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e Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A5B7, Canada 
f Institute for Composites Science Innovation, (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 
g State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China 
h Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH, 52425 Jülich, Germany 
i Institute of Energy Technologies, Department of Chemical Engineering and Barcelona, Research Center in Multiscale Science and Engineering, Universitat Politècnica de 
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A B S T R A C T   

The electrochemical reduction of CO2 to methanol is a potentially cost-effective strategy to reduce the con
centration of this greenhouse gas while at the same time producing a value-added chemical. Herein, we detail a 
highly efficient 2D nickel organic framework containing a large density of highly dispersed salophen NiN2O2 
active sites toward electrochemical CO2RR to methanol. By tuning the ligand environment of the salophen 
NiN2O2, the electrocatalytic activity of the material toward CO2 reduction can be significantly improved. We 
prove that by introducing a carbonyl group at the ligand environment of the Ni active sites, the electrochemical 
CO2 reduction activity is highly promoted and its product selectivity reaches a Faradaic efficiency of 27% toward 
the production of methanol at − 0.9 V vs RHE. The salophen-based π-d conjugated metal-organic framework 
presented here thus provides the best performance toward CO2 reduction to methanol among the previously 
developed nickel-based electrocatalysts.   

1. Introduction 

The electrochemical conversion of carbon dioxide (CO2) to valuable 
chemicals using renewable electricity can enable the cost-effective 
capture and reuse of this greenhouse gas [1,2]. Hydrocarbons and al
cohols are the most desired products from the CO2 reduction reaction 
(CO2RR). Among them, methanol is particularly appealing owing to its 

numerous uses and its liquid phase at ambient temperature that facili
tates storage and transportation. Thus, numerous materials have been 
explored as CO2RR catalysts for methanol production, including metal 
oxides, [3] metal chalcogenides, [4–6] copper-based single atom cata
lysts, [7,8] small bio-inspired organic molecular catalysts with carbonyl 
groups [9] two-dimensional metal organic frameworks, [10] or even 
molecular-based catalysts such as cobalt phtholocyamine anchored on 
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carbon nanotubes. These former catalysts have been applied for the deep 
reduction of CO2 to methanol through domino reduction processes. 
Their results also exhibited that CO is an important intermediate for the 
deep reduction of CO2 to methanol [11,12]. However, despite the 
relative simplicity of the methanol molecule, the reduction of CO2 to 
methanol with high selectivity and stability has been demonstrated 
extremely challenging and mainly CO and formate have been reported 
as the CO2RR products [13–16]. In order to achieve the goal of 
electro-chemical reduction of CO2 to methanol, the suitable active sites 
in the catalysts can not only reduce CO2 to CO, but also have a suitable 
binding activity of CO for deep reduction. The weak CO binding activity 
will lead to the desorption of CO, while the strong binding activity will 
block the active sites [11,17]. Therefore, designing advanced catalysts 
with suitable CO binding activity is crucial and challenging for efficient 
electro-chemical conversion of CO2 into methanol. 

Most of the CO2RR catalysts developed in the last decades are com
plex nanomaterials that present unclear structure-performance correla
tion and uncertain reaction mechanism, which complicates their 
optimization.[16,18–20]. More recently, molecular catalysts with 
fine-tuned steric, electronic, electrostatic and chelating proper
ties/abilities [21] have been engineered and optimized (e.g. through 
ligand modification) for CO2RR. When supported on conductive sub
strates, some of these molecular catalysts, such as metalloporphyrin and 
metallophthalocyanine, cobalt salophen complexes, [22,23] have 
shown low overpotentials and high CO2RR conversion efficiency and 
selectivities [13,24–28]. In the last few years, two-dimensional (2D) 
conductive metal-organic frameworks with tunable pore structure and 
functionality, and with abundant catalytic active sites, have arisen as 
exceptional candidate catalysts for CO2RR [14,10,29–32]. While several 
reports have detailed the influence of the metal, ligand type and coor
dination number on CO2RR performance, [33,31,34] the analysis and 
exploitation of the strong influence that the ligand microenvironment 
near the active center has on the CO2RR remain unexplored. 

Herein, a conjugated nickel organic framework with abundant 
carbonyl groups in the ligand near the nickel catalytic active site is 
described and explored as electrocatalyst CO2RR to methanol in aqueous 
medium. The unique chemical structure and uniformly distributed cat
alytic active centers in the proposed nickel organic framework, com
bined with the high electrical conductivity of carbon nanotubes (CNT), 
results in electrocatalysts with high catalytic activities, excellent dura
bility and notable selectivity for CO2RR to methanol. The present work 
not only provides new insights into the synthesis atomically dispersed 
material under mild and controllable conditions for electrochemical CO2 
reduction, but also demonstrates a novel strategy to design effective 
CO2RR electrocatalysts by tuning the electronic structure through the 
modification of ligand chemical environment. 

