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A B S T R A C T   

The adoption of the Electric Vehicle requires a switch towards a circular system to reduce their 
environmental impact. Under this framework, the correct sizing of the batteries and avoiding 
their underuse are key actions. Based on the analysis of real data, this work proposes a model to 
synthesize current profiles representative of trips containing urban and highway sections. The 
model is used to generate cycles for common daily driving distances. Different sized batteries are 
analysed at their beginning and end of life to evaluate their ability to provide the required range. 
Based on the results, it is suggested that the ongoing trend of battery capacity increase is not 
justified. The commonly assumed threshold of 70–80% State of Health has proved to be too 
conservative in most cases, allowing for an extension of the first life that should be individually 
defined based on functional aspects.   

1. Introduction 

Policymakers around the world have started to build a strong regulatory framework to support the adoption of the Electric Vehicle 
(EV), aiming to reduce the carbon emissions of the transportation sector (IEA, 2021). The sales of passenger EVs are expected to 
increase sharply, going from 3.1 million in 2020 to 14 million in 2025 (BloombergNEF, 2021). 

This rapid growth has raised concerns regarding the sustainability of EVs, especially around the material requirements for battery 
manufacturing (Simon et al., 2015), which accounts for an important share of the environmental impact of the EV (Bauer et al., 2015). 

The amount of metals needed to meet the demand for EV batteries, mainly for Lithium and Cobalt, is expected to surpass the known 
reserves by 2050 if low rates of recycling are maintained (Weil et al., 2018). Moreover, this prediction considers an average battery 
capacity of 25 kWh for full EVs. While this could be true for the early years of the electric mobility, when battery sizes of 16 and 24 kWh 
were common, current market trends suggest a constant increase in capacity (Kurdve et al., 2019). In fact, nowadays, the EV battery 
average capacity is around 50 kWh (UK Department for Transport, n.d.) and in the upcoming years, vehicles with capacities over 100 
kWh are expected (Sanguesa et al., 2021). 

The increase in battery capacity puts into question the suitability of the EV as a means to reduce the environmental impact of the 
transportation system. A recent life cycle assessment highlighted that the current trend of expanding the capacity is detrimental to 
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greenhouse gas impacts and can make battery EVs less competitive than other transport alternatives, like Plug-in Hybrid EVs (PHEV) or 
alternative fuel-based vehicles (Ellingsen et al., n.d.). Notice that in the referenced study the maximum battery size analysed was 60 
kWh, which is still below many of the models found in the market nowadays. 

It could be argued that the capacity increase is based on meeting the range requirements of the population. However, knowing that 
common trips in Europe rarely exceed 10 kWh (Canals Casals et al., 2019), most of the battery range of these new EV models may 
remain unused, which implies an inefficient use of materials. 

In addition, due to the range reduction caused by degradation (Barré et al., 2013), batteries are considered to reach End of Life 
(EoL) for traction purposes once their State of Health (SoH) falls to 70–80 % (Martinez-Laserna et al., 2018). This means that regardless 
of the driving requirements or initial battery size, the same EoL threshold is applied to all batteries. 

Several authors have started to question this threshold, arguing that, in most cases, lower values of SoH could be reached without 
affecting the EV performance (Canals Casals et al., 2019; Saxena et al., 2015). Other authors, however, suggest that the 70–80 % 
threshold could be too optimistic in some cases (Arrinda et al., 2021). It is therefore clear, that the EoL criteria for EV batteries should 
be revised to guarantee that the safety and performance requirements are met, while ensuring that the batteries do not experience an 
early retirement from the vehicle. 

To consider the EV as the sustainable alternative for mobility, the EV framework requires a reconsideration of the current market 
trends and a shift towards a circular economy-based model (Richter, 2022). Although, large efforts are ongoing to improve the 
recycling processes (Sommerville et al., 2021) or to find new revenue streams, such as the use of retired EV batteries in second-life 
applications (Hua et al., 2021), these latest stages of a product lifetime for circularity value chains imply a higher use of resources 
and a lower value for circularity than those affecting the initial stages (Potting et al., 2018). Reducing material use (Nilsen, 2019) and 
extending the first life including sharing or additional services come as preferred options (Milios, 2021). These facts, applied to EV 
batteries, would mean either the production of smaller batteries, the redefinition of the EoL according to actual driving requirements or 
even the stacking of energy services beyond mobility. 

The evaluation of the previous streams of circularity requires a solid understanding of the real-life driving requirements and the 
battery ageing pathways under different environmental conditions and driving patterns. 

Battery degradation modelling and prognostics often rely on the use of standard driving cycles, both for analysis (Lawder et al., 
2014) and for model validation (de Hoog et al., 2017) (Hosen et al., 2021). However, differences in ageing have been found between 
EVs subject to standard cycles and real-life ones (Baure and Dubarry, 2019). 

