
Contention Tracking in GPU Last-Level Cache
Javier Barrera†,‡, Leonidas Kosmidis†,‡, Hamid Tabani†, Jaume Abella†, Francisco J. Cazorla†

†Barcelona Supercomputing Center, Barcelona Spain ‡Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{javier.barrera, leonidas.kosmidis, hamid.tabani, jaume.abella, francisco.cazorla}@bsc.es

Abstract—The Last-level cache (LLC) is one of the main GPU’s
shared resources that contributes to improve performance but
also increases individual kernel’s performance variability. This
is detrimental in scenarios in which some level of performance
predictability is required. While predictability can be regained
by deploying cache partitioning (isolation) mechanisms, isolation
negatively affects performance efficiency. This work shows that
not partitioning the LLC and providing the ability to track the
contention that kernels generate on each other allows them to
share LLC space, hence increasing efficiency, while the system
designer obtains a clear view of how each kernel affects each
other in the LLC so as to balance performance and predictability
goals. In this line, we propose GPU demotion counters (GDC),
a low-overhead hardware mechanism to track contention that
kernels generate on each other in the shared LLC.

I. INTRODUCTION

We are witnessing a trend towards allowing kernels from
different applications to share GPU resources [13]. For in-
stance, NVIDIA Multi-Process Service (MPS) allows kernels
from different applications to run in different Streaming Mul-
tiprocessors (SMs) simultaneously, and hence, share the LLC.
While resource sharing allows increasing the aggregated per-
formance of all kernels, per-kernel performance might suffer
high variability depending on the usage of resources made
by co-runner kernels ultimately causing loss of performance
determinism [18]. This is detrimental in scenarios in which
some level of quality of service (QoS), i.e. performance
predictability, is required.

The LLC is one of the main sources of performance
improvement and potential QoS degradation [18]. To regain
predictability, hardware [4], [10], [14] and software [7], [9]
isolation mechanisms are leveraged. Both restrict different
applications to use a fixed subset of the LLC space determined
beforehand, preventing the eviction of each others’ data. How-
ever, while cache partitioning allows regaining predictability,
it reduces resource usage since the LLC space not used by an
application is not available to its co-runners.

While in hard real-time systems cache partitioning is the
most natural choice, as predictability is prioritized over av-
erage performance, many other application domains demand
some QoS levels that call for a better balance between per-
formance and predictability. In those scenarios, it would be
possible to allow different applications to share the LLC as
long as the hardware provides run-time system information
about how applications affect each other in the LLC. This

This work has been partially supported by the Spanish Ministry of Economy
and Competitiveness under grants PID2019-107255GB-C21 and IJC-2020-
045931-I funded by MCIN/AEI/ 10.13039/501100011033 and the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773).

information can be used by the system designer to propose
run-time mechanisms to achieve QoS and performance goals,
ranging from changing application schedule [18] to temporar-
ily restricting the frequency at which an application is allowed
to access the LLC to contain its impact on its co-runners [15].

In this line, for embedded GPUs, we propose and evalu-
ate GPU demotion counters (GDC), a technique that allows
tracking the contention that kernels in a GPU generate on
each other in the LLC. GDC allows breaking down the LLC
cache misses suffered by a kernel among its co-runner kernels.
That is, GDC allows ascribing a percentage of the LLC misses
to each of its co-runners, hence providing key information
about the contention that kernels generate on each other in the
LLC. This is fundamental during testing for timing violation
detection and correction to single out its specific causes [11].
We illustrate how GDC applies to a demand-based replacement
policy like Least-Recently Used (LRU).

II. TRACKING LLC CONTENTION IN GPUS

The use of a shared LLC, the L2, is common in GPU
subsystems in MPSoCs. The LLC is dynamically shared
among SMs, acting as the first coherence point.

Common replacement policies, like LRU, have the stack
property [8]. For LRU, each cache set can be conceptually
seen as an LRU stack with lines sorted based on their last
access cycle. The first line of the LRU stack is the MRU,
position 0, and the last is the LRU, position W-1, where W
is the number of LLC ways. The closer a cache line in a set
is to the LRU position, the more likely it can be evicted by
following accesses.

