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Abstract

Almost every single flow of fluid in the known Universe is turbulent. Hence,
it is essential in order to keep moving forward in research and industrial de-
velopment to obtain accurate ways of modeling turbulence in fluids without
depending on DNS, which already nowadays presents limits in terms of com-
putational cost when dealing with high-Re flows in broad spatial domains.
Obtaining new insight on turbulent flows might help enhancing the mathem-
atical or computational models for turbulence.

Therefore, the study hereby presents the analysis and results obtained
from the numerical simulation of an abruptly stopped Taylor-Couette system,
which guarantees both inhomogeneousity and anisotropy of the wall–bounded
flow. The simulations are performed using the Fortran code nsCouette mod-
ified so that the outer cylinder is halted according to a tanh profile. The
experimental results are reproduced with great accuracy and new knowledge
is brought into light on the generation and free decay of turbulence.

While the inner cylinder remains at rest, rapidly halting the outer one
causes the generation of a centrifugal instability zone in the laminar flow
near the outer cylinder. Inside the unstable region, axi-symmetrical vortical
structures are formed and rapidly grow until filling the whole gap between
cylinders. At such point, the vortices are destabilized by secondary instabil-
ities originated by the constant reorganisation of the structures in the gap.
The flow transitions then towards turbulence. The turbulent flow enters then
a free decay stage since both cylinders are static. Shortly after, the system
progressively regains large scale structures while transitioning to a purely
viscous decay, with a steeper decay exponent. Hence, this process can be
divided into three different stages: generation of turbulent; turbulent free
decay; viscous free decay.

The turbulent kinetic energy and the dissipation rate of turbulent kin-
etic energy are characterised during the free decay of turbulence, for several
outer cylinder initial Reynolds number and at different radial locations in
the gap. Both magnitudes are fitted according to a power law function and
the computed decay exponents are presented for the different cases.

Key words: Taylor–Couette, Reynolds number, turbulence, centrifugal
instability, decay.
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1. Introduction
1.1 Motivation and background

"There is a physical problem that is common to many fields, that
is very old, and that has not been solved. [...] Nobody in physics
has really been able to analyze it mathematically satisfactorily in
spite of its importance to the sister sciences. It is the analysis of
circulating or turbulent fluids.”
— Richard P. Feynman, The Feynman Lectures on Physics Vol
1

It is often said that Turbulence is the last unsolved problem in Classical
Physics. In fact, nowadays there still exist no theory of turbulence being
able to predict the exact statistical behaviour of turbulent flows due to the
Closure Problem, and mathematical models trying to fill that void have still
a long way to go. However, we believe that in order to understand the mo-
tivation and the relevance behind the work we will present, we need to take
several steps backwards and start from the beginning.

It is a rather common mistake in our society to associate fluid with liquid.
In fact, Fluids can be defined as any substance or entity that can be deformed
continuously under an applied external force. This of course encloses inside
such term any gaseous as much as any liquid entity, for instance the water
in the ocean, the air in the atmosphere, the blood in our veins or even the
magma inside the earth. Hence, fluids are to be found everywhere in the
known Universe, being intrinsic to life itself.

Now, when external forces are applied, fluids will deform and move: that
is what we would call flow of the fluid. The study of fluid’s flows is at the
core of Fluid Mechanics, nonetheless it transcends to almost every branch
of Physics. However, after decades of study and experimentation very little
is known about the subject and no theory can hope to describe all flows of
fluid, at least turbulent ones. A fluid flow can be categorised as laminar or
turbulent.

Laminar fluid flows, or streamline move in parallel "layers" and have min-
imal lateral mixing. In a laminar flow the trajectories do not ever cross. It
is an organized movement across space with no interaction between the fluid
particles. On the other hand, turbulent flows are described by chaotic move-
ment of the fluid particles. Their trajectories cross, which means there is
mixing between layers and interaction between fluid particles. Their velocity
in not uniform and depends on time and position, and the presence of struc-
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tures we call eddies of different sizes is a property of turbulent flows. An
eddy can be defined as a blob of vorticity (local spinnig motion) in the fluid.
In turbulent flows, this vorticity is carried and translated due to diffusion
and advection mechanisms.

As one might guess, studying turbulent flows is way more difficult than
laminar ones, and at the same time this is a hardship from which we cannot
escape due to the fact that almost any known flow of interest in our Universe
is turbulent. The air flowing in and out of our lungs is turbulent, as is the
natural convection in the room in which you sit. Turbulence controls the drag
on cars, aeroplanes, and bridges, it dictates the weather through its influence
on large-scale atmospheric and oceanic flows, the terrestrial magnetic field is
maintained due to the turbulence in the liquid core of the Earth... Whereas
we wish to enhance the industrial applications such as vehicles, aerospace,
energy (eolian, nuclear, hydraulic...) or transport (with pipes for instance) or
we want to research the physics behind the life of stars or our own, Turbulence
will always be waiting for us.

Therefore, the importance of unveiling the mysteries of turbulence is cru-
cial. For fluid flows, be they laminar or turbulent, the governing laws are
embodied in the Navier-Stokes equations, which have been known since 1850.
The Navier-Stokes equations are a set of differential equations which return
the velocity field of the fluid particles in the geometry considered when solved.
Considering the diversity and complexity of fluid flows, it is quite remark-
able that such simple equations describing the behaviour of such flows exist.
Moreover, these equations are deterministic, which means that they can be
integrated in time in order to simulate any possible problem set.

Then, if the problem can be solved by integrating the Navier-Stokes equa-
tions using numerical methods, why is it that turbulence is still said to be
an unsolved problem? Well, the answer must be carefully explained. On one
hand, it is true that Navier-Stokes equations describe accurately the beha-
viour of any fluid flow and therefore direct simulations (DNS) can be used in
order to study turbulent flows with great precision. However, on the other
hand the DNS that can be run nowadays of real life problems with the com-
putational power we hold are very limited. For instance, we cannot hope to
simulate using DNS the air drag around a car for say 10 seconds. It would
take months of computation. It seems ironic but the issue resides in the per-
fect accuracy of the Navier-Stokes equations. As far as turbulent flows are
concerned, their power is also their weakness: they describe every detail of
the turbulent velocity field from the largest to the smallest length and time
scales.

In fact, the chaotic movement in a turbulent flow causes the fluid particles
to interact with each other, colliding and rubbing one another, thus exchan-
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ging momentum. This local description can be averaged at a bigger scale,
seen as shear stress in the fluid, a dragging force between different fluid
particles moving at different speed and direction. This viscous shear stress
between fluid particles is responsible for the energy dissipation inside the
fluid, however this is not true always. What we mean is that the dissipa-
tion of kinetic energy into heat by viscous shear stress is only possible if the
viscous forces are comparable to the inertial forces locally. Otherwise, tur-
bulence acts just as a mechanism to redistribute linear momentum. Hence,
we encounter a necessary condition for turbulence to dissipate energy: both
inertial forces and viscous forces must be comparable.

In terms of the addimentional parameter known as Reynolds number
Re, this condition can be translated as Re ∼ 1. The Reynolds number
represents the ratio between the inertial forces and the viscous ones, defined
as Re = uL/ν where u is the flow velocity, L is a characteristic length of
the system and ν is the viscosity. Then, generally, high–Re flows tend to
be turbulent ones because the inertial forces are orders of magnitude larger
than the viscous ones.

Therefore, the question is now to know when this condition is met. Well,
physicists realised from the beginning that turbulent flows, at any instant,
presented a broad spectrum of eddy sizes. It turns out that, after thorough
studies, the condition is satisfied when considering locally the smallest eddies
of the spectrum, thus meaning that the dissipation of kinetic energy within
a turbulent flow is located at such (small) scales. These observations led to
the concept of Energy Cascade for highly turbulent flows.

The idea is the following. The largest eddies, which are created by the
instabilities in the mean flow, are themselves subject to inertial instabilities
and rapidly "break-up", transferring their kinetic energy progressively via
stretching of the turbulent eddies, into smaller vortices. Of course, the smal-
ler eddies are themselves unstable and they, in turn, pass their energy onto
even smaller eddies, and this hierarchy is carried on. Thereby, at each in-
stant, there is a cascade of energy from the large turbulent structures to the
small ones. The process comes then to a halt at certain small scales, when
the viscous forces are strong enough (comparable to the inertial forces) to dis-
sipate the kinetic energy into heat through viscous shear stress. From here,
the cascade starts once again from the beginning and will carry on as long as
flow presents a source of energy (pressure gradient, mechanical work...) for
the mean flow and perturbations to generate turbulent instabilities.

Furthermore, as one walks down the cascade, the transfer of energy
from larger eddys to smaller ones becomes faster. This means that higher-
turbulent viscous processes will be characterised by lower length and time
scales. In fact, this knowledge is still nowadays the burial stone for DNS
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methods in Fluid Mechanics and answers our previous intrigue on the im-
portance of scales. One might then say that the problem could be solved
using a less precise grid and then expecting approximated solutions, but in
fact if the smallest scales are not computed in a turbulent flow, the solution
is just wrong. The dissipation of energy and the cascade is cut-off, meaning
that the whole cycle is incomplete. Risking failure of expensive projects due
to wrong simulation results is not a option.

Therefore, we find ourselves in front of a paradox: although we possess
the deterministic Navier-Stokes equations which predict the exact behaviour
of turbulent flows, we cannot use DNS to integrate the equations because
we lack computational power to simulate all the necessary scales from high-
turbulence flows, which are precisely the kind of flows one finds in the Uni-
verse and industrial applications.

Hence, as they say, when a door closes another one opens. It is well known
that Navier-Stokes equations are highly non-linear and therefore describe
phenomena that rapidly becomes chaotic. Nonetheless, physicists noticed
that, similarly to the study of gas molecules, while it is impossible to predict
the individual features of every single fluid element, the global outcome of
the whole system may be predicted statistically. That is, just as in the
kinetic theory of gasses, one might be able to average the apparently random
motion of individual fluid particles and produce a non-random, macroscopic,
statistical model.