In this sense, part of the research effort has been directed towards defining more realistic driving cycles (Ben-Marzouk et al., 2021; 
Zhao et al., 2020). These proposed cycles still hold an important limitation when applied to battery design and modelling, as they 
neglect the deviations in real-life driving patterns and their stochastic nature due to the use of a single cycle (Schwarzer and Ghorbani, 
2013). Since car manufacturers often restrict access to real-life data, the generation of synthetic driving cycles can provide high value. 

Synthetic driving cycles can be generated to account for the differences in behaviours of the population. The generated cycles can 
be used to evaluate the degradation caused by particular working conditions of the EV battery and analyse how the loss of performance 
can hinder the ability to meet the requirements at any point of a driving trip. This analysis is key to define how far the first life can go, 
to evaluate whether the battery is being used to its maximum potential and, if this is not the case, to promote sustainable practices to 
avoid inefficient battery use. Since the amount of data is not restricted, as it occurs when using data from real users, synthetic cycles 
can extend the analysis to cover more use cases. 

The proposed models for the generation of synthetic driving cycles attempt to mimic real driving patterns. Driving cycles are 
represented by different profiles that show how variables like speed, acceleration, traction power or current in the battery evolve over 
time. Early work regarding driving modelling included a methodology to characterize a single driving cycle and obtain a synthetic one, 
with an arbitrary length (Tazelaar et al., 2009). The speed profile of the synthetic cycle is obtained based on the relationship between 
the previous speed values and the traffic circumstances, treated as random white noise, of the real driving cycle. Later, other authors 
proposed approaches based on finding the statistical distribution of key parameters of the speed and acceleration profiles of real 
driving (Schwarzer and Ghorbani, 2013) (Ravey et al., 2011). The generation of driving cycles has also been based on the Markov 
model and by using speed, acceleration and road slope as variables (Souffran et al., 2011). Another methodology to construct cycles, 
instead of using statistics-based methods, is based on chaining together segments of the original driving cycles. For this method, the 
real cycle is divided into so-called microtrips, which start and end in vehicle stops. Then, the synthetic cycles are built by selecting 
microtrips from the generated database (Quirama et al., 2021). 

The existing models successfully generate synthetic speed profiles from real-life data. However, their application for battery 
performance assessment relies on the construction of an EV model to translate the speed into the current, which might be a major 
assumption. The different vehicle components must be modelled, along with the driver’s commands to accelerate and brake. This 
additional work can be avoided by looking directly at the operation of the battery and the resulting profile to further model the current 
flows during the driving cycles. 

This is, effectively, what recent studies are searching for: to obtain synthetic current profiles from direct battery information. 
However, most studies focus on charge profiles, such as (Schäuble et al., 2017), and, to the author’s knowledge, only a couple have 
generated synthetic current profiles from real driving cycles. In one of these studies, two coupled feedforward Neural Networks were 
employed to model the charge and discharge profiles (Herle et al., 2021). The Markov Chain has also been used to generate synthetic 
current profiles, which uses transition probability matrixes to predict the current based on the previous state (Pyne et al., 2019). These 
approaches are a form of black-box modelling that output synthetic profiles but do not provide information on the key parameters of 
the drive cycle. 

The methodology in this work is inspired by one of the probabilistic approaches reviewed that allows obtaining speed profiles 
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(Schwarzer and Ghorbani, 2013) but focusing on the current in the EV battery instead. In this work, the current profile of the battery 
during a driving cycle of the desired duration is stochastically generated based on the statistical description of key parameters obtained 
from real EV battery data. Therefore, the novelty of the proposed modelling consists of the direct analysis of the working conditions of 
the EV battery, avoiding the simplifications caused by using an EV model, and that provides a direct look into battery operation 
parameters instead of the black-box approach found in the literature. 

The first part of the study aims to provide insight into the working conditions of the battery during real driving and to develop a 
driving cycle model that outputs realistic current profiles. The second part presents several applications of the model to analyse the 
requirements of different battery usages, both at the Beginning of Life (BoL) and at the EoL. The results allow discussing the adequacy 
of current battery capacities, evaluating whether the EoL threshold of 70–80 % is a good indicator of real driving needs, and reviewing 
how existing policies and market trends could be shifted towards more sustainable practices. 

2. Methodology 

The methodological framework for this study is provided in Fig. 1, which includes the main inputs, outputs and processes carried 
out. 