GPU LLC contention tracking techniques aim to break
down the number of LLC misses (M cont

i) suffered by the
kernel under analysis (KUA or Ki) when it runs in a workload
with other contender kernels, or CKs. In the following sections
we assume that one kernel from a different application runs
per SM. One is the KUA, while the rest are CKs.

A. Per-Line Owner Bits (PLOB)

Cache lines comprise control bits that provide information
such as whether the line is valid and some bits to implement
the replacement policy (e.g. LRU). PLOB adds log2|SM | bits
per cache line to store the information regarding the owner
(ow) of that line, that is, the ID of the SM from where the
data in that line was last loaded or stored. A similar solution
has already been proposed in the context of CPUs keeping
the application ID rather than the kernel (or core) ID, but for
similar purposes [18].

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICCD56317.2022.00021

Fig. 1: GDC integration in the LLC

On a miss, by comparing the PLOB of the line to be evicted
with the ID of the kernel generating the access that causes the
eviction, PLOB determines whether a kernel evicted data from
another kernel. To store this information, PLOB also requires
|SM | × |SM | event monitor registers to keep track of the
number of times a given kernel evicted data from another one.
These event monitors are referred to as inter-kernel eviction
(ike) monitors. That is, when Kj evicts a piece of data in the
LLC from Ki, ike

j
i is incremented. With this, KUA’s LLC

contention is broken down as δji =M cont
i × ikeji/ikei, where

ikei is the number of LLC ike suffered by Ki and δji , the
Ki’s LLC misses ascribed to Kj . Recall that M cont

i is the
number of LLC misses suffered by Ki.

III. GDC
The main principle behind GDC is that, right after the

KUA accesses address @A (for simplicity in the discussion
we assume that each address is mapped to a different line),
@A is promoted to the MRU position. In order for this address
to be evicted by other accesses, either from the KUA or from
CKs, @A needs to be progressively shifted from the MRU to
the LRU and then be evicted. Hence, @A suffers a sequence
of demotions from the MRU position to the LRU+1 position.

GDC builds on the fact that an access to a line that hits
in position k of the LRU stack causes it to be promoted to
the MRU position, with all lines between MRU and k − 1
being demoted one position each. Also, an access that results
in a miss causes all lines in the set to be demoted by one
position. That is, on every access to a line by a kernel, GDC
tracks the impact it has on the LRU distance of the lines of
other kernels, so, how much those lines are demoted. Hence,
by tracking ‘demotions’, GDC accurately estimates how much
each kernel contributes to the eviction of a line in the LLC.

A. Implementation

GDC is implemented via the GDC unit (GDCU), whose
main goal is to track the number of demotions that the lines of
a given kernel suffer, from itself or other kernels. To that end,
the GDCU is integrated into the LLC as shown in Figure 1,
which only shows the TAG array of the cache since the data
array is not needed to describe the GDCU.

The GDCU builds on PLOBs, so, every line is tagged with
the kernel ID bits. On every access to the cache, the index bits

Fig. 2: GDCU diagram for a 4-way LLC and a 4-SM GPU.

of the address are used to drive the LLC decoder that selects
a cache set. The tag information is sent to a comparator to
determine whether the access is a hit or a miss. Also, the
LRU bits are sent to the replacement logic, which updates
them and writes them back in the corresponding set. While
it is not mandatory for GDCU functioning, we assume an
implementation in which replacement bits are kept together
per set, in the form of a sorted list of way identifiers from the
MRU to the LRU way. For instance, for a 4-way LLC where
the MRU for a given set is way 2, followed by way 0, way 3
and way 1 (so way 1 is the LRU), the replacement bits would
be the concatenation of 10b, 00b, 11b, and 01b, sorted from
MRU (left) to LRU (right). Along with the way identifiers, the
owner bits (kernel IDs) are stored. We refer to both together,
LRU stack bits and owner bits, as replacement bits.