However, once again physicists stumbled upon a new issue: the Clos-
ure Problem of Turbulence. In fact, when manipulating the time-averaged
Navier-Stokes equations in the search of dynamical equations for the statist-
ical quantities of the flow, new crossed quadratic terms appear, descendants
of the non-linear term in the original equations. This couples the mean flow
to the turbulent one, and therefore one needs to yield some knowledge on the
turbulence, which is chaotic and random, in order to predict the behaviour
of the mean flow. There is no way obtaining closed dynamical equations
for the crossed-terms and therefore entering a statistical description of tur-
bulence demands the ultimate price: there are always more unknowns than
equations.

Turning back to a deterministic approach is not possible though, so the
only way forward is to deal somehow with the closure problem. To close the
system some additional information must be introduced, necessarily ad hoc
in nature.

For almost a century, engineers have plugged this gap using the eddy-
viscosity hypothesis and, indeed, this still forms the backbone for many en-
gineering models of turbulence. The hypothesis is a very simple one: due
to the turbulence in the flow and the generation of eddies in a vast spec-
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trum of sizes, the viscosity of the fluid increases. Today, the most com-
mon model used in computation fluid dynamics, industrially, in aerospace,
vehicles, chemistry... is the so called k − ε turbulence model. That is, the
Reynolds-Averaged Navier-Stokes (RANS) equations, which are the dynam-
ical equations for statistical quantities in the flow, combined with the equa-
tions from the k − ε turbulence model.

The model assumes that the eddy viscosity νt can be expressed as νt =
Cν · k2/ε where k is the turbulent kinetic energy, ε is the rate of dissipation
of turbulent kinetic energy and Cν is a constant to be determined. Fur-
thermore, two additional transport equations (which are partial differential
equations) describing the dynamics of k and ε give a general description
of the turbulence. In fact, the standard k − ε turbulence model introduces
several constants yielded in the transport equation for the decay rate ε. How-
ever, such constants cannot be mathematically obtained, but instead must
be fitted from experimental or numerical data. This is precisely the reason
why researchers and engineers are interested in free decay of turbulent flows.
Learning and analysing why, when and how turbulence decays freely yields
the key to better fitting and improve models, which means better, faster,
and more accurate results using numerical simulations. This in turn means
more efficient and improved industrial applications that will, we hope, result
in substantial benefits for our society.

1.2 State of the art

A first approach to study the free decay of turbulence in fluid flows was
undertaken in the frame of homogeneous isotropic turbulence (HIT). Non-
etheless, real turbulence is neither homogeneous nor isotropic, but instead is
highly chaotic, shows no isotropy and often is wall-bounded, with a consider-
able fraction of the dissipation in the fluid taking place in the corresponding
boundary layers. Several studies have been made during the last decades,
either experimental or numerical, in different wall-bounded geometries such
as pipes flows (Peixinho & Mullin 2006 [1]), two plates distributions (Touil
et al. 2002 [2]) or Taylor-Couette (TC) (Verschoof et al. 2016 [3]; Ostilla-
Mónico et al. 2017 [4]) systems which consists of a fluid confined between two
concentric cylinders. Pipes present a lot of difficulties when studied experi-
mentally due to the translation of the decaying turbulent flow being flushed
away downstream. However, this problem is non existing when working with
a TC system, which guarantees at the same time the turbulent flow to be
neither homogeneous nor isotropic. Moreover, both experimentally and nu-
merically, the TC system can be studied without using a very big apparatus,
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its modest size offers a more practical way to investigate turbulence decay in
wall-bounded structures.

All in all, we can argue that the Taylor–Couette system is a very good
way to research turbulence decay. On one hand, Verschoof et al. 2016 [3]
described the results obtained when studying in a TC system the decay of
turbulent flow generated when rotating the inner cylinder (the outer cylinder
was at rest), and compares it with the results predicted by the HIT model. In
the experiment, using non-intrusive optical methods the researchers are able
to measure the velocity of the fluid particles in the flow, and from that com-
pute both turbulent kinetic energy k and energy dissipation rate ε. However,
this set-up presented some practical problems when stopping the cylinder,
which took 12 seconds to halt completely. During this time, measurements
couldn’t be realised and therefore the first stages of turbulence decay, which
are the most important and significant ones, couldn’t be observed. This ex-
perimental study was followed by a numerical one by Ostilla-Mónico et al.
2017 [4].

By rotating the inner cylinder in a TC system (while keeping the outer
cylinder at rest), if Re is high enough the flow becomes rapidly turbulent.
Then, when the inner cylinder is stopped abruptly, the input supply of energy
to the system is cut-off allowing to study how the turbulent flow decays
with time. Nonetheless, in real life the term "abruptly" does not mean
"instantaneously", as this would be physically impossible. This is a problem
because the measurements performed while the cylinder is stopping are in
fact not for "free decay", as the system is still receiving an energy input from
the rotating cylinder. Hence only measurements realised when the cylinder
is completely at rest are valid to study free-decay turbulence, which is the
main goal of the experiment. Furthermore, as one increases Re, which in
the TC system means increasing the speed at which the cylinder rotates, the
time necessary to stop the cylinder increases. That is, the results obtained for
more realistic turbulent flows, which are high-Re, are less exploitable because
the earliest stages of the decay are completely altered by the energy input.
Hence, clearly this experiment is not optimal to study free decay turbulence.

A new approach is undertaken by H. Singh and A. Prigent (2021) [5],
which presents a slightly different methodology respect to the one discussed
earlier: in this case, it is the outer cylinder in the TC that is rotated and
abruptly stopped, while the inner cylinder remains at rest. In the TC system,
turbulence cannot be generated if only the external cylinder is rotating: the
flow remains laminar despite the value of Re. However, by abruptly stopping
the external cylinder one changes radically the flow’s boundary conditions,
which causes a large instability that, if Re is high enough, rapidly turns into
turbulence. This turbulence, as both cylinders are at rest, the flow can decay
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freely, without any external input of energy. Hence, this new experiment
is optimal for our purposes, and even shows us more than we expected:
researchers are able not only to study free decay of turbulent flows, but also
to observe its generation.

This whole process has been described in the DNS by Kaiser et al. (2020)
[6], but in this case for a simple cylinder containing fluid which is rotated
and then abruptly stopped. This can be considered a particular case of the
TC system where the radius ratio is η = ri/ro = 0 (where ri and ro are
the radius for the inner and outer cylinders respectively). H. Singh and A.
Prigent (2021) [5] often compare their experimental results to the ones obtain
by Kaiser et al. (2020) [6].

Nonetheless, our attention is driven towards the experimental results
presented in [5]. The first results described by these authors are purely
descriptive, showing how shortly after the external cylinder is stopped, small
vortical structures start developing near the outer wall and grow progress-
ively towards the inner cylinder, ultimately filling all the gap of the system.
This process is represented using several visualisations of the cross-section
gap between the cylinders at different instants of time in the form of binarized
instantaneous images, as one may see in figure 1.1.

This is indeed the very first figure presented in [5]. Further in the pa-
per, the description and analysis of the whole phenomena, from the abruptly
stoppage until the recovery of laminar regime, is supported by the repres-
entation of several space-time diagrams at mid-gap for different values of
Reo, the outer cylinder’s initial Reynolds number, defined as Reo = uiro/ν
(where the ui is the initial rotation velocity of the outer cylinder). In fact,
3 different phases can be identified during the process: after the cylinder is
stopped, vortical structure appear and grow until filling the whole gap and
then, due to secondary instabilities, these structures are destabilised and lead
to a turbulent regime (phase I); shortly after the generation and growth of
turbulence, the disturbed flow starts decaying freely, the whole gap being
filled with turbulence with a constant reorganisation of the structures and
the lengths scales (phase II); finally, the biggest structures formed by the
reorganisation process disappear progressively following a purely viscous de-
cay (phase III). Furthermore, the higher the initial Reo value is, the faster
the vortices appear throughout the axial length and the longer the turbu-
lent phase last. In viscous time units, the time required by the vortices to
fill up the gap width decreases with each increment in Reo, and the growth
can be well approximated by a power law fit ∼ tξ with exponent ξ = 0.5
when plotted against the time. It was speculated that he size of the vortical
structures is also associated to the unstable zone originated by a centrifugal
instability in the system, due to the abrupt stoppage of the outer cylinder.
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Figure 1.1: Generation and growth of turbulent eddies in an abruptly stopped
experimental Taylor–Couette flow. Several binarized instantaneous images
are exhibited presenting the growth of vortical structures at different times
steps for Reo = 1700 over the whole axial height (z) of the TC system.
The x and y labels are the same for all panels as in (e): (a) t = 0tν/d2

; (b) t = 0.005tν/d2 ; (c) t = 0.01tν/d2 ; (d) t = 0.017tν/d2 ; and (e)
t = 0.017tν/d2 with zoom. Figure taken from [5].
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The unstable region appears near the outer cylinder and then grow towards
the inner one.

Moving forward in [5], it is also shown that the instant at which decay
starts is the point of stoppage as well, basing the explanation on the decaying
behaviour of the azimuthal velocity radial profile along the gap. This profile
is also used to study the unstable zone where the vortices appear, between
its maximum value uθ and the outer cylinder’s wall.

Afterwards, the discussion turns directly towards the decay of kinetic
energy and energy dissipation rates. In general, the behaviour of the three
characteristic measurements of kinetic energy, kmean, kturb and kwind, is the
same independently of the initial Reo. It can also be seen that while the mean
kinetic energy is constantly decaying, both turbulent and wind components
present a growth followed by decay stages. This supports further the idea
of a triphasic process explained earlier. The same behaviour is observed for
the turbulent dissipation rate εturb and for the production of kinetic energy
P . However, no fitting could be performed on εturb during the turbulent free
decay phase due to the presence of oscillations in the profile. An analysis
on the profiles for the Taylor microscale λ and for the Kolmogorov scale ηK
show that λ describes better the energy decay and should be considered the
length scale for phases I and II.

Finally, a self-similarity study on the radial profile for the azimuthal ve-
locity at Reo = 17300 for the decaying phases is undertaken, normalizing the
profile with its spatial average based on [3]. Self-similar profiles are observed
during the turbulent decay phase.

1.3 Research questions

Hence, those were the results obtained by H.Singh and A.Prigent (2021) in
[5] during the experiments they performed in a TC system. Nonetheless, it is
pointed out at the end of the paper: "An experimental analysis would be most
welcome but a numerical approach can definitely present some new ideas."
This is precisely the point where we resume the study in this framework.

