
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The aluminium Twitch fraction of a Belgian recycling facility could be further sorted by implementing Laser-Induced Breakdown 
Spectroscopy (LIBS). To achieve this goal, the presented research identifies commercially interesting output fractions and 
investigates machine learning methods to classify the post-consumer aluminium scrap samples based on the spectral data collected 
by the LIBS sensor for 834 aluminium scrap pieces. The classification performance is assessed with X-Ray Fluorescence (XRF) 
reference measurements of the investigated aluminium samples, and expressed in terms of accuracy, precision, recall, and f1 score. 
Finally, the influence of misclassifications on the composition of the desired output fractions is evaluated. 
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1. Introduction 

The European Aluminium Association (EAA) aims to 
increase the amount of secondary aluminium in European end-
use products from 26% in the year 2000 to 49% in 2050 [1]. 
One prominent strategy to achieve this goal is to improve state-
of-the-art sorting methods [2]. One of the most promising 
technologies that is being developed to separate different 
aluminium alloys is Laser-Induced Breakdown Spectroscopy 
(LIBS) [3,4]. This technology uses laser pulses to ablate the 
surface of the investigated material so that plasma is formed 
where the pulses hit the surface, and light is emitted. A 
spectrometer converts the detected light into a spectrum 
characteristic for the material subjected to the LIBS analysis. 
Sorting post-consumer aluminium scrap can be interesting for 
recycling companies because aluminium with lower 
concentrations of alloying elements can be sold at a higher price 

due to its broader applicability compared to mixed aluminium 
scrap. Therefore, this research investigates the opportunities of 
LIBS based aluminium sorting for a large scale Belgian 
recycling facility to increase the value of the collected post-
consumer aluminium scrap. 

2. Methodology 

2.1. Selection of sorting targets 

The output fraction of the aluminium recycling facility in 
this case study is a mix of post-consumer aluminium scrap 
containing wrought and cast alloys from products of different 
sectors. The dimensions of the shredded aluminium pieces are 
between 40 and 120 mm as a result of two sieving steps. This 
output fraction, called "Twitch", is only to a very limited extent 
contaminated with materials other than aluminium [5]. 
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1. Introduction 

The European Aluminium Association (EAA) aims to 
increase the amount of secondary aluminium in European end-
use products from 26% in the year 2000 to 49% in 2050 [1]. 
One prominent strategy to achieve this goal is to improve state-
of-the-art sorting methods [2]. One of the most promising 
technologies that is being developed to separate different 
aluminium alloys is Laser-Induced Breakdown Spectroscopy 
(LIBS) [3,4]. This technology uses laser pulses to ablate the 
surface of the investigated material so that plasma is formed 
where the pulses hit the surface, and light is emitted. A 
spectrometer converts the detected light into a spectrum 
characteristic for the material subjected to the LIBS analysis. 
Sorting post-consumer aluminium scrap can be interesting for 
recycling companies because aluminium with lower 
concentrations of alloying elements can be sold at a higher price 

due to its broader applicability compared to mixed aluminium 
scrap. Therefore, this research investigates the opportunities of 
LIBS based aluminium sorting for a large scale Belgian 
recycling facility to increase the value of the collected post-
consumer aluminium scrap. 

2. Methodology 

2.1. Selection of sorting targets 

The output fraction of the aluminium recycling facility in 
this case study is a mix of post-consumer aluminium scrap 
containing wrought and cast alloys from products of different 
sectors. The dimensions of the shredded aluminium pieces are 
between 40 and 120 mm as a result of two sieving steps. This 
output fraction, called "Twitch", is only to a very limited extent 
contaminated with materials other than aluminium [5]. 
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However, due to the presence of multiple different aluminium 
alloys, the fraction can today only be sold to refiners to produce 
cast alloys. Since there is a wide variety in the composition of 
the scrap pieces in this fraction, enhanced sorting could yield 
additional financial benefits if valuable sorting targets can be 
selected and separated. 