The GDCU has three main inputs, the replacement bits À,
the position in the LRU stack on which the hit was detected Á,
and the ID of the kernel performing the access Â, see Figure 1.
These three inputs are used to update the GDCU demotion
counters (or simply counters). The associated logic of the
GDCU can provide enough throughput so that it processes
LLC accesses at the same frequency as the LLC itself. If
the GDCU latency is larger than the LLC inter-access latency
(i.e. the shortest time elapsed since one access is processed
until the following access is processed), then the GDCU logic
can be easily pipelined accordingly. This only causes the
counters to be updated a few cycles after the actual access
happens. This delay has no impact as the GDCU reading
and resetting of counters is done every dozen thousand or
even a hundred thousand cycles (e.g. at task boundaries) via
a dedicated input/output port Ã.

More in detail, the demotion logic in the GDCU (Figure 2)
needs the kernel IDs (KIDs) owning the lines of the accessed
cache set sorted from MRU to LRU (note that the KID of an
active kernel varies from 0 to |SM | − 1). The most natural
way to obtain those IDs is via the replacement bits À that, as
explained before, include a list of way identifiers along with
their corresponding KIDs; and the LRU position where the
hit happened. In case of a miss, a different value is coded in
Á. The demotion logic drives the demotion activation bit to a
demultiplexer Ä. This signal is 1b if that position of the LRU
stack has been demoted and vice versa. Recall that, with LRU,

TABLE I: Main configuration of the simulator platform

CPU Configuration
Number of Cores 4 Armv8
L1 Inst. Cache 32KB 2-way write-back
L1 Data Cache 64KB 2-way write-back
L2 Shared Cache 2MB 8-way write-back
Main Memory Size 8GB

GPU Configuration
Number of SMs 4
L1 Inst. Cache per SM 4KB 4-way, 8 sets

1 bank, 128 bytes per line
L1 Data Cache per SM 24KB 48-way, 4 sets

1 bank, 128 bytes per line
L2 Cache (LLC) 512KB 16-way, 256 sets

4 banks, 128 bytes per line
4 sectors per line, 32-bytes each

on a hit, all lines between the MRU position (included) and
the line hit (excluded) are demoted one position towards the
LRU position, and hence their associated enable signals are
asserted. Meanwhile, on a miss, all lines are demoted by one
position so the enable bit of all LRU stack positions in the
demotion logic is asserted.

The control input to the demux is the KID, that for our
example with 4 SMs has two bits Å. Note that entries À and
Á correspond to the status before the tag data in the cache set
is updated as a result of the access being performed by Â.

The output of the demux are 2|SM | signals (one per kernel),
with signal X for the KID kernel activated if such line has
been demoted. The output Æ can be directly driven to the
popcnt (population counter) block or latched (as shown in the
figure) to ease pipelining the GDCU. There are |SM | popcnt
blocks, one per KID. Popcnt X is inputted with the output
line X of each demux block, so that each popcnt has as many
input lines as cache ways has the LLC, i.e. 4 in our case Ç.

In our case, the output of the popcntX is the number of
demotions kernel KX has suffered È. This information is
driven to the counters (GDCs). Input Â, i.e. the KID of the
kernel performing the access (e.g., Y), is used as the control
signal to activate only the counters related to KY , so the
output of the 2|SM | popcnts increase the value of counters
GDC[∗][Y]. Hence, in Figure 2 only one row of counters is
incremented on access. We assume one adder per column (i.e.
victim kernel) to update GDCs in parallel. Note that simple
adders can be implemented since the maximum number of
demotions is very low (i.e. up to the number of cache ways),
and hence a regular adder is used for those bits, and only carry
propagation logic for uppermost bits.

IV. EVALUATION

A. Experimental framework

We use the Gem5-GPU [12] simulator that integrates
Gem5 [2] to model the CPU and the memory subsystem
and GPGPU-sim [1] to model the GPU. This infrastructure is
considered among the most sophisticated and cycle-accurate
simulators in both academia and industry. We have modeled
an architecture in which the CPU and the GPU share the main

Fig. 3: Real Scenario

memory via an interconnection network, similar to embedded
GPU devices such as NVIDIA AGX Xavier, see Table I.

