
Modular Workload Format: extending SWF for
modular systems?

Julita Corbalan1,2[0000−0002−3926−5634] and Marco
D’Amico2[0000−0002−6195−6204]

1 Universitat Politecnica de Catalunya, Barcelona, Spain
2 Barcelona Supercomputing Center (BSC), Barcelona, Spain
julita.corbalan@bsc.es, marcodamico@protonmail.com

Abstract. This paper presents the Modular Workload Format(MWF),
a proposal for extending the widely accepted Standard Workload Format
(SWF) for job scheduling evaluation. David Talby and Dror Feitelson
proposed the SWF in 1999, allowing to describe data center workload in
a synthesized way. Its simplicity, representing each job by a single line
in a text file and including details to make job scheduling evaluation
quite accurate, was part of its success. Using these years’ experience
but considering new system and workload characteristics, we propose an
extension to support multiple steps in a single job, heterogeneous jobs,
and relevant inputs not covered by the SWF as energy/power references.
The goal of this contribution is to adapt the SWF to current trends in
architectures and workloads. Moreover, we propose a simple approach
for converting any already existing SWF trace file into an MWF trace
file to be able to reuse already existing traces.

Keywords: Workload traces · Job scheduling evaluation

1 Introduction and motivation

Standard Workload Format (SWF) [9] is a widely accepted format in job schedul-
ing research as a standard way to evaluate job scheduling policies. A repository
of SWF traces provided by many HPC centers can be found at [8], and many re-
search papers are using this format. There are also several proposals of workload
models that generate job scheduling logs in SWF.

In the context of the DEEP-EST European project [1], we found some
limitations when designing the job scheduling simulation methodology. Some
workload characteristics, such as modular jobs, and some job features, such as
power/energy data, were not considered, given they were not so relevant at the
moment the SFW was proposed. A Modular System Architecture (MSA) [1]
integrates compute modules (or sub-clusters) with different performance charac-
teristics into a single heterogeneous system. Each module is a parallel, clustered

? This work is partially supported from the European Union’s Horizon 2020 under
grant agreement No. 754304 (DEEP-EST Project) and the Spanish grant PID2019-
107255GB-C21

This version of the contribution has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance 
improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-88224-2_3. Use of this Accepted Version is 
subject to the publisher's Accepted Manuscript terms of use http://www.spingernature.com/gp/open-research/policies/accepted-manuscript-terms



2 J.Corbalan et al.

system of potentially large size. A federated network connects the module-specific
interconnects. A module differs from a partition because it is a hardware orga-
nization, whereas a partition is a software concept. Of course, nothing prevents
describing a module as a partition, but we want to consider the scenario where
even in MSA there is a single submission point, there could potentially be many
sub-schedulers dealing with the same partition names referring to different con-
figurations. This option already exists in some schedulers such as SLURM with
the --clusters option, and we propose to have both options, partition, and
module (or cluster), for flexibility.

A modular job in this context is a job with multiple sub-components, each
running in different modules simultaneously. In this work, we will refer as jobs to
a request sent to the scheduler that can be a traditional HPC job with a simple
mapping, i.e., one-request-one-application, or something more complex such as
one allocation including several sub-components, with or without internal de-
pendencies, executed in the same or different modules. Similar use cases can be
found in other systems, such as systems running Slurm that supports heteroge-
neous jobs, or jobs with multiple internal executions, steps executed with srun,
or even MPI jobs executing different binaries as a single application part of the
same allocation. The concept of dependency is already present in the SWF, but
we propose to go one step forward and incorporate types of dependencies and
dynamic dependencies. Finally, we propose incorporating in the trace files a list
of runtime events associated with each component (not mandatory) to intro-
duce actions to be passed to simulators to take into account when simulating or
analyzing workload traces.

We decided to analyze the SWF in detail and extend it with a proposal as
much compatible with SWF as possible for traces reusability and with the same
philosophy, a text file with a fixed number of columns, with each row describing
a job component, the minimum unit of execution in our proposal.

