
Heuristic-based Task-to-Thread Mapping in Multi-
Core Processors

Mohammad Samadi Gharajeh1,*, Sara Royuela2, Luis Miguel Pinho1, Tiago Carvalho1, Eduardo Quiñones2
1School of Engineering, Polytechnic Institute of Porto, Portugal

{mmasa, lmp, tdc}@isep.ipp.pt
2Barcelona Supercomputing Center, Barcelona, Spain

{sara.royuela, eduardo.quinones}@bsc.es

Abstract— OpenMP can be used in real-time applications to
enhance system performance. However, predictability of
OpenMP applications is still a challenge. This paper investigates
heuristics for the mapping of OpenMP task graphs in
underlying threads, for the development of time-predictable
OpenMP programs. These approaches are based on a global
scheduling queue, as well as per-thread allocation queues. The
proposed method is divided into scheduling and allocation
phases. In the former phase, OpenMP task-parts are discovered
from OpenMP graph and placed in the scheduling queue.
Afterwards, an appropriate allocation queue is selected for each
task-part using four heuristic algorithms. In the latter phase, the
best task-part is selected from the allocation queue to be
allocated to and executed by an idle thread. Preliminary
simulation results show that the new method overcomes BFS
and WFS in terms of scheduling time and idle time.

Keywords—real-time systems, OpenMP, task-to-thread
mapping, scheduling time, idle time

I. INTRODUCTION

Multi-core processors can be used in real-time embedded
systems to optimize the efficiency of modern applications,
such as advanced driver-assistance systems (ADASs). In these
systems, the computer-based controller must respond within a
bounded time. So, in real-time computing, the correctness of
the system depends not only on the computation throughput,
but also on the response time in which the result is produced.
However, as multi-cores behave like a black-box, time-
predictability of the system is a big challenge [1].

OpenMP is an industry de-facto standard to parallelize C,
C++, and Fortran programs widely used in high-performance
computing (HPC). Early versions of the model targeted data-
parallelism in loop intensive applications for shared-memory
architectures by describing a thread-centric model exposing
details about the scheduling behavior of the application. That
prescriptive nature has evolved into a more descriptive one in
latter extensions, including a powerful tasking model that
allows describing complex types of fine-grained and irregular
parallelism [3] and a device model, built on top of it, for
offloading to GPUs and other accelerators [2]. Furthermore,
OpenMP is increasingly being adopted in embedded parallel
and heterogeneous systems as well.

OpenMP tasks are units of scheduling that can be further
divided in task-parts, when task include task scheduling points
(TSP). TSPs are points at which the runtime system can
suspend a task in favor of another one, to later resume it. In
OpenMP, tasks can be defined as tied or untied. All task-parts
of a tied task must execute on the same thread, while task-parts
of an untied task can be executed on different threads. The

* PhD Candidate, Universitat Politècnica de Catalunya, Barcelona, Spain

current tasking model enables the programmer to define
explicit tasks and the data dependencies existing between
them. Tasks are executed by a team of threads, one as a master
thread and others as worker threads, which allows the system
to efficiently utilize many-core architectures while hiding
their complexity from the programmer. Basically, the
available implementations rely on breadth-first (BFS) and
work-first (WFS) schedulers. However, the OpenMP
specification allows the implementation of any task-to-thread
scheduler [3] that meets the specification.

A few existing schedulers for task-to-thread mapping [4]
use heuristic techniques. The main objective of this paper is to
present efficient schedulers using heuristic algorithms based
on a multi-queue structure through the scheduling and
allocation phases. In the scheduling phase, task-parts are
discovered from the OpenMP-DAG that represents the
application and placed into a global scheduling queue shared
among all threads. Note that each thread includes an allocation
queue. Then, an appropriate allocation queue is selected for
each task-part and placed in the scheduling queue using the
suggested heuristic scheduling algorithms. In the allocation
phase, when a thread is idle and its allocation queue contains
any task-parts, one of them is selected based on the suggested
heuristic allocation algorithms.

II. LITERATURE REVIEW

Serrano et al. [3] showed that timing analysis with tied
tasks is worse than that with untied tasks. They considered two
scenarios: (i) a generic scheduler (GenS) without considering
any concrete scheduling policy, and (ii) the breadth-first
scheduler (BFS) and work-first scheduler (WFS) algorithms
with first-in, first-out (FIFO) policies. The strategies
determine the number of tasks preventing another task from
execution using creation time of new tied tasks and
resumption time of existing tasks.

Sun et al. [5] designed a technique to schedule
synchronous OpenMP tasks. This work divides tasks into
several groups and then assigns some of them to dedicated
cores, isolating tied tasks. The scheduling process is
conducted through the three phases: task grouping, offline task
management, and online task management.

Royuela et al. [6] designed a run-time scheduler that uses
dynamic information of OpenMP threads and tasks running
within several concurrent teams (i.e., concurrent parallel
regions). This information may contain the priority list of
tasks ready to execute and the list of OpenMP threads waiting
in a barrier to cooperatively execute multiple parallel regions.

Wang et al. [7] presented a partitioning-based algorithm in
which the tied constraint can be automatically guaranteed
while partitioning the OpenMP system to a multiprocessor This work has been co-funded by the European commission through the

AMPERE (H2020 grant agreement N° 745601) project.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI 10.1109/ETFA52439.2022.9921453

system. After vertices are partitioned to one processor, they
are not allowed to migrate among processors. This work
applies an on-line scheduler to schedule subtasks based on real
execution time instead of worst-case execution time (WCET).

Melani et al. [4] presented two OpenMP-compliant static
allocation techniques satisfying the time-predictability
requirements of safety-critical systems. The former technique
uses a non-trivial integer linear programming (ILP)
formulation to calculate the minimum possible response time
obtainable for a given OpenMP-DAG, which provides a
computationally expensive but optimal allocation strategy.
The latter one provides response times within a much smaller
computational complexity compared to the optimal one using
well-known sub-optimal heuristic strategies.

The main problems with most of the existing mapping
algorithms are that (i) they do not schedule tasks on threads
based on global information of the system, and (ii) they do not
use temporal conditions of the system (e.g., execution time
and deadline) in each phase of the mapping process through
heuristic techniques.

III. THE PROPOSED MAPPING METHOD

We propose a mapping method that uses temporal
conditions of the system in each phase of the mapping process
to meet timing requirements. This method is a fully online
mapping technique, so it schedules task-parts whenever they
are created in the system. The main objective is to achieve a
work-conserving and load-balancing mapping using heuristic
algorithms based on temporal information.

A. System model

An OpenMP task system 𝒯 is assumed that consists of n
tasks {𝒯 , 𝒯 ,… , 𝒯 }. 𝒯 is characterized by a deadline 𝐷 that
can be determined by the system designer. Each task can be
either tied or untied. A task 𝒯 includes a set of sequentially
ordered task-parts 𝑃 , , 𝑃 , , … . It can be represented as a
direct acyclic graph (DAG) 𝐺 = (𝒱, ℰ), where 𝒱 is the set of
vertices and ℰ is the set of edges. A vertex 𝒱 , in 𝒱 belongs
to the x-th task-part 𝑃 , of task 𝒯 and contains an execution
time 𝐶 , . It is also characterized by a response time 𝑅𝑇 , that
can be estimated based on 𝐶 , , the sum of the execution time
of the task-parts, and the deadline of 𝒯. It is assumed that the
number of threads is equal to the number of cores.

This method is presented for the system models that do not
include any conditional branch. It is assumed that execution
time of the tasks is known for the scheduler. Task-parts are
executed by threads as non-preemptive units of scheduling, so
when a task-part is executed, it is not suspended until
completion. The number of OpenMP threads is considered
equal to the number of system threads an assigned in a 1-to-1
mapping fashion. All task-parts of a tied task must be executed
by one thread, but each task-part of an untied task can be
executed by different threads.

There is a global queue for all tasks, called scheduling
queue (𝑆𝒬), to store the task-parts discovered from 𝒯. The
length of 𝑆𝒬 is identified by 𝑆𝒬ℒ that equals the number of all
task-parts as

𝑆𝒬ℒ = ∑ 𝑁 (1)

, where 𝑁 is the number of task-parts of 𝒯 . The system
includes m threads as {𝒯ℋ ,𝒯ℋ ,… , 𝒯ℋ }, in which each

thread has an allocation queue (𝒜𝒬). Note that both 𝑆𝒬 and
𝒜𝒬 include ready task-parts which have not been allocated to
threads yet.

