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ABSTRACT

Context. The accurate evaluation of gradients is a cornerstone of the smoothed particle hydrodynamics (SPH) technique. Using an
integral approach to estimating gradients has been proven to substantially enhance its accuracy, retaining the Lagrangian structure
of SPH equations and remaining fully conservative. However, in practice, it is difficult to ensure that the Lagrangian formulation is
entirely consistent with regard to the exact partition of the unity.
Aims. In this paper, we focus our study on the connection between the choice of the volume elements (VEs) in the SPH summations
as well as the accuracy in the gradient estimation within the integral approach scheme (ISPH). We propose a new variant of VEs to
improve the partition of the unity that is fully compatible with the Lagrangian formulation of SPH, including grad-h corrections.
Aims. Using analytic considerations, simple static toy models in 1D, and a set of full 3D test cases, we show that any improvement
in the partition of the unity also leads to a better calculation of gradients when the integral approach is used jointly. Additionally, we
propose an easy-to-implement modification of the ISPH scheme, which makes it more flexible and better suited to handling sharp
density contrasts.
Methods. The ISPH code that is built with the proposed scheme has been validated with a good number of standard tests, some
of them involving contact discontinuities. The performance of the code was shown to be excellent in all of these tests, consistently
demonstrating that an improvement in the partition of the unity is not detrimental to the optimal conservation of energy, momentum,
and entropy that is typical of Lagrangian schemes.
Results. We successfully built a new ISPH scheme on a Lagrangian basis, which is fully conservative, and compatible with self-
consistent grad-h terms and an improved partition of the unity. The ensuing code is able to successfully cope with the tensile instability
and has been validated with a number of hydrodynamic tests with good results.

Key words. methods: numerical – hydrodynamics

1. Introduction

The smoothed particle hydrodynamics (SPH) is a firmly settled
numerical technique that is capable of successfully simulating
many cutting-edge problems in physics, astrophysics, and engi-
neering. This technique has undergone a sustained enhancement
since its original formulation (Lucy 1977; Gingold & Monaghan
1977) and it is still evolving at a suitable pace (e.g., Springel
2010; