameter Lindemann capillaries. Samples were rotated along their
longitudinal axes during data collection to minimize the effects of
preferred orientations. X-Ray patterns were obtained isothermally
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between 346 K and 375 K. Acquisition times were at least 60 min,
and a stabilization time of at least 5 min at each temperature
before data acquisition was selected.

2.2. Simulation details

MD simulations were performed for the plastic and liquid
phases of C2Cl6 on a 2000 molecules system. In the case of the
BCC plastic phase, a supercell of 10 � 10 � 10 unit cells was used
with the positions of the molecules corresponding to the BCC crys-
tal and a random orientation for all the molecules. The simulation
was performed at a temperature T = 400 K and a pressure P = 1 atm.
In order to obtain the liquid phase, the final equilibrium configura-
tion from the plastic crystal was used for a simulation at the ther-
modynamic conditions of the liquid [11], namely T = 458 K and
P = 1 atm. Simulations were also performed on a small system of
504 molecules using the BCC lattice (6 � 6 � 7 unit cells) at 6 dif-
ferent temperatures (within the stability range of the BCC plastic
phase) to obtain results on the lattice parameter expansion,
T = 344, 360, 380, 400, 413, 423 K. For all the simulations, 1000
configurations were collected after reaching equilibrium and saved
every 1 ps.

All the MD simulations were performed using the Gromacs 4.5
[26] package. The potential parameters were chosen from the Gro-
mos53a6 [27] force field (6–12 Lennard Jones). Other general con-
ditions were: Dt = 2 fs (during 500 ps), shifted cut-off from 16 to
17 Å for Lennard-Jones interactions and 20 Å for Coulomb pairs.
The Particle Mesh Ewald (PME) was used beyond the electrostatic
cut-off for the reciprocal space sum. The internal geometry of the
molecule, i.e., the equilibrium bond distances and angles were
taken from our previous study by fitting the long q-range of the
structure factor [18]. Finally the analysis was made over the last
uncorrelated 300 ps.

2.3. Euler angles and axes definition

A full determination of the molecular ordering can be achieved
by studying the relative position and orientation of a given mole-
cule with respect to a central one at a given distance. The three
degrees of freedom related to the position of the centre of mass
of a molecule are fully described by the distance between that
point and the centre of mass of a reference molecule (d) and the
bivariate distribution p(hpos, upos) at a selected distance d. The
angles participating in the bivariate distribution hpos, upos are
depicted in Fig. 1 and correspond to the standard definition of
spherical coordinates.

To define the orientational configuration of a molecule at a
specific point, we use the Z � Y’ � Z” proper Euler angles conven-
tion [28]. The trivariate distribution p(hori,uori,wori) fully determi-
nes the probability of finding a molecule with a given orientation
at a given position d,hpos,upos with respect to a central molecule
(see Ref. [20] for a more detailed description).

We therefore can fully determine the structure of any disor-
dered phase by the use of the six-dimensional probability distribu-
tion function p(d,hpos,upos,hori,uori,wori). It must be pointed out that
to correct for the effects of the projection of spherical coordinates,
instead of calculating the PDF as a function of hpos and hori it will be
calculated as a function of their cosine, as it is usually done. It is
also important to notice that, the description of solid phases,
including plastic phases, is usually done from the laboratory refer-
ence system. In our case we are calculating the relative position of a
pair of molecules separated by a given distance. This means that
‘‘position”, in our case, is indeed a convolution of the orientation
of the molecule with respect to the crystalline lattice with the
vibrational movement of the molecules (both the reference one
and the neighbour).
3

2.4. Information theory

2.4.1. Shannon entropy
We will use an information theory based framework to analyze

the relative position and orientation between molecules to go
beyond the usual analysis based on quantities such as the radial
distribution function, or vector correlations. First of all we will
use the Shannon-entropy that measures the disorder present in a
given N-dimensional PDF, that might be related to molecular posi-
tion, orientation, or a combination of any of the five angles describ-
ing molecular short range order. The Shannon-entropy is defined
as:

H xð Þ ¼ �
X

p xð ÞlogpðxÞ ð1Þ

being p(x) the PDF related to an angle or any combination of them,
i.e. can be related to 1-fold up to a 5-fold PDF in our case. In the case
of a crystalline solid, Shannon-entropy is low since the PDF of any of
the quantities related with position and orientation is structured
(PDFs have clear and defined maxima and minima), and would be
maximum for a structure-less flat, PDF. Therefore, in a liquid where
the PDFs are less peaked, it will result in a higher value of Shannon-
entropy (see [21] for an example on a toy-system). The Shannon-
entropy of a convenient combination of all magnitudes determining
molecular distribution (distance and angles determining position
and orientation) can eventually be related to thermodynamic
entropy (see our previous work [29]) via proper normalization.
However we will use Shannon entropy in this work as a tool per
se to investigate molecular ordering.