The work starts by presenting an in-depth look at the operating conditions of the battery during driving, through the parametri-
zation of the data collected from the Battery Management System (BMS) of real EVs (Sections 2.1 and 2.2). The outputs of these 
sections are probability functions, which are presented in Section 3.1, that represent how often each parameter occurs in real life. This 
analysis serves as the basis to construct the proposed driving cycle model and to generate synthetic current profiles (Section 2.3). The 
model is used to obtain the daily driving cycles for a year for several driver types, representative of the entire population, defined in 
Section 2.4, which are evaluated at two environmental conditions. The current profiles provide a picture of the actual capacity needs of 
the drivers. Differently sized batteries are analysed at their BoL and EoL, considering the fixed 80 % SoH threshold and a functional 
one, to evaluate whether they are able to provide the required driving range to each of the defined drivers (Section 3.3). The driving 
cycle model is validated in Section 3.2. 

The input for this study (dataset 1 in Fig. 1) is the data collected from a real PHEV during 18 driving cycles in Barcelona, between 
April and November. The PHEV had a battery with a nominal capacity of 12 kWh and a nominal voltage of 320 V. For more details on 
the PHEV used and the trips performed, the reader is directed to the work by Canals et al. (Canals Casals et al., 2016a). 

The use of a PHEV, instead of a full EV, avoids the differences in behaviour caused by range anxiety. Using a PHEV, the drivers are 
able to drive freely, without restricting high acceleration commands or high speeds, knowing that if the battery is depleted, they can 
switch to the combustion engine at any point. Therefore, the available data represents the natural driving patterns of the drivers. To 
eliminate the difference in the operation of the battery when used in hybrid mode, the trips have been selected to consider only the 
periods where the PHEV was driven in 100 % electric mode. 

The available data from the BMS consists of the battery pack-related data (with its current, voltage, temperature and State of 
Charge (SoC)) and that of each cell in the pack (with its corresponding temperature and voltage profiles) at a frequency of 1 Hz. 

Different drivers performed each of the available driving cycles, capturing a variety of driving styles and traffic conditions. The 
behaviour of the battery in different road types differs importantly and therefore, to be able to create a reliable model, it is necessary to 
group the input data based on the road type. 

2.1. Classification of the real driving cycles 

Even though the itinerary of each of the driving cycles is unknown, the energy consumption per unit of time provides an indicator of 
the road type. Based on values obtained from literature, the consumption per distance is assumed to be 0.176 kWh/km for urban 
driving and 0.189 kWh/km for highway driving, where high speeds increase consumption (Canals Casals et al., 2016b). These values 
can be translated to consumption per unit of time by considering that the average speeds for urban and highway driving are 31 km/h 

Fig. 1. Methodology framework of the study.  
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and 93 km/h respectively (André et al., 1994). 
The reference consumption values are compared to the consumption of the real cycles. This last consumption is obtained from the 

power profile of the battery, which is calculated from the current and voltage profiles. Fig. 2 shows the consumption of each of the real 
driving cycles and the reference consumption for urban and highway driving. This representation allows observing that the real cycles 
are a combination of both road types, with a tendency towards highway sections in the cycles with higher consumption and urban in 
the lower consumption ones. 

Therefore, the real cycles have been classified into two groups: semi-urban (SU) and semi-highway (SH), considering a threshold of 
0.195 kWh/min, which is the middle value between the pure highway and pure urban driving. Therefore, SU cycles are representative 
of urban driving, with short highway sections and in SH cycles, highway driving is the dominant style. By analysing the driving cycles 
corresponding to each type, two models have been built: one for SU driving and the other for SH driving. 

2.2. Characterization of the real driving cycles 

In order to characterize both driving types in detail, each driving cycle is considered to contain a series of microtrips that take place 
until the final stop of the vehicle. Each of these microtrips is composed of discharge and regenerative braking periods, referred to as 
driving pulses, with an idle period in between them, where no current flows through the battery. Fig. 3 represents this way of 
conceptualizing the driving cycles. 

For each period (discharge, regeneration, idle and final stop), representative parameters of the current profiles are extracted, and 
their statistical empirical distribution is built, considering 20 equally sized bins. The parameters considered and their description are 
presented in Table 1. 

The first approach used relies on finding the cumulative probability function of each parameter. It can be shown by means of the 
appropriate parametric statistical tests that the existing data do not follow common distribution functions (e.g., gaussian, chi-square, 
etc.) and, therefore, empirical discrete probability functions are used. The usage of all available data for the definition of the prob-
ability functions preserves the stochastic nature of the input data. 

2.3. Driving cycle generation procedure 

The driving cycle models for SU and SH driving are built based on the previously described probability functions based on real data. 
The proposed model takes as input the trip duration and outputs the current profile with a resolution of 1 Hz. 

The methodology to build the synthetic current profile is based on a stochastic simulation from the empiric probability functions. 
The sample for the parameters is obtained by generating a random seed that is used to extract the corresponding input value from each 
probability function. 

