g-inverses for Random Walks

Á. Carmona, M. J. Jiménez, À. Martín
Universitat Politècnica de Catalunya, Barcelona, Spain.
E-mail: alvar.martin.llopis@upc.edu

In terms of random walks skills, if we asume that the system is in an initial state s_{i}, the number of expected steps to reach state s_{j} is described by the so-called Mean First Passage Time (MFPT), which is denoted by $m_{i j}$. The matrix characterizing the MFPT can be written in terms of the g-inverses of the combinatorial Laplacian, see [1].

Although the MFPT is an element that allows to describe random walks, it is not the only one. It is well known that the time to reach a random state s_{j}, starting from an initial state s_{i}, is a constant that does not depend of the initial state. This time is the so-called Kemeny's constant, that it can be expressed in terms of g-inverses of the above-mentioned Laplacian.

We will obtain expressions both for the MFPT and for the Kemeny's constant in terms of g-inverses of the combinatorial Laplacian. In addition, as an application, we introduce the case of the star.

In this talk, we want to explain how we can use g-inverses as resolvents to calculate some elements that allow us to characterize simple random walks: the Mean First Passage Time and the Kemeny's constant.

We will start with some basic definitions. Let Γ a connected network, that is, from any vertex we can reach any other one. The set of vertices will be V (there are n vertices) and the set of edges E (there are m edges). The conductance function assigns a weight to each edge. In fact, according to the nomenclature used in stochastic processes, it is preferible to talk, not about vertices, but states.

Given an initial state s_{0}, we move randomly to a neighbor state, s_{1}, and then to s_{2}, and so on. That process generate a sequence of states $\left\{s_{1}, s_{2}, \ldots, s_{t}, \ldots\right\}$ called simple random walk on Γ. In each step t we define a random variable X_{t} that takes values on V. That sequence of random variables defines a discret stochastic process time. What does random mean? Let's supose we are in a state s_{i} at a time t. Then there's a probability $P\left(X_{t+1}=s_{j} \mid X_{t}=s_{i}\right)$ associated with the movement to another neighbor state s_{j}.

Being k_{i} the grade of state s_{i}, the sum of conductances, then this probability will be $\frac{c_{i j}}{k_{i}}$. Observe that, in general, the probability $i \rightarrow j$ is not the same that the probability of $j \rightarrow i$. The probability $P\left(X_{t+1}=j \mid X_{t}=i\right)$ does not depend of the previous states,

$$
P\left(X_{t+1}=j \mid X_{t}=i, X_{t-1}=i_{t-1}, \ldots, X_{0}=i_{0}\right)=P\left(X_{t+1}=j \mid X_{t}=i\right),
$$

and we say that the random walk holds the Markov property. The matrix with entrances $p_{i j}$ is called transition probability matrix, which is a stochastic matrix. Entry $i j$-th of P^{t} matrix represents the probability of reaching state j after t steps if the system starts at state i. Being u_{0} the initial distribution vector, $\mathrm{u}_{t}^{\top}=\mathrm{u}_{0}^{\top} \mathrm{P}^{t}$, is the probability distribution after t steps.

As $\mathrm{P} \geq 0$ and irreducible (connected network), the Perron-Frobenius theorem guarantees the existence of a left eigenvector associated with the dominant eigenvalue $\lambda=1$ of P,

$$
\pi^{\mathrm{T}} \mathrm{P}=\pi^{\mathrm{T}}
$$

This vector $\boldsymbol{\pi}$ is unique, and any other eigenvalue of P is $\mu \leq \lambda=1$. The components of $\boldsymbol{\pi}$ are all positive and we can normalize the vector, so $\sum_{i=1}^{n} \pi_{i}=1$. Then $\boldsymbol{\pi}$ is a probability distribution vector. In fact, $\boldsymbol{\pi}$ represents a stationary distribution: if, at $t=0$, the system is in the state j with probability π_{j}, the probability of being in j for $t>0$ is π_{j} as well.

Let's consider the long-term behavior of the RW. We define Π as the matrix such that all its rows are equal to vector π. Then, for regular random walks,

$$
\Pi=\lim _{t \rightarrow+\infty} P^{t}
$$

that is, the probability of reaching any state j is independent of the initial state and it is equal to π_{j}.

After that, we want to introduce to important matrices in random walks: I-P, the probabilistic Laplacian of the network, and the combinatorial Laplacian, with which our research group prefers to work:

$$
\mathrm{L}=\mathrm{D}_{k}-\mathrm{A}=\mathrm{D}_{k} \cdot(\mathrm{I}-\mathrm{P})
$$

Both probabilistic Laplacian and combinatorial are singular matrices, so they have 0 as a less eigenvalue, hence they have constants as proper functions. Moreover, the stationary distribution is an eigenvector of the transpose matrix of the probabilistic Laplacian:

$$
\boldsymbol{\pi}^{\mathrm{T}}(\mathrm{I}-\mathrm{P})=\mathbf{0} \Leftrightarrow(\mathrm{I}-\mathrm{P})^{\mathrm{T}} \boldsymbol{\pi}=\mathbf{0}
$$

That means that de stationary distribution belongs to the ker of the matrix $(I-P)^{T}$.

Agfter the long-term behavior of the RW, we analyze the short-term one. Suppose that we are at state i. The expected number of steps to reach state j for the first time is called mean first passage time, denoted by $m_{i j}$.