2.4.2. Mutual information (MI)
This quantity is a measure of correlation between variables. It

can again be calculated from any PDF coming from a combination
of angles (in two or more dimensions). However, in this work we
will use it only to characterize correlations between the positional
angles hpos and upos, and it is thus defined as:

I hpos;/pos

� � ¼ p hpos;/pos

� �
log

pðhpos;/posÞ
p hpos
� �

pð/posÞ
ð2Þ
2.4.3. Kullback-Leibler divergence
Finally we will use the Kullback-Leibler divergence to measure

how ‘‘close” the liquid structure is to that of the BCC phase:

DKL ¼
X
fxig

pfxig logpfxigqfxig ð3Þ

where p{xi} and q{xi} are the PDFs associated to any one of the dis-
ordered phases. In this work {xi} = (cos(hpos),upos) is a compact way
to write that the summation is to be taken pixel by pixel for the
whole 2D-PDF related to positional variables of the two phases.
DKL is not, in general, symmetric and hence we use its symmetrized
version: the average of DKL(p,q) and DKL(q, p). For that reason p{xi}
and q{xi} can be associated to any of the two disordered phases.
We have, therefore a way to unambiguously determine how close
two structures are, given that both PDFs must be normalized to
unity.

3. Results

3.1. Neutron and X-ray diffraction on the plastic phase of
hexachloroethane

In this section, we will focus on the comparison of MD simula-
tions with X-ray and neutron diffraction experiments. First, we
have calculated the experimental lattice parameter as a function



Fig. 3. The lattice parameter as a function of the temperature within the plastic
phase. Circles show experimental data, open symbols with our X-ray results and
filled symbols for Gerlach et al. [12]. Squares show molecular dynamics (MD)
simulations, open symbols show our results and filled symbols those of Criado &
Muñoz [8].

Fig. 4. Static structure factor of C2Cl6 at T = 400 K. Hollow circles: experimental data
Sexp(q). Dashed line: structure factor directly obtained from MD trajectories SMD(q)
and after convolution with the experimental resolution SMDc(q).
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of the temperature coming from X-ray diffraction, within the sta-
bility range of the plastic BCC phase of C2Cl6 (344–457 K), and
we have compared it with the equilibrium configurations of the
simulation in a NPT ensemble. The lattice parameter temperature
dependence is compared to previous powder neutron diffraction
data reported by Gerlach et al. [12] and a previous simulation of
Criado and Muñoz [8] (see Fig. 3). Our MD results agree with the
experimental data, and fit better than the results of Criado and
Muñoz [8]. This shows that the force field and intramolecular
structure used in this work reproduces better the density and ther-
mal expansion of the crystal lattice than that of previous works.
This can be ascribed to (i) a set of refined intramolecular parame-
ters from our previous work [18] and (ii) a different shape of the
potential (we used a 6–12 Lennard Jones instead of the Bucking-
ham potential used by Criado and Muñoz).

3.2. Static structure factor

In order to compare the experimental structure factor with that
coming from MD simulation we compute the experimental static
structure factor Sexp(q) as the Fourier transform of the total pair
distribution function gtotal(r), properly weighted by the contribu-
tion of the neutron coherent scattering lengths of the atoms
(bC = 0.646 fm and bCl = 0.9577 fm), namely:

Sexp qð Þ � 1 ¼ 4pq
q

Z rc

0
r gtotal rð Þ � 1½ � sinðqrÞdr ð4Þ

We set q = 1, as it acts as a scaling factor when comparing with
the experimental results, rc is the cut-off of the integration. The
cut-off value is chosen large enough such that gtotal(rc) � 1 � 0,
and to minimize the derivative of g’total(rc), so that the pair distri-
bution function is as flat as possible. This allows us to avoid spuri-
ous effects at low q-values when Fourier transforming the total
pair distribution function.

The experimental static structure factor Sexp(q) obtained from
neutron diffraction can be seen in Fig. 4 together with the results
obtained from molecular dynamics simulation SMD(q) using Eq.
(4). As it can be seen, the static structure factor obtained from
the simulation does not fit experimental data since in the last case
there is a broadening coming from the instrument’s resolution.