In our scenario, one job can be internally composed of several components,
each consuming a piece of the allocation or the whole but using resources sequen-
tially or in a non-exclusive way. Moreover, each component characteristic could
be modeled with a high precision starting from collected related metrics such as
the Cycles per Instruction (CPI) and the bandwidth. This kind of information is
very valuable for complex scenarios where runtime decisions are also simulated
and not only the initial resource allocation. However, given this information is
not provided by users at submission time and most of the schedulers do not au-
tomatically collect them, we avoided including all these metrics in the proposal
to keep the number of columns to a reasonable value. However, it is advisable to
include additional data related to components in separate files that allow more
precise modeling. The additional data could be linked to MWF data using the
component ID as an identifier.

MWF is compatible with SWF. SWF traces can be directly re-used by simply
considering that each job in the SWF is one MWF job with a single component.
All the extra fields in the MWF can be set to null values if the information is
not available.



Modular Workload Format: extending SWF for modular systems 3

In the rest of this document, Section 2 analyses the SWF in deep and proposes
the granularity of the fields, either job or component. Based on this analysis,
Section 4 presents our proposal for MWF. To make our proposal more compre-
hensive, Section 6 presents, in a simplified way, few examples showing how the
MWF can be used to represent different scenarios and some experiments already
done using this format. Finally, Section 7 presents some conclusions and lessons
learned.

2 Standard Workload Format

The SWF was defined in order to ease the use of workload logs and models.
SWF allows simple workload analysis and or system’s job scheduling simulation
since they only need to parse a common standard format applied to multiple
workloads. The SWF files are portable and easy to parse:

– Each workload is stored in a single ASCII file.
– Each job is represented by a single line in the file.
– Lines contain a predefined number of fields, which are mostly integers, sep-

arated by whitespace(s).
– Fields that are irrelevant for a specific log or model appear with a value of

-1.
– Comments are allowed, and identified by lines that start with a ‘;’. In par-

ticular, files are expected to start with a set of header comments that define
the environment or model.

– The same format is used for logs and model outputs.
– The format is completely defined, with no scope for user extensibility.

This last point is what we would like to reconsider after many years using
the same format.

Current fields in SWF We have analysed fields to identify which ones are
job-specific (J) or potentially component-specific (C). Those fields referring com-
ponents will be replicated the MWF. Fields marked as (W) are used to specify
job dependencies, i.e., workflows. 3

1. (J) Job Number – a counter field, starting from one.
2. (J) Submit Time – in seconds. The earliest submit time in the log is zero, and

usually, it is the submit time of the first job. The lines in the log are sorted
by ascending submit times. It makes sense for jobs to also be numbered in
this order.

3. (J/C) Wait Time – in seconds. The difference between the job’s submit time
and the time at which it actually started its execution. It is only relevant to
real logs, not to models.

3 The fields description comes from the SWF web page.



4 J.Corbalan et al.

4. (J/C) Run Time – in seconds. The total execution time of the job, i.e., end
time minus start time. We decided to use ”wait time” and ”run time” instead
of the equivalent ”start time” and ”end time” because they are directly at-
tributable to the scheduler and application, and are more suitable for models
where only the run time is relevant. Note that when values are rounded to
an integral number of seconds (as often happens in logs) a run time of 0 is
possible and means the job ran for less than 0.5 seconds. On the other hand
it is permissible to use floating point values for time fields.

5. (C) Number of Allocated Processors – an integer. In most cases this is also
the number of processors the job uses; if the job does not use all of them,
we typically don’t know about it.

6. (C) Average CPU Time Used – both user and system, in seconds. This is
the average over all processors of the CPU time used, and may therefore be
smaller than the wall clock runtime. If a log contains the total CPU time
used by all the processors, it is divided by the number of allocated processors
to derive the average.

7. (C) Used Memory – in kilobytes. This is again the average per processor.
8. (C) Requested Number of Processors.
9. (C) Requested Time. This can be either runtime (measured in wallclock

seconds), or average CPU time per processor (also in seconds) – the exact
meaning is determined by a header comment. In many logs this field is used
for the user runtime estimate (or upper bound) used in backfilling. If a
log contains a request for total CPU time, it is divided by the number of
requested processors.

10. (C) Requested Memory (again kilobytes per processor).
11. (J) Status 1 if the job was completed, 0 if it failed, and 5 if cancelled. If

information about checkpointing or swapping is included, other values are
also possible.

12. (J) User ID – a natural number, between one and the number of different
users.