The steps and inputs used to form the current profile are described below and represented in Fig. 4 following the reference 
nomenclature from Table 1. 

1. Characterization of the idle periods: the first step is to find the number of idle periods that the trip will contain. Considering 
the desired duration of the driving cycle (dDC), which is the input of the model, the frequency I1, obtained from the corresponding 
probability function, defines the number of idle periods (n) following Eq. (1). 

n = I1*dDC (1) 

The duration of each idle period (I0⋯In), is obtained from the probability function of I2. To avoid unrealistic driving trips, the total 
idle duration is not allowed to exceed 15 % and 19 % of dDC for SU and SH respectively, which corresponds to the maximum per-
centages found in the real driving cycles. These idle periods are located symmetrically over the entire duration of the cycle, which 
defines the duration of the driving pulses (dDP) in between the idle periods, as shown in Eq. (2). 

Fig. 2. Classification of SU and SH cycles based on the consumption.  
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Fig. 3. Driving cycle schematic and nomenclature.  

Table 1 
Key parameters of the driving cycles and their description.  

Ref Name Period Description Unit 

I1 Idle frequency Idle Number of idle periods per minute periods/ 
min 

I2 Idle duration Idle Duration of each idle period s 
I3 Before idle delta Idle Delta of current before an idle period A 
I4 After idle delta Idle Delta of current after an idle period A 
F1 Final stop delta Final stop Delta of current before the final stop A 
F2 Final stop delta rate Final stop Current delta rate of the final stop A/s 
D1 Discharge duration Discharge Duration of the discharge periods s 
D2 Discharge maximum current Discharge Maximum current reached in a discharge period A 
D3 Discharge delta current Discharge Average current delta during consecutive seconds during discharge A 
D4 Reduction after max 

discharge 
Discharge Reduction of the relative maximums after the maximum discharge current (D2) is 

reached 
– 

R1 Regen duration Regeneration Duration of the regen periods s 
R2 Regen maximum current Regeneration Maximum current reached in a regen period A 
R3 Regen delta current Regeneration Average current delta during consecutive seconds during regen A 
R4 Reduction after max regen Regeneration Reduction of the relative maximums after the maximum discharge current (R2) is 

reached 
–  

Fig. 4. Driving cycle generation procedure.  
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dDP =
1
n

(

dDC −
∑n

i=0
I2i

)

(2) 

The current during the entire idle period is set to zero, and the seconds immediately before and after the periods are characterized 
by the values extracted from the probability functions of I3 and I4. These values represent the jump in current that takes place before 
and after an idle period. 

2. Characterization of the driving pulses: once the idle periods are defined, each period between them represents a driving pulse 
composed of consecutive discharge and regeneration periods. Each discharge or regeneration is defined by its duration, as extracted 
from the probability functions of D1 and R1, respectively. 

The current for each second of these periods is calculated until the total duration is met. Based on the previous current value, the 
current of the following second is calculated by adding the delta current extracted from the probability functions of D2 or R2. At this 
step, additional conditions are imposed. Firstly, the maximum current is not allowed to be higher than the value extracted from the 
probability functions of D3 or R3. In addition, the maximum current is only allowed to be reached once during each regeneration or 
discharge period. The following relative maximums are reduced by the values extracted from the probability functions of D4 or R4. 
This process for calculating the current is performed until the duration of the drive pulse (dDP) is reached. 

3. Characterization of the final stop: the final part of the last drive pulse is overwritten with the current profile of the final stop, 
which defines how the battery reaches the end of the trip. This profile is characterized based on the values of the current delta (F1) and 
the rate (F2) and assuming a progressive decrease of the current until it reaches zero. 

This process allows building the synthetic current profile for the desired trip duration and road type. For this study, an important 
parameter is the consumption of the trip. This value is obtained by considering the power profile calculated from the current profile 
and an average voltage on the battery, obtained by analysing the real operation of the PHEV in the input dataset 1. 

2.4. Use case definition 

The developed model is used to obtain the daily driving profiles of several drivers during an entire year to evaluate how different- 
sized batteries are able to meet the capacity requirements according to their SoH. 

In order to define representative driving trips, data collected from 24 EVs over 1.5 years and 3 European regions have been 
considered (dataset 2 in Fig. 1). Two of the regions are representative of urban driving and one contains highway sections. Therefore, 
the data from the two urban regions have been grouped to represent SU driving and the other region has been considered for SH. 

