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In terms of random walks skills, if we asume that the system is in an initial state
si, the number of expected steps to reach state sj is described by the so-called Mean
First Passage Time (MFPT), which is denoted by mij. The matrix characterizing the
MFPT can be written in terms of the g-inverses of the combinatorial Laplacian, see [1].

Although the MFPT is an element that allows to describe random walks, it is not the
only one. It is well known that the time to reach a random state sj, starting from an
initial state si, is a constant that does not depend of the initial state. This time is
the so-called Kemeny’s constant, that it can be expressed in terms of g-inverses of the
above-mentioned Laplacian.

We will obtain expressions both for the MFPT and for the Kemeny’s constant in terms
of g-inverses of the combinatorial Laplacian. In addition, as an application, we intro-
duce the case of the star.

In this talk, we want to explain how we can use g-inverses as resolvents to calculate
some elements that allow us to characterize simple random walks: the Mean First Pas-
sage Time and the Kemeny’s constant.

We will start with some basic definitions. Let Γ a connected network, that is, from any
vertex we can reach any other one. The set of vertices will be V (there are n vertices)
and the set of edges E (there are m edges). The conductance function assigns a weight
to each edge. In fact, according to the nomenclature used in stochastic processes, it is
preferible to talk, not about vertices, but states.

Given an initial state s0, we move randomly to a neighbor state, s1, and then to s2,
and so on. That process generate a sequence of states {s1, s2, . . . , st, . . .} called simple
random walk on Γ. In each step t we define a random variable Xt that takes values
on V . That sequence of random variables defines a discret stochastic process time.
What does random mean? Let’s supose we are in a state si at a time t. Then there’s a
probability P

(
Xt+1 = sj|Xt = si

)
associated with the movement to another neighbor

state sj.

i

j

P (Xt+1 = sj|Xt = si)
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Being ki the grade of state si, the sum of conductances, then this probability will be
cij
ki

. Observe that, in general, the probability i→ j is not the same that the probability

of j → i. The probability P
(
Xt+1 = j|Xt = i

)
does not depend of the previous states,

P
(
Xt+1 = j|Xt = i,Xt−1 = it−1, . . . , X0 = i0

)
= P

(
Xt+1 = j|Xt = i

)
,

and we say that the random walk holds the Markov property. The matrix with en-
trances pij is called transition probability matrix, which is a stochastic matrix. Entry
ij-th of Pt matrix represents the probability of reaching state j after t steps if the
system starts at state i. Being u0 the initial distribution vector, uTt = uT0P

t, is the
probability distribution after t steps.

As P ≥ 0 and irreducible (connected network), the Perron-Frobenius theorem guaran-
tees the existence of a left eigenvector associated with the dominant eigenvalue λ = 1
of P,

πTP = πT

This vector πππ is unique, and any other eigenvalue of P is µ ≤ λ = 1. The components

of πππ are all positive and we can normalize the vector, so
n∑
i=1

πi = 1. Then πππ is a

probability distribution vector. In fact, πππ represents a stationary distribution: if, at
t = 0, the system is in the state j with probability πj, the probability of being in j for
t > 0 is πj as well.

Let’s consider the long-term behavior of the RW. We define Π as the matrix such that
all its rows are equal to vector πππ. Then, for regular random walks,

Π = lim
t→+∞

P t;

that is, the probability of reaching any state j is independent of the initial state and
it is equal to πj.

After that, we want to introduce to important matrices in random walks: I − P, the
probabilistic Laplacian of the network, and the combinatorial Laplacian, with which
our research group prefers to work:

L = Dk − A = Dk · (I− P).

Both probabilistic Laplacian and combinatorial are singular matrices, so they have 0
as a less eigenvalue, hence they have constants as proper functions. Moreover, the
stationary distribution is an eigenvector of the transpose matrix of the probabilistic
Laplacian:

πππT
(
I− P

)
= 000⇔

(
I− P

)T
πππ = 000

That means that de stationary distribution belongs to the ker of the matrix
(
I− P

)T
.
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Agfter the long-term behavior of the RW, we analyze the short-term one. Suppose that
we are at state i. The expected number of steps to reach state j for the first time is
called mean first passage time, denoted by mij.

If we consider i 6= j, once we have taken de first step, we mesure the number of steps
to get final state j and then multiple by the associated probability in each step. If the
first step is to j, the number of steps is 1. If to another state k, the required number
of steps is mkj plus 1, because the previous step done, i→ k. So,

mij = pij +
∑
k 6=j

pik
(
mkj + 1

)
= 1 +

∑
k 6=j

pikmkj

If cas i = j, mii is the expected number of steps to return to state i. It is called de

mean recurrence time for i and can be calculated as mii =
1

πi
.

In matrix form, we can write expression for mean first passage time as (I − P)M =
J − PD−1π . So we have to solve a matrix equation to find M. Observe that ∆ = I − P

is a singular matrix, and the system is compatible since J − PD−1π ⊥ ker
(
I − P

)T
. To

solve the system we can use any 1-inverse G̃ of the I− P matrix. Then,

M = G̃
(
J− PD−1πππ

)
+ 111vT.

Hunter (1982) gave the solution in terms of any 1-inverse

M =
[
GΠ− J

(
GΠ
)
d

+ I− G + JGd
]
D−1π .

Hunter himself showed (2008) that the previous expression can be simplified if we con-
sider 1-inverses of the form G111 = g111, being g a constant. That’s equivalent to the
condition GΠ− J

(
GΠ
)
d

= 0. So M =
(
I− G + JGd

)
D−1π .

In 1960, Kemeny and Snell have given a solution for the matrix equation in terms

of the so-called fundamental matrix, Z =
(
I − P + Π

)−1
. This matrix is a invertible

1-inverse, with Z111 = 111 –that is, of the type G111 = g111, with g = 1. Efectivament, sabem
que P111 = 111 i que Π111 = 111 · πππT111 = 111 · 1 = 111. Aleshores,(

I− P + Π
)
111 = 111 ⇒ Z−1111 = 111 ⇒ Z111 = 111

It can be observed that πππT
(
I− P + Π

)
= πππT, and so on πππT

(
I− P + Π

)−1
= πππT. Hence

I− Z = Π− PZ.
Finally, the solution for the MFPT is:

M =
(
I− Z + JZd

)
D−1π
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Meyer (1975) solved the equation for M with the inverse group of the matrix I − P,

given by
(
I − P

)#
=
(
I − P + Π

)−1 − Π = Z − Π. This matrix has 0 as a eigenvalue
associated with to 111; so, is of the form G111 = g111 as well, with g = 0. Indeed,(

I− P
)#

111 = Z111− Π111 = 111− 111 = 0111

From the previous equality πππT
(
I− P + Π

)−1
= πππT, we get πππT

(
I− P

)#
= 0.

We want to note that it is possible to express the 1-inverse for the combinatorial
Laplacian, G̃, in terms of the 1-inverse of the probabilistic Laplacian, G, as follows
G̃ = GD−1k . So, if G is any 1-inverse of L, then:

M = GDkJ− J
(
GDkJ

)
d

+ vol(Γ)
(
D−1k − G + JGd

)
Moreover, if G̃ is such that G111 = g111, then G holds Gk = g111, and it that case M =

vol(Γ)
(
D−1k − G + JGd

)
.
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