The selection of the sorting targets of the LIBS sorting step 
in this case study is based on discussions with the involved 
recycling company and based on the current demand for 
secondary aluminium. The first of the three selected target 
fractions is the "Premium" class. This class has severe limits to 
the concentrations of the most common alloying elements. Its 
purpose is to be sold at a significantly higher price than the 
current output fraction to refiners to dilute low purity scrap for 
the production of cast alloys or to remelters for the production 
of secondary wrought alloys. The second class is called 
"Desox". It stands for "deoxidation aluminium" which, 
according to the EAA definition, is aluminium consisting of 
alloys with a high concentration of metallic aluminium (usually 
exceeding 95%) used to remove free oxygen from liquid steel 
[6]. The last target fraction is the "Secondary" class. This 
fraction is meant to be sold to refiners at a similar price as the 
current output fraction for the production of cast alloys. 
Therefore, it must still meet the refiners' composition 
requirements. Table 1 shows the allowable concentration of 
each alloying element in the different target classes. 

Table 1: Limit values for concentrations of alloying elements in the 
desired output fractions 

Element Premium Desox Secondary 
Al  >95%  
Cu <0,04 wt% <2 wt% <3,3 wt% 
Zn <0,05 wt% <1 wt% <1,2 wt% 
Fe <0,25 wt% <0,4 wt% <0,6 wt% 
Mn <0,06 wt% <1 wt% <0,4 wt% 
Mg <0,40 wt% <1 wt% <0,45 wt% 
Si <0,50 wt% <2 wt% <9,4 wt% 
Ni  <1 wt% <0,3 wt% 
Cr  <1 wt%  
Sn  <2 wt% <0,1 wt% 
Ti  <1 wt% <0,1 wt% 
Sr   <0,05 wt% 
Pb   <0,2 wt% 

 

2.2. Sampling and Measuring procedure 

A representative sample of the existing output fraction, 
consisting of 834 pieces weighing 39.28 kg in total, has been 
acquired and analysed with the following sampling and 
measuring procedure, illustrated in Figure 1 with capital letters 
that correspond to the different steps. The Twitch fraction, from 
which the sample is collected, is stored at the site of the 
recycling facility (A). Nine zones are delimited in the stored 
Twitch fraction (B). From each zone, an amount of aluminium 
is collected with a crane to ensure that the sample's 
representativeness would not be degraded due to 
inhomogeneity of the material across the different zones (C). 
Afterwards, the collected pieces from the different zones are 
mixed, spread and divided into four different equal-looking 

subsamples (D). One subsample is selected as the dataset for 
the analysis in this research (E). 

 

 
Subsequently, each metal piece in the acquired dataset has 

been labelled with a unique number. Then, a part of the piece's 
surface has been cleaned with a Dremel and ethanol, after 
which the composition of each piece is measured by 
performing an XRF analysis on the cleaned part of the piece 
(F). For this analysis, an Olympus Vanta handheld XRF 
analyser is used. Based on the results of the XRF analysis and 
the concentration limits for the desired fractions, shown in 
Table 1, every piece in the dataset is assigned to one of the 
target classes (G). Therefore, the "ground truth" classification 
in this research relies on the performance of the XRF. When 
assigning the pieces to the ground truth classes, only the 
alloying elements are considered that are most critical to this 
case study, namely copper, zinc, silicon, and manganese. Only 
these elements are considered for the class assignment, because 
the value of the output fraction does not significantly decrease 
when the concentrations of the less critical elements slightly 
exceed the specified limits. 

Furthermore, it is expected that the concentrations of the less 
critical elements will average out to a level around or below the 
specified limits. When only considering the most critical 
elements to assign the pieces to the ground truth classes, it can 
be avoided that pieces are unnecessarily excluded from the 
more valuable Premium and Desox classes due to one or a few 
less critical alloy concentrations that exceed the specified limits 
in Table 1. All pieces that do not meet the conditions of the 
Premium or Desox class are assigned to the Secondary class, 
even when the restrictions for the Secondary class are not met. 
This approach is adopted instead of defining a fourth class of 
pieces because this research aims to assess the feasibility of a 
three-way sorting system based on LIBS classification. This 
way, the Premium, Desox, and Secondary classes constitute 
28.3%, 28.8%, and 42.9% of the mass of the total sample, 
respectively. 