The instrumental resolution function R(q) is described as a
Gaussian function with a FWHM determined by the q-resolution
function [31]. This means that R(q) corresponds to a set of Gaussian
functions at each q-point (see the inset in Fig. 2 where two Gaus-
sian functions defined for two different values of q are shown).
Fig. 2. Instrumental resolution function Dq as a function of q from the D4c3 [30]
diffractometer. Hollow circles are the experimental values from the calibration
sample and the thick line shows the polynomial fit (Eq. (5)). The inset shows two
Gaussian functions with a FWHM determined by the value of Dq at a given q (qc), at
high q values the Gaussian function becomes wider.
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Fig. 2 shows the q-resolution (Dq) as a function of q obtained for
a calibration sample. We performed a quadratic fit to this function
which is given by the following expression (D(q) in Å):

D qð Þ ¼ 0:00584q2 � 0:04057qþ 0:18696 ð5Þ
In order to obtain the function SMDc(q) to be compared with the

experiment, we must compute the convolution of SMD(q) with R(q),
i.e, with a Gaussian function centered at q with standard deviation
given by the relationship FWHM � 2.3548 r:

SMDc qð Þ ¼
XNp

i

SMD qið ÞRðqi � qÞ ð6Þ

SMDc ¼
XNp

i

SMD qið Þ 2:3548
2FWHM

exp �1
2

2:3548 qi � qð Þ
FWHM

� �2
" #

ð7Þ

In Eqs. (6) and (7), SMD(qi) is the original MD static structure fac-
tor and qi runs for every point in R(qi), which in our case corre-
spond to the interval qi 2 [0.075 Å�1, 14 Å�1] in steps of
0.025 Å�1, the value of FWHM is given by D(q), and Np is the num-
ber of experimental points. We can thus rewrite:

SMDc qð Þ ¼
XNp

i

SMD qið Þ2:3548
2DðqÞ exp �1

2
2:3548 qi � qð Þ

D qð Þ
� �2

" #
ð8Þ



Fig. 5. Mean-square displacement for the plastic (thick line) and liquid (dashed
line) phases. For the plastic (liquid) phase a temperature of T = 400 K, (T = 458 K)
was used. (For further details see [20]).

Fig. 6. Reorientational correlation function for the C-C vector: plastic (thick line)
and liquid (dashed line) temperatures.
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As we have already stated, the function SMD(q) is more peaked
than the experimental counterpart Sexp(q). In experiments, the
broadening of the diffraction peaks comes from two sources: the
first one is due to the intrinsic disorder of the plastic phase (orien-
tational disorder and thermal agitation). The second factor is
related to the limited instrumental resolution. The MD simulation
intrinsically considers the first factor, but the second one is not
present in simulations and must be included.

In Fig. 4 we show SMDc(q), the calculated convolution of SMD(q)
with the instrumental resolution function R(q). The result of that
convolution corresponds to the thick line in Fig. 4. Including the
resolution function in the SMD(q) allows the agreement with the
experiment. This result thus shows that the instrumental resolu-
tion function should be included in the calculation of the MD static
structure factor. The agreement, although good, is not perfect. The
reason for that can be related to some preferential orientation of
the sample crystallization: this would explain the almost perfect
agreement for the first diffraction peak, in comparison with the
second one.

Fig. 4 shows Sexp(q) and SMDc up to a value of q = 8 Å�1. For larger
values of momentum transfer, the contribution of intermolecular
ordering is small compared to the contributions from the geometry
of the molecule. Although there is no way to completely separate
the intramolecular contributions, the main contribution in the
small q range comes from intermolecular distances [32]. This can
clearly be seen in the SMD(q), where the well defined peaks corre-
spond to the positional ordering of the BCC phase. In order to sup-
port this statement, we have computed the position of Bragg peaks
within the q-range of the experiment using the equilibrium lattice
parameter from MD, i.e. 7.54 Å. These peaks are shown as vertical
dotted lines and, as it can be seen, they perfectly match with the
MD peaks. We also show in the inset the excellent agreement
between the experiment and the MD simulations. This agreement,
however, should be taken cautiously since, as previously explained,
the structure of our molecular model is indeed taken as a fit to this
high momentum transfer region [18].