Based on the duration of the trips between charges, the values that cover 50 % and 90 % of the trips have been extracted. Using the 
driving cycle model and these durations, four driver types are defined and their daily synthetic driving cycles are generated for an 
entire year. These driver types represent users who have habits when using their EVs, like driving on SU or SH roads and covering 
specific distances. Instead of considering the same duration of driving for each day, to add a stochastic factor to the analysis, the daily 
driving time is obtained from a normal distribution where the mean is the duration presented in Table 2 and the standard deviation is 5 
% of the mean. By using a normal distribution of the driving durations, the study focuses on relatively homogenous drivers, such as 
commuting ones. However, it should be highlighted, that in the analysis of the EoL requirements, the longest 5 % of the trips have been 
assumed to be covered by other means of transport, as will be further discussed in Section 4. This implies that the results also reflect 
drivers that sporadically perform long-distance trips but choose an alternative to the EV for those trips. 

A critical aspect that limits the performance of EVs in several parts of the world is the environmental condition. Under cold 
temperatures, besides the effects related to battery degradation such as lithium plating (Jaguemont et al., 2016) or the internal 
resistance increase that reduces the useful capacity, the specific energy consumption of the EV can be substantially higher than in 
warmer climates. This is due to higher energy losses in the efficiency of the battery and for the auxiliary heating services of the vehicle. 

Therefore, even with the same driving patterns and nominal capacity, the functionalities required by the driver can be compro-
mised due to cold temperatures. To account for this climate dependency, for each of the driver types presented above, an additional use 
case is considered in which the consumption per trip is increased by a factor of 29 %, obtained from comparing the EV consumption at 
an average annual temperature of 18 ◦C and 8 ◦C (Al-Wreikat et al., 2022). 

For each of the use cases, 6 differently sized batteries (16, 24, 30, 40, 60 and 90 kWh) representative of the current EVs on the road 
are analysed. Considering that the driving cycle model was developed for a 12 kWh PHEV, the consumption has been corrected to 
account for the differences in weight. 

Fig. 5 shows the weight of EVs with different battery capacities. The weight of the PHEV used to build the driving model is marked 
in yellow, which serves as the reference to define the correction factors. Notice that the PHEV has additional components like the 
combustion engine and tank, which increase the weight compared to an EV with the same battery capacity. Considering average 

Table 2 
Definition of the driver types according to the road and average driving time.  

Driver type Road type Trips covered Average daily driving time (mins) 

SU50 SU 50 % 52 
SU90 SU 90 % 126 
SH50 SH 50 % 44 
SH90 SH 90 % 109  
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weights, a reduction in the consumption of 13 % has been applied for low-capacity EVs (16 and 24 kWh) and an increase of 24 % for 
high-capacity ones (70 and 90 kWh). The average weight of the medium capacity EVs (30 and 40 kWh) is close to the reference value 
and therefore, no adjustment has been applied for these cases. To check the accuracy of the correction factors obtained using the EV 
weight, a WLTP consumption-based analysis was performed, which yielded similar results. 

Therefore, a total number of 48 use cases (battery-driver-climate combinations) are analysed at Beginning of Life (BoL) and EoL. 

Fig. 5. EV Weight based on the battery capacity for different models.  

Fig. 6. Idle period distributions.  

M. Etxandi-Santolaya et al.                                                                                                                                                                                         



Transportation Research Part D 114 (2023) 103545

8

The EoL is calculated in two ways: 1) using the fixed threshold of 80 % SoH and 2) using a functional one that allows providing the 
energy required by 95 % of the trips, without falling below 60 % where other aspects should be addressed (Etxandi-Santolaya et al., 
2022). 

Fig. 7. Discharge period distributions.  
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3. Results 

3.1. Real driving cycle parameters 

First, the driving cycle parameters of the real data are presented. Due to the large number of distributions, only the most relevant 

Fig. 8. Regeneration period distributions.  
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ones are plotted, with a reduction of the number of bins for ease of representation in several cases. In the histograms, the left side 
represents SU and the right side SH. The entire probability functions of all parameters are provided as supplementary material, which 
the reader can access for a more in-depth analysis. 

3.1.1. Idle periods 
The duration of the idle periods ranges between 10 and 220 s and 10–188 s for SU and SH driving, respectively. Fig. 6a shows how 

for both road types, the most frequent stops last less than 20 s. 
For both SU and SH, during the seconds before and after an idle period, the battery often recorded discharge currents, which 

suggests that in many cases the EVs were not able to recover energy through regeneration, even if the car was braking to arrive at the 
idle period. This is shown in Fig. 6b which classifies the idle periods depending on whether the battery charged through regeneration 
(R) or discharged (D) before and after the period. 

On average, the SU EVs remain between 5 and 17 % of the time in idle mode (11 % on average) and their frequency of the stops is 
between 0.19 and 0.40 stops/min (0.31 stops/min on average). For SH cycles, the percentage of idle time over the total is reduced to 
2–15 % (7.5 % on average), validating the assumption that these cycles contain lower urban sections and more highway ones. The 
frequency of the stops, in this case, is 0.04–0.41 stops/min (0.18 stops/min on average). 