Fig. 1 shows an OpenMP program and its DAG. The
program consists of 1 implicit task corresponding to the single
directive, and 6 explicit tasks. Each task contains one or
multiple task-parts. 𝒯 , 𝒯 , and 𝒯 are child tasks of 𝒯 , 𝒯 is
the child task of 𝒯 , 𝒯 is the child task of 𝒯 , and 𝒯 is the
child task of 𝒯 . Furthermore, there are two synchronizations:
(1) the taskwait in line 19 forces the task-part 𝑃 , of 𝒯 to be
executed after completing the 𝒯 , and (2) the data
dependencies in lines 23 and 28 force 𝒯 to be executed after
𝒯 .

B. The mapping algorithm

Fig. 2 shows the main elements of the proposed mapping
algorithm that includes two phases: (1) scheduling and (2)
allocation. These phases are carried out simultaneously.

In the scheduling phase, each task-part 𝑃 , is discovered
from 𝒯 and stored in 𝑆𝒬 by all threads, starting at the first
vertex 𝒱 , towards leaves. Afterwards, each task-part is
selected from 𝑆𝒬 and stored in one of the 𝒜𝒬𝑠 by the master
thread. After a task-part is executed by an idle thread, its child
tasks, if any, will be appended to 𝑆𝒬. This process is repeated
until all task-parts of 𝒯 are executed.

A suitable thread (i.e., its corresponding 𝒜𝒬) is selected
using one of the following suggested scheduling algorithms:

 First-fit scheduling heuristic: the thread (i.e., 𝒜𝒬)
containing the minimum number of task-parts for
increasing the work-balancing of the queues;

 Best-fit scheduling heuristic: the 𝒜𝒬 with the
minimum execution time for decreasing the number of
missed deadlines;

 Optimum-fit scheduling heuristic: the 𝒜𝒬 including
the maximum response time (of the task-parts) for
increasing the data locality between tasks and reducing
the balance of the work on the 𝒜𝒬𝑠;

 Multi-criteria scheduling heuristic: the 𝒜𝒬 having the
characteristics of the previous heuristics using a multi-
criteria decision.

(a) (b)

Fig. 1. An OpenMP-DAG example. (a) source code; (b) DAG.

#pragma omp parallel num_threads(4)
#pragma omp single // T0
{
 code00;
 #pragma omp task // T1
 {
 code10;
 #pragma omp task // T2
 {
 code20;
 #pragma omp task // T3
 code30;
 code21;
 }
 code11;
 #pragma omp taskwait
 code12;
 }
 code01;
 #pragma omp task depend(out:x) // T4
 code40;
 code02;
 #pragma omp task depend(in:x) // T5
 {
 code50;
 #pragma omp task // T6
 code60;
 code51;
 }
}

The allocation phase is carried out for each 𝒜𝒬
separately. Accordingly, an appropriate task-part is selected
from 𝒜𝒬 to be allocated to and executed by the thread 𝑇𝐻 ,
the remaining task-parts in the queue are rearranged to remove
the blank space, and the system info (e.g., the number of task-
parts in 𝒜𝒬𝑠) is updated.

If 𝒜𝒬 includes only one task-part, it will be allocated to
and scheduled by the relevant thread directly. Otherwise, the
best task-part is selected from the queue using one of the
following suggested allocation algorithms:

 Best-fit allocation heuristic: the task-part having the
minimum execution time for decreasing the number of
missed deadlines;

 Optimum-fit allocation heuristic: the task-part with the
maximum response time for reducing the workload on
𝒜𝒬𝑠 and increasing the chance of receiving new task-
part;

 Multi-criteria allocation heuristic: the task-part
including the shortest execution time and the longest
response time based on the features of the prior
heuristics through a multi-criteria decision.

Algorithm 1 describes the mapping process of the
proposed method for tied tasks meeting task scheduling
constraint (TSC) 1 1 of the specification [8].
SCHEDULE_ALGORITHM chooses one of the 𝒜𝒬𝑠 using
the scheduling heuristics, PRE_THREAD selects the thread
belongs to the first task-part in the same task,
SUSPEND_TASK includes the list of tasks suspended in the
thread, ALLOC_ALGORITHM selects one of the task-parts
from the thread’s queue, and DESCENDANT indicates
whether a new task is the descendant of the suspended tasks.
In the case of untied tasks, it is not needed to check the
operations at line 18 and lines 25-32.