2. Experimental section 

2.1. Materials 

Dimethyl sulfoxide (DMSO), methanol (99.0%), N, N-dime
thylformamide (DMF) (98.0%), Dichloromethane (99.0%), salicylalde
hyde (99.0%) hydrazine hydrate (98.0%) and 1,2-diaminobenzene 
(98.0%) were brought from Alfa Aesar. Tetrachloro-p-benzoquinone 
(99%), N-methyl-pyrrolidone (NMP, 99.99%), potassium phthalimide 
(98.0%), 1,2,4,5-benzenetetraamine tetrahydrochloride (TAB), 2,5- 
dimethoxyterephthalaldehyde (97.0%), Nafion (10.0%), hexane 
(95.0%), Potassium bicarbonate (99.7%) and boron tribromide 
(99.99%) were purchased from Sigma-Aldrich. Nickel acetate tetrahy
drate (99.0%), were from Acros Organics. Acetonitrile (98.0%) and 
ethanol (99.5%) were purchase from Honeywell. All chemicals were 
used directly. Carbon Nanotubes (CNTs) was ordered from Sailed 
Technology in Shenzhen. The oxidation treatment of carbon nanotube 
(CNTs) was followed in the literature [12]. 

2.2. Preparation of 2,5-dihydroxyterephthalaldehyde (HBC) 

25 mL dichloromethane and 2,5-dimethoxyterephthalaldehyde (250 
mg, 1.285 mmol) were placed into 50 mL three-neck flask, then mag
netic stirred for 10 min. After that, 3.22 mL BBr3 (1 M in hexane) was 
dropped to the above mixture slowly at ice bath. Keep stirring for 3 h at 
room temperature, then5 mL MILI-Q water was dropped slowly. Then 
flow argon was used to remove organic solvents and the obtained yellow 
precipitate was vacuum filtrated and washed with water and acetone 
several times to obtain a yellow solid with a yield of 75%. (1H NMR (400 
MHz, DMSO-d6, δ)): δ 10.33 (m, 4H), 7.25 (s, 2H) [35]. 

2.3. Preparation of tetramino-benzenequinone (TABQ) 

potassium phthalimide (15 g) and tetrachloro-p-benzoquinone (5.0 
g) were put into 100 nL falsk, then acetonitrile (50 mL) were added and 
magnetically stirred for 12 h at 80 ◦C. After cooled down to room 
temperature naturally, the precipitate was filtrated by vacuum, and 
washed with hot DMF for several times, then washed with MILIQ water 
and ethanol for several times. Then vacuum dried at 60 ◦C for overnight. 
10.0 g brown-yellow powder of tetra(phthalimido)-benzoquinone was 
got [36,37]. The obtained tetra(phthalimido)-benzoquinone was trans
ferred into a 100 mL round bottom flask, then 40.0 mL of hydrazine 
hydrate solution was dropped slowly. After being magnetically stirring 
and kept at 65 ◦C for 2 h, the purple tetramino-benzoquinone (TABQ) 
was obtained with a yield of 26%. (IR -NH2: 3367 cm− 1, -C––O: 1668 
cm-1, C-(C––O)-C 1140 cm− 1) 1H NMR (400 MHz, DMSO-d6, δ): δ 4.55 
(s, 8H) [38,39]. 

2.4. Preparation of Ni-2D-O-SA and Ni-2D-SA 

HBC (166 mg, 1 mmol), TABQ (84 mg, 0.5 mmol), nickel acetate 
tetrahydrate (1 mmol, 248.8 mg) and 5 mL NMP were placed into a 15 
mL glass vial, The obtained mixture was sonicated for 30 min to form a 
homogenous dispersion. The glass vial was put into a 25 mL Teflon-lined 
stainless-steel autoclave. The autoclave was sealed and maintained at 
120 ◦C for 72 h. The obtained black precipitate was filtrated and then 
washed with DMF and methanol for several times, Soxhlet extracted by 
methanol for 24 h, then dried under vacuum at 60 ◦C for 24 h to give a 
black powder with ~83% yield (C11N2O3NiH4.2 H2O, Elemental Anal
ysis, calculated: C, 43.05; H, 2.63; N, 9.13; Found: C, 42.04; H, 3.14; N, 
8.36). 

The preparation procedure of Ni-2D-SA is similar as Ni-2D-O-SA, the 
precursor TABQ was replaced by 1,2,4,5-benzenetetraamine tetrahy
drochloride (TAB) [40]. (C11N2O2NiH5⋅H2O elemental analysis Calcu
lated: C, 48.24; H, 2.58; N, 10.23; Found: C, 47.34; H, 3.24; N, 9.26). 

2.5. Preparation of Ni-2D-O-SA-CNT and Ni-2D-SA-CNT composites 

30 mg Ni-2D-O-SA, 5 mL NMP and 70 mg pre-oxidized carbon 
nanotubes (CNTs) were added into a 15 mL glass vial. The obtained 
mixture was sonicated for half an hour, and stirred at 100 ◦C for 12 h, 
The obtained black composite was collected by vacuum filtration and 
washed with ethanol for several times, and then vacuum dried at 60 ◦C 
for 24 h. 