3.3. Dynamics in the liquid and plastic phases

We have computed the mean-square displacement (MSD) for
the liquid and BCC plastic phases at T = 400 K (see Fig. 5). In this
figure it is possible to see a positional motion for the plastic phase
(thick line) at short times that is related to thermal motion. For
longer times (greater than 20 ps) there is no motion of the molec-
ular centers of mass. On the countrary, for the liquid phase (dotted
line) we obtain the typical MSD behavior for long range molecular
diffusion (for further details see [20]).

In order to characterize the relaxation properties of molecules
in the liquid and plastic phases, we compute the reorientational
correlation function (RCF). Orientationally disordered phases have
an RCF that decays to zero, while for a fully ordered crystal the ori-
entations are fully correlated, with a value close to 1 at all times.
RCF can be obtained as:

RCFl ¼ hPl Ua

!
ð0Þ � Ua

!
ðtÞ

� �
i ð9Þ

where Pl is the first (P1) or second (P2) rank Legendre polynomial:

P1 xð Þ ¼ x ð10Þ

P2 xð Þ ¼ 1
2

3x2 � 1
� �ð11Þ

and Ua
!

is the unit vector which points along a given a axis in the
C2Cl6 molecule. We did the calculations for two different a vectors,
namely the C-C and the C-Cl vectors. Fig. 6 shows the first Legendre
5

polynomial of the C-C vector for the liquid and plastic phases. They
both decay to zero, clearly showing the orientational disorder pre-
sent in the plastic phase. As expected, the decay is faster in the liq-
uid phase. Results for the C-Cl vector and second Legendre
polynomial follow the same trends and are not shown.

We computed the reorientational times obtained from the inte-
gral of the RCF. The ratio between the reorientation times s1 and s2
gives information about the kind of reorientation of the molecules.
For a rotation of molecules that is more diffusive, i.e. consisting of
small angular jumps [33,34], the reorientation times decay expo-
nentially with a time constant sl = [DRl(l + 1)]�1, which corresponds
to a ratio s1/s2 = 3. Here, DR is the rotational diffusion coefficient
and can be measured experimentally. For rotations that consist
of larger jumps, the ratio s1/s2 is expected to be smaller.

It was found for the plastic phase: s1/s2 = 2.55 for the CC vector
and s1/s2 = 2.28 for the C-Cl vector. In the liquid phase: s1/s2 = 2.56
for the C-C vector and s1/s2 = 2.58 for the C-Cl vector. These results
suggest that reorientation is performed in both cases via jumps.
Moreover, for the plastic phase the values of s1/s2 for both C-C
and C-Cl vectors are slightly different, being very similar in the case
of the liquid phase. This seems to point out to the fact that reorien-
tations occur more isotropically in the liquid phase than in the
plastic phase.
3.4. Short range order in the liquid and plastic phases

In order to compare the short range order of liquid and plastic
phases at the shortest distances, the same analysis done for the liq-
uid phase of C2Cl6 in our previous work [20] was done for the first
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eight neighbors in the BCC plastic phase. In the upper panel of
Fig. 7 we show the position of these first neighbors for both phases
with respect to a central molecule, as a PDF of the angles upos and
cos(hpos) depicted in Fig. 1.

In a plastic phase the centers of mass of the molecules are form-
ing a fixed crystalline structure. What is the meaning of p(upos,cos
(hpos)) considering that it is related to the position of a neighboring
molecule with respect to a central one, being their centres of mass
fixed? The answer is that the central molecule rotates with respect
to the fixed reference frame given by the crystalline lattice, and so
does the axis attached to it. Therefore the PDF in the case of the BCC
phase is indeed related to the rotations of the central molecule
with respect to the crystalline lattice, determined by the center
of mass of the neighboring molecules (recall that upos and hpos
angles are related to a vector pointing to the centre of mass of a
neighbor).

The eight nearest neighbors in the BCC phase are molecules
located in the vertices of the cubic lattice. The representation of
the BCC lattice is shown as an inset in the middle of Fig. 7. In the
BCC phase, the reference molecule is oriented in the [111] diago-
nal as depicted in Fig. 7. This relative orientation with respect to
the crystalline lattice can be seen in the positional map, that shows
two elongated spots in (cos(hpos) = ±1) in Fig. 7 associated to the
molecules parallel to the C-C direction. The remaining six vertices
are occupied by molecules that appear as clear spots at locations
(cos(hpos) = ±0.4).

