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Abstract— OpenMP can be used in real-time applications to 
enhance system performance. However, predictability of 
OpenMP applications is still a challenge. This paper investigates 
heuristics for the mapping of OpenMP task graphs in 
underlying threads, for the development of time-predictable 
OpenMP programs. These approaches are based on a global 
scheduling queue, as well as per-thread allocation queues. The 
proposed method is divided into scheduling and allocation 
phases. In the former phase, OpenMP task-parts are discovered 
from OpenMP graph and placed in the scheduling queue. 
Afterwards, an appropriate allocation queue is selected for each 
task-part using four heuristic algorithms. In the latter phase, the 
best task-part is selected from the allocation queue to be 
allocated to and executed by an idle thread. Preliminary 
simulation results show that the new method overcomes BFS 
and WFS in terms of scheduling time and idle time. 

Keywords—real-time systems, OpenMP, task-to-thread 
mapping, scheduling time, idle time 

I. INTRODUCTION 

Multi-core processors can be used in real-time embedded 
systems to optimize the efficiency of modern applications, 
such as advanced driver-assistance systems (ADASs). In these 
systems, the computer-based controller must respond within a 
bounded time. So, in real-time computing, the correctness of 
the system depends not only on the computation throughput, 
but also on the response time in which the result is produced. 
However, as multi-cores behave like a black-box, time-
predictability of the system is a big challenge [1]. 

OpenMP is an industry de-facto standard to parallelize C, 
C++, and Fortran programs widely used in high-performance 
computing (HPC).  Early versions of the model targeted data-
parallelism in loop intensive applications for shared-memory 
architectures by describing a thread-centric model exposing 
details about the scheduling behavior of the application. That 
prescriptive nature has evolved into a more descriptive one in 
latter extensions, including a powerful tasking model that 
allows describing complex types of fine-grained and irregular 
parallelism [3] and a device model, built on top of it, for 
offloading to GPUs and other accelerators [2]. Furthermore, 
OpenMP is increasingly being adopted in embedded parallel 
and heterogeneous systems as well. 

OpenMP tasks are units of scheduling that can be further 
divided in task-parts, when task include task scheduling points 
(TSP). TSPs are points at which the runtime system can 
suspend a task in favor of another one, to later resume it. In 
OpenMP, tasks can be defined as tied or untied. All task-parts 
of a tied task must execute on the same thread, while task-parts 
of an untied task can be executed on different threads. The 
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current tasking model enables the programmer to define 
explicit tasks and the data dependencies existing between 
them. Tasks are executed by a team of threads, one as a master 
thread and others as worker threads, which allows the system 
to efficiently utilize many-core architectures while hiding 
their complexity from the programmer. Basically, the 
available implementations rely on breadth-first (BFS) and 
work-first (WFS) schedulers. However, the OpenMP 
specification allows the implementation of any task-to-thread 
scheduler [3] that meets the specification. 

A few existing schedulers for task-to-thread mapping [4] 
use heuristic techniques. The main objective of this paper is to 
present efficient schedulers using heuristic algorithms based 
on a multi-queue structure through the scheduling and 
allocation phases. In the scheduling phase, task-parts are 
discovered from the OpenMP-DAG that represents the 
application and placed into a global scheduling queue shared 
among all threads. Note that each thread includes an allocation 
queue. Then, an appropriate allocation queue is selected for 
each task-part and placed in the scheduling queue using the 
suggested heuristic scheduling algorithms. In the allocation 
phase, when a thread is idle and its allocation queue contains 
any task-parts, one of them is selected based on the suggested 
heuristic allocation algorithms. 

II. LITERATURE REVIEW

Serrano et al. [3] showed that timing analysis with tied 
tasks is worse than that with untied tasks. They considered two 
scenarios: (i) a generic scheduler (GenS) without considering 
any concrete scheduling policy, and (ii) the breadth-first 
scheduler (BFS) and work-first scheduler (WFS) algorithms 
with first-in, first-out (FIFO) policies. The strategies 
determine the number of tasks preventing another task from 
execution using creation time of new tied tasks and 
resumption time of existing tasks. 