13. (J) Group ID – a natural number, between one and the number of differ-
ent groups. Some systems control resource usage by groups rather than by
individual users.

14. (J/C) Executable (Application) Number – a natural number, between one
and the number of different applications appearing in the workload. in some
logs, this might represent a script file used to run jobs rather than the exe-
cutable directly; this should be noted in a header comment.

15. (J/C) Queue Number – a natural number, between one and the number of
different queues in the system. The nature of the system’s queues should be
explained in a header comment. This field is where batch and interactive jobs
should be differentiated: we suggest the convention of denoting interactive
jobs by 0.

16. (J/C) Partition Number – a natural number, between one and the number
of different partitions in the systems. The nature of the system’s partitions
should be explained in a header comment. For example, it is possible to use
partition numbers to identify which machine in a cluster was used.



Modular Workload Format: extending SWF for modular systems 5

17. (W) Preceding Job Number – this is the number of a previous job in the
workload, such that the current job can only start after the termination of
this preceding job.

18. (W) Think Time from Preceding Job – this is the number of seconds that
should elapse between the termination of the preceding job and the submis-
sion of this one.

3 Heterogeneous systems requirements

Modular architectures term comes from the DEEP-EST projects and stands for
multiple clusters, or modules, with different specialized architectures working
together as a single homogeneous system. The system software hides the com-
plexity existing in this proposal. Even though our motivation comes from this
complex scenario, heterogeneous systems already exist in many data centers as
a simplified version of this use case. As an example, it is a common strategy in
the current data center to have some computational nodes with specific charac-
teristics such as extra memory of GPUs.

The SWF was designed in a context where jobs were considered as a whole
and systems with multiple clusters were not usual. In recent years, having multi-
ple clusters in a single data center became a typical scenario, but in many cases,
the system workload was a set of disjoint workloads given the architecture dif-
ferences. The only flexibility in terms of submission was the possibility to specify
multiple partitions but always referring to the same HW characteristics.

With potentially highly specialized modules, or sub-clusters, this new hard-
ware context opens to the possibility of considering new job profiles and use
cases to be evaluated:

– Jobs asking for resources in a specific module.
– Jobs asking for resources in more than one module at the same time.
– Jobs asking for resources in more than one module but not at the same time,

i.e., asking for additional resources dynamically.
– Jobs asking for not only the classical computing resources, e.g. GPUs, mem-

ory devices.
– Jobs with dependencies among them, i.e., workflows.

4 Modular Workload Format (MWF) proposal

We define a modular job as a scheduling unit belonging to a single user containing
a single or multiple binaries. At submission time, the job will include an N (
N ≥ 1 ) list of requirements for allocation and components submission. All
these allocations will be validated before any of these components start. These
allocations could refer to different modules. Some components can be specified
with different submission times representing the case where job allocation is
dynamically increased.



6 J.Corbalan et al.

The MWF includes the resource requirements and the resources allocated
as it was proposed in SWF. Requirements represent the job scheduler’s input,
while resource allocation fields will be used for its output.

Each line will describe one component from one modular job. Dependencies
can be specified between components of different modular jobs or the same job.
Each workload trace file can include a system description, e.g., the available
modules, the resources at each module, in the same way SFW did in the headers.
The Component Job Id is a unique number and can be seen as the job id in the
SWF. The N potential components being part of the same job will share the
same Modular Job Id.

Next subsections include the list of fields and a brief description of the se-
mantic and valid values following a similar approach as in the SWF.

4.1 Modular Workload Format fields

Modular fields

1. Modular Job Id – An ID common to all the components of the modular
job.

2. Total Components – Number of components in the modular job (mini-
mum one)

3. Modular Job Name – Text . Max of 16 chars. Job names is an user pro-
vided input and there can be more than one job name for the same exe-
cutable.

4. Submit Modular Job Time – in seconds. Submission time for the first
set of components

5. Wait Modular Job Time – in seconds. The difference between the job’s
submit time and the time at which it actually began to run (some of its
components). It is not needed for evaluation, only for comparison between
results.