Ni-2D-SA-CNT composites were synthesized by using the same pro
cedure as for Ni-2D-O-SA-CNT, just the precursor of Ni-2D-SA was 
replaced by Ni-2D-O-SA. 

2.6. Preparation of model complex Ni-salophen (Ni-SA) 

First, the salophen ligand was synthesized by placing 108 mg (1 
mmol) of 1,2-diaminobenzene in 15 mL three-neck flask. Then 6 mL 
Ethanol were added and the mixture was heated to 70 ◦C under stirring, 
after that, 2 mmol of salicylaldehyde were added to the above mixture. 
The mixture was refluxed for 24 h. After cooling to room temperature, 
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the obtained precipitates were vacuum filtrated and washed with EtOH 
for several times. Finally, the yellow powder was dried under vacuum at 
60 ◦C overnight. To prepare the Ni-salophen (Ni-SA), 60 mg of Ni 
(CH3COO)2⋅4H2O, 90 mg of salophen ligand and 6 mL of MeOH were put 
into a 15 mL flask. The obtained mixture was heated to 60 ◦C with 

magnetic stirring for one day under argon. The mixture was filtrated by 
vacuum and washed with MeOH for several times. Finally, the reference 
complex Ni-SA was dried under vacuum at 60 ◦C overnight. 

2.7. Working electrode preparation 

1 mg of catalyst was dispersed in the mixture of isopropanol (475 μL) 
and Nafion (5%, 25 μL) by sonication for 1 h to obtain uniformly inks. 
Then, the inks were dropped on the carbon paper (1 * 1 cm2) under the 
infrared grill light. After dropping, the electrodes were further dried by 
infrared grill light at least 20 min before test. 

2.8. Electrochemical measurements 

All electrochemical measurements were performed in a gas-tight H- 
type glass cell containing a Nafion 117 membrane using a Biologic VMP3 
multichannel potentiostat workstation at room temperature. The elec
trolyte (0.1 M KHCO3) was saturated with CO2 before each experiment 
by bubbling CO2 for 20 min. In a typical three-electrode test system, a 
graphite rod and an Ag/AgCl electrode were used as the counter elec
trode and the reference electrode, respectively. All working electrodes 
were dried by infrared grill light at least 20 min before test. Each fresh 
sample was measured with a chronoamperometric step for 1 h at each 
potential. The roughness factors were determined by measuring the 
double-layer capacitance with cyclic voltammetry in the potential range 
of open circuit potential ± 50 mV at varying scan rates (2, 5, 10, 20, 50, 
100 mV s− 1). All potentials were converted to the RHE using the rela
tionship: E(RHE) = E(Ag/AgCl) + 0.197 + 0.059 *pH [41]. The pH of 
0.1 M KHCO3 saturated with CO2 is 6.8, which is measured by a 
pH-meter. The potentiostat workstation was set to compensate 85% of 
the ohmic drop, and no further iR correction was performed. 

During electrolysis, CO2 gas (99.995%) was delivered into the 
cathodic compartment containing CO2-saturated electrolytes at a rate of 
20 sccm and vented into online gas chromatography (GC) equipped with 
a combination of molecular sieve 5 A. Methane and carbon monoxide 
were detected by a methanizer-flame ionization detector, and the 
hydrogen was detected by a thermal conductivity detector. Every 20 
min, 1 mL of gas was sampled to determine the concentration of gaseous 
products. After electrolysis, the liquid products in catholyte were 
quantified by Nuclear Magnetic Resonance (NMR). Specifically, 500 μL 
of catholyte was taken out after 1 h of CO2 electroreduction. It was then 
mixed with 150 μL of internal standard. The internal standard was ob
tained by dissolving 2.5 mM Dimethyl sulfoxide (DMSO) into D2O sol
vent. After that, the mixture was then transferred into a NMR sample 
tube for measurement. 

The FEmethanol was calculated by the following formula: 

FEmethanol =
Cmethanol × V × NA × 6e

Ntotal 

Where Cmethanol is the concentration of methanol in the electrolyte, V 
is the volume of electrolyte, NA is Avogadro’s constant, Ntotal is the total 
number of electrons measured during the entire CO2RR. 

The concentration of methanol (Cmethanol) was obtained using the 
calibration curves shown in Fig. S13. The calibration curves were made 
by measuring standard solutions of methanol. 

The peaks were quantified by integrating the area. the relative peak 
area can be calculated as follows:   

2.9. Density functional theory (DFT) calculations 

All the data were calculated from density functional theory (DFT) by 
the Vienna ab initio Simulation Package (VASP) [42,43]. The general
ized gradient approximation of Pardew-Burke-Ernzerhof (PBE) method 
with van der Waals correlation was conducted to optimize the geometric 
structures [44]. The convergence criteria was 0.05 eV/Å in force and 
1 × 10− 5 eV in energy, while the plane wave cutoff was 500 eV. The 
Monkhorst-Pack mesh k-point grids was 1 × 1 × 1 for all models. All of 
the vacuum thicknesses were higher than 15 Å. 