Relative molecular orientation at a given position (upos,hpos) is
completely defined by the trivariate distribution p(uori,wori,hori).
However, visualization of the 3-D PDF is a difficult task, and for this
reason we show in the bottom panels of Fig. 7 the two 2-D projec-
tions using as the common x axis cos(hori).
Fig. 7. First neighbor analysis for the plastic BCC phase (left) and the study previously do
bivariate maps p(cos(hpos),upos). In the middle, the orientational p(cos(hori),uori) maps. At t
are analyzed: one of the equatorial positions and one of the polars, as it was studied
corresponding BCC unit cell, with some of the possible orientations.
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Due to the lattice symmetry, it is sufficient to study one of the
positional spots in the (upos,cos(hpos)) maps associated with a
neighboring molecule located at a given BCC vertex with respect
to the central molecule. However, for consistency we have studied
the relative molecular orientations for two molecules: one located
in the direction parallel to the C-C molecular axis ([111] direction
in the figure) in the bottom left panel, and one located in the [11–
1] direction (approximately perpendicular to the C-C axis) in the
bottom right panel.

The PDF p(cos(hori),uori) in Fig. 7 shows that two neighbor mole-
cules avoid having the C-C axis parallel: there are no elongated
spots for cos(hpos) = ±1. In other words they avoid having contact
through chlorine atoms. These results are consistent with those
previously reported for the BCC structure [8].

Moreover the map of p(cos(hori),wori) shows six spots located
every 60�. This agrees with successive dihedral angles between
chloride atoms attached to each carbon atom. The molecules are
thus performing an uniaxial rotation along the C-C atom, in addi-
tion to the overall rotation.

We compare now the results for BCC phase with that of the liq-
uid phase. The results on top panels clearly show that the position
of one molecule, given a central one, is astonishingly similar for
both phases. The positions of the plastic phase are better defined
as expected, and they correspond to the unit cell. This result agrees
with the characterization of the dynamics: there is not a contin-
uum of possible relative positions. In other words, rotations must
occur when transitioning from a high-probability spot to another
one, thus implying a jump across a potential energy barrier. This
means that rotations are performed via jumps. Moreover, in the
probability map of the BCC phase, spots are separated and well
defined, but in the liquid phase these are closer and bigger. This
ne by the authors on the liquid phase [20] (right) of C2Cl6. At the top, the positional
he bottom, the orientational p(cos(hori),wori) maps. The arrows show the regions that
for the liquid in the last section. The inset of the figure in the center shows the
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causes that jumps are more isotropic in the liquid phase, also in
agreement with our results concerning the dynamics of both
phases.

An unexpected result is that also the relative orientational order
between two molecules is similar in both phases. The difference
lies in the fact that molecules in the liquid can continuously move
between some of the orientations, while in the plastic phase there
are only some allowed orientations. Specifically, in both phases the
contact between chlorine atoms is avoided (see p(cos(hori),uori)),
and in both phases molecules perform fast uniaxial rotations (see
p(cos(hori),wori)).
Fig. 8. Information theory analyses to compare the positional maps p(cos(hpos),upos)
between the BCC (red thick line) and liquid (blue line) phases. From top to bottom:
Pair distribution function (gCM�CM), the rescaled entropy (H/H1), the mutual
information (I2) and the Kullback-Leibler divergence. All quantities are represented
as a function of the mean coordination number (MCN). We have added in the x axis
arrows showing the limiting distances for successive coordination shells Ci. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
3.5. Information theory based analysis

Characterization and comparison between the molecular
ordering at a given distance of disordered phases can be per-
formed at a high level of specificity determining the projections
of the 5-dimensional PDF containing all positional and orienta-
tional angles defining the molecular relative arrangement as
done in the last section. However this high level of specificity
has two main drawbacks: Firstly, in practical terms, it cannot
be routinely performed for all distances, and secondly it does
not give a measurement on how ordered are molecules or
how different the molecular arrangements are at a given dis-
tance between two different phases. Therefore we aim to ana-
lyze the long range order (neighbors for all coordination
shells) using the information theory tools introduced in a previ-
ous section.

We will focus in the relative positional ordering, therefore,
we will only analyze the positional order encoded in p(cos(hpos),
upos). Instead of performing the analysis as a function of the
distance we will order the molecules for both the liquid and
the plastic phase by their distance to a reference molecule,
i.e. we will calculate the molecular coordination number
(MCN) denoted by N, and will extend the analysis up to neigh-
bor number 75. The use of MCN instead of the distance is made
to highlight the presence of different coordination shells. The
results are depicted in Fig. 8.