6. Modular Requested Time – in seconds. Limit for the modular job. -1 if
this value is not provided. In that case, the partition limit will be used

7. Num Components At Submit Time – Integer. This field is the number
of components submitted together at modular submit time

8. User ID - Integer
9. Group ID - Integer

Job Component fields

10. Component Job Id: Modular Job Id+ Offset – This JOB ID is unique.
It goes from Modular Job Id to Modular Job Id+(Total Components-1).

11. Component Job Name – text . Max of 16 chars. Components names is
an user provided input and there can be more than one job name for the
same executable.

12. Component Wait Time – in seconds. The difference between the job’s
submit time and the time at which it actually began to run. It is not needed
for evaluation, only for comparison between results



Modular Workload Format: extending SWF for modular systems 7

13. Component Run Time – in seconds. Integral number of seconds.
14. Status – 0 means COMPLETED with success. Values different from 0 will

represent errors.

Job Component resource requirements description The job scheduler
receives job component requirements, applies the job scheduler and resource
selection policy, and reports a set of resources allocated. Resource allocation is
reported for comparison, but it is not part of the input. One component will run
in a single module. If one job needs more than one module, one component per
module will be specified.

15. Executable Number – a natural number, between one and the number
of different applications appearing in the workload. in some logs, this might
represent a script file used to run jobs rather than the executable directly;
this should be noted in a header comment

16. Requested Partition Name – Text with the partition name; NA, if no
specific partition is requested

17. Requested Nodes – an integer. Number of nodes requested
18. Requested Processes Per Node – an integer
19. Requested Cores Per Process – an integer
20. Requested Cores Per Node – an integer
21. Requested GPUS Per Node –an integer
22. Requested Memory Per Node – In KB
23. Requested Freq – Requested frequency in Gigahertz, Format is min[-max]
24. Reference Power – Input average power in Watts. Input by user or a power

model.
25. Extra requirements – A set of keywords, potentially with & or | spe-

cial characters. These constraints must be specified in the different modules
to simplify resource selection. For instance, based on sbatch manual [12]
intel&gpu, intel|amd. This field can be used as a wildcard field to cover
those new cases that could appear in the future.

26. Licenses – a comma separated list of requested licenses. name[:how many,
name2:] . Default 1

Component resource allocation description One component will run in
a single Module. If one job needs more than one module, one component per
module will be specified.

27. Component Module Id – 0 - Number of Modules (One component will
run in a single module). Module ID where this component is executed

28. Partition Name – Text with the partition name selected
29. Nodes – Number of allocated nodes
30. Processes Per Node – an integer
31. Cores Per Node – an integer
32. Memory Per Node – In KB (0 if not requested)



8 J.Corbalan et al.

33. GPUS Per Node – an integer
34. Average CPU Time – an integer
35. Freq – frequency in Gigahertz
36. Average Power – measured average power in Watts
37. Other resources

Dependencies

38. After Component Job Id – This component must start after job ID. -1
if there is no dependency

39. Dependency Type – -1=NO DEP/0=DYNAMIC/1=AFTER/
2=AFTERANY/3=AFTEROK/4=AFTERNOTOK//5=SINGLE.
This list of types of dependencies is inspired by Slurm dependencies. DY-
NAMIC is an additional type defined here.
– -1 means there is no dependency.
– DYNAMIC means the component must be started N seconds after

AFTER COMPONENT JOB ID. The number of seconds is defined in
the next field, and in that case it is relative to the dependent job start
time.

– AFTEROK/AFTERNOTOK – This job can begin execution after the
specified component id have successfully/not successfully executed.

– SINGLE is which job can begin execution after any previously launched
component id by the same user and sharing the same component id name
have terminated.

40. Component Think Time – in seconds. When DYNAMIC is selected, it
corresponds to the requested delay from the start of the first component to
the start of this component. Otherwise, it is related to the job finalization
overhead, like the SWF Think Time from Preceding Job field.

Component-level events

41. Sched event list – in seconds. It models events called by the job that im-
pact the job scheduling. It is a list of comma-separated key:value elements,
with the key representing the event type, an ID or keyword, and value the
number of seconds passed from the start of the job until the event. Keys
depends on the specific simulator and it’s a way to specify runtime actions.
-1 means no events. E.g.: ”ChangeDepToAfter:650”.