The goal of this document is to carry out a study of the same system
and the same scenario, but numerically. We wish to see if the same results
obtained experimentally can be generated using numerical simulations, and
if so, if the outcome can offer new insight into the nature of turbulence
generation and, most importantly, free decay in wall-bounded flows.

Numerical methods offer a vast collection of advantages respect to exper-
imental procedures. All magnitudes that would experimentally depend on
the precision of the instrument of measure are now computed with greater
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accuracy, at every point in the numerical grid. Furthermore, obtaining data
near the walls, both of the inner and outer cylinder, is no longer a problem:
data is accessible at every point of the grid. The results presented in [5] did
not take into account the azimuthal dependence of the flow, as this could not
be determined with experimental measurements. The data was smoothed by
averaging over the axial direction and in time. However, temporal averaging
in a transient problem is not a good praxis. In numerical simulations the
data can be averaged spatially in both azimuthal and axial directions. This
allows us to obtain smooth data at each time instant, avoiding the necessity
of temporal averaging.

Moreover, numerical methods may be the key to studying the turbulence
in this problem at higher Reynolds values. For instance, the highest Reo
presented in [5] is Reo = 17300, thus of the order of 104. Numerically, with
enough computational power, studies of the order of Re ∼ 105 could be
performed.

Hence, the guideline to be followed is the study on turbulence performed
by H. Singh and A. Prigent (2021) in [5]. In what follows, we define the key
questions addressed in the present study:

• Can we reproduced the experimentally observed flow phenomena in a
numerical simulations of the Taylor–Couette flow with a stopping outer
cylinder?

• Is the generation and growth of the observed vortical structures related
to the classical centrifugal instability?

• Can we characterise the free decay of inhomogeneous and anisotropic
turbulence in a wall-bounded flow with respect to the Reynolds num-
ber (driving speed) and to the inhomogeneous radial direction of the
system?
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2. Methodology
2.1 Taylor-Couette system & Navier-Stokes equa-

tions

Figure 2.1 a) presents the well–known Taylor–Couette system used by H.
Singh and A. Prigent (2021) to perform their experiments in [5] and by us
in our numerical simulations. The system is formed out of two coaxial cylin-
ders, an inner cylinder and an outer cylinder of radius ri and ro respectively.
Both cylinders rotate independently from one another, in any sens and at
whatever velocity. The gap between cylinder d = ro − ri is usually taken
as characteristic length unit to turn the magnitudes dimensionless. Figure
b) on the other hand represents a the cylindrical coordinates system which
will be used for this problem, being r̂ the radial direction, θ̂ the azimuthal
direction and ẑ the axial direction.

The governing equations of the problem are the incompressible Navier-
Stokes equations, that is equations 2.1 and 2.2, where u = u(r, θ, z, t) =
(ur, uθ, uz) is the velocity field of the flow. ur, uθ and uz are respectively the
radial, azimuthal and axial components of u. p = p(r, θ, z, t) is the pressure,
while ρ and ν are the density and viscosity of the fluid respectively, both
constants.

∂u
∂t

+ (u · ∇)u = −1

ρ
∇p+ ν∇2u (2.1)

∇ · u = 0 (2.2)

2.2 nsCouette

We will use the code known as nsCouette (open source, may be found in
GitHub).

It is a highly scalable software tool to solve the Navier–Stokes equations
for incompressible fluid flow between differentially heated and independently
rotating, concentric cylinders (TC system) [7]. It is based on a pseudospectral
spatial discretization and dynamic time-stepping. That is, on one hand,
the Navier-Stokes equations are discretized using a pseudospectral Fourier—
Galerkin ansatz for the θ̂ and ẑ directions while in r̂ (the only inhomogeneous
direction due to the use of a Chebyshev gridding for r̂) high-order explicit
finite differences are used. On the other hand, the temporal integration
scheme is based on a predictor-corrector method [8]. This enables a variable
time-step size with dynamic control, which is of advantage if the flow state is
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a) b)

Figure 2.1: a) Scheme of a Taylor-Couette system ; b) Cylindrical coordin-
ates system.

either suddenly modified (as is the case in our study) or naturally undergoes
strongly transient dynamics. It is implemented in modern Fortran with a
hybrid MPI-OpenMP parallelization scheme [9] and thus designed to compute
turbulent flows at high Reynolds.

Periodic boundary conditions are assumed in ẑ, thereby avoiding the need
for dense grids close to the vertical boundaries. Note, that the comparison
between DNS with axially periodic boundary conditions and laboratory ex-
periments with solid end-plates is extremely satisfactory for a wide range of
Re ranging from laminar to highly turbulent flows in the ultimate regime
[10].

In nsCouette the Fourier coefficients and optionally also the primitive
variables are dumped to individual files for each time step at user-specified
output intervals. It also implements an easy-to-use checkpoint-restart mech-
anism based on the Fourier-coefficients for handling long-running DNS. The
primitive variables – velocity (ur, uθ, uz), pressure (p) and optionally tem-
perature (T ) – are written in HDF5 format, along with metadata in a small
xdmf file in order to facilitate analysis with common visualization tools like
ParaView and VisIt.

nsCouette uses a single input file to define all relevant parameters (num-
ber of points, modes and time steps, rotation rates etc.) at program startup.
At every restart, the spatial resolution can be freely changed using an auto-
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mated interpolation and mode padding functionality.
However, the original nsCouette that one may find and download in the

GitHub repository was not designed for the experiment we want to reproduce.
That is, the source code doesn’t implement "outer cylinder stopping". Hence,
the first step of our project was to generate a Fortran subroutine in the
nsCouette code in order to stop the initially rotating outer cylinder of the
TC system.

The subroutine that implements this functionality is referred in the code
as OuterReynolds. It is based on 5 new parameters that control the features
of the stoppage process, 4 of them needing to be specified in the input file
defining all relevant parameters. re_o_initial is a constant which takes
the value of the initial Reynolds number of the outer cylinder Reo at the
beginning of the simulation (this is the parameter which is not contained in
the input file, as it automatically takes the value given to the input file vari-
able Re_o); t_stop yields the instant (in viscous units of time) at which the
stopping of the outer cylinder will begin; tau_stop yields the duration (in
viscous units of time) of the stopping process; real_stop is a boolean para-
meter yielding how the stopping process will be carried on, that is whether
Reo will be following a linear decrease (when real_stop = False) or a tanh
decrease (when real_stop = True). The implementation of a tanh is mo-
tivated by the need to reproduce a real mechanical activator response, that
is the stopping process of the outer cylinder rotation will be triggered by a
mechanical or electronic device generating a response in the system. There-
fore, when real_stop = True, Reo will be following a function such as

Reo(t) = Reinitialo ·1
2

[
tanh

(
−t− t0

β

)
+ 1

]
where

{
t0 = tstop +

1
2
τstop

β = τstop

ln ( 1
ϵ
−1)

with the auxiliary parameters t0 corresponding to the instant when the stop-
ping process is half-way, β yielding the slope of the tanh and ϵ being the
percentage of error of the value of the function at the boundaries of the
process, that is at t = tstop and t = tstop + τstop, respect to the value of
the function in the limits t → ±∞. On the other hand, in the case where
real_stop = False, Reo would fall linearly according to

Reo(t) = −Reinitialo

τstop
· (t− tstop) +Reinitialo (2.3)

The last control parameter to be specified in the input file concerns an other
important feature of this subroutine: the time-step of the simulation dur-
ing the stopping process is fixed to a constant value dt_stop. Although
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Figure 2.2: Subroutine OuterReynolds control on nsCouette simulation
parameters.

nsCouette already is equipped with an adaptive time–step routine, it is also
true that such feature is implemented bearing in mind that both Re are stable
in time, meaning the problem is not a transitory one. The choice of fixing
the times–step can be reasoned by the fact that the generation and early de-
cay of the turbulence generated in our transitory problem by a rather quick
stopping process is a really fast phenomena which needs a stable and pretty
low simulation time–step. We think this is necessary if one wishes to obtain
results corresponding to the actual physics observed during the experiment.
Moreover, we decided to expand the time window where dt = dt_stop bey-
ond the stopping process, so that the time-step is fixed in the time interval
[0.95 ·t_stop ; 2.5 ·(t_stop+tau_stop)], that is between 95% of the instant
where the stopping process starts and 250% of the instant where it ends. We
enlarged the window much more after the cylinder is stopped because it is
then where the turbulent behaviour appears and therefore a finer temporal
resolution shall be needed.

Another most important feature which has been newly implemented in
the code concerns the initial perturbation in the flow. That is, in order to
study how disturbances in the flow behave and temporally evolve in differ-
ent situations, the flow must be "manually" disrupted by adding numerical
perturbations that will decay or grow or change depending on the case. Oth-
erwise, we could increase Reo or Rei or both as much as we wanted and we
would see an invariant laminar flow in the system.

Hence, the new subroutine pulse_init2 generates a random perturbation
of amplitude ∼ 10−4, across the whole flow field, in all 3 directions, at the
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beginning of the simulation as initial conditions.

2.3 Spatial and temporal resolution

The input file from nsCouette allows the user to select the number of grid
points in each direction of the system as well as the time–step to be used
during the simulation, hence the spatial and temporal resolution can be set at
will. The question to be asked now is indeed, how can we fix such parameters?

Figure 2.3 represents an example for Reo = 3000 of the conditions to
be met as far as the spatial resolution is concerned in order to secure cor-
rect simulation results. Subplot a presents several Eθ and Ez energy modes
temporal profiles during a simulation, in the θ̂ and ẑ direction respectively.
Such profiles allow us to see clearly there is an increase in the energy modes
in both directions due to the stopping process. That is actually the gener-
ation and growth of turbulence which will be discussed later in the results
section. Nonetheless, we can in fact locate where is placed the most critical
point during the simulation, meaning where the flow perturbation is most
intense and strongest. That is indeed when the energy of the modes is max-
imal. Therefore, we need to ensure that at such point the spatial resolution
is sufficient.