The whole process of CO2 electrochemical reduction to methanol for 
comparison we choose consists the following steps: 

CO2(g)→ ∗ OHCO→ ∗ HCOOH→ ∗ CHO→ ∗ CH2O→ ∗ CH2OH→

∗ CH3OH→ ∗ +CH3OH  

CO2→ ∗ COOH→ ∗ CO→ ∗ COH→ ∗ CHOH→ ∗ CH2OH→CH3OH  

Where the * and ∗OHCOrepresent free sites and the adsorption state of 
OHCO, respectively. The (g) represent the gas phase. 

The adsorption energy was calculated by 

ΔE = Etotal − Esurface − Eadsorbents  

where Etotal, Esurface, and Eadsorbents are the DFT-calculated energy for total 
system, pure surface, and pure adsorbents, respectively. 

The reaction free energies of each step were calculated by the 
following formula: 

ΔG = ΔE+ΔEZPE − TΔS  

where ΔEZPE is the zero-point energy, TΔS (T = 298.15 K) is the entropy 
contribution. 

2.10. Characterizations 

The crystal structure of the materials was characterized by means of 
powder X-ray diffraction (XRD) measured in a Bruker AXS D8 Advance 
X-ray diffractometer. (Cu-Kα radiation, λ = 1.5106 Å, 40 kV and 40 mA; 
Bruker, Germany). 13C cross-polarization with magic angle-spinning 
(CP-MAS) solid-state nuclear magnetic resonance (NMR) spectra were 
measured on a Bruker ARX 400 MHz spectrometer. Thermogravimetric 
analysis (TGA) was performed under air and nitrogen gas at a heating 
rate of 5 ◦C/min using a Thermogravimetric Analyzer Q200. Scanning 
electron microscopy (SEM) images were obtained in a Zeiss Auriga Field 
emission scanning electron microscope (FE-SEM) operating at 20 kV. 
High-resolution transmission electron microscopy (HRTEM) studies 
were conducted in a FEI Tecnai F20 microscope at an operating voltage 
of 200 keV. High angle annular dark-field (HAADF)-scanning trans
mission electron microscopy (STEM) images and elemental mapping 
were measured in a spherical aberration corrected transmission electron 

Relative peak area ratio(methanol) =
singlet peak area at3.23ppm(methanol)

singlet peak area at2.6ppm(DMSO)
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microscope FEI Titan G2 80–200 ChemiSTEM with four energy- 
dispersive X-ray spectroscopy (EDX) detectors and operated at 80 and 
200 keV. X-ray photoelectron spectroscopy (XPS) data was obtained 
with a Phoibos 150 MCD-9 detector. The Ni K-edge X-ray absorption fine 
structure (XAFS) spectra were measured at the Canadian Light Source, 
beamline SXRMB. The samples were pressed onto a double-sided carbon 
tape and the data was recorded in X-ray fluorescence mode. The XAFS 
data was processed with the Athena program [45]. Extend X-ray ab
sorption fine structure (EXAFS) was analyzed using the IFEFFIT package 
[46] and the EXAFS fitting was performed with FEFF6L [47]. For EXAFS 
fitting, spectra were fitted in R-space, from 1.0 Å to 2.76 Å. The R-space 
EXAFS signal was obtained by a variable kn-weighted Fourier transform 
(n = 1, 2, 3) of the EXAFS signal χ(k) over a k-range of 3.00 Å− 1 to 
11.7 Å− 1. The coordination numbers of Ni-N and Ni-O paths were both 
fixed at 2, and the bond lengths, energy shift, and the Debye-Waller 
factors were optimized to yield the best fit. Nitrogen 
adsorption-desorption isotherms were recorded in a Tristar II 3020 
Micromeritics system at 77 K. The specific surface area was calculated 
by Brunauer–Emmett–Teller (BET) method. 

3. Results and discussions 

3.1. Structure characterizations 

As shown in Scheme 1, the targeted 2D nickel organic framework 
(Ni-2D-O-SA) with abundant carbonyl functional group was sol
vothermally synthesized by a Schiff-based reaction between 2,5- 

hydroxyterephthalaldehyde (HBC), nickel acetate and tetramino- 
benzoquinone (TABQ) in N-methyl-2-pyrrolidone (NMP). The dark- 
black precipitate obtained from this reaction indicated the formation 
of a conjugated polymer. This precipitate was vacuum filtrated, washed 
with water and methanol to remove small molecular mass impurities 
and finally dried under vacuum at 60 ◦C. A control sample, without the 
carbonyl chemical groups (Ni-2D-SA), was prepared using the same 
reaction process and conditions but replacing TABQ by 1,2,4,5-benzene
tetraamine tetrahydrochloride (TAB) (Fig. S1) [40]. 