Next, the LIBS experiment is conducted (H). The custom 
made LIBS system in this research is a gated LIBS. The laser 
has a pulse energy of 80 mJ and is fired at a frequency of 10 
Hz. A CMOS camera (1936 x 1216 pixels) detects the light 
emitted from the ablated surface. The Echelle type 
spectrometer of the system has a spectral range between 180 
nm and 800 nm and a spectral resolution that goes from 0.15 

Figure 1: Graphical representation of sampling and measuring procedure 
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nm at 180 nm wavelength up to 0.4 nm at 800 nm wavelength. 
The exposure time is 85 μs. For each piece in the dataset, two 
LIBS measurements are conducted: one on the cleaned part of 
the piece's surface and one on an uncleaned part of the surface. 
The pieces are placed in a fixed position for the measurements, 
at 300 mm in front of the LIBS outer lens, in focus of the laser. 
The position is controlled with a distance sensor with a 0.1 mm 
resolution. When appropriately positioned, with the surface of 
the piece perpendicular to the trajectory of the laser, ten laser 
pulses are fired, and ten spectra are collected for each 
measurement. 

2.3. Signal Pre-processing 

Prior to classification, the spectra are pre-processed to 
enhance the performance of the classifying algorithms. A first 
problem that necessitates pre-processing is that the recorded 
LIBS signals are a superposition of the emission signal of the 
analyte, the emission signal due to plasma continuum, and the 
detector-associated signal [7]. The analyte signal corresponds 
to the detected radiation emitted by the alloying elements of 
interest at specific atomic or ionic transitions. This part of the 
signal is characteristic for the material's composition and can 
be used to classify the aluminium pieces. The plasma 
continuum signal, also referred to as the continuum 
background, is composed of recombination emission and 
bremsstrahlung from free electrons [8]. The detector-associated 
signal is usually caused by the dark current of the detector or 
stray light. A typical solution for this problem, which is applied 
in this research, is baseline correction. This method removes 
the continuum background and detector-associated signal from 
the recorded spectra [9,10]. The applied baseline removal 
method is based on the asymmetric least squares smoothing 
approach suggested by Eilers and Boelens [11]. 

A second pre-processing step is the removal of recorded 
intensities that relate to saturated pixels. This step is conducted 
because once a pixel is saturated, it no longer captures the 
physical relation between the intensity of the recorded radiation 
and the concentration of the alloying elements. The removed 
intensity values are replaced by interpolating the adjacent 
values. From the ten spectra that are collected per 
measurement, only the one is used with the highest signal-to-
noise ratio. The mentioned pre-processing steps are applied to 
that spectrum. 

2.4. Feature Extraction 

After pre-processing, three types of features are extracted 
from the LIBS spectra to reduce the number of variables 
involved in the classification task and to decrease as such the 
computational burden. Furthermore, feature extraction 
mitigates the risk of overfitting in classification tasks [12].  

The first type is a set of 70 handcrafted features that includes 
several spectral descriptors and other metrics typically 
extracted as features in sound description research, speech 
recognition research, and other scientific fields. The spectral 
descriptors extracted as features are spectral flux, spectral 
centroid, spectral crest, spectral flatness, spectral kurtosis, 
spectral entropy, spectral bandwidth, and spectral skewness 

[13,14]. The other handcrafted features are the peak frequency, 
the power of the spectrum, the Mean Instantaneous Frequency 
(MIF) [15], the Mean Instantaneous Bandwidth (MIB) [15], 
Long-Term Average Spectrum (LTAS) [16], Envelope 
Modulation Spectrum (EMS) [16], Octave-based Modulation 
Spectral Contrast (OMSC) [17], Linear Spectral Frequency 
(LSF) [18], Time-Frequency Representation (TFR) [19], 
chroma features [20], features extracted through Linear 
Predictive Coding (LPC) [18,21,22] and features extracted 
through the Method of Selection of Amplitudes of Frequency 
Multi-expanded Filter developed by Glowacz et al. [23,24]. 
The second type of extracted features is a set of 11 "peak 
features" that hold information on the (relative) intensities of 
the most prominent peaks in the recorded spectra. Finally, the 
third type of features corresponds to the maximum intensity 
values in 136 selected regions of interest (ROI). Since the 
atomic and ionic transitions of relevant alloying elements emit 
radiation at specific wavelengths, the intensities of the recorded 
spectra at these wavelengths are expected to be the most critical 
for classification. The ROI are defined as 1 nm wavelength 
ranges around the wavelengths that, according to the NIST 
LIBS database, correspond to the atomic and ionic transitions 
of the alloying elements considered in this research [25]. 