IV. EVALUATION RESULTS

The performance of the proposed mapping methodology,
using the algorithms described in Section III.B, is evaluated
under different number of tasks when the number of threads
is 4 by comparing the results with those of BFS and WFS, in
terms of scheduling time (i.e., end-to-end response time2) and
idle time of the threads based on the mean of results. For each
case, a random graph is generated and scheduled over 10
iterations in which the execution time of each task-part is
randomly generated at each iteration and only the average
results are considered in the results. The deadline 𝐷 is
determined in the simulation process as following

𝐷 = 𝜌 ∗ ℰ𝒯 (2)

, where 𝑁 indicates the number of task-parts in 𝑇 , ℰ𝒯
represents the execution time of the task-part 𝑃 in 𝑇 , and 𝜌
indicates a random number that is considered in the range of
[0.5, 1].

Fig. 3 shows the comparison results of the methods for tied
tasks. In this case, best-fit, multi-criteria is selected as the best
heuristic pair. The results show that the new method reduces

1 TSC1: Scheduling of new tied tasks is constrained by the set of task regions
that are currently tied to the thread and that are not suspended in a barrier
region. If this set is empty, any new tied task may be scheduled. Otherwise,

scheduling time and idle time in most cases where the number
of tasks is greater than 10. Since WFS schedules task-parts in
only one thread, the results obtained by this algorithm are
worse than those achieved by the others.

Fig. 4 illustrates the simulation results for untied tasks in
the same scenarios. Similar to tied task, best-fit, multi-criteria
is chosen as the best heuristic pair. WFS works well where the
number of tasks is {10, 15}. But at all, the performance of the
new method is obvious, especially when the number of tasks
is greater than 15.

a new tied task may be scheduled only if it is a descendent task of every task
in the set.
2 The difference between the finish time of the last task-part and the start
time of the first task-part

Fig. 2. Main elements of the proposed mapping method.

Algorithm 1. Mapping of an OpenMP-DAG application including tied tasks

1: 𝐺 ← predefined or random graph; 𝑛𝑢𝑚 ← number of parts
2: 𝑃 ← pool of threads; 𝑆𝒬 ← []; 𝐴𝒬𝑠 ← []; 𝑐 ← 0
3: while 𝑐 < 𝑛𝑢𝑚
4: for each 𝑡ℎ𝑟 in 𝑃
5: if 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 == ‘busy’ and 𝑡ℎ𝑟. 𝑓𝑡𝑖𝑚𝑒 <= 𝑡
6: 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 ← ‘i’; 𝑐 ← 𝑐 + 1; 𝑐 ← 𝐺[𝑐]
7: if 𝑝. 𝑐ℎ𝑖𝑙𝑑 != NULL
8: 𝑆𝒬 ← APPEND(𝑝. 𝑐ℎ𝑖𝑙𝑑)
9: if 𝑝. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 != NULL

10: 𝑆𝒬 ← APPEND(𝑝. 𝑠𝑖𝑏𝑙𝑖𝑛𝑔)
11: for each 𝑝 in 𝑆𝒬
12: if 𝑝. 𝑑𝑒𝑝 == NULL or 𝑝. 𝑑𝑒𝑝. 𝑠𝑡𝑎𝑡𝑢𝑠 == ‘idle’
13: if 𝑝. 𝑝𝑖𝑑 == 0
14: thr_num ← IDLE_THREAD(𝑃)
15: if thr_num == NULL
16: thr_num ← SCHEDULE_ALGORITHM(𝑃)
17: else
18: thr_num ← PRE_THREAD(𝑝. 𝑝𝑖𝑑)
19: 𝐴𝒬𝑠 ← APPEND(𝑝, thr_num)
20: for each 𝑡ℎ𝑟 in 𝑃
21: if 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 == ‘idle’
22: if SIZE(𝐴𝒬𝑠[𝑡ℎ𝑟]) > 0
23: if SUSPEND_TASK(𝑡ℎ𝑟).empty()
24: 𝑝 ← ALLOC_ALGORITHM(𝐴𝒬𝑠[𝑡ℎ𝑟])
25: else
26: 𝑙 ← []
27: for each 𝑡𝑝 in SUSPEND_TASK(𝑡ℎ𝑟)
28: 𝑙 ← APPEND(𝑡𝑝)
29: for each 𝑡𝑝 not in SUSPEND_TASK(𝑡ℎ𝑟)
30: if DESCENDANT(𝑡𝑝, 𝑡ℎ𝑟) == TRUE
31: 𝑙 ← APPEND(𝑡𝑝)
32: 𝑝 ← ALLOC_ALGORITHM(𝑙)
33: 𝑡ℎ𝑟 ← ALLOCATE(𝑝); 𝑡ℎ𝑟. 𝑠𝑡𝑎𝑡𝑢𝑠 ← ‘s’

Comparison results show that the scheduling time
obtained by the proposed method is decreased about 25% less

than that of BFS and about 45% less than that of WFS (Fig.
3(a) and Fig. 4(a)). Furthermore, the idle time is reduced about
75% less than that of BFS and about 85% less than that of
WFS (Fig. 3(b) and Fig. 4(b)).