The Ni-2D-O-SA powder exhibited a crystalline and layered struc
ture, as observed by powder X-ray diffraction (XRD) analysis (Fig. S2). 
The Ni-2D-O-SA XRD pattern was similar to that of graphite, with a 
diffraction peak at 26.29◦ corresponding to the (001) family planes, and 
thus indicating π-π layered stacking.[48] In contrast, the XRD pattern of 
the control sample, Ni-2D-SA, displayed a much lower crystallinity. This 
result indicates that the introduction of the carbonyl groups enhances 
the crystallinity of the nickel organic frameworks through π-π 
interaction. 

The Fourier transform infrared (FT-IR) spectra (Fig. S3) of the two 
samples displayed the footprint of C––N at 1642 cm− 1 for Ni-2D-SA and 
1648 cm− 1 for Ni-2D-O-SA. At the same time, the characteristic peaks of 
the N-H stretching vibration (3367–3197 cm− 1) disappeared. These 
pieces of evidence demonstrated the completion of the Schiff-based re
action and the formation of Ni-salophen structure units [40]. The vi
bration of the carbonyl group (C––O) in Ni-2D-O-SA negatively shifted 
below 1600 cm− 1, where it overlapped with other vibrations. Besides, 
the vibration peak for the C-(C––O)-C bond in Ni-2D-O-SA, which is 

Scheme 1. Schematic representation of the synthesis of Ni-2D-O-SA (blue corresponds to nitrogen, red to oxygen, green to nickel and grey to carbon).  
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characteristic of the TABQ, shifted from 1140 cm− 1 to 1010 cm− 1 due to 
the coordination effect and the attraction between the layers. These 
results demonstrated the formation of the organic framework containing 
the carbonyl groups [49]. The solid-state 13C CP/MAS NMR spectrum of 
the Ni-2D-O-SA catalyst exhibits the presence of C––O, C––N, C––C, with 
the corresponding signals at 160 ppm, 149 ppm and 123 ppm, respec
tively. Instead, for the Ni-2D-SA catalyst, the resonance signals of C––N 
and C––C appear at 150 ppm and 120 ppm, respectively (Fig. S4). 

Ni-2D-O-SA displayed a very porous morphology, resembling that of 
cotton when analyzed by scanning electron microscopy (SEM) 
(Figs. S5a). High angle annular dark-field (HAADF)-aberration-cor
rected scanning transmission electron microscopy (STEM) analysis 
(Fig. 1a–c and Fig. S6) demonstrated the presence of a high density of 

atomically dispersed and homogeneously distributed nickel atoms. The 
energy-dispersed X-ray spectroscopy (EDS) elemental mapping shown in 
Fig. 1d further demonstrated the uniform distribution of Ni, C, N, and O. 

The Brunauer-Emmett-Teller surface areas of Ni-2D-O-SA and Ni-2D- 
SA were calculated at 21 and 83 m2 g− 1, respectively [50]. Thus the 
presence of the carbonyl functional group decreases the surface area of 
the material, which is consistent with the higher π-π driven organization 
of the two dimensional Ni-2D-O-SA framework observed by XRD anal
ysis. The pore size distribution profiles (Fig. S10) show the approximate 
porous structures of Ni-2D-SA and Ni-2D-O-SA. 

Fig. 1. (a)–(c) HAADF-STEM images of Ni-2D-O-SA displaying atomically dispersed nickel atoms as brighter spots in the image. (scale bar with 2 nm) (d) Low 
magnification HAADF-STEM image and EDS elemental maps for C (red), Ni (light blue), N (green) and O (blue) (scale bar with 500 nm). 
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3.2. Fine structure of Ni-2D-O-SA and Ni-2D-SA 

To further confirm the local coordination environment of Ni active 
sites in Ni-2D-O-SA, XAFS analysis of the Ni K-edge was conducted 
(Fig. 2a-b). We first compared the spectral features of Ni-2D-O-SA with 
those of Ni-2D-SA, NiO, and a model complex Ni-salophen (Ni-SA) at the 
near-edge (i.e. X-ray absorption near-edge structure, XANES). As shown 
in Fig. 2a, the absorption energy of near K-edge in XANES spectrum for 
the Ni-2D-O-SA sample shifted to higher energy compared to that of Ni- 
2D-SA, which suggests that the introduction of carbonyl groups resulted 
in a higher oxidation state of the Ni active centers. The absorption onset 
of Ni-2D-O-SA occurs at slightly lower energy than that of NiO. Differ
ences are more clearly seen when the first derivative of these spectra are 
plotted (Fig. 2b). The main absorption peak of Ni-2D-O-SA also has a 
lower intensity. These features indicate that, compared with NiO where 
Ni is fully coordinated with O, Ni atoms within Ni-2D-O-SA are sur
rounded by less electronegative elements, i.e. N substituting O. The 
EXAFS spectrum was analyzed to obtain more quantitative details of the 
coordination environment. First the EXAFS spectrum of Ni-SA was fitted 
well with a NiN2O2 coordination structure (Fig. S7 and Table S1), the Ni- 
2D-SA was also fitted with a NiN2O2 coordination structure (Fig. S8 and 
Table S2). The Fourier transformed EXAFS of Ni-2D-O-SA is shown in 
Fig. 2c. The fitted curve suggests that Ni is coordinated with two N atoms 
and two O atoms, at a bond length 1.87 Å and 2.05 Å, respectively 
(Fig. 2c), which matches well the salophen unit structure (NiO2N2). The 
contribution at longer radial distances comes from C atoms with a co
ordination number of 6 and a bond length of 2.65 Å, which also belong 
to the Ni.C interaction (Table S3) and the distance of Ni.Ni interaction is 
of 3.168 Å which corresponds to the Ni in the layer-layer structure for 
this type of materials. Thus, the XAFS analysis confirmed the formation 
of the NiN2O2 salophen structure unit within Ni-2D-O-SA frameworks. 
To confirm the coordination structure stability of Ni-2D-O-SA, the 
EXAFS spectrum of Ni-2D-O-SA which was immersed in a KHCO3 
aqueous solution for three days was fitted (Fig. S9 and Table S4). The Ni- 
2D-O-SA maintained the NiN2O2 coordination structure, indicating its 
structure stability in the KHCO3 aqueous solution. 