We use several representative GPU benchmarks (basic oper-
ations) that are commonly used in machine learning libraries,
which in turn, are used for many operations of autonomous
driving and ADAS software, from perception and detection
to planning and control: Matrix Multiplication (MM), Matrix
Transpose (MT), Matrix Transpose Multiply (MMT), and
Vector-multiply-add (VMA). For instance, matrix multipli-
cation is a central element of YOLOv3 machine learning
library [16] and radar applications [5], [17], and has been
shown to account in some scenarios for 67% of YOLO’s
execution time [3].

We also used a set of basic operators with different data
types and precisions. In particular, we use vector addition with
integer long and with floating-point double-precision (LADD
and DADD) and vector multiplication and division with long
and double floating-point types (LMUL, DMUL, LDIV, and
DDIV). All these operators are the building blocks for other
basic functionalities in machine learning libraries and radar
applications in automotive applications.

We also develop a set of aggressive benchmarks (AGG1 and
AGG2), which put different degrees of high pressure on the
LLC of the GPU.

B. Analysis of a real workload (VMA, DADD, AGG1, AGG2)

VMA (the KUA) and DADD have a footprint of 25%
and 50% of the LLC space respectively. AGG1 performs
sustained misses across all cache sets, and AGG2 performs
sustained misses across a reduced number of sets. When
executed together, VMA and DADD end up keeping most
of their contents in LLC performing many hits and reusing
data quickly. AGG2 performs sustained misses causing a small
LLC miss increase on the KUA since most of the contents of
the few sets accessed by AGG2 belong to AGG2 itself. AGG1
misses in all sets but at a much lower frequency than VMA
and DADD accesses since AGG1 experiences long memory
latencies and VMA and DADD short hit latencies. Hence,
despite each AGG1 access pushing all lines in the accessed
set towards the LRU position, it accesses the LLC seldom,
while VMA and DADD access it at high frequency. As a
result, VMA pushes its own lines little since its reuse distance
is relatively short, whereas DADD pushes VMA lines much
more due to its larger reuse distance.

Fig. 4: PLOB breakdown deviation for 32 randomly generated
workloads w.r.t. GDC’s contention breakdown.

GDC reflects this behavior accurately with AGG2 being
ascribed a small fraction of VMA’s misses (1.7%) and AGG1 a
percentage smaller (18.3%) than that of DADD (57.6%) that is
the kernel affecting the most VMA. Also, VMA self-generates
some of its misses (22.3%).

Instead, PLOB largely overestimates the impact of AGG1
and AGG2, which are the ones missing in the LLC, with
AGG1 ascribed 72.7% of the misses of the KUA and AGG2
26.7%.

C. Wider Result Set

Next we show how off PLOB is from GDC as a measure
of its accuracy. To that end, we define the metric workload
breakdown deviation (wbd) that builds on the square root of
the distance between two points in an N dimensional space.

For a workload w with N kernels, the wbd between
GDC (A) and PLOB (B) is defined as wbdA,B

w =√∑N
j=1

(
pAj − pBj

)2
, where pXj is the percentage of L2

misses of the KUA ascribed to Kj by technique X so that
the higher the value of wdb, the worse it behaves with respect
to GDC and hence, breaking down LLC misses of the KUA.

Figure 4 shows the wbd for 32 randomly generated work-
loads. As it can be observed, the wbd of PLOB with respect
to GDC can range from values as small as 0.03 (w1) to 1.15
(w13). This wide deviation range is caused by the character-
istics of the workloads: PLOB tends to perform better when
the different kernels in the workload have similar memory
footprint and access frequency, and vice versa. For instance,
w13 comprises more diverse kernels, with CK2 having the
lowest access frequency and the KUA the highest. CK2, due
to its low access frequency, is unable to reuse LLC data and
performs most of the evictions, and thus, is ascribed as the
main responsible for KUA’s misses by PLOB. However, this
disregards demotions performed by the other three kernels,
which are ignored by the PLOB. Overall, PLOB is subject to
pathological eviction scenarios in which the kernel causing the
eviction is just the one causing the last demotion, i.e. from the
position LRU to LRU+1, while in reality other kernels are the
ones really pushing the line towards the LRU position.