Sun et al. [5] designed a technique to schedule 
synchronous OpenMP tasks. This work divides tasks into 
several groups and then assigns some of them to dedicated 
cores, isolating tied tasks. The scheduling process is 
conducted through the three phases: task grouping, offline task 
management, and online task management. 

Royuela et al. [6] designed a run-time scheduler that uses 
dynamic information of OpenMP threads and tasks running 
within several concurrent teams (i.e., concurrent parallel 
regions). This information may contain the priority list of 
tasks ready to execute and the list of OpenMP threads waiting 
in a barrier to cooperatively execute multiple parallel regions. 

Wang et al. [7] presented a partitioning-based algorithm in 
which the tied constraint can be automatically guaranteed 
while partitioning the OpenMP system to a multiprocessor This work has been co-funded by the European commission through the 
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system. After vertices are partitioned to one processor, they 
are not allowed to migrate among processors. This work 
applies an on-line scheduler to schedule subtasks based on real 
execution time instead of worst-case execution time (WCET). 

Melani et al. [4] presented two OpenMP-compliant static 
allocation techniques satisfying the time-predictability 
requirements of safety-critical systems. The former technique 
uses a non-trivial integer linear programming (ILP) 
formulation to calculate the minimum possible response time 
obtainable for a given OpenMP-DAG, which provides a 
computationally expensive but optimal allocation strategy. 
The latter one provides response times within a much smaller 
computational complexity compared to the optimal one using 
well-known sub-optimal heuristic strategies. 

The main problems with most of the existing mapping 
algorithms are that (i) they do not schedule tasks on threads 
based on global information of the system, and (ii) they do not 
use temporal conditions of the system (e.g., execution time 
and deadline) in each phase of the mapping process through 
heuristic techniques. 

III. THE PROPOSED MAPPING METHOD 

We propose a mapping method that uses temporal 
conditions of the system in each phase of the mapping process 
to meet timing requirements. This method is a fully online 
mapping technique, so it schedules task-parts whenever they 
are created in the system. The main objective is to achieve a 
work-conserving and load-balancing mapping using heuristic 
algorithms based on temporal information.  

A. System model 

An OpenMP task system 𝒯 is assumed that consists of n 
tasks {𝒯 , 𝒯 ,… , 𝒯 }. 𝒯 is characterized by a deadline 𝐷 that 
can be determined by the system designer. Each task can be 
either tied or untied. A task 𝒯  includes a set of sequentially 
ordered task-parts 𝑃 , , 𝑃 , , … . It can be represented as a 
direct acyclic graph (DAG) 𝐺 = (𝒱, ℰ), where 𝒱 is the set of 
vertices and ℰ is the set of edges. A vertex 𝒱 ,  in 𝒱 belongs 
to the x-th task-part 𝑃 ,  of task 𝒯  and contains an execution 
time 𝐶 , . It is also characterized by a response time 𝑅𝑇 ,  that 
can be estimated based on 𝐶 , , the sum of the execution time 
of the task-parts, and the deadline of 𝒯. It is assumed that the 
number of threads is equal to the number of cores. 

This method is presented for the system models that do not 
include any conditional branch. It is assumed that execution 
time of the tasks is known for the scheduler. Task-parts are 
executed by threads as non-preemptive units of scheduling, so 
when a task-part is executed, it is not suspended until 
completion. The number of OpenMP threads is considered 
equal to the number of system threads an assigned in a 1-to-1 
mapping fashion. All task-parts of a tied task must be executed 
by one thread, but each task-part of an untied task can be 
executed by different threads. 