3.3. CO2RR activity 

To promote the electrical conductivity of the nickel-based organic 
frameworks toward their use as efficient electrocatalysts, they were 
supported on multi-walled CNTs by physical mixing in dimethylforma
mide. XRD patterns displayed just one broad diffraction peak at about 
26◦ (Fig. S11), which was assigned to the overlap between the CNT and 
the nickel organic framework structures. The porous morphology and 
the homogenous loading of Ni-2D-O-SA on the CNTs within the obtained 
composites (Ni-2D-O-SA-CNT) were confirmed by STEM images and 
EDS elemental mapping (Fig. S12). 

The electrocatalytic properties of Ni-2D-O-SA-CNT toward CO2RR 
were tested in a two-compartment electrochemical cell containing a 
CO2-saturated 0.1 M KHCO3 electrolyte. As shown in Fig. 3a, the Ni-2D- 
O-SA-CNT catalyst displayed higher current densities in the CO2-satu
rated electrolyte than in Ar-saturated electrolyte at potentials more 
positive than − 0.9 V vs RHE, which indicates a clear CO2RR activity. 
When the applied potentials were more negative than − 0.9 V, the 
current density in a CO2-saturated electrolyte was lower than in the Ar- 
saturated electrolyte due to the HER suppression through CO2 adsorp
tion. The liquid products of CO2RR was analyzed by 1H NMR (Fig. S14). 

Ni-2D-O-SA-CNT samples displayed much higher current densities 
than Ni-2D-SA-CNT under the same test conditions (Fig. 3b and 
Fig. S15a-b), which demonstrates that Ni-2D-O-SA-CNT has better ac
tivity toward CO2RR than that of Ni-2D-SA-CNT. Given that Ni-2D-O-SA- 
CNT and Ni-2D-SA-CNT were characterized by similar electrochemical 
double-layer capacitances (Fig. S16), we can conclude that the presence 
of the carbonyl group within Ni-2D-O-SA organic framework decisively 
increases its CO2RR activity. 

The CO2RR product distribution obtained from Ni-2D-O-SA-CNT and 
Ni-2D-SA-CNT electrocatalysts at different potentials was evaluated by 
gas chromatography and nuclear magnetic resonance. The Faradaic ef
ficiency of all products are provided in Figs. S15c and S15d, which show 
that H2 is one of the CO2RR products, too. The Methanol faradaic effi
ciency was quantified by liquid NMR technology. As shown in Fig. 3c, 
Ni-2D-O-SA-CNT is characterized by a volcano-shaped Faraday effi
ciency (FE) and partial current densities toward CH3OH in the range of 
applied potential from − 0.85 to − 1.05 V. The maximum CH3OH FE of 
27% and jMeOH of 0.94 mA cm− 2 were achieved by Ni-2D-O-SA-CNT at 
− 0.9 and − 0.95 V vs. RHE, respectively. This excellent performance is 
in contrast with the nickel organic framework without the carbonyl 
group Ni-2D-SA-CNT (9.2% FE for CH3OH at − 0.95 V, Fig. 3d). The high 
performance of Ni-2D-O-SA-CNT is also in contrast with all previously 
developed nickel-based CO2RR catalysts, which mostly yielded CO 
instead of methanol (Table S5) [24,33]. To the best of our knowledge, 
only one previous report demonstrated CO2RR to methanol using a 
Ni-based electrocatalyst but with a moderate activity and selectivity (6% 
FE) [10]. Compared with Ni-2D-SA-CNT, in the potential range from 
− 0.85 to − 1 V Ni-2D-O-SA-CNT also exhibited a higher selectivity 
toward the production of CO, which is an intermediate in the production 
of methanol (Fig. 3e) [7,11,12]. 