Fig. 9. Synthetic drive cycles compared to the real ones.  

M. Etxandi-Santolaya et al.                                                                                                                                                                                         



Transportation Research Part D 114 (2023) 103545

11

3.1.2. Discharge periods 
Fig. 7 shows the main distributions obtained for the discharge periods for SU (left) and SH (right) driving. The distributions of the 

duration of these discharge periods are shown in Fig. 7a. SU driving shows a tendency towards shorter discharges, unlike SH where the 
most frequent discharge duration is around 2 min, most likely due to its highway driving nature. 

Fig. 7b shows the distribution of the maximum current during discharge. Notice how the maximum currents tend to be higher for 
SH driving than for SU driving. 

The change in the discharge current, from second to second, is in most cases below 10 A, however, spikes of 100 A have been 
recorded, which could take place during a sudden acceleration or increase of road grade while driving. The distributions of the 
discharge current delta values are shown in Fig. 7c, where positive values represent a decrease in the current and negative values 
represent increases. 

3.1.3. Regeneration periods 
Fig. 8 shows the main distributions obtained for the regeneration periods for SU (left) and SH (right) driving. Even if longer du-

rations are occasionally recorded, the most common regeneration periods last only a few seconds (less than 7 s for the majority of 
cases), as shown in Fig. 8a. 

The maximum regeneration currents are shown in Fig. 8b. In this case, the differences between SH and SU driving are not sub-
stantial, suggesting that the regeneration may be limited by the battery itself. 

Fig. 8c shows the change in the current during regeneration in a timespan of a second. Although spikes in the regeneration current 
of higher than 100 A have been recorded, the regeneration current often changes more slowly, with usual current deltas of below 8 A 
for SU and 20 A for SH. In the figure, positive values correspond to an increase in the current and negative ones to a decrease. 

3.1.4. Final stops 
Similarly to the idle periods, for the idle periods, the current before the stop is between 1 and 8 A. In this case, none of the cycles 

analysed allowed for regeneration before the final stop, and all presented discharge currents. Similarly, to the moments before the idle 
periods, the EVs were not able to recover energy through regeneration before the final stop. This can be caused by the low speeds at 
which the EV drives when parking. 

3.2. Driving cycle model validation 

Fig. 9a and Fig. 9b show one synthetically generated cycle for SU and SH, respectively, compared to a real one with the same 
duration. The current profile is shown on the left and the SoC profile on the right. The synthetic current profiles show a good similarity 
with the real ones and the maximum currents are in the same order of magnitude for both charge and discharge. 

Fig. 9c shows the SoC profiles of 100 synthetic cycles for SU (left) and SH (right). It is worth mentioning that the real profiles show 
different behaviours depending on the trip period. The real SoC profiles show that the highest energy consumption takes place during 
the middle part of the trip, once the EV is on the road. For the trip start and end, where the vehicle may be getting in or out of the 
parking, the SoC profiles show a flatter shape. The synthetic profiles show that the model can generate cycles capturing the average 
usage pattern throughout the entire trip. 

To validate the developed model, the annual driving cycles generated for the 4 driver types (Table 2) are compared with the real 
data. Table 3 shows the average consumption for the synthetic cycles compared with the one from the real cycles. The average 
consumption from the real cycles is obtained by finding the average consumption of all the cycles corresponding to each road type. 

3.3. Evaluation of the capacity requirements 

The plots from Fig. 10 represent the BoL batteries of different sizes, including, in green the average energy consumption for each use 
case, in yellow the maximum one and the remaining in grey the unused available capacity. If a battery cannot provide the required 
range at BoL, it is marked in red. In addition, the EoL capacity is marked by a red marker for the fixed SoH threshold and a black one for 
the functional one that covers 95 % of the driving trips. The first thing analysed is the minimum-sized battery required to fulfil all the 
driving trips at BoL.  

• SU50 is covered by the 16 kWh battery for regular and cold climates.  
• SU90 requires a 30 kWh for the regular climate, which is not enough in a cold climate where a 40 kWh battery is needed.  
• SH50 is covered with a 16 kWh battery for regular climates and a 24 kWh one in cold climates. 

Table 3 
Average consumption of the synthetic cycles vs real ones.  

Driver Type Average Synthetic (kWh/min) Average Real (kWh/min) Rel Error 

SU50 0.152 0.158 − 3.68 % 
SU90 0.151 − 3.89 % 
SH50 0.254 0.255 − 0.37 % 
SU90 0.253 − 0.68 %  
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• SH90 is the most demanding case for which a 40 kWh battery is required for the regular climate and a 70 kWh one under cold 
climate. 