2.5. Classification 

Various classification algorithms, such as Random Forest 
(RF) [26], Support Vector Machine (SVM) [27,28] and 
Logistic Regression (LR) [29], have been investigated in recent 
research to distinguish metals based on LIBS spectra. These 
three methods are implemented in this research to classify the 
aluminium pieces in the desired categories. Three cases are 
investigated. In the first case, the classifier algorithms are 
trained and tested with the LIBS spectra collected when 
shooting on the cleaned surface of the aluminium pieces. In the 
second case, the classifiers are trained and tested with spectra 
corresponding to the uncleaned part of the surface. In the third 
case, both the clean and unclean spectra are used for training 
and testing. These three cases are investigated and compared 
since the surface condition is suspected to have a significant 
impact on the classification performance. 

The performance of these methods is expressed with four 
metrics: accuracy, weighted average precision, weighted 
average recall, and weighted average f1 score. Accuracy is the 
percentage of correctly classified pieces. Precision (P) is the 
ratio between the number of true positives (Tp) and the sum of 
the numbers of true positives and false positives (Fp). Recall 
(R) is the ratio between the number of true positives and the 
sum of the numbers of true positives and false negatives (Fn). 
The f1 score is the harmonic mean of precision and recall (see 
Formula 1). 20% of the dataset is used as a test set to evaluate 
the performance. The results of the three cases are compared to 
assess the influence of the surface condition of the samples on 
the classification performance. 

𝑃𝑃 = 𝑇𝑇𝑝𝑝
𝑇𝑇𝑝𝑝+𝐹𝐹𝑝𝑝

              𝑅𝑅 = 𝑇𝑇𝑝𝑝
𝑇𝑇𝑝𝑝+𝐹𝐹𝑛𝑛

              𝑓𝑓1 = 2 𝑃𝑃∗𝑅𝑅
𝑃𝑃+𝑅𝑅                  (1) 

The impact of misclassifications on the composition of the 
desired output fractions is assessed as well. First, the 
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composition is calculated for each of the three desired classes 
when every piece in the dataset is assigned to its ground truth 
class, based on the weight and measured composition of each 
piece. Afterwards, the composition of the three fractions is 
computed when the aluminium pieces are classified relying on 
the best performing classification algorithm. This is 
demonstrated for the three different surface conditions. 

3. Results 

Table 2 shows the performance metrics for the three 
classifiers in the three surface conditions (metrics for best 
performing classifier per surface condition in bold). With an 
accuracy of 65.82%, the classification performance for the 
clean surface condition of the Random Forest algorithm is 
slightly better than that of the SVM classifier (65.19%) and the 
Logistic Regression classifier (61.39%). The other metrics are 
close to the accuracy score and indicate the same ranking 
between the classifiers. 

Table 2: Performance metrics for the different classifiers and surface 
conditions 

Classifier Metric Clean Unclean Both 

Logistic 
Regression 

Accuracy 61.39% 55.10% 62.54% 

Precision 0.609 0.560 0.621 

Recall 0.614 0.551 0.625 

f1 score 0.603 0.525 0.606 

Support Vector 
Machine 

Accuracy 65.19% 60.76% 62.86% 

Precision 0.656 0.608 0.624 

Recall 0.652 0.607 0.629 

f1 score 0.637 0.579 0.624 

Random Forest 

Accuracy 65.82% 59.49% 62.54% 

Precision 0.667 0.583 0.620 

Recall 0.658 0.595 0.625 

f1 score 0.645 0.585 0.622 
 
For the uncleaned surface condition, the classification 

accuracy is slightly worse: the SVM classifier (60.76%) 
outperforms the RF (59.49%) and LR (55.10%) classifiers. In 
the third case, where the spectra of both the cleaned and 
uncleaned surfaces are used for training and testing, the 
performance metrics are situated in between those of the two 
previous cases. The SVM classifier (62.86% accuracy) again 
outperforms the RF (62.54%) and LR (62.54%) classifiers. 