There is a global queue for all tasks, called scheduling 
queue (𝑆𝒬), to store the task-parts discovered from 𝒯. The 
length of 𝑆𝒬 is identified by 𝑆𝒬ℒ that equals the number of all 
task-parts as 

𝑆𝒬ℒ = ∑ 𝑁    (1) 

, where 𝑁  is the number of task-parts of 𝒯 . The system 
includes m threads as {𝒯ℋ ,𝒯ℋ ,… , 𝒯ℋ }, in which each 

thread has an allocation queue (𝒜𝒬). Note that both 𝑆𝒬 and 
𝒜𝒬 include ready task-parts which have not been allocated to 
threads yet. 

Fig. 1 shows an OpenMP program and its DAG. The 
program consists of 1 implicit task corresponding to the single 
directive, and 6 explicit tasks. Each task contains one or 
multiple task-parts. 𝒯 , 𝒯 , and 𝒯  are child tasks of 𝒯 , 𝒯  is 
the child task of 𝒯 , 𝒯  is the child task of 𝒯 , and 𝒯  is the 
child task of 𝒯 . Furthermore, there are two synchronizations: 
(1) the taskwait in line 19 forces the task-part 𝑃 ,  of 𝒯  to be 
executed after completing the 𝒯 , and (2) the data 
dependencies in lines 23 and 28 force 𝒯  to be executed after 
𝒯 . 

 

B. The mapping algorithm 

Fig. 2 shows the main elements of the proposed mapping 
algorithm that includes two phases: (1) scheduling and (2) 
allocation. These phases are carried out simultaneously. 

In the scheduling phase, each task-part 𝑃 ,  is discovered 
from 𝒯  and stored in 𝑆𝒬  by all threads, starting at the first 
vertex 𝒱 ,  towards leaves. Afterwards, each task-part is 
selected from 𝑆𝒬 and stored in one of the 𝒜𝒬𝑠 by the master 
thread. After a task-part is executed by an idle thread, its child 
tasks, if any, will be appended to 𝑆𝒬. This process is repeated 
until all task-parts of 𝒯 are executed. 

A suitable thread (i.e., its corresponding 𝒜𝒬) is selected 
using one of the following suggested scheduling algorithms: 

 First-fit scheduling heuristic: the thread (i.e., 𝒜𝒬 ) 
containing the minimum number of task-parts for 
increasing the work-balancing of the queues; 

 Best-fit scheduling heuristic: the 𝒜𝒬  with the 
minimum execution time for decreasing the number of 
missed deadlines; 

 Optimum-fit scheduling heuristic: the 𝒜𝒬  including 
the maximum response time (of the task-parts) for 
increasing the data locality between tasks and reducing 
the balance of the work on the 𝒜𝒬𝑠; 

 Multi-criteria scheduling heuristic: the 𝒜𝒬 having the 
characteristics of the previous heuristics using a multi-
criteria decision. 

     
(a)                                             (b) 

Fig. 1. An OpenMP-DAG example. (a) source code; (b) DAG. 

#pragma omp parallel num_threads(4) 
#pragma omp single                                // T0 
{ 
    code00; 
    #pragma omp task                              // T1 
     { 
        code10; 
        #pragma omp task                          // T2 
         { 
            code20; 
            #pragma omp task                     // T3 
                code30; 
            code21; 
         } 
        code11; 
        #pragma omp taskwait 
        code12; 
       } 
      code01;  
      #pragma omp task depend(out:x)  // T4 
          code40; 
      code02;  
      #pragma omp task depend(in:x)    // T5 
       { 
          code50; 
          #pragma omp task                      // T6 
              code60; 
          code51; 
       } 
} 



The allocation phase is carried out for each 𝒜𝒬 
separately. Accordingly, an appropriate task-part is selected 
from 𝒜𝒬  to be allocated to and executed by the thread 𝑇𝐻 , 
the remaining task-parts in the queue are rearranged to remove 
the blank space, and the system info (e.g., the number of task-
parts in 𝒜𝒬𝑠) is updated. 