We check that by looking at the energy spectrum in the θ̂ (subplot b))
and ẑ (subplot c)) directions. In order to guarantee there are no errors when
solving the Navier–Stokes equations, the Energy Cascade must be visible in
the spectra, meaning that the largest structures, represented by the lowest k
modes, in both directions must carry most of the energy in the system while
the smallest, represented by the largest k modes, must hold little energy.
Thus, there is no energy accumulated in the largest modes, which means
that the viscous dissipation is well solved. The number of Fourier modes is
directly linked to the number of points in the homogeneous directions.

In b and c we plotted several energy spectra for different critical instants
of time during the simulation, corresponding mainly to the period where
the perturbation is largest. We can see that in both subplots Eθ and Ez

drop more than 4 orders of magnitude between the energy of the lowest
mode (mode 0) and the energy of the largest mode. Such difference in large
enough. Furthermore, there is no local maximum in the spectra for the
largest modes that would indicate that there is an energy accumulation. All
this information confirms that the spatial resolution fixed in this case for
Reo = 3000, which actually is m_r = 144, m_th = 96 and m_z0 = 256 (see
input file), is sufficient.

On the other hand, figure 2.4 represents an example for Reo = 1700 of
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Figure 2.3: Spatial resolution criterion for numerical simulations. a) Azi-
muthal Eθ and axial Ez energy modes temporal profiles. Reo = 3000. The
grey vertical lines indicate the instants for which the energy spectrums have
been represented in b and c. b) Azimuthal energy spectrum for different
instants of time. c) Axial energy spectrum for different instants of time. We
fixed t_stop = 0.00001d2/ν, tau_stop = 0.02d2/ν and real_stop=True.

18



the procedure we used to select a suitable time–step for the stopping pro-
cess dt_stop. In this case, an empirical approach was undertaken. A first
simulation is run with an estimation of an adequate value for dt_stop and
the energy modes temporal profiles are plotted. For instance, in a) the solid
lines represent the profiles for some energy modes in the θ̂ direction with
dt_stop = 10−6 d2/ν. If the results look reasonable (the physic is well re-
produced), then we launch again the simulation with the same spatial grid
but increasing dt_stop. We then plot again the temporal profiles for the
same modes and compare them with the previous simulation. If both sim-
ulations output the same results, this means the larger dt_stop is already
small enough in order to produce correct simulations, and therefore shall
be chosen to run other simulations. For instance, the cross markers in a
represent the profiles for the same modes but with dt_stop = 10−5 d2/ν.
Furthermore, in b we have computed the absolute error |ϵ| between the pro-
files with dt_stop = 10−5 d2/ν, Eθ(dt = 10−5d2/ν), and the profiles with
dt_stop = 10−6 d2/ν, Eθ(dt = 10−6d2/ν). We can see that it is of the order of
10−6 for most part of the simulation, meaning thereby that the outcome is
the same whether dt_stop = 10−5 d2/ν or dt_stop = 10− d2/ν. We can then
launch a simulation for dt_stop = 10−4 d2/ν and check again the results and
see if a larger time–step produces the same outcome. This procedure can be
repeated as much as required until the convergence in the results is lost. The
largest dt_stop which provides the same results compared to simulations
with smaller dt_stop values should be regarded as the suitable value and
shall be used to run other simulations.
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Figure 2.4: Temporal resolution criterion for numerical simulations. Reo =
1700. a) Modal azimuthal energy Eθ modes temporal profiles for differ-
ent time-steps, dt = 10−5d2/ν (x markers) and dt = 10−6d2/ν (solid lines).
Time–step in viscous time units (d2/ν). b) Absolute error |ϵ| between
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We fixed t_stop = 0.00001d2/ν, tau_stop = 0.0017d2/ν and real_stop=True.
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3. Results
3.1 Qualitative comparison:

3.1.1 Onset of instability: vortical structures

Hence, nsCouette is now able to decrease the value of the outer cylinder
Reynolds number from an initial value Reo to 0 in a fixed amount of time
tau_stop. It is specified in [5] that for the largest Reo studied, the outer
cylinder took approximately 0.0017 viscous time units to come to a halt.
Therefore, in order to contrast the numerical outcome with the experimental
results, we fixed in the input file tau_stop = 0.0017.

nsCouette is also build so that the simulation starts from a laminar
regime. Since for the configuration considered (outer cylinder rotating and
inner cylinder stationary), the flow is stable and thereby laminar, there is
no need to waste simulation time waiting for the system to stabilise from
the initial perturbation. Waiting simulation time before starting the process
of stoppage would only affect the initial perturbation, which would decay
and lose amplitude. Therefore, we fixed in the input file t_stop = 0.00001
without worrying.

Now, even if the code successfully drops Reo to 0, that doesn’t mean
that the physics observed in the experiments will be reproduced. Hence, the
first step will be to compare qualitatively the behaviour of the flow during
the simulation with the results presented in [5], for instance figure 1.1. As
explained in [5], in the experiment the fluid is mixed with a colorant and
the r − z cross-section is illuminated with a continuous laser while recorded
by a camera. Thanks to the binarisation of the images, the experimentalists
are able to observe the fluid’s structures inside the flow. Nonetheless, in
our numerical study we would not be able to produce such results by means
of optical imagery and post-processing. Instead we do have access to the
flow’s velocity field, in any direction, over the entire gap width axially, at
any azimuthal position and at any time. In the present study, the radial
velocity (which is natural variable to describe vortical motion) is used to
compare with the experimental visualizations.

Figure 3.1 represents both the scalar field ur(r, z) on the background, in
logarithmic scale quantified by the colorbar, and the vector field (ur(r, z),
uz(r, z)) on top of it using black arrows to point the direction and mag-
nitude of the flow in each position. This figure associates the representation
of ur(r, z) with the presence of vortical structures in the flow. Thanks to
the additional field uz(r, z), we can clearly identify the vortexes by looking
at the arrow streams (we can see rotating structures, clockwise and counter-
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Figure 3.1: Axis-symmetrical vortexes near the outer cylinder for Reo = 1700.
On the background, the radial velocity scalar field ur(r, z) is represented on
a logarithmic scale (colorbar) for a segment of the axial height. On top, the
cross-section velocity vector field (ur(r, z), uz(r, z)) is represented using black
arrows, showing thus the flow of the system. This cross–section corresponds
to t = 0.025d2/ν. Note that the system has been rotated by 90 degrees
counterclockwise.

clockwise consecutively). Furthermore, we can observe that for ur(r, z) < 0
(color blue) the arrows point towards the inner cylinder, while for ur(r, z) > 0
(color yellowish green) the arrows point towards the outer cylinder. Even
though this might not be very significant, the important point is to notice
that the separation of colors actually indicates where the center of the vortex
is located. Observe that ur(r, z) presents a clear pattern of bands, chromat-
ically sequential. Each vortex exists in half a blue band and half a yellowish
band. The magnitude of ur(r, z) also indicates us in which radial region is
the vortex present. We can see that for 0 < (r − ri)/d < 0.5 the arrows
are negligible, therefore meaning there are no vortices, i.e. ur(r, z) ≈ 0 (blu-
ish green color). Hence, the scalar field ur(r, z) actually reveals two pieces
of information: the presence of vortical structures and their location in the
cross–section.

Therefore, we build now figure 3.2 out of 2 different kinds of plot: on the
top of the figure, several cross-sections of ur(r, z) are displayed at different
instants of time, similarly to the experimental results presented in figure 1.1,
respect to a unique logarithmic scale (colorbar on the right); on the bottom of
the figure, the temporal evolution of Reo(t) is shown (in black) as well as the
variations for different axial energy modes. The grey vertical lines correspond
to the distinct instants of time for which the ur(r, z) field has been represented
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Figure 3.2: Generation and growth of turbulent eddies in an abruptly stopped
numerical Taylor–Couette flow for Reo = 1700. Subplots a) to f) represent
the radial velocity field ur(r, θ) over the whole axial height (z) at different
instant in time in logarithmic scale, all sharing the same scale (colorbar on
the right). The different instants are: a) t = 0.01d2/ν; b) t = 0.015d2/ν; c)
t = 0.02d2/ν; d) t = 0.025d2/ν; e) t = 0.03d2/ν; f) t = 0.035d2/ν. Subplot
g) represents the energy temporal evolution for different axial modes, as well
as the Reo profile. The grey vertical lines correspond to the different instants
at which the ur(r, θ) field has been represented.
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on top. Thereby, figure 3.2 describes accurately how the flow changes during
the simulation’s first instants. We can observe how a band pattern appears
near the outer cylinder, indicating the presence of small vortical structures,
from approximately t = 0.01d2/ν, and then slowly grow towards the inner
one while deforming and reorganising until filling the whole radial gap at
approximately t = 0.030d2/ν. Before t = 0.01d2/ν the magnitude of ur(r, z)
is too low to observe the presence of vortices, and after t = 0.030d2/ν the
structures are already destabilised and chaotic. This can be clearly seen in
subplot g, which yields a lot of information. In a first instance, we observe
how the energy decreases and it is only after the outer cylinder is completely
stopped that the axial modes start gaining energy. We are not talking of
course of mode 0, which holds the average energy of the system (axially), and
as there is no longer an input of energy because both cylinders are static,
its profile progressively decays. Hence, while the outer cylinder rotates at
constant speed the initial perturbation of the system decays, agreeing with
the analytical prediction which states that the flow is stable in a TC system
where only the outer cylinder rotates, independently of Reo. Then, when
the outer cylinder is abruptly stopped, the flow becomes unstable and the
perturbation gains energy. We observe the presence of a dominant mode in
g, which corresponds to axial mode 27, which indicates the presence of 27
pairs of vortices in the flow. That is exactly why we count 54 (= 2·27) bands,
in subplot c for instance. Knowing that a vortex exists in two halfs from two
different bands, that means there is actually 54 vortexes, consistent with what
we mentioned earlier. Then, when the simulation arrives to t ≈ 0.035d2/ν we
see that both mode 27 and mode 30 are almost overlapped. Further in time,
all modes represented (except mode 0) cross each other. This behaviour is
what characterises the destabilization of the vortical structures. While during
a vast period of the vortical growth there exists a dominant mode which
dictates the number of vortices in the flow, at some point different modes
become very similar in energy and there is a competition for the dominance.
This competition destabilises the structures, continuously reorganising, and
leads to increasingly more irregular structures. The numerical results from
figure 3.2 agree with the experimental outcome obtained in [5] shown in figure
1.1.