V. CONCLUSION AND FUTURE WORK

This paper presented the initial results of the work on
researching mapping methods for the allocation of OpenMP
task graphs in underlying threads. In the scheduling phase,
task-parts are placed in a global scheduling queue, then an
appropriate allocation queue is selected for each task-part. In
the allocation phase, the best task-part is selected from the
allocation queue and executed by the relevant idle thread. The
initial simulation results showed that our mapping method
decreases both the scheduling time of OpenMP graph and the
idle time of threads, compared to BFS and WFS. However, the
difference between the results is more noticeable in the tied
tasks. The main reason is that the suggested heuristics
consider the essential parameters for the mapping process
(e.g., execution time and response time) in the scheduling and
allocation phases.

As we suggested multiple heuristics using different
characteristics (e.g., execution time and response time) and the
simulation results obtained by the new mapping method are
inferior to those obtained by the other methods, our proposal
could guarantee the predictability and robustness of the
system.

Current and future work include the evaluation of the
method under more complex system models, supporting the
creation of multiple child tasks by a task-part at Task
Scheduling Points (TSP), different graphs (in size and
proportion), and different numbers of threads.

REFERENCES
[1] M. Schoeberl, L. Pezzarossa, and J. Sparsø, “A multicore processor for

time-critical applications,” IEEE Des. Test, vol. 35, no. 2, pp. 38–47,
2018.

[2] J. Hückelheim and L. Hascoët, “Source-to-Source Automatic
Differentiation of OpenMP Parallel Loops,” ACM T. Math. Software,
vol. 48, no. 1, pp. 1–32, 2022.

[3] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quinones, “Timing characterization of OpenMP4 tasking model,” in
Proc. of Int. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), Amsterdam, Netherlands, pp. 157–166,
October 4–9, 2015.

[4] A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti, E. Quinones, and G.
Buttazzo, “A static scheduling approach to enable safety-critical
OpenMP applications,” in Proc. of 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, Japan, pp. 659–665,
January 16–19, 2017.

[5] J. Sun, N. Guan, X. Wang, C. Jin, and Y. Chi, “Real-Time Scheduling
and Analysis of Synchronous OpenMP Task Systems with Tied
Tasks,” in Proc. of the 56th Annual Design Automation Conference
2019 (DAC ‘19), Las Vegas, USA, pp. 1–6, June 2–6, 2019.

[6] S. Royuela, M. A. Serrano, M. Garcia-Gasulla, S. M. Bellido, J.
Labarta, and E. Quinones, “The Cooperative Parallel: A Discussion
About Run-Time Schedulers for Nested Parallelism,” in Proc. of the
International Workshop on OpenMP (IWOMP 2019), Auckland, New
Zealand, pp. 171–185, September 11–13, 2019.

[7] Y. Wang, X. Jiang, N. Guan, Z. Guo, X. Liu, and W. Yi, “Partitioning-
Based Scheduling of OpenMP Task Systems With Tied Tasks,” IEEE
T. Parall. Distr., vol. 32, no. 6, pp. 1322–1339, 2020.

[8] OpenMP Architecture Review Board, “OpenMP Application
Programming Interface, version 5.2,” November 2021.
https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-2.pdf

(a)

(b)

Fig. 3. Effect of the number of tasks on the performance metrics for
tied tasks: (a) scheduling time; (b) idle time.

0.00
5.00

10.00
15.00
20.00
25.00
30.00

100 200 300 400 500 600 700 800 900 1000

Sc
he

du
lin

g
tim

e
(s

)

The number of tasks

BFS WFS NEW

0.00

20.00

40.00

60.00

80.00

100.00

Id
le

 ti
m

e
(s

)

The number of tasks

(a)

(b)

Fig. 4. Effect of the number of tasks on the performance metrics for
untied tasks: (a) scheduling time; (b) idle time.

0

2

4

6

8

10

100 200 300 400 500 600 700 800 900 1000

Sc
he

du
lin

g
tim

e
(s

)

The number of tasks

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

Id
le

 ti
m

e
(s

)

The number of tasks