Table 3 shows the composition of the three desired output 
fractions when all pieces in the dataset are assigned to the three 
classes according to the ground truth labels. The concentrations 
of the elements are expressed in weight percent (wt%). As a 
result of the chosen approach to assign the ground truth labels, 
some less critical elements narrowly exceed the specified 
concentration limits for the desired output fractions (marked in 
orange). The iron content is slightly higher than desired in each 

output fraction, as well as the magnesium content in the Desox 
class. However, all other considered alloying elements, 
including the most critical elements, meet the specified 
restrictions with a significant margin. 

Table 3: Composition of desired output fractions when separated according to 
ground truth measurements and specified concentration tolerances 
(concentrations in wt%) 

Element Premium Desox Secondary 
Al 99.239 97.622 88.345 
Cu 0.005 0.170 1.978 
Zn 0.010 0.042 0.907 
Fe 0.259 0.421 0.812 
Mn 0.013 0.288 0.293 
Mg 0.259 1.096 0.150 
Si 0.187 0.236 7.178 
Ni 0.003 0.029 0.045 
Cr <0.001 0.031 0.021 
Sn <0.001 <0.001 0.013 
Ti 0.006 0.036 0.042 
Sr <0.001 <0.001 0.004 
Pb 0.002 0.009 0.180 

 
Table 4 shows the composition of the output fractions when 

the aluminium pieces in the test set are classified using the 
Random Forest algorithm, relying on the spectra collected in 
the clean surface condition. Mainly due to Secondary pieces 
that are classified as Premium pieces, the zinc concentration of 
the Premium fraction exceeds the specified limit of 0.05 wt% 
(marked in red). This is the most detrimental effect of the 
misclassifications since all other concentrations are still below 
the specified limits, except for the magnesium content in the 
Desox fraction, which is just higher than the specified limit. 
Another adverse effect of the misclassifications is that a 
significant amount of Premium and Desox pieces end up in a 
less valuable fraction. The misclassifications cause the 
aluminium concentrations in the three output fractions to lie 
significantly closer to each other than in the ground truth case 
because of the diluting effect of the very pure Premium pieces 
in the lower classes. So, while the negative effect of the 
misclassifications on the composition of the Premium and 
Desox class is moderate, the fact that many purer pieces do not 
end up in the more valuable fractions defeats in part the purpose 
and the benefit of the LIBS classification.  

Table 4: Composition of desired output fractions when classified with 
Random Forest for the clean surface condition (concentrations in wt%) 

Element Premium Desox Secondary 
Al 99.136 97.798 93.866 
Cu 0.009 0.052 0.931 
Zn 0.180 0.047 0.537 
Fe 0.240 0.320 0.544 
Mn 0.017 0.272 0.260 
Mg 0.197 1.037 0.166 
Si 0.190 0.411 3.509 
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Ni 0.003 0.004 0.081 
Cr 0.001 0.020 0.019 
Sn <0.001 <0.001 0.007 
Ti 0.004 0.003 0.012 
Sr <0.001 <0.001 0.001 
Pb 0.004 0.015 0.039 

 
Table 5 shows the composition of the output fractions when 

the aluminium pieces in the test set are classified using the 
SVM algorithm, relying on the spectra collected in the 
uncleaned surface condition. For the uncleaned surface 
condition, the composition of the Premium class is more 
severely affected by the misclassifications. Now, the 
concentration limits of both copper and manganese are 
exceeded (marked in red), as well as those of the less critical 
elements iron and magnesium (marked in orange). The 
compositions of the Desox and Secondary fractions do meet the 
specified restrictions. Due to the diluting effect of misclassified 
Premium and Desox pieces, the aluminium concentrations of 
the three fractions are much closer together than in the ground 
truth case. The aluminium concentration of the Desox fraction 
is now even slightly higher than that of the Premium class, 
mainly since the magnesium concentration in the Premium 
class is relatively high. 