If 𝒜𝒬  includes only one task-part, it will be allocated to 
and scheduled by the relevant thread directly. Otherwise, the 
best task-part is selected from the queue using one of the 
following suggested allocation algorithms: 

 Best-fit allocation heuristic: the task-part having the 
minimum execution time for decreasing the number of 
missed deadlines; 

 Optimum-fit allocation heuristic: the task-part with the 
maximum response time for reducing the workload on 
𝒜𝒬𝑠 and increasing the chance of receiving new task-
part; 

 Multi-criteria allocation heuristic: the task-part 
including the shortest execution time and the longest 
response time based on the features of the prior 
heuristics through a multi-criteria decision. 

Algorithm 1 describes the mapping process of the 
proposed method for tied tasks meeting task scheduling 
constraint (TSC) 1 1  of the specification [8]. 
SCHEDULE_ALGORITHM chooses one of the 𝒜𝒬𝑠 using 
the scheduling heuristics, PRE_THREAD selects the thread 
belongs to the first task-part in the same task, 
SUSPEND_TASK includes the list of tasks suspended in the 
thread, ALLOC_ALGORITHM selects one of the task-parts 
from the thread’s queue, and DESCENDANT indicates 
whether a new task is the descendant of the suspended tasks. 
In the case of untied tasks, it is not needed to check the 
operations at line 18 and lines 25-32. 

IV. EVALUATION RESULTS 

The performance of the proposed mapping methodology, 
using the algorithms described in Section III.B, is evaluated 
under different number of tasks when the number of threads 
is 4 by comparing the results with those of BFS and WFS, in 
terms of scheduling time (i.e., end-to-end response time2) and 
idle time of the threads based on the mean of results. For each 
case, a random graph is generated and scheduled over 10 
iterations in which the execution time of each task-part is 
randomly generated at each iteration and only the average 
results are considered in the results. The deadline 𝐷  is 
determined in the simulation process as following 

𝐷 = 𝜌 ∗ ℰ𝒯   (2) 

, where 𝑁  indicates the number of task-parts in 𝑇 , ℰ𝒯  
represents the execution time of the task-part 𝑃  in 𝑇 , and 𝜌 
indicates a random number that is considered in the range of 
[0.5, 1]. 

Fig. 3 shows the comparison results of the methods for tied 
tasks. In this case, best-fit, multi-criteria is selected as the best 
heuristic pair. The results show that the new method reduces 

 
1 TSC1: Scheduling of new tied tasks is constrained by the set of task regions 
that are currently tied to the thread and that are not suspended in a barrier 
region. If this set is empty, any new tied task may be scheduled. Otherwise, 

scheduling time and idle time in most cases where the number 
of tasks is greater than 10. Since WFS schedules task-parts in 
only one thread, the results obtained by this algorithm are 
worse than those achieved by the others.  

Fig. 4 illustrates the simulation results for untied tasks in 
the same scenarios. Similar to tied task, best-fit, multi-criteria 
is chosen as the best heuristic pair. WFS works well where the 
number of tasks is {10, 15}. But at all, the performance of the 
new method is obvious, especially when the number of tasks 
is greater than 15. 

 

 

a new tied task may be scheduled only if it is a descendent task of every task 
in the set. 
2 The difference between the finish time of the last task-part and the start 
time of the first task-part 

 
Fig. 2. Main elements of the proposed mapping method. 

Algorithm 1. Mapping of an OpenMP-DAG application including tied tasks 

1: 𝐺 ← predefined or random graph; 𝑛𝑢𝑚 ← number of parts 
2: 𝑃 ← pool of threads; 𝑆𝒬 ← []; 𝐴𝒬𝑠 ← []; 𝑐 ← 0 
3: while 𝑐 < 𝑛𝑢𝑚 
4:     for each 𝑡ℎ𝑟 in 𝑃 
5:         if 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 == ‘busy’ and 𝑡ℎ𝑟. 𝑓𝑡𝑖𝑚𝑒 <= 𝑡 
6:             𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 ← ‘i’; 𝑐 ← 𝑐 + 1; 𝑐 ← 𝐺[𝑐] 
7:             if 𝑝. 𝑐ℎ𝑖𝑙𝑑 != NULL 
8:                 𝑆𝒬 ← APPEND(𝑝. 𝑐ℎ𝑖𝑙𝑑) 
9:             if 𝑝. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 != NULL 