If the battery is not the minimum-sized one, the unused capacity is substantial, especially for SU driving. For the case covering 50 % 
of the population, choosing a battery over 24 kWh implies not using over half of the available capacity at BoL. For the 90 % case, this 

Fig. 10. Minimum and average DoDs and EoL SoH values.  
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happens around 70 kWh. SH driving is more demanding, as its consumption per unit time is higher. For the 50 % case, batteries over 40 
kWh are severely underused. For the 90 % SH use case, batteries of 90 kWh and above are not used to their potential, as the average 
driving trip consumes only 50 % of the battery at BoL. 

Regarding the cases covering 50 % of the population, even for the 16 kWh battery, the EoL can be postponed below 80 % SoH 
without creating any limitations in range. The only exception happens for the SH50 case in a cold environment, as the functional EoL is 
located at 81.9 %, above the fixed one. For 90 % of the population, the EoL can also be postponed for large batteries of 70 or 90 kWh 
even in cold climates. 

Fig. 11 shows the difference between the fixed and functional thresholds used in this study. Highlighted in red appear the cases 
where the BoL battery cannot provide the required range, in green the cases where the EoL can be extended below the fixed SoH 
threshold and in orange the case for which the EoL is reached before 80 % SoH. Most cases allow a reduction of 20 %, corresponding to 
the EoL SoH of 60 % chosen for safety purposes. For the other cases where the EoL is found below the 80 % threshold, the first life can 
be maintained for an additional 5–10 % decrease of the SoH. 

Based on an improvement to a degradation model developed using real-world EV data, which allows estimating the degradation of 
the EV battery depending on its age (Bibiloni-Mulet, 2020), the extension of the EoL has been translated to years. The additional life 
that a battery could have in the EV goes from 1.4 to 8.9 years for high-capacity batteries. 

4. Discussion 

Results highlight two important aspects regarding the current trends in the EV market. First, there is little evidence to support the 
need for a constant increase in battery capacity. As discussed in the introduction, current EV models sold on the market have on 
average 50 kWh. However, the 24 kWh battery has shown to be sufficient (even postponing the EoL) to cover the capacity needs of 50 
% of the population. The 30 or 40 kWh batteries are sufficient to cover 90 % of the population driving on SU roads, and the 70 kWh one 
for SH. Therefore, batteries with capacities over 70 kWh remain severely underused for the majority of the cases. The underuse of EV 
batteries does not help to minimize the environmental impact of the transportation sector, which was the largest motivation for 
switching to electric-based mobility in the first place (Leurent and Windisch, 2011). 

Secondly, for those cases where the battery at BoL can cover the daily mileage, the EoL threshold has proven to be too restrictive. 
Only in one of the cases studied (SH90 with 40 kWh) the 80 % threshold was too low. For the rest of the cases, the EV first life could last 
longer than expected with the 70–80 % SoH threshold. 

This is something to be studied individually for each EV, by developing a methodology to define a functional EoL based on the 
battery size, environmental conditions and driving pattern. Future lines of research of the authors will deal with finding the EoL that is 
tailored to each driver and provides information on when and with which SoH the EV battery will actually be retired. In most cases, the 
functional EoL has not been defined by a lack of available capacity, but because the SoH arrived at 60 %. At this point, other aspects 
must be studied, like entering the ageing knee or the increase of the internal resistance that can generate underperformance or safety- 
related issues. Further work will be required to evaluate whether these aspects might force an early retirement of the battery before 
capacity constraints appear. 

This study has shown how the manufacturing of lower-capacity batteries could be promoted while not compromising drivers’ 
satisfaction. It should be highlighted that the study has been centred towards users with relatively homogenous trips. For those users 
that would occasionally perform longer trips, rather than oversizing the EV battery, which would remain underused most of the time 
and generate a larger environmental impact (Marmiroli et al., 2020), other alternatives should be considered. The first option could be 
choosing other means of transport for that trip, including public transportation or renting an internal combustion engine vehicle. The 
second option, which is also aligned with a big part of the research effort and investments, is to promote fast charging. With the 
deployment of adequate technology and infrastructure, fast charging could enable smaller batteries to cover longer distances by adding 
an intermediate charge in the trip (Hu, 2019). 

The shift of the manufacturing trends towards lower capacities is in line with the environmental targets that aim to reduce the 
carbon footprint of the transportation sector and provides a solution to face the potential shortage of materials in the upcoming years. 
However, this alternative is not considered when looking at current policies. The New EU regulatory framework for batteries, proposed 
in December 2020, acknowledges the need to promote a circular economy-based treatment of the batteries. In particular, battery reuse 
and recycling are considered key pillars to reduce raw material extraction and maintain the value of the materials for longer (European 
Commission, 2020), leaving aside the non-use of resources in the first place. 

As highlighted by policies and research efforts, recycling is the only way to decouple the production of batteries from the available 
raw materials. Nevertheless, recycling processes still face many limitations, such as a lack of sufficient investment and the need for 
higher economies of scale to be profitable against raw material extraction (Beaudet et al., 2020). Until a closed-loop system is achieved, 
reducing the battery capacity can provide a powerful tool to reduce stress on raw material extraction. 

Regarding reuse, battery second-life applications provide a way to extend the useful life of the EV battery once retired from the 
vehicle by making use of its residual value, which is an action supported by the circular economy. These applications are being funded 
by many European research projects and are being deployed by several start-ups. However, second-life applications still face economic 
and technical uncertainties (Martinez-Laserna et al., 2018). In fact, as this study has shown, the expected SoH value of retired batteries 
is likely to be lower than the 70–80 % SoH assumed in second-life assessments. Starting the second life with higher levels of degra-
dation may compromise the technical viability of the second life and reduce the economic profit (Montes et al., 2022). However, these 
effects may be in fact positive considering that second-life markets are expected to be saturated in the upcoming years (Kotak et al., 
2021). Considering the market saturation, reducing the battery capacity would also avoid sending to recycling batteries with residual 
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value. 
A high battery capacity, however, provides an important marketing tool and for this reason, it is unlikely that manufacturers will 

reduce the ranges of EVs in the short term, unless forced to by legislation or lack of available material. As discussed in a recent study, if 
the same market trends are maintained, a large number of high capacity batteries will reach the EV EoL in a healthy state (Casals et al., 
2022). In that case, to avoid the underuse, other sources of circularity should gain more weight, such as stacking other services during 
the battery first life, namely through Vehicle to Grid (V2G) services. In this study, large batteries have shown to have sufficient capacity 
to provide these services, while not compromising the daily driving requirements. V2G can allow exploiting the first life of batteries 
that would otherwise remain underused, while providing an important contribution to the grid and generating revenue for the owners 
(Ma et al., 2012). Prioritizing V2G over reuse is supported by the previously mentioned limitations of the second-life applications and 
by the circular economy guidelines, which promote actions with the least resource leakage. The deployment of V2G only needs a 
bidirectional charger, in front of the refurbishing, transportation and additional components that second-life batteries require. 

5. Conclusions 

This study has provided a close look into the operation of EV batteries during real-world driving, which allows understanding the 
conditions that batteries are subject to during their first life. The available driving cycles have been divided into idle, regeneration, 
discharge and final stop periods, identifying key parameters in each case. Based on these parameters, a driving cycle model has been 
built for two road types containing a different share of urban and highway sections. Even though the dataset was limited, it captured 
the different driving styles of several users. The methodology followed can be replicated by researchers with access to a higher number 
of observations and allows obtaining synthetic current profiles representative of real driving. 

Based on the developed model, this work has synthesized several current profiles performed by different drivers to evaluate the 
ability to meet the capacity requirements at BoL and EoL. 50 % of the usual urban and highway driving can be covered with a 16 or 24 
kWh battery, depending on the climate. For other drivers, batteries over 30 or 40 kWh are needed to cover the required range. In the 
most extreme case, corresponding to highway driving for almost 2 h in a cold climate, the minimum sized battery was 70 kWh. 
However, these cases are not the most representative of the population, and therefore most driving use cases can be covered with 
smaller batteries than those currently appearing on the market. 

Shifting market trends towards lower battery capacities has the potential to decrease the carbon footprint and reduce the need for 
raw material extraction, which are pressing issues that affect the sustainability of the EV. If large batteries are maintained, sustain-
ability premises ask for additional use of the battery through V2G services to exploit their first life as much as possible. 

The study also shows how current battery sizes can provide the required range even at lower SoH than the commonly assumed 80 % 
EoL threshold. Only in one of the analysed cases, the functional EoL was found to be at a higher SoH value than 80 %. This means that, 
generally, batteries are assumed to be retired too early from the EV and, therefore, if a new EoL is defined for each case, the duration of 
their first life and the SoH at the retirement point could be more accurately predicted, which would substantially affect the assessment 
of second-life applications. 
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Jaguemont, J., Boulon, L., Dubé, Y., 2016. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 

164, 99–114. https://doi.org/10.1016/j.apenergy.2015.11.034. 
Kotak, Y., Marchante Fernández, C., Canals Casals, L., Kotak, B.S., Koch, D., Geisbauer, C., Trilla, L., Gómez-Núñez, A., Schweiger, H.-G., 2021. End of Electric Vehicle 
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