Table 5: Composition of desired output fractions when classified with SVM 
for the uncleaned surface condition (concentrations in wt%) 

Element Premium Desox Secondary 
Al 97.975 98.400 94.054 
Cu 0.079 0.125 0.860 
Zn 0.023 0.054 0.564 
Fe 0.358 0.299 0.521 
Mn 0.134 0.075 0.293 
Mg 0.957 0.271 0.308 
Si 0.281 0.740 3.228 
Ni 0.004 0.007 0.078 
Cr 0.032 0.009 0.018 
Sn <0.001 0.001 0.006 
Ti 0.005 0.006 0.011 
Sr <0.001 <0.001 0.001 
Pb 0.078 0.004 0.033 

 
Table 6 shows the composition of the output fractions in the 

case where both surface conditions are combined for training 
and testing, when the pieces are classified with the SVM 
classifier. While the classification accuracy for this case is 
higher than for the uncleaned surface condition, more 
Secondary pieces end up in the Premium class, resulting in 
alloying concentrations in the Premium class that exceed the 
specified limits for all critical elements and iron. Some less 
critical elements also exceed the limits in the Desox and 
Secondary fraction. 

 

Table 6: Composition of desired output fractions when classified with SVM 
for the clean and uncleaned surface condition (concentrations in wt%) 

Element Premium Desox Secondary 
Al 97.228 96.856 90.099 
Cu 0.186 0.136 2.690 
Zn 0.106 0.293 0.830 
Fe 0.346 0.310 0.826 
Mn 0.125 0.280 0.289 
Mg 0.377 1.612 0.240 
Si 1.580 0.438 4.543 
Ni 0.009 0.005 0.040 
Cr 0.007 0.032 0.023 
Sn 0.002 0.000 0.015 
Ti 0.015 0.007 0.052 
Sr 0.002 0.001 0.001 
Pb 0.010 0.010 0.326 

4. Discussion 

While the accuracy of the different classifiers is not 
exceptionally high, the resulting compositions of the output 
fractions are still promising, especially for the clean surface 
condition. This is because most of the misclassified pieces have 
a composition that is on the edge of either the Premium and 
Desox class or the Desox class and the Secondary class. 
Therefore, misclassifying such pieces has no devastating 
impact on the composition of the fraction where these pieces 
end up. The most critical misclassifications are those that 
assign Secondary pieces to the Premium fraction, and elevate 
the concentrations of the most critical alloying elements. 

Another issue that limits the achievable performance of the 
classifiers is that the XRF measurements also are not perfectly 
reliable, especially for lighter elements such as silicon and 
magnesium. Mainly for pieces on the edge between two 
classes, the ground truth class assignment might be wrong due 
to measurement inaccuracies, causing confusion while training. 
The classifiers trained on this ground truth are therefore limited 
in their performance by that of the XRF. 

Also the presence of leftover surface contamination, even 
after cleaning, can influence the composition measurements, 
especially for iron. Ferrosilicon powder particles used to make 
the suspension in density separation processes, remain on the 
surface and increase the measured iron concentration. 

5. Conclusion and future work 

This research presented a novel method for evaluating 
spectroscopic sorting systems for metal recycling and shows 
that the use of classification algorithms on LIBS spectra is 
highly promising for post-consumer scrap. Random Forest is 
the best performing classifier for the clean surface condition, 
while the SVM classifier performs best for the other two cases. 
The spectra collected from clean surfaces yield the best results. 
Combining spectra form clean and uncleaned surfaces slightly 
improves the classification accuracy, but not the composition 
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of the output fractions. While the accuracy of the classifiers is 
rather limited, the presented results demonstrate that the 
thresholds on the desired output fractions are almost reached. 
Considering that the separation of aluminium alloys in mixed 
post-consumer scrap is notoriously difficult due to the variety 
in the composition and the surface contamination on the pieces, 
this is a valuable conclusion. In future work, a better method to 
find a ground truth must be adopted. Cross-validating the 
ground truth classes with multiple composition measurement 
techniques will be explored. The used classifying methods and 
the feature extraction method must be optimised. Additional 
physically meaningful hand-crafted features will be introduced. 
Finally, a thorough economic analysis will be performed. 
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