If we consider $i \neq j$, once we have taken de first step, we mesure the number of steps to get final state j and then multiple by the associated probability in each step. If the first step is to j, the number of steps is 1 . If to another state k, the required number of steps is $m_{k j}$ plus 1 , because the previous step done, $i \rightarrow k$. So,

$$
m_{i j}=p_{i j}+\sum_{k \neq j} p_{i k}\left(m_{k j}+1\right)=1+\sum_{k \neq j} p_{i k} m_{k j}
$$

If cas $i=j, m_{i i}$ is the expected number of steps to return to state i. It is called de mean recurrence time for i and can be calculated as $m_{i i}=\frac{1}{\pi_{i}}$.
In matrix form, we can write expression for mean first passage time as $(\mathrm{I}-\mathrm{P}) \mathrm{M}=$ $J-P D_{\pi}^{-1}$. So we have to solve a matrix equation to find M. Observe that $\Delta=I-P$ is a singular matrix, and the system is compatible since $\mathrm{J}-\mathrm{PD}_{\pi}^{-1} \perp \operatorname{ker}(\mathrm{I}-\mathrm{P})^{\mathrm{T}}$. To solve the system we can use any 1-inverse \widetilde{G} of the $I-P$ matrix. Then,

$$
\mathrm{M}=\widetilde{\mathrm{G}}\left(\mathrm{~J}-\mathrm{PD}_{\pi}^{-1}\right)+1 \mathrm{v}^{\top}
$$

Hunter (1982) gave the solution in terms of any 1-inverse

$$
\mathrm{M}=\left[\mathrm{G} \Pi-\mathrm{J}(\mathrm{G} \Pi)_{d}+\mathrm{I}-\mathrm{G}+\mathrm{JG}_{d}\right] \mathrm{D}_{\pi}^{-1}
$$

Hunter himself showed (2008) that the previous expression can be simplified if we consider 1-inverses of the form $\mathrm{G} \mathbf{1}=g \mathbf{1}$, being g a constant. That's equivalent to the condition $\mathrm{G} \Pi-\mathrm{J}(\mathrm{G} \Pi)_{d}=0$. So $\mathrm{M}=\left(\mathrm{I}-\mathrm{G}+\mathrm{JG} \mathrm{J}_{d}\right) \mathrm{D}_{\pi}^{-1}$.

In 1960, Kemeny and Snell have given a solution for the matrix equation in terms of the so-called fundamental matrix, $\mathrm{Z}=(\mathrm{I}-\mathrm{P}+\Pi)^{-1}$. This matrix is a invertible 1-inverse, with $Z \mathbf{1}=\mathbf{1}$-that is, of the type $\mathrm{G} \mathbf{1}=g \mathbf{1}$, with $g=1$. Efectivament, sabem que $\mathrm{P} \mathbf{1}=\mathbf{1}$ i que $\Pi \mathbf{1}=\mathbf{1} \cdot \boldsymbol{\pi}^{\mathrm{T}} \mathbf{1}=\mathbf{1} \cdot 1=\mathbf{1}$. Aleshores,

$$
(1-P+\Pi) 1=1 \quad \Rightarrow \quad Z^{-1} 1=1 \quad \Rightarrow \quad Z 1=1
$$

It can be observed that $\boldsymbol{\pi}^{\mathrm{T}}(\mathrm{I}-\mathrm{P}+\Pi)=\boldsymbol{\pi}^{\mathrm{T}}$, and so on $\boldsymbol{\pi}^{\mathrm{T}}(\mathrm{I}-\mathrm{P}+\Pi)^{-1}=\boldsymbol{\pi}^{\mathrm{T}}$. Hence $\mathrm{I}-\mathrm{Z}=\Pi-\mathrm{PZ}$.
Finally, the solution for the MFPT is:

$$
\mathrm{M}=\left(\mathrm{I}-\mathrm{Z}+\mathrm{JZ} Z_{d}\right) \mathrm{D}_{\pi}^{-1}
$$

Meyer (1975) solved the equation for M with the inverse group of the matrix $I-P$, given by $(I-P)^{\#}=(I-P+\Pi)^{-1}-\Pi=Z-\Pi$. This matrix has 0 as a eigenvalue associated with to $\mathbf{1}$; so, is of the form $\mathrm{G} 1=g \mathbf{1}$ as well, with $g=0$. Indeed,

$$
(1-P)^{\#} 1=Z 1-\Pi 1=1-1=01
$$

From the previous equality $\boldsymbol{\pi}^{\mathrm{T}}(\mathrm{I}-\mathrm{P}+\Pi)^{-1}=\boldsymbol{\pi}^{\mathrm{T}}$, we get $\boldsymbol{\pi}^{\mathrm{T}}(\mathrm{I}-\mathrm{P})^{\#}=0$.
We want to note that it is possible to express the 1 -inverse for the combinatorial Laplacian, \widetilde{G}, in terms of the 1-inverse of the probabilistic Laplacian, G, as follows $\widetilde{\mathrm{G}}=\mathrm{GD}_{k}^{-1}$. So, if G is any 1-inverse of L , then:

$$
\mathrm{M}=\mathrm{GD}_{k} \mathrm{~J}-\mathrm{J}\left(\mathrm{GD}_{k} \mathrm{~J}\right)_{d}+\operatorname{vol}(\Gamma)\left(\mathrm{D}_{k}^{-1}-\mathrm{G}+\mathrm{JG}_{d}\right)
$$

Moreover, if $\widetilde{\mathrm{G}}$ is such that $\mathrm{G} \mathbf{1}=g \mathbf{1}$, then G holds $\mathrm{Gk}=g \mathbf{1}$, and it that case $\mathrm{M}=$ $\operatorname{vol}(\Gamma)\left(\mathrm{D}_{k}^{-1}-\mathrm{G}+\mathrm{JG}_{d}\right)$.

References

[1] Á. Carmona, M.J. Jiménez, À. Martín. Generalized inverses of the combinatorial Laplacian for mean first passage times and Kemeny's constant. Submitted, (2022).