4.2 Headers

The SWF includes a header section with comments describing workload and
system characteristics. These headers describe the architecture where the trace
was collected and are interpreted as comments when reading the trace file. These
headers are not mandatory and are included to characterize the system at
which the trace file was recorded.



Modular Workload Format: extending SWF for modular systems 9

We include here only new proposals and not all the headers already proposed
in the SWF. Since this section is optional, it is not needed to be as exhaustive
as with SWF fields. Two new headers are proposed to support having N mod-
ules. For each module, a module number will be provided together with headers
referring to cluster characteristics.

– (new)NumberModules: Number of modules in the system, for each Mod-
ule

– (new)ModuleNumber: from 0 to max modules

Headers will include then a common section Version..EndTime, NumberMod-
ules, [ModuleNumber, Computer...Partition] repeated N times.

5 From SWF to MWF

Adapting SWF trace files to the new proposal is as easy as associating a job in
the SWF with a job with one component in the MWF. Given we have defined
all the new fields as optional, except IDs, they can be easily defined with NULL
values, while the other fields are mapped with the following rules:

– Job Number is mapped to Modular Job ID.
– Submit Time, Wait Time, Run Time, Requested time are mapped to their

Modular respective.
– Number of allocated Processors is mapped to Nodes and Cores Per Node by

dividing its value by the node’s number of cores.
– Used Memory and Requested Memory are mapped to Requested Memory Per

Node and Memory Per Node by dividing the total amount by the number
allocated of nodes.

– Status, User ID, Group ID, Average CPU Time Used, and Executable Num-
ber exist in both formats, Partition Number is mapped to Partition Name.

– Preeceding Job Number is mapped to Dependency Type of type 3, Think
Time from Preceding Job to Component Think Time.

– Queue Number can be mapped on Extra requirements, or integrated in the
partition mechanism as many center nowadays do.

An parser example is available in the BSC Slurm Simulator Github reposi-
tory [16].

6 MWF experiences

In this section, we present a list of use cases that can be represented using the
MWF. We have included a subset of the fields to make it readable. The use
cases focus on jobs with one or multiple components and some example with
dependencies.

The main fields are presented in Table 1, showing the following use cases:



10 J.Corbalan et al.

1. Jobs with a single step: a classical job submission is shown in job modular
id 1.

2. Jobs with multiple steps: job 2, made up of two components, with id 2 and
3, represents a job with two sub-components. Component 3 starts after com-
ponent 2 as shown in Figure 1, because of the AfterCompJobID parameter
set to 2. Using Slurm as an example, it represents two steps of a jobs. If
component 3 does not set AfterCompJobID it means the components run in
parallel, as represented in Figure 2.

Fig. 1. Job with multiple steps.

Fig. 2. Job with multiple parallel steps.

3. Jobs with multiple heterogeneous steps: similar to the example before, the
steps request a different type of resources, for instance, different modules or
partitions. In the case of job 12, also shown in Figure 3, the first job asks
for part1 and the second and third job ask for part2.

4. Jobs with dependencies (workflows): job 4, made up of components 4 and 5,
is a workflow in which component 5 only runs after component 4 starts. Job
6, made up of three components, models a dynamic dependency in which the
third component starts 300 seconds after the start of the first component,
as in Figure 4. Finally, jobs 9, 10, and 11 in Figure 5 represent another
workflow, in which each job starts after the previous one terminates. Note
that in this case jobs are not scheduled as a single entity, like the case of
jobs with multiple steps, so, depending on the scheduling, there can be large
delays between the end of a component end the start of the next.



Modular Workload Format: extending SWF for modular systems 11

Fig. 3. Job with multiple heterogeneous steps.

Fig. 4. Workflow with a dynamic dependency.

Fig. 5. Workflow using Sched event time to change dependency.



12 J.Corbalan et al.

5. Jobs with events to be processed by the scheduler: in the workflow in Figure 5
made up of jobs 9, 10, and 11, job 10 uses Sched event time to run a change
of its dependency, from AFTEROK to AFTER at time 600.

6. Job with extra resource requirements: jobs 11 and 12 request non CPU
resources by specifying them in the Extra Requirements field in the format
”type:value” or only ”type” if the values is 1. Multiple requirements can
be connected with logical operations or regular expressions. In the example,
jobs are asking for one Field Programmable Gate Array (FPGA).