The flow, now turbulent, will continue to grow and then start decaying,
initiating then the second phase of the process described in [5].

3.1.2 Triphasic phenomena: Space-Time diagram

By taking the values of the scalar field ur(r, z) along the whole axial height
at a fixed radial position in the gap at different instants in time during the
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simulation, one can produce what is known as a Space–Time diagram (STD).
Figure 3.3 presents the STDs obtained in simulations conducted at different
values of Reo near the outer cylinder, approximately at (r − ri)/d ≈ 0.8, as
well as the experimental results exhibit in [5]. Subplot a represent the STD
for Reo = 870, where we only see a pattern of bands. As we explained in
figure 3.1, this pattern is a clear indicator of the presence of vortical structures
in the flow. Therefore, we observe that for such a low Reynolds number
(Reo = 870) the flow doesn’t become turbulent, but instead the vortical
structures grow and then progressively decay without destabilisation. This
behaviour is consistent with the experimental results in [5] which state that
no turbulence flow was observed for Reo < 870.

Now, when we increased Reo, the flow seems to change along the simula-
tion. In fact, 3 phases can be identified in the STDs. Such phases have been
pointed out in subplot f, which corresponds to a zoom of the STD represen-
ted in subplot d (Reo = 4400). In a first instance we can observe the band
pattern, corresponding to a regime with vortical structures. This is phase
I. Shortly after, phase II starts as the band pattern is disrupted, meaning
that the vortices are interacting and reorganising into different tumultuous
structures. Such motif is a clear indicator of turbulent flow in a STD, and
corresponds to the second phase of the process. Finally, the turbulent flow re-
organises into bigger structures and regains a non-turbulent behavior, slowly
decaying in magnitude. This corresponds to the last phase of the process,
phase III, characterised by a purely viscous decay of the flow.

Subplot g corresponds actually to the experimental results presented in
[5], the STP obtained for Reo = 1700. Such plot is ideal to contrast the
numerical results obtained with nsCouette and the experimental results from
H. Singh and A. Prigent. We can clearly see that both subplots b and g
(both for Reo = 1700) are very similar, and that the flow behaviour is well
reproduced numerically indeed, also for other values of Reo.

Furthermore, we can also observe that the turbulent phase lasts longer for
higher Reo, statement reported as well in [5]. For instance, for Reo = 3000 c
the turbulent regime appears at t ≈ 0.02d2/ν and ends at t ≈ 0.1d2/ν, which
means a duration of ∆t ≈ 0.08d2/ν. On the other hand, for Reo = 6500
e the turbulent regime appears at t ≈ 0.05d2/ν and ends at t ≈ 0.2d2/ν,
which means a duration of ∆t ≈ 0.15d2/ν. For phase III, we observe that
the larger structures last longer as well as Reo increases, which agrees with
the experimental observations.

Figure 3.4 represents 3 different STD for the same Reo = 3000 but at
different radial positions in the gap, and unveils new results which couldn’t
be reported experimentally in [5]. We can observe that the band pattern,
thus vortices, appear earlier in STD c which corresponds to (r− ri)/d ≈ 0.8,
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Figure 3.3: Space–Time diagram for increasing values of Reo. The values
of ur(r, z) have been taken along the whole axial height, at a fixed radial
position corresponding to (r − ri)/d ≈ 0.8, at several instants of time. a)
Reo = 870; b) Reo = 1700; c) Reo = 3000; d) Reo = 4400; e) Reo = 6500;
f) Reo = 4400 (zoom). g) Experimental STP for Reo = 1700.
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Figure 3.4: Space–Time diagram at different positions in the gap for Reo =
3000. a) (r − ri)/d ≈ 0.25; b) (r − ri)/d ≈ 0.5; c) (r − ri)/d ≈ 0.8.

hence appear earlier near the outer cylinder. They grow then towards the
inner cylinder, as we can see in STD b where a faint band pattern can be
appreciated at the very beginning but still later than in c.

Moreover, it seems that the turbulence lasts longer near the inner cylinder,
as we can see in STD a: while the turbulent phase ends at t ≈ 0.11d2/ν in
b and at t ≈ 0.1d2/ν in c, the turbulent pattern in a ends at t ≈ 0.14d2/ν,
where we recover large and more regular structures. This turbulence looks
also more chaotic near the inner cylinder, where we find smaller structures
in the STD, both in time and in axial length. More of this structures are
blue, which means ur < 0. That is because the inner cylinder is receiving a
lot of fluid from the gap’s outer region due to the momentum generated by
the vortices near the outer cylinder.

3.2 Quantitative comparison:

3.2.1 Vortex’s growth

Following the study presented in [5], we are interested now in studying how
the vortical structures observed during the numerical simulations are gener-

27



0.0 0.5 1.0
(r − ri)/d

0.000

0.006

0.012

0.018

<
|u
r
|>

θ
,z

in
ν
/
d

t = 0.025d2/ν
t = 0.029d2/ν

t = 0.034d2/ν

t = 0.039d2/ν

t = 0.045d2/ν< |ur| >θ,z
threshold

Figure 3.5: Vortex’s width measurement methodology. Different < |ur| >θ,z

radial profiles are plotted for different instants of time, for Reo = 870. A
threshold value is fixed so that the width of the vortex corresponds to distance
between the intersections of the profile with the threshold.

ated and grow towards the inner cylinder. Once again, the study presented
in [5] analyses this features using binarized images of the gap; once again,
we will work with the radial velocity. Nonetheless, we will not use in this
case the whole field ur(r, z), but instead we will be producing results using
the absolute value radial velocity radial profile, averaged over the homogen-
eous directions θ and z, that is < |ur| >θ,z. The absolute value is necessary,
otherwise the profile would be almost 0 during the phase where the vortical
structures are generated and grow. That is because, as we have seen already
in figure 3.2, during the presence of vortices ur appears as a pattern of band
along the z axis, with sequentially positive values followed by negative ones,
and vice-versa. Then, if we would attempt computing an average over z of
ur we would most certainly obtain a negligible profile, which would be use-
less. On the other hand, if one averages axially |ur| instead of ur, the profile
resulting will reflect the radial dependence of the intensity of the field. Now,
by looking again at figure 3.1 we can see that in fact the arrows have a longer
radial (vertical in the figure) component approximately at the same radial
position as the center of the vortexes themselves. This ultimately means
that the radial profile < |ur| >z maximum should yield the average radial
position of the center of the vortical structures in the gap. The same goes
for < |ur| >θ,z of course. Hence, < |ur| >θ,z is indeed a very useful tool to
analyse and study in average the behavior of vortices in the flow.

Figure 3.5 presents several radial profiles of < |ur| >θ,z for different in-
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stants of time. We observe that the profiles grow with time and that the
maximum of the profile (indicated with the marker) moves towards the inner
cylinder, which is consistent with the movement of the vortices observed.
Furthermore, a black line is plotted and represents the threshold of measure.
That is because we plan to measure the average radial width of the vortical
structures using this profile < |ur| >θ,z. Indeed, if the radial position of
the maximum would approximately represent the average radial position of
the vortices center, then by the same argument one can think that the pro-
file is actually reflecting the whole average radial structure of the vortices,
again looking at figure 3.1 to support the explanation. The average radial
width would then be the radial interval for which the profile is different from
0. However, similarly to experimental instruments of measure, we fixed a
lower threshold value and will consider no existence of a vortical structure
if the profile is underneath such threshold. Hence, the average radial width
of the vortices δr(< ur >θ,z) is computed, graphically, as the radial distance
between the intersections of < |ur| >θ,z and the threshold line, or analytically
as the distance

δr(< ur >θ,z) =
∣∣r2 − r1

∣∣ with r1,2 = r
∣∣
<|ur|>θ,z(r)=threshold

Using this methodology, we obtain the results presented in figure 3.6. In
subplot a are represented δr(< ur >θ,z) of the vortices during the simulation
for different Reo. We can observe that except for Reo = 870, in all other
simulations the vortices rapidly fill the whole gap between cylinders. Fur-
thermore, we notice that as Reo increases, the growth starts earlier, meaning
that the vortices in fact appear earlier in the flow for higher values of Reo.
Nonetheless, such temporal delays are clearly very short, of the order of 10−2

viscous time units.
On the other hand, in subplot b is represented the same data from subplot

a, but only the growing phase of the vortices is considered in this case. That
is, we just represented the values of δr(< ur >θ,z) which are not 0 (the vortices
didn’t appear yet) nor 1 (the vortices have filled the gap), for different values
of Reo. We can distinguish different phases of growth for Reo > 870. This
can clearly be seen in subplot b. There exists a saturation phase at the end of
the growth, approximately when the vortices fill the inner half gap between
the cylinders, that is for 0.5 < δr(< ur >θ,z) < 1. Nonetheless, we also
observe a first phase of growth which seems to follow a power law scaling,
that is δr(< ur >θ,z) ∼ tξ. As such, we though it was pertinent to use a
logarithmic scale to present the data. As mentioned in [5], the experimental
results show that such growth phase can be well fitted using a power law
with exponent 1/2, meaning that the vortices grow as ∼

√
t. Such tendency
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Figure 3.6: Growth of vortices in the gap for different Reo. a) Radial width
of the vortices (linear scale) in real simulation time (logarithmic scale). b)
Radial width of the vortices (logarithmic scale) during the period of growth.
t0 corresponds to the instant where the vortices appear and start growing.

Reo 870 1700 3000 4400 6500 8700 10000
Coefficient 0.4862 0.5446 0.5636 0.5721 0.5931 0.5162 0.5853

Table 3.1: Vortex’s growth power-law fitting coefficients for different Reo.
The width of the vortex is computed using the radial profile < ur >θ,z.

has been plotted in grey in subplot b in order to compare graphically. As
we can see, during the first growth phase all Reo seem to adjust properly to
such fitting. Going further, we calculated the power law exponents ξ fitting
the growth phase for the different Reo by solving the least square problem;
such fittings are represented in subplot b as black lines. The corresponding
exponents are given in table 3.1. We can see that even though they are
not exactly equal to 1/2, the exponents for all Reo are pretty close to such a
value, inside the interval [ 0.4862 ; 0.5931 ]. The fluctuations around 0.5 may
be attributed to the methodology described earlier, as well as the threshold
value.