Pair distribution function. In Fig. 8 we show the pair distribution
function gCM�CM(r) (top panel) of molecular centres of mass as a
function of MCN. This is done for both the liquid and the BCC
phases.

It is important to note that the radial pair distribution function
encodes the information of local density around a central molecule.
It does not contain any information about relative orientations or
positions of molecules, i.e., a maximum in gCM�CM(r) cannot be
associated a priori to any given molecular configuration. One of
the needs for the information theory-based analysis is indeed to
investigate if features in gCM�CM(r) can be associated to any special
molecular ordering.

In the case of the BCC plastic phase (red line), gCM�CM(r) shows
well defined shells. It is very interesting to note, however, that not
all the shells of the BCC phase are limited by a pair distribution
function going to zero as it would be the case for a perfect crystal.
The first two neighboring shells appear at 8 and 14 molecules, and
correspond to the nearest and nextnearest neighbors in the BCC
lattice: in this case the second shell is seen as a shoulder of the first
gCM�CM(r) peak.

In the case of the liquid (blue line), the pair distribution func-
tion shows less structure than its BCC counterpart and its features
are damped at much shorter distances than that of the plastic
phase, as expected. However, it should be pointed out that the first
broad peak of the liquid together with the associated shoulder has
a minimum at N = 14, and therefore it mimics the same shell def-
inition (at short distances) as in the BCC phase.
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1. Shannon Entropy H.

The second panel of Fig. 8 shows the normalized Shannon
entropy (H/H1) associated to the positional maps (variables cos
(hpos) and upos) for the two phases under study. Here H1 is the
maximum value of the entropy that is obtained when N tends to
infinity for each phase. Recall that H is maximum for a flat PDF
with no information (a completely disordered structure in our
case) and zero for a PDF with maximum information: a PDF with
only one pixel (or voxel) with probability P = 1 [21].

For the case of the BCC phase the features in the pair distribu-
tion function correspond to changes in the normalized Shannon
entropy H/H1. However it is remarkable that the trend of H/H1
is different depending on the behaviour of gCM�CM(r). When the
pair distribution function reaches zero, i.e. well defined shells, H/
H1 has a deep and clear minimum. When gCM�CM(r) does not reach
zero (or even it is seen as a shoulder as for first and second shells),
the changes in H/H1 are smooth. This suggests that not all shells
play the same role in the BCC structure.

In the case of the liquid phase it is remarkable that we find low
values of normalized Shannon-entropy for the very first neighbors
that are of the same order of magnitude than those of the plastic
phase. However, normalized Shannon entropy increases rapidly
to reach values close to one after the first coordination shell. As
expected, this function is much less structured for the liquid phase
than for the plastic phase.

2. Mutual information I2.

We depict the mutual information I2 (see Eq. (2)), which mea-
sures the correlation between the positional angles hpos and upos

in each phase in Fig. 8. I2 can take values between 1 and 0, which
correspond, respectively to a case of full correlation between



Fig. 9. Bivariate probability distribution function describing the relative position of
moleclues for the distance market in Fig. 8.
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angles and no correlation at all. It shall be noticed that I2 is nega-
tively correlated in our case to the normalized Shannon entropy
(see Fig. 8): Low values of H/H1 indicate higher order, meaning a
higher correlation between the positional variables. Also, the value
I2 is more structured for the positional order in the liquid com-
pared to H/H1 being more sensitive to structural changes.

The correlation between Shannon-entropy and mutual informa-
tion can be explained if we write the expression relating the two
quantities:

I hpos;/pos

� � ¼ H hpos
� �þ H /pos

� �� Hðhpos;/posÞ ð12Þ
Thismeans that if the 1Dprojectionof themaps cos(hpos),upos -i.e

the marginal probability densities p(cos(hpos)) and p(upos)- in each
axis gives as a result a non-defined PDF, mutual information will
be mainly driven by the entropy associated to the 2D bivariate
PDF: it would be a sort of normalized Shannon Entropy. As it can
be seen in Fig. 8 this is exactlywhat is happening:H(hpos) andH(upos)
aremore or less constant, and the Shannon entropy associated to the
bivariate positionalmaps leads the trend in themutual information.
3.5.1. Comparison of positional maps at different distances
At this point it is interesting to analyse some positional maps at

different coordination numbers, indicated by the vertical lines in
Fig. 8 and the relation of these with the information theory mea-
sures. These maps are depicted for both the plastic and liquid
phase in Fig. 9. As it was stated previously, Mutual Information fol-
lows an inverse trend with respect to the Shannon entropy, there-
fore we will focus the discussion on the Shannon Entropy only. It is
important to recall that these maps cannot be obtained from the lat-
tice structure: they do not represent the molecular position seen
from the laboratory frame but from the molecular moving refer-
ence system (as stated in the methods section)