For a better understanding of the example, we have used the text correspond-
ing with the type of dependency rather than the number in column DepType
and we have shortened the fields names.

Mod.
JobID

Num
Comp.

Mod.
JobName

Comp.
JobID

Exta.
Requir.

Partition
AfterComp

JobID
Dep
Type

SchedEventList
Time

1 1 job1 1 – Default -1 -1 -1
2 2 job2 2 – Default -1 -1 -1
2 2 job2 3 – Default 2 -1 -1
4 2 job3 4 – Default -1 -1 -1
4 2 job3 5 – Default 4 AFTER -1
6 3 job4 6 – Default -1 -1 -1
6 3 job4 7 – Default -1 -1 -1
6 3 job4 8 – Default 6 DYNAMIC -1
9 1 job5 9 – Default -1 -1 -1
10 1 job6 10 – Default 9 AFTEROK changeDep:600
11 1 job7 11 FPGA Default 10 AFTEROK -1
12 2 job8 12 FPGA part1 -1 -1 -1
12 2 job8 13 FPGA part2 -1 -1 -1
12 2 job8 14 FPGA part2 -1 -1 -1

Table 1. MWF example workload presenting main fields for different categories of
jobs.

7 Conclusions

This paper is a proposal for considering the extension of SWF to be adapted to
new systems and workloads. We call this proposal the Modular Workload Format
(MWF) because it has been developed in the DEEP-EST project context, where
the scheduler manages multiple modules, i.e., sub-clusters, as a single cluster.
This kind of architecture is becoming popular since it allows users to ask for
specialized resources. However, given their characteristics, it is impossible to
express the semantics of our workloads with the already existing format.

To make it possible to use the existing traces and models, our proposal is a
compatible format where existing traces could be migrated to the new format



Modular Workload Format: extending SWF for modular systems 13

with a straightforward approach. We propose maintaining the format as simple
as possible, following the main criteria used when defining the SWF.

The main difference compared with the SWF is the possibility to define jobs
with multiple components, each one with different requirements and potentially
start times. We have also included additional fields to perform energy evalua-
tions, and finally, some extra fields for demanding heterogeneous resources and
dynamic workflow management.

This format has been used to evaluate job scheduling policies developed in
the context of the DEEP-EST project. Workloads include job submission to
multiple modules, new types of resource requirements specifics for some modules
and components, and dynamic workflows. The current proposal is the result of
the four years of experience after all these experiments.



14 J.Corbalan et al.

References

1. DEEP-EST project http://www.deep-projects.eu/
2. DEEP-ER Deliverables, http://www.deep-projects.eu/project/deliverables.html
3. JUBE Online Documentation,

https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
4. MPI LinkTest, http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/

LinkTest/ node.html
5. SIONlib, http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/

SIONlib/ node.html
6. IOR, https://github.com/hpc/ior
7. HDF5 Group, https://support.hdfgroup.org/HDF5/
8. The Standard Workload Format,

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
9. Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.

Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby, Benchmarks
and Standards for the Evaluation of Parallel Job Schedulers. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-
Verlag, 1999, Lect. Notes Comput. Sci. vol. 1659, pp. 66-89.

10. Morris A. Jette, Andy B. Yoo and Mark Grondona: SLURM: Simple Linux
Utility for Resource Management, in Proceedings of the 9th International
Workshop Job Scheduling Strategies for Parallel Processing (JSSPP), Springer,
Lecture Notes in Computer Science (LNCS), volume 2862, pages 44–60,
http://dx.doi.org/10.1007/10968987 3

11. SchedMD: Slurm Workload Manager [Online], https://slurm.schedmd.com/
12. sbatch: Submit a batch script to Slurm, https://slurm.schedmd.com/sbatch.html
13. Heterogeneous Resources and MPMD,

https://slurm.schedmd.com/SLUG15/Heterogeneous Resources and MPMD.pdf
14. SLURM: Heterogeneous job Support,

https://slurm.schedmd.com/SLUG17/HeterogeneousJobs.pdf
15. DEEP-EST Deliverable 1.1 Application co-design input https://www.deep-

projects.eu/images/materials/D11.pdf
16. BSC Slurm Simulator code, https://github.com/BSC-RM/slurm simulator tools