As stated in [5], this numerical results are also in very good agreement
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with the results obtained by Kaiser et al (2020) [6]. However, the magnitude
measured by Kaiser et al (2020) was not the vortex’s radial width, but instead
they measured the radial width of the unstable zone in the flow and found
that it grows as ∼

√
t. H. Singh and A. Prigent (2021) argue in [5] that

δr(< |ur| >θ,z) may be regarded as the the width of the unstable zone in
the flow appealing the fact that the vortexes are originated in such region as
interpenetrating spirals do in the unstable zone between the inner cylinder
and the nodal surface (the cylindrical surface where uθ = 0) in counter-
rotating TC flow. We might as well look deeper into the origin of the vortical
structures in the flow.

3.2.2 Origin of instability

It is clear by observing the temporal evolution of the flow that, for all values
Reo ≥ 870, vortical structures appear near the outer cylinder shortly after it
is abruptly stopped. However, we are now interested in investigating by which
mechanism, or mechanisms, these vortices are generated. Both H. Singh and
A. Prigent (2021) [5] and Kaiser et al (2020) [6] state that the origin of the
vortices points towards a centrifugal instability in the flow. This kind of
instability, often known in rotating fluid systems, is characterised by the fact
that the interior layers of fluid are moving faster that the exterior layers,
which creates an angular momentum gradient (in the radial direction). The
interior fluid then centrifuges its way towards the exterior walls, generating
vortical structures in the flow. All the process is driven by inertial, which is
why sometimes it is also called inertial instability. Although the occurrence
of this instability type was speculated by the experimentalists, it could not
be verified using the experimental data. We show with our numerical data
that this is indeed the case.

Figure 3.7 represents several radial profiles of the azimuthal velocity com-
ponent, averaged azimuthally and axially, that is < uθ >θ,z, for different
instants of time, with Reo = 4400. We observe that while the outer cyl-
inder is steadily rotating, the analytical profile of the Taylor–Couette flow
is recovered in the simulation. However, as soon as the outer cylinder is
stopped, < uθ >θ,z drops to 0 at the outer wall, consistent with the no-slip
boundary conditions imposed. Meanwhile, the velocity in the gap remains
non-zero, fulfilling then the conditions for a centrifugal instability to appear.
The centrifugal unstable zone will correspond of course to the region in the
gap between max(< uθ >θ,z) and the outer wall, as in such region < uθ >θ,z

is lower in value than < uθ >θ,z for lower values of r (hence the fluid in
this region is rotating slower than in the inner layers). Moreover, we can see
in figure 3.7 that max(< uθ >θ,z) is located near the outer wall and then

31



0.0 0.5 1.0
(r − ri)/d

0

1000

2000

3000

4000

<
u
θ
>
θ
,z

in
ν
/
d

t = 0.0002d2/ν
t = 0.0009d2/ν

t = 0.0017d2/ν
t = 0.0024d2/ν

t = 0.0032d2/ν
t = 0.0039d2/ν

t = 0.0049d2/ν

< uθ >θ,z

Figure 3.7: Decay of the < uθ >θ,z (r) radial profile for Reo = 4400. The
markers on the profiles indicates the location of the maximum. The instant
of time corresponding to each profile has also been specified following the
same height sequence as the markers during the decay.

migrates rapidly towards the inner cylinder when the outer one is stopped.
This means in fact that the centrifugal unstable zone grows rapidly at the
beginning of the process, allowing then vortices to generate inside the region
and grow as well, which agrees with the observations from [6].

One can also relay on the Rayleigh discriminant ϕ in order to measure
the radial width of the unstable zone, such that

ϕ(r) =
1

r3
d

dr

(
L
)2

=
1

r3
d

dr

(
ru
)2

=
1

r3
d

dr

(
r2uθ

)2 (3.1)

where L is the angular momentum, r is the radius and u is the total velocity
(in a plane at height z0). We adapted it to

ϕ(r) =
1

r3
d

dr

(
r2 < uθ >θ,z

)2 (3.2)

The Rayleigh discriminant ϕ is positive for stable regions and negative for
unstable regions of the gap. Therefore, knowing that a centrifugal unstable
region will develop near the outer wall shortly after it is stopped, and that at
the same time the inner region is definitely stable, the ϕ profile should present
a root at some radial position in the gap. In fact, the distance between the
position of such root and the outer wall will allow us to measure the width
of the centrifugal unstable zone.

Figure 3.8 shows qualitatively all these features. On each cross–section
have been represented the radial profiles for ϕ(r), < |ur| >θ,z and < uθ >θ,z

32



0.2 0.8
(r − ri)/d

5.03

7.54

z
/d

a)
t =0.015 d2/ν

0.2 0.8
(r − ri)/d

b)
t =0.02 d2/ν

0.2 0.8
(r − ri)/d

c)
t =0.03 d2/ν

φ(r)

r|φ(r)=0

max(< uθ >θ,z (r))

< uθ >θ,z (r)

max(< ur >θ,z (r))

< ur >θ,z (r)

0.2 0.8
(r − ri)/d

d)
t =0.035 d2/ν

0

Figure 3.8: Centrifugal instability zone for Reo = 1700. Several cross–
sections of the TC system have been represented at different instants in
time: a) t = 0.015d2/ν; b) t = 0.02d2/ν; c) t = 0.03d2/ν; d) t = 0.035d2/ν.
In the background, the scalar field ur(r, z) is represented. On top, the radial
profiles for ϕ(r), < |ur| >θ,z and < uθ >θ,z. The root of ϕ(r) is indicated
by a vertical line, and so are the maximums of < |ur| >θ,z and < uθ >θ,z

respectively.

on top of the scalar field ur(r, z). The different vertical lines point out the
radial positions for the root of ϕ(r) as well as the maximums of < |ur| >θ,z

and < uθ >θ,z.
At first glance, we observe that, as expected, the Rayleigh profile ϕ is

positive, thus stable, in the inner region of the gap while the area nearer
the outer cylinder is negative, thus unstable. The location in the gap for
the profile’s root is indicated with a vertical black line, and we observe that
such line migrates towards the inner cylinder as the simulation advances in
time. Hence, as far as Rayleigh criterion is concerned, we can state that the
centrifugally unstable zone appears near the outer cylinder and then grows
towards the inner one.

Furthermore, we notice two important characteristics for the location of
the < uθ >θ,z profile’s maximum (represented with orange circles): on one
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hand, as we said before, the maximum move towards the inner cylinder; on
the other hand, we can clearly see that such maximum is located at the same
position as the ϕ’s root. Therefore, both methods to measure the radial
width of the centrifugal instability zone seem to be equivalent. Even though
such observation might be just a coincidence existing at the instants of time
represented, full temporal profiles for different values of Reo confirm that
both max(< uθ >θ,z) and ϕ(r)’s root share the same radial location in the
gap during the whole unstable region growth period.

Finally, we chose to plot the < |ur| >θ,z profile as well in order to pin-
point the radial position for the average center of the vortexes in the flow,
corresponding to the location of the profile’s maximum. Hence, based on
this assumption, we observe in fact that for every instant of time the vortical
structures’ center is located inside the unstable region. We can therefore
assume that the vortices are indeed generated inside the centrifugal instabil-
ity zone. H. Singh and A. Prigent also comment in [5] that the size of the
vortexes δr(< |ur| >θ,z) could be approximately considered as the width of
the unstable zone of the flow. This means thereby that the unstable zone
should also be growing as ∼

√
t. We have used our numerical data to verify

such predictions.
Figure 3.9 presents the radial width of the unstable zone δr(< uθ >θ,z)

measured as the distance between the outer wall and the radial location
of max(< uθ >θ,z), based on figure 3.7. In subplot a are represented the
temporal profiles of δr(< uθ >θ,z) for different values of Reo in real simulation
time. We can identify different stages of the growth. In a first instance, the
unstable region grows steadily with a constant rate until it reaches a point
where δr(< uθ >θ,z) increases drastically. Such behaviour is similar to the one
observed for δr(< |ur| >θ,z) in figure 3.6 a. A first local maximum is attained,
after which the profile starts fluctuating. We consider that after such event
the flow is already entering a stage of transition towards turbulence, and
therefore is not part of the growth’s process. Hence, we locate the period of
expansion as the data between δr(< uθ >θ,z) = 0 and its first local maximum.
Such values are represented in subplot b, for each Reo. Furthermore, we fitted
the growths according to a power law function ∼ tξ with a suitable exponent
and also plotted a ∼

√
t grey slope in order to compare graphically.

The power law fittings exponents for δr(< uθ >θ,z) growth are shown in
table 3.2. We notice in fact that for Reo < 6500, the values differ significantly
from 0.5, and are also pretty different from the exponents obtained in table
3.1. Therefore, this means that the vortical structures growth doesn’t match
the growth of the centrifugal unstable region, but instead the unstable region
seems to grow slower than the vortices because the exponents in table 3.1 are
larger than the ones we obtained in table 3.2, at least for Reo < 6500. Such
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Figure 3.9: Centrifugal instability zone’s growth. The width of the unstable
region δr(< uθ >θ,z) has been measured as the distance between the outer
wall and the radial location of max(< uθ >θ,z). In a), several temporal
profiles of δr(< uθ >θ,z) are plotted for different values of Reo. In b), only
the growth period has been represented and fitted using power laws functions.

results don’t agree with the statements presented in [5]. We believed the
data post-processing may have been erroneous, however table 3.3 shows the
computed unstable zone growth exponents obtained with simulations where
tau_stop was fixed to 0.02 viscous time units. The same post-processing
routine was used in order to produce such results. In this case, the exponents
are very close to the 0.5 value expected. Even though such results are out
of this study framework, we believe the stopping time tau_stop to be an
important parameter yielding significant weight in this process, numerically
or experimentally. Extending or reducing the stoppage time may affect the
initial perturbation state when the centrifugal instability zone is generated
near the outer cylinder. Future research may procure more insight on the
effects of the parameter tau_stop during the stoppage of a TC system.
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Reo 870 1700 3000 4400 6500 8700 10000
< uθ >θ,z (r) 0.3782 0.3703 0.4302 0.4385 0.4478 0.5335 0.5335

Table 3.2: Centrifugal instability zone’s growth power-law fitting exponents
for tau_stop = 0.0017.