To exclude the possibility that the formation of methanol came from 
the preparation process or the decomposition of the catalyst, we 
analyzed the product distribution of the Ni-2D-O-SA-CNT sample in Ar- 
saturated 0.1 M KHCO3. The obtained results showed that no methanol 
signal could be found, and that the Ni-2D-O-SA-CNT catalyst could only 
produce hydrogen in Ar-saturated 0.1 M KHCO3 (Figs. S17 and S18). 
These results demonstrate the excellent intrinsic catalytic selectivity 
toward methanol of the Ni-2D-O-SA-CNT sample. 

Fig. 2. (a) Ni K-edge XANES spectrum of Ni-SA, Ni-2D-SA, Ni-2D-O-SA and NiO (commercial powder), (b) First derivative of the Ni K-edge XANES for Ni-SA, Ni-2D- 
SA, NiO and Ni-2D-O-SA. (c) Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-O-SA and NiO plotted in R-space, Fourier transformed EXAFS spectra in R-space 
of Ni-2D-O-SA and fitted curve. 
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The catalytic stability of Ni-2D-O-SA-CNT was evaluated at − 0.85 V 
vs RHE (Fig. 3f). We observed the current density to be maintained 
during an operating period of 5.5 h. Although the selectivity of meth
anol is decreased after a relatively long electrochemical test, the Ni-2D- 
O-SA-CNT catalyst could still maintain ~10% FE toward methanol. 

To understand which are the real active sites for the formation of 
methanol and the reason of deactivation after the long-term stability 
test, we analyzed the post reaction sample by XRD, FT-IR, and XPS. From 
XRD patterns (Fig. S20a), the characteristic peaks of Ni-2D-O-SA-CNT 
are well maintained after CO2RR test, and no presence of other peaks 
was observed, suggesting that no Ni-based metal or metal oxide nano
particles were formed. XPS was further conducted to investigate the 
electronic structure of Ni after CO2RR (Fig. S21). We found that only a 
small Ni2p3/2 signal remained after the CO2RR test, indicating a partial 
decomposition of the NiN2O2 sites, which would be responsible for the 
deactivation of our catalyst. This residual Ni2p3/2 signal is still 

maintained at 855.5 eV after the CO2RR test, indicating that the active 
sites for methanol formation can still be Ni species with 2+ valence. In 
addition, there is no presence of metallic nickel in the XPS spectra. The 
FT-IR spectra showed that the carbonyl groups of Ni-2D-O-SA-CNT were 
still maintained after the long-term stability test, implying that the 
carbonyl groups were not lost (Fig. S20b). To further demonstrate the 
effect of the Ni sites on the formation of methanol, we also evaluated the 
CO2RR performance of the 2D-O-SA-CNT catalyst (without nickel) at the 
same potentials. The results show that almost all products obtained by 
2D-O-SA-CNT are hydrogen instead of CO2RR related products 
(Fig. S22), demonstrating the importance of the Ni active sites for the 
formation of methanol. Moreover, the selectivity of methanol decreased 
with the decay of NiN2O2, implying a positive correlation between the 
selectivity of methanol and the amount of NiN2O2. Therefore, the re
sidual NiN2O2 sites still found in the sample after the 5 h test were 
responsible for the still kept methanol selectivity. The degradation of 

Fig. 3. Electrocatalytic CO2RR performance of Ni-2D-O-SA-CNT and Ni-2D-SA-CNT. (a) Linear sweep voltammetry (LSV) curves of Ni-2D-O-SA-CNT at a scan rate of 
5 mV s− 1 in CO2- and Ar-saturated 0.1 M KHCO3 electrolytes. (b) LSV curves of Ni-2D-O-SA-CNT and Ni-2D-SA-CNT in CO2-saturated 0.1 M KHCO3 electrolyte. (c,d) 
FEs and current densities of Ni-2D-O-SA-CNT (c) and Ni-2D-SA-CNT (d) toward CH3OH at various applied potentials, from − 0.85 to − 1.05 V. (e) CO2 to CO FE of Ni- 
2D-O-SA-CNT and Ni-2D-SA-CNT at various applied potentials from − 0.85 to − 1.05 V vs RHE. (f) Current-time (i-t) responses and corresponding FEs of Ni-2D-O-SA- 
CNT at − 0.9 V vs RHE for 5.5 h. 
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methanol selectivity and Ni XPS signals is because the Ni-2D-O-SA that 
are not directly loaded on carbon nanotubes (CNTs) are less stable 
compared to those directly attached to the CNTs through π-π stacking 
interactions. Namely, those nanolayers directly attached to the CNT 
surface, highly improve their physical and chemical robustness [26]. 
Normally, molecular catalysts can be anchored on the surface of the 
carbon nanotube through the π-π stacking interaction, which facilitates 
the electron transfer and prevent gathering of the active sites to improve 
the physical and chemical stability [33]. Unlike the small molecular 
catalysts, Ni-2D-O-SA is a two-dimensional organic material, which can 
also promote the π-π stacking interaction between its layers and the 
CNTs. Therefore, it is hard to guarantee that all these Ni-2D-O-SA 2D 
nanostructures are loaded on the surface of CNTs with their single layers 
promoting the π-π stacking interaction. In this way, those Ni-2D-O-SA 
nanolayers that are not directly loaded on the surface of a CNT would 
not present any π-π stacking interaction and thus, they would not be as 
stable during the CO2RR process, resulting in the decomposition of these 
Ni-2D-O-SA nanolayers and the corresponding degradation of the cata
lytic performance. 