BCC phase:

� Point a, N = 3. Molecules are located, when seen from a central
one, around the equatorial plane and in the poles as shown in
section 3.4 (map a of Fig. 9). Since H/H1 increases up to point
b this particular configuration is less defined as distance
increases.

� Point b, N = 7. Molecules are still located as in point a, but, as it
could be predicted by Shannon Entropy, the map is less defined
(map b of Fig. 9).

� Point c, N = 11. As it can be seen when compared to the map in
point a, there is a change in the structure: molecules occupy the
‘‘holes” left by the molecules by the first eight neighbours, i.e.
maxima in positional bivariate maps for point b are in the places
where we can find minima in point a. It is interesting to note
that this change in structure has been captured by a sudden
change in H/H1. It is also interesting that, contrary to the intu-
ition, this particular arrangement is more defined as the dis-
tance increases, i.e. maps are more defined (not shown).

� Point d, N = 15. A sudden change takes place for H/H1 at N = 14.
This is explained by the extreme change in the structure as seen
in the map marked as d in Fig. 9.

� Point e, N = 40. Again a change in H/H1 indicates a change in the
relative orientation of two molecules associated to a change in
gCM�CM(r): at distances associated to the fourth peak, molecules
repeat the same trend as in point c: they occupy the ‘‘holes” left
by the neighbours in the previous shell d.

� Point f, N = 60. An extreme and unexpected decrease in Shannon
entropy occurs at this distance, signalling an important ordering
of the molecules. Looking at the map at point f we discover that
this drop is associated with an also unexpected clear molecular
arrangement: molecules at this distance tend to locate (with
respect to a central molecule) as in shell c.
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Liquid phase:

� Point a, N = 3. Molecules are located as in the BCC phase:
approximately in the equatorial plane and in the poles as stated
in section 3.4. We also see an increase of H/H1, just like in the
BCC phase, but the maximum of H/H1 is not as clear as in the
plastic phase.

� Point b, N = 7. Contrary to what happens in the BCC phase,
molecular configurations (as seen in the map b of Fig. 9) seem
not to have a special ordering. It seems a transition state to
the next molecular configuration. This lack of sudden molecular
arrangement has been perfectly captured by the Shannon
entropy.

� Point c, N = 11. Again for point cmolecules seem to be in a speci-
fic configuration, and this configuration mimics that of the BCC
phase.

� Point d, N = 15. The sudden change described in the BCC phase is
no present in the liquid structure, as seen in the map of point d.
This fact has already being captured by the lack of features in H/
H1 in this distance region. Indeed, this point is a good example
of the usefulness of distance-dependent Shannon Entropy cal-
culations, namely, without analysing the circa of 70 2D maps
describing the relative molecular positions of both phases, we
know from H/H1 that a feature happening in the BCC phase is
not happening in the liquid phase.

� Points e and f, N = 40, 60. The relative position of molecules is
not well defined for very long MCNs such as 40 or 60, as it
can be seen both in the maps and the Shannon entropy. How-
ever, it is astonishing that for point f positional ordering slightly
resembles that of BCC phase: spots, although much less defined,
are located at the same points as in the BCC phase.

3. Kullback-Leibler divergence.

Now that we have a clear picture of the location of molecules at
different characteristic distances both in the BCC and liquid phases,
we will compare both sutructures using the KL divergence as a
function of MCN. KL diveregence is shown in the bottom panel of
Fig. 8. According to the definition of KL divergence a low value indi-
cates a high similarity: a low ‘‘distance” between the structures.
The comparison of BCC and liquid phases guided by the results of
KL-divergence has been divided in two regions. A first region from
N = 1 to N = 14 (point a to point d in Fig. 9) where the Shannon
entropy of the liquid phase has noticeable changes in its trend,
and a second region for MCNs larger than N = 14, where liquid
Shannon entropy is flat. In this second case, when calculating the
KL divergence, the liquid phase will act simply as a disordered ref-
erence state, given that its entropy is maximum at this distance
range and shows no marked features.