Reo 870 1700 3000 4400
< uθ >θ,z (r) 0.5079 0.5074 0.5298 0.5304

Table 3.3: Centrifugal instability zone’s growth power-law fitting exponents
for tau_stop = 0.02.

3.3 Characterization of the free decay of in-
homogeneous and anisotropic turbulence

3.3.1 Kinetic energy

The kinetic energy k of the TC flow during the simulation also provided some
insight on the phenomena. Following the course of action presented in [5],
we computed three different variants of k: the mean kinetic energy kmean;
the turbulent kinetic energy kturb; and finally wind kinetic energy kwind. The
expressions for such magnitudes are respectively

kmean =
1

2

[
(< ur >θ,z)

2 + (< uθ >θ,z)
2 + (< uz >θ,z)

2
]

(3.3)

kturb =
1

2

[
< (u′

r)
2 >θ,z + < (u′

θ)
2 >θ,z + < (u′

z)
2 >θ,z

]
(3.4)

kwind =
1

2

[
< (u′

r)
2 >θ,z + < (u′

z)
2 >θ,z

]
(3.5)

where u′
r,θ,z = ur,θ,z− < ur,θ,z >θ,z is the turbulent component of the

velocity field for each direction respectively. The data is averaged in both
homogeneous directions θ̂ and ẑ.

Figure 3.10 represents the different kinetic energy components temporal
profiles for different radial positions in the gap, whereas at (r − ri)/d ≈ 0.1, 0.25,
0.5, 0.75, 0.9, for Reo = 4400. Subplot a presents kmean while subplots b
and c are for kturb and kwind respectively. Finally, in subplot d we represented
all the k for (r − ri)/d ≈ 0.75.

We first turn our attention towards kturb. We can see that for all radial
positions shortly after the outer cylinder is abruptly stopped, kturb changes
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Figure 3.10: Kinetic energy variants temporal profiles at different locations
in the gap, for Reo = 4400. a) Profiles for kmean; b) Profiles for kturb; c)
Profiles for kwind; d) Profiles for the three variants at (r − ri)/d ≈ 0.75

from a decaying regime into a strongly generating one, during which almost
8 orders of magnitude are gained. In fact this phase corresponds to the phase
where the vortices are generated, grow and then transient into turbulence,
phase I described earlier. We can clearly see that both components kturb
and kwind, computed from the turbulent fluctuations of the flow u′

r,θ,z, in-
crease during this phase, meaning that turbulence is appearing and growing.
We also notice that the kturb maximum, and the same for kwind, is larger at
(r − ri)/d ≈ 0.9 than at other locations in the gap. The growing also starts
earlier for that profile. Hence, this results support the idea that the turbu-
lence is generated earlier near the outer cylinder and that it becomes stronger
there than in the rest of the gap. Afterwards, the decay of turbulence starts,
which corresponds to phase II. We observe that all kturb profiles, previously
separated in magnitude, join together at this point, which means actually
that the turbulence has spread from the outer cylinder towards the inner
one, filling the whole gap. All profiles now decay slowly until reaching a
transient region between phases II and III. We can clearly see that the slope
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Figure 3.11: Kinetic energy temporal profiles for different value of Reo, at
(r − ri)/d ≈ 0.8. a) Profiles for kmean; b) Profiles for kturb; c) Profiles for kwind.

in the decay changes, which physically reflects a change in the regime of the
system, from a turbulent free decay (phase II) towards a viscous one (phase
III).

Finally, we can take a look at kmean, which simply decays from the mo-
ment the outer cylinder is stopped. The decay profiles are very similar for
the different (r − ri)/d, and the fact that at the beginning kmean is larger near
the outer cylinder is because that cylinder is the only one rotating, while
the inner is static and then provides no energy to the system. These results
agree with the experimental ones presented in [5].

Hence, we have now compared the different k variants respect to their
position in the gap for the same Reo. What can we say then if we compare
them respect to different values of Reo at the same radial location? Figure
3.11 presents several temporal profiles of the different k for various Reo, at
(r − ri)/d ≈ 0.8 fixed. We observe not much difference between simulations
as far as kmean is concerned (subplot a). However, both kwind and kturb
reflect much more dissimilarities. We see that as Reo increases, phase I
appears earlier and lasts less time because the slope of the profile becomes
steeper, which means turbulence is generated faster. Furthermore, it is very
interesting to observe that all profiles are almost collapsing during the last
stage of phase II, the transition from II to III and finally during the viscous
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Figure 3.12: Turbulent kinetic energy kturb decay exponents for Reo = 6500.
a) Turbulent kinetic energy temporal profiles for different radial positions in
the gap. b) Turbulent kinetic energy temporal profiles and power-law fitting
for the window marked in a) with grey vertical lines. c) Power-law fitting
exponents for different radial positions.

decay in phase III. Therefore, it seems that such stages, both in magnitude
and time (starting and duration), are independent of Reo. Further research
could reveal such behaviour dependents on other parameters of the process,
maybe tau_stop. On the other hand, if all profiles transition to phase III at
the same time but phase II starts earlier as Reo increases, that means that
phase II must be longer for higher Reo, as we can clearly see in b and c.
We already noticed such behaviour when looking at the STDs in figure 3.3.
Quantitative data now confirms it.

Now, as we stated in the introduction, we are very much interested in
characterising the free decay of turbulence in inhomogeneous and anisotropic
flow. We recall that the k−ε turbulence model requires information for both
the turbulent kinetic energy kturb and the turbulent energy dissipation rate
εturb.

Hence, figure 3.12 presents the methodology we used to characterise kturb’s
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Reo

∣∣∣ (r − ri)/ν 0.1 0.25 0.5 0.75 0.9
1700 -3.653 -3.108 -3.029 -2.463 -3.587
3000 -1.591 -1.837 -1.776 -1.488 -2.11
4400 -0.525 -1.077 -0.958 -1.04 -1.182
6500 -0.878 -1.088 -0.807 -0.914 -0.981

Table 3.4: Turbulent kinetic energy kturb power–law fitting exponents during
the turbulent decay.

free decay, for instance with Reo = 6500. Subplot a represents the different
temporal profiles for kturb at several radial locations in the gap, similarly to
figure 3.11 b. However, in this case we selected a temporal window marked
with vertical grey lines for which we represented the data in subplot b. We
point out that such window is located in phase II of the process, correspond-
ing to the turbulent free decay of the flow. Now, in order to characterise the
decay we fitted such data according to a power law model ∼ tξ and extrac-
ted the corresponding exponents in subplot c, plotted in logarithmic scale.
Thereby, by proceeding as shown in this figure, we obtained the decay expo-
nents ξ for the different values of Reo, for different positions (r − ri)/ν in the
gap. We call attention to the fact that this characterisation of the decay is
merely a fitting of the data obtained and would never presume to be regarded
as a law of physics. Hence, the different exponents are presented in table 3.4.
We notice that as we move towards the outer cylinder, a clear tendency in
the exponents values may be observed, whereas ξ decreases as Reo increases.
Therefore, for higher Reo the turbulent decay becomes slower near the outer
cylinder. This makes sens according to the profiles in figure 3.11: if phase II
lasts longer for higher Reo while the transition to III is at the same time for
all Reo, phase II has to decay slower as Reo increases.

3.3.2 Energy dissipation rate

Now that kturb is characterised, we move towards the turbulent energy dis-
sipation rate εturb, also necessary for the k − ε model.

Proceeding similarly to [5], we computed the different energy dissipation
rate components, whereas εtotal, εmean and εturb. Their expressions correspond
to equations 3.6, 3.7 and 3.8 respectively.
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∂ūr

∂z
· ∂ūz
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(3.8)
These magnitudes were also calculated in [5], however H.Singh and A.Prigent

(2021) could not compute all the terms experimentally due to the fact that
they had no access to the azimuthal coordinate. In our numerical case as we
already explained all points in the grid are accessible, and therefore we are
able to compute all the terms from expressions 3.6, 3.7 and 3.8. We averaged
the radial profiles over the homogeneous directions θ̂ and ẑ (the magnitudes
uα and derivatives duα/dγ are not averaged in expressions 3.6, 3.7 and 3.8
to simplify the notation).

Furthermore, we were able to compute as well radial profiles for the pro-
duction of kinetic energy P = − < u′

θu
′
r >θ,z (d < uθ >θ,z /dr− < uθ >θ,z
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/r), averaged over θ̂ and ẑ. Figure 3.13 presents the temporal evolution for
the P profiles during 2 different time windows for Reo = 6500. In a we have
represented the kturb temporal profiles at several radial positions in the gap.
We defined two distinct temporal windows with vertical black lines in the
subplot, the first window located in phase I of the process and the second
window in phase II. For each window, we plotted several radial profiles of the
production P , in b the profiles during phase I and in c the profiles during
phase II. Both figures only show half of the gap (0.5 < (r − ri)/d < 1) because
in the inner half P is simply negligible. Hence, in b we can see that the
production starts growing near the outer cylinder. These profiles correspond
to phase I, when the vortical structures appear and grow until turbulence is
reached. We observe also that rather than moving towards the inner cylinder,
the maximum of production progressively gets closer to the outer wall, which
is the opposite movement compared to the vortical structures behaviour. On
the other hand, in subplot c we observe how the production decays with time,
still the maximum being very close to the outer cylinder, corresponding to
the turbulent free decay stage. Therefore, figure 3.13 confirms the idea that
the production of kinetic energy in an abruptly stopped TC system will be
located very close to the outer cylinder, the same place where turbulence is
originated. Moreover, it confirms that phase I is defined by the generation
of k while phase II corresponds to a progressive decay of turbulence.