V. RELATED WORK

Some authors propose a similar solution to PLOB [18],
CacheScouts, to track contention. CacheScouts keep the ap-
plication (owner) ID of each cache line, instead of identifying
the actual kernel, as in our case for GPUs. However, since
the application ID size is potentially high, the authors propose

sampling contention in a few sets to reduce costs. In our work,
we consider a simpler implementation of PLOB where the
kernel ID is tracked, which requires a few bits. Hence, we
do not rely on sampling. Building on [18], other authors also
from Intel, describe the Cache Monitoring Technology (CMT)
in the Intel Xeon Processor E5-2600 v3 Product Family [6].
CMT allows monitoring of LLC cache occupancy by tagging
a subset of cache lines in the shared L3 (LLC) as in [18]. This
allows software to track cache occupancy per core.

VI. CONCLUSIONS

Allowing applications to share the LLC and providing
hardware support so that the system designer can get a clear
insight on how applications affect each other in LCC, allows
balancing QoS and performance, and is key during testing
stages to single out the specific causes of timing violations
and apply the appropriate corrections. We propose GDC (GPU
Demotion Counters) that allows a tightly tracking of the
number of evictions that kernels in a GPU generate on each
other in the LLC. We show that, by focusing on how kernels
demote each others’ data rather than only on direct inter-
kernel evictions, GDC improves other LLC miss breakdown
techniques based on existing and proposed hardware, while
incurring low implementation overheads in the LLC.

REFERENCES

[1] A. Bakhoda et al. Analyzing CUDA workloads using a detailed GPU
simulator. In ISPASS 2009, 2009.

[2] N. Binkert et al. The gem5 simulator. ACM SIGARCH computer
architecture news, 2011.

[3] F. dos Santos et al. Evaluation and mitigation of soft-errors in neural
network-based object detection in three gpu architectures. In DSN-W
2017.

[4] Freescale semicondutor. e6500 Core Reference Manual. https://www.
nxp.com/docs/en/reference-manual/E6500RM.pdf, 2014. E6500RM.

[5] J. Gamba. Automotive Radar Applications. 2020.
[6] A. Herdrich et al. Cache QoS: From concept to reality in the Intel®

Xeon® processor E5-2600 v3 product family. In HPCA 2016.
[7] S. Jain et al. Fractional GPUs: Software-based compute and memory

bandwidth reservation for GPUs. In RTAS 2019, pages 29–41. IEEE,
2019.

[8] R. L. Mattson et al. Evaluation techniques for storage hierarchies. IBM
Syst. J.

[9] S. Mittal. A survey of techniques for cache partitioning in multicore
processors. ACM Comput. Surv., 2017.

[10] M. Moretó et al. Dynamic cache partitioning based on the MLP of
cache misses. Trans. High Perform. Embed. Archit. Compil., 2011.

[11] J. Pérez-Cerrolaza et al. Multi-core devices for safety-critical systems:
A survey. ACM Comput. Surv., 53(4):79:1–79:38, 2020.

[12] J. Power et al. gem5-gpu: A heterogeneous CPU-GPU simulator. IEEE
Computer Architecture Letters, 2014.

[13] R. Pujol et al. Generating and Exploiting Deep Learning Variants to
Increase Heterogeneous Resource Utilization in the NVIDIA Xavier. In
ECRTS 2019.

[14] M. K. Qureshi et al. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In
MICRO 2006.

[15] M. Slijepcevic et al. Time-analysable non-partitioned shared caches for
real-time multicore systems. In DAC 2014.

[16] H. Tabani et al. A cross-layer review of deep learning frameworks to
ease their optimization and reuse. In ISORC 2020.

[17] L. Teschler. The basics of automotive radar, 2019. https://www.
designworldonline.com/the-basics-of-automotive-radar/.

[18] L. Zhao et al. CacheScouts: Fine-Grain Monitoring of Shared Caches
in CMP Platforms. In PACT 2007.