� Region a-d. As we can see in Fig. 9 the relative molecular posi-
tion is very similar for points a and c while in point b the order-
ing in both phases is different. This feature is perfectly captured



Fig. 10. Kullback-Leibler divergence as a function of temperature for the BCC phase
taking the lowest temperature (340 K) as a reference state. We plot in the figure the
results for the bivariate graphics of Fig. 7 at different temperatures describing both
relative orientation and position of molecules.
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by the KL divergence in Fig. 8: it has a local maximum at point b.
After a small decrease, the dissimilarity between the two phases
increases again due to the decrease in Shannon entropy of the
BCC phase compared with the liquid phase. For larger distances
it is interesting to note from Fig. 9 that no change in liquid
structure is observed (this is reflected in a rather constant Shan-
non entropy) while the BCC phase suffers an extreme change
when going from N = 14 to N = 15. This is clearly reflected in
the KL divergence where there is a maximum when the BCC
phase reorders in a new configuration while the liquid remains
unchanged.

� Region d-f. As mentioned before, the Shannon entropy of the liq-
uid phase has no special features (remains almost constant).
Therefore the results of the KL divergence reflect the changes
in the BCC phase where we have seen a further ordering at point
f and thus presenting a new maxima at N = 60.

Temperature-dependent KL-divergence. KL divergence can also be
used to determine differences of the molecular ordering of the
same phase at different temperatures. In particular we have calcu-
lated the KL divergence in order to understand which part of the
relative molecular configuration changes the most -either position
or orientation- when varying temperature. In other words, when
varying the temperature, which KL divergence will be greater?
The one related to positional or the one related to orientational
maps? We would like to stress that by relative position we mean
relative position of two molecules at a given distance range. That
means that lattice expansion will have no direct effect on the cal-
culation since we have chosen the distance range defined by the
first eight neighbours for all temperatures.

Fig. 10 shows the KL divergence between the maps encoding the
relative molecular position p(hpos,upos) and the relative molecular
orientation (p(hori,uori) and p(hori,wori)), taking the map at 340 K
as the reference system. As expected, relative position and orienta-
tion shows an increase in the KL divergence when increasing tem-
perature. However the curve associated to the relative position
increases more than that associated to relative orientation. It must
be recalled, that the overall molecular tumbling is associated to the
relative molecular position. Considering that an increase in tem-
perature does not change the structure of the plastic phase, we
can relate our result to a facilitation of the changes in the molecu-
lar jumps to reach different molecular orientations with respect to
the lattice reference system.
4. Summary and conclusions

The structure of the C2Cl6 BCC plastic phase has been studied at
a high level of detail for the first neighbors by comparing positional
and orientational PDFs. In order to compare the positional ordering
with that of the liquid phase as a function of the distance between
two molecules, quantities borrowed from Information Theory have
been used. This has been done using a new Force Field for C2Cl6
that has been successfully validated via comparison with X-Ray
and Neutron diffraction patterns.

First of all the detailed analysis on the closest molecules in the
first shell showed a positional and orientational ordering surpris-
ingly similar between the plastic crystal with BCC symmetry and
the liquid phase. This can be explained by the fact that for this
molecule steric effects are the most important ones when deter-
mining molecular ordering. Therefore the molecular arrangement
in both phases try to have a close packing avoiding the molecules
to face chloride shells.

These results concerning the structure go along with our inves-
tigation of molecular rotation: it is not performed in a continuous
way, molecules must perform jumps between energy barriers.
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Moreover, also in agreement with the structure investigation,
molecules move more isotropically in the liquid than in the plastic
phase.

Information theory is a valuable and important tool to analyze
the results obtained with the study of distance-dependent molec-
ular ordering. It did not only allowed to analyze a large data-set,
that would have been time-consuming otherwise, but also pro-
vided quantitative results that complete the qualitative informa-
tion provided by the detailed Euler angles analysis.

When analyzing the positional maps under the light of informa-
tion theory, the mutual information showed more marked features
related to the structure than the Shannon entropy. We introduce in
this work the KL divergence that helped us to compare both struc-
tures: instead a monotonous increase of the KL divergence
between both structures, we found marked features as a function
of the distance.

The calculation of the positional maps describing relative
molecular position have aided us to clearly show that the trends
in molecular ordering are successfully captured by our information
theory based analysis. This opens the door to simplify tedious anal-
ysis since it restricts the length regions that are worth to be
studied.
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