10:                 𝑆𝒬 ← APPEND(𝑝. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔) 
11:     for each 𝑝 in 𝑆𝒬 
12:         if 𝑝. 𝑑𝑒𝑝 == NULL or  𝑝. 𝑑𝑒𝑝. 𝑠𝑡𝑎𝑡𝑢𝑠 == ‘idle’ 
13:             if 𝑝. 𝑝𝑖𝑑 == 0 
14:                 thr_num ← IDLE_THREAD(𝑃) 
15:                 if thr_num == NULL 
16:                     thr_num ← SCHEDULE_ALGORITHM(𝑃) 
17:             else 
18:                 thr_num ← PRE_THREAD(𝑝. 𝑝𝑖𝑑) 
19:             𝐴𝒬𝑠 ← APPEND(𝑝, thr_num) 
20:     for each 𝑡ℎ𝑟 in 𝑃 
21:         if 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 == ‘idle’ 
22:             if SIZE(𝐴𝒬𝑠[𝑡ℎ𝑟]) > 0 
23:                 if SUSPEND_TASK(𝑡ℎ𝑟).empty() 
24:                     𝑝 ← ALLOC_ALGORITHM(𝐴𝒬𝑠[𝑡ℎ𝑟]) 
25:                 else 
26:                     𝑙 ← [] 
27:                     for each 𝑡𝑝 in SUSPEND_TASK(𝑡ℎ𝑟) 
28:                         𝑙 ← APPEND(𝑡𝑝)  
29:                     for each 𝑡𝑝 not in SUSPEND_TASK(𝑡ℎ𝑟) 
30:                         if DESCENDANT(𝑡𝑝, 𝑡ℎ𝑟) == TRUE 
31:                             𝑙 ← APPEND(𝑡𝑝) 
32:                     𝑝 ← ALLOC_ALGORITHM(𝑙) 
33:                 𝑡ℎ𝑟 ← ALLOCATE(𝑝); 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 ← ‘s’ 



 

 

Comparison results show that the scheduling time 
obtained by the proposed method is decreased about 25% less 

than that of BFS and about 45% less than that of WFS (Fig. 
3(a) and Fig. 4(a)). Furthermore, the idle time is reduced about 
75% less than that of BFS and about 85% less than that of 
WFS (Fig. 3(b) and Fig. 4(b)). 

V. CONCLUSION AND FUTURE WORK 

This paper presented the initial results of the work on 
researching mapping methods for the allocation of OpenMP 
task graphs in underlying threads.  In the scheduling phase, 
task-parts are placed in a global scheduling queue, then an 
appropriate allocation queue is selected for each task-part. In 
the allocation phase, the best task-part is selected from the 
allocation queue and executed by the relevant idle thread. The 
initial simulation results showed that our mapping method 
decreases both the scheduling time of OpenMP graph and the 
idle time of threads, compared to BFS and WFS. However, the 
difference between the results is more noticeable in the tied 
tasks. The main reason is that the suggested heuristics 
consider the essential parameters for the mapping process 
(e.g., execution time and response time) in the scheduling and 
allocation phases. 

As we suggested multiple heuristics using different 
characteristics (e.g., execution time and response time) and the 
simulation results obtained by the new mapping method are 
inferior to those obtained by the other methods, our proposal 
could guarantee the predictability and robustness of the 
system. 

Current and future work include the evaluation of the 
method under more complex system models, supporting the 
creation of multiple child tasks by a task-part at Task 
Scheduling Points (TSP), different graphs (in size and 
proportion), and different numbers of threads. 
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Fig. 3. Effect of the number of tasks on the performance metrics for 
tied tasks: (a) scheduling time; (b) idle time. 
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Fig. 4. Effect of the number of tasks on the performance metrics for 
untied tasks: (a) scheduling time; (b) idle time. 
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