Similarly to figure 3.13, in figure 3.14 we represented the evolution for the
εturb radial profiles during phase I, in subplot b, and phase II, in subplot c.
Subplot a shows the εturb temporal profiles at several positions in the gap for
Reo = 6500. Again and in the same way as for kturb, we can identify three
different phases during the simulation, with the same features: phase I shows
how εturb increases drastically in a small period of time due to the generation
of kturb we have seen in figures 3.10 and 3.12; in phase II we observe how
εturb decays with a pretty steady slope; finally, the slope of the decay changes,
meaning the regime of the system is changing, in fact transitioning from a
turbulent decay (phase II) to a viscous decay, corresponding to phase III.
Now, in subplot b we observe how εturb progressively increases throughout
the whole radial gap during phase I, with its maximum near the outer cylinder
and gaining almost 5 orders of magnitude. In subplot c we can then see during
phase II how εturb then starts decaying. The different times corresponding
to the profiles have been listed in the same order spatially as the profile’s
maximums. That is, t = 0.00318d2/ν corresponds to the blue profile, t =
0.00405d2/ν to the orange one, and so on. However, it is very interesting to
see that the dissipation progressively gets homogeneous over the gap. That
is, we can see from t = 0.00318d2/ν (blue profile) to t = 0.01056d2/ν (purple
profile) the εturb profiles become flatter, still with a maximum in the outer
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Figure 3.13: Production P temporal and radial profiles during generation
and decay of turbulence for Reo = 6500. a) Temporal profiles for different
radial positions in the gap. b) Radial profiles during generation of turbulence
(phase I). c) Radial profiles during decay of turbulence (phase II).

wall, and then the shape is maintained while decreasing in magnitude from
t = 0.01056d2/ν (purple profile) to t = 0.01757d2/ν (pink profile). Hence,
we can assume that the turbulent kinetic energy, and thus the turbulence,
must also get more homogeneous in the gap during phase II. Such results
agree with the idea that turbulence is generated near the outer cylinder and
then progressively fills the whole gap between cylinders.

Proceeding in the same way as shown in figure 3.12, we fitted the εturb
temporal profiles during phase II at different radial positions for several values
of Reo. We fitted the turbulent decay phase using a power-law function ∼ tξ.
The exponents we obtained are presented in table 3.5.

We observe once again the same tendency observed in table 3.4: near
the outer cylinder, the exponents decrease when Reo increases, meaning that
εturb decays slower for higher values of Reo.

Hence, we managed to characterise the free decay of turbulence by fitting
both kturb and εturb during their turbulent decay in phase II.

Nonetheless, we noticed that the numerical results we obtained regarding
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Figure 3.14: Turbulent decay rate εturb temporal and radial profiles during
generation and decay of turbulence for Reo = 6500. a) Temporal profiles
for different radial positions in the gap. b) Radial profiles during generation
of turbulence (phase I). c) Radial profiles during decay of turbulence (phase
II).

Reo

∣∣∣ (r − ri)/ν 0.1 0.25 0.5 0.75 0.9
1700 -3.425 -3.459 -3.13 -3.25 -3.27
3000 -1.994 -2.187 -2.231 -2.17 -2.592
4400 -1.269 -1.576 -1.681 -1.726 -2.085
6500 -1.582 -1.691 -1.361 -1.354 -1.549

Table 3.5: Turbulent decay rate εturb power–law fitting exponents during the
turbulent decay.
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k and ε present a very important difference compared to the experimental
results from [5]. In fact, H.Singh and A.Prigent (2021) were not able to fit
the decay in phase II of neither magnitudes because both were oscillating
too much during the turbulent decay, which they attributed to the constant
reorganization of the vortices in the turbulent flow [5]. Such observation
draw our attention towards the reason behind the lack of fluctuations in the
profiles obtained numerically.

There exists some differences in the methodology used to obtain the res-
ults produced experimentally in [5] and those generated numerically in this
document. In a first instance, as far as the computation of ε components is
concerned, we were able to compute all the terms because we had access to
the θ component. However, H.Singh and A.Prigent (2021) argued in [5] that
such terms were actually negligible. Furthermore, when numerically comput-
ing derivatives we used a high order differentiation method which should be
more accurate than the second-order central differencing approximation used
experimentally in [5]. Also, the experimental profiles presented have been av-
eraged spatially over z and in the a small region in the middle of the gap,
and temporally over short time windows, taking 5 values before and after the
instant for which the magnitudes are computed. Such process differs from
our methodology, averaging just over θ and z. We wanted thereby to check if
having access to the θ coordinate did actually enhanced our results, making
them less fluctuating.

Then, figure 3.15 represents several temporal profiles for εturb at different
radial locations in the gap for Reo = 3000. The black profiles have been
averaged over θ and z while the blue ones only over z. We observe that
during phase I the profiles don’t match for any of the 3 radial positions.
However, we are more interested in phase II. We can see that except for
subplot a, both profiles in b and c are quite identical. In subplot a, which
corresponds to a position really close to the inner cylinder, we witness how
the fluctuations in the blue profile become pretty significant and may lead
to a erroneous fitting. Nonetheless, such variations don’t compare to the
oscillations reported in the experiments from [5]. Therefore, we are lead to
think that the smoothness of the numerical results may be coming from the
accuracy in the differentiation method.

3.3.3 Self–similarity

Based on the self–similarity criterion presented by Verschoof et al. (2016) [3],
H. Singh and A. Prigent (2021) analysed in [5] the self–similar features for the
azimuthal velocity radial profile uθ(r) averaged axially and over time. Fol-
lowing the criterion, when the azimuthally averaged radial profiles < uθ >θ
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Figure 3.15: Turbulent decay rate εturb temporal profiles with and without
averaging in the θ̂ direction for Reo = 3000. Different radial positions in the
gap are considered: a) (r − ri)/d = 0.1; b) (r − ri)/d = 0.3. c) (r − ri)/d = 0.8.

are normalized respect to the spatial mean < uθ >r,θ,z, self–similarity in the
profiles can be observed during the decay. Nonetheless, the results presen-
ted by H. Singh and A. Prigent concern the normalized profiles < uθ >t,z

(averaged in time and axially). The results show that there is no complete
self-similarity covering the whole decay process, but instead self–similarity
of the profiles was observed during the second phase of the process, that is
the turbulent decay period.

As foretold, in our case the temporal averaging is replaced by a spatial one
in the homogeneous azimuthal direction, so that we are actually observing
in figure 3.16 b the profiles for < uθ >θ,z (r)/ < uθ >r,θ,z.

Figure 3.16 is build out of two different subplots with Reo = 6500. On
the left, a presents the kturb temporal profiles at different radial locations in
the gap for Reo = 6500. On such figure we defined two different temporal
windows using vertical black lines. The first window 0.015 < tν/d2 < 0.049
is inside phase II (turbulent decay) while the second window 0.24 < tν/d2 <
0.498 belongs to phase III (viscous decay). In fact, a helps us identify which
stage of the triphasic process we are looking at. On the other hand, on
subplot b we plotted the radial profiles < uθ >θ,z (r)/ < uθ >r,θ,z for both
time windows defined earlier. We can clearly observe that the profiles exhibit
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Figure 3.16: Self-similarity of < uθ >θ,z (r)/ < uθ >r,θ,z radial profiles
during the turbulent and viscous decay phases. In a) are represented different
temporal profiles of the turbulent kinetic energy kturb for different radial
locations in the gap, whereas r∗ = (r − ri)/d = 0.1, 0.25, 0.5, 0.75, 0.9. The
turbulent and the viscous decay phases have been windowed using vertical
black lines, the turbulent decay being the one for 0.015d2/ν < t < 0.049d2/ν
and the viscous decay for 0.24d2/ν < t < 0.498d2/ν. In b) the radial profiles
< uθ >θ,z (r)/ < uθ >r,θ,z have been plotted for such temporal windows.
Reo = 6500

self-similarity in both windows. Furthermore, we have obtained the same
results (qualitatively) for other values of Reo. Therefore, it seems that the
profiles are self-similar in both turbulent and viscous decay (phase I and
II). We don’t observe self-similarity neither during phase I nor during the
transition from phase II to III.
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4. Conclusions
In this study, the numerical results are presented for the abruptly stoppage
of the outer cylinder of a Taylor–Couette system. This process triggers a
triphasic phenomena where we observe generation and afterwards free decay
of turbulence. The numerical results presented in this document are com-
pared to the experimental outcomes for the same framework obtained by
H.Singh and A.Prigent in their paper Turbulence generation and decay in
the Taylor–Couette system due to an abrupt stoppage (2021) [5].

In a first instance, the flow is laminar while the outer cylinder is rotating
at a constant Reo. When Reo drops to 0 abruptly, the azimuthal velocity
in the outer wall also drops to 0 while remaining positive in the gap. Such
configuration in the flow rapidly generates a centrifugal instability zone near
the outer wall where small vortical structures start to generate and grow to-
wards the inner cylinder. Shortly after the vortices fill the whole radial gap,
the growth process being a competition between modes (number of pairs
of vortices) translated into a continuous readjustment of the structures in
the flow, the vortices are destabilised and the flow transitions to turbulence.
Production of kinetic energy, turbulent kinetic energy and turbulent energy
dissipation rate increase in the same region near the outer cylinder during
this stage, which we named phase I in accordance with [5]. Then, after
reaching a maximal value, the kinetic energy starts decaying. The whole
turbulence in the flow decays freely as the system has no longer any energy
input (both cylinders are static). This is phase II. Both turbulent kinetic en-
ergy and dissipation of turbulent kinetic energy radial profiles become flatter
and progressively decay, meaning that turbulence has filled the whole gap
and slowly crumbles. Such free decay of turbulence can be characterise by a
power law function with its exponent dependant on the initial Reo and the
radial location in the gap.

Finally, the turbulence is replaced by large scale structures in the flow
which evolves in a purely viscous decay. Self-similarity of the azimuthal
velocity component can be observed during phases II and III.

Hence, we managed to reproduce numerically the triphasic phenomena
observed experimentally in previous studies [5] and obtain the same Taylor–
Couette flow behaviour. We analysed the centrifugal instability zone gener-
ated when the outer cylinder is abruptly stopped, responsible for the vortical
structures that appear near the outer wall. We characterised the free decay of
inhomogeneous and anisotropic turbulence by fitting both turbulent kinetic
energy and turbulent kinetic energy dissipation rate according to a power law
function, essential magnitudes for the k − ε turbulence model. The decay
exponents depend on the initial Reo and on the radial position in the gap,
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however a general tendency can be observed near the outer cylinder as Reo
increases.

Some results from this study also point towards the importance of the
stopping time as parameter that may affect significantly the behaviour of
the flow. Further research should focus on such observations.
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