Both electrocatalysts, Ni-2D-O-SA-CNT and Ni-2D-SA-CNT yielded 
methanol with a significant FE, which indicates that the porous struc
ture, the high densities of nickel active centers, and possibly the short 
distance between the catalytic active sites are highly suitable for the 
electroreduction process of CO2 to methanol. Furthermore, the presence 
of the carbonyl group in the ligand between the nickel active centers in 

the Ni-2D-O-SA-CNT electrode resulted in a very notable enhancement 
of the FEs for CO2 reduction to both methanol and CO. Thus, the pres
ence of the carbonyl group clearly favors the electroreduction of CO2 to 
CO, which can be considered as a first step in the formation of methanol. 
But at the same time, this carbonyl group promotes a deepen electro
chemical reduction, which we tentatively attribute to the stronger π-d 
conjugation that enhances the adsorption of the intermediates generated 
in the electrochemical reduction process of CO2 to methanol over the 
nickel active centers [12,51]. The strong electronegativity of the 
carbonyl group could shift the electron cloud in nickel active centers 
(NiN2O2), resulting in a more positive valence of the Ni sites in 
Ni-2D-O-SA, and thus promote the conversion of CO2 into CO, [52]. This 
higher valence has been reported to promote a deeper CO2 electro
reduction in different metals [53]. 

3.4. Mechanic study 

To further understand the effect of the carbonyl group, the differ
ential charge distribution was estimated by density functional theory 
(DFT) calculations. The electron density difference between of Ni-2D-SA 
and Ni-2D-O-SA (Fig. 4a) illustrates that the charge transfer from Ni ion 
to ligand appears, which is due to the inductive effect of carbonyl group 
in Ni-2D-O-SA. This results are consistent to the XANES analysis, which 
show that the Ni center in Ni-2D-O-SA has a higher oxidation state 
compared to that of Ni-2D-SA. The absolute free energy of H* on Ni-2D- 

Fig. 4. (a) Plots of electron density difference for selected segments of Ni-2D-O-SA and Ni-2D-SA. The yellow color corresponds to an isosurface of 0.00120794 e 
Bohr− 3 and blue of − 0.00120794 e Bohr− 3. (b) Free energy diagram of *CO to CH3OH on selected segments of Ni-2D-O-SA. 
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O-SA is larger than that of Ni-2D-SA, suggesting that the Ni-2D-SA 
catalyst is more favorable for hydrogen evolution reaction (HER) 
(Fig. S23). Further more, the free energy diagram in the conversion from 
*CO to methanol was calculated, and the reaction pathway was pro
posed based on the previous report [7]. According to our DFT calcula
tion results (Fig. 4b), the conversion of *CO to methanol is 
thermodynamically more favorable on Ni-2D-O-SA than that on 
Ni-2D-SA. The result of the adsorption energy for intermediates 
(Fig. S24) further confirms that the introduction of the carbonyl group in 
Ni-2D-O-SA will favor the adsorption of the intermediates compared 
with Ni-2D-SA. On the other hand, a second reaction pathway of the 
conversion from CO2 to methanol based on another published work [8] 
was also calculated. As exhibited in Fig. S25, the free energy in the 
rate-determining step of the conversion of *OHCO to absorbed *HCOOH 
is lower on Ni-2D-O-SA. Therefore we can suggest that Ni-2D-O-SA with 
carbonyl groups would tend to favor the electrocatalytic reduction of 
CO2 to methanol with respect to Ni-2D-SA. 

4. Conclusion 

We have detailed the synthesis and characteristics of an atomically 
dispersed nickel catalyst consisting of NiN2O2 active sites within a 2D 
organic framework under mild and controllable reaction condition. A 
molecular engineering strategy based on modifying the edge ligand 
environment by introducing a carbonyl group was proposed to tune the 
electrocatalytic reduction of CO2. The obtained Ni-O-SA-CNT compos
ites exhibited excellent activity and selectivity (27% FE at − 0.9 V vs 
RHE) toward the conversion of CO2 to methanol due to the carbonyl 
group was introduced in the ligand environment to tune the electronic 
structure of the nickel active sites. This work not only provides the best 
nickel-based catalysts so far reported for the electrocatalytic conversion 
of CO2 to methanol, but also demonstrates a novel strategy to design and 
engineer efficient electrocatalysts to convert CO2 to valuable chemicals 
through modulating the ligand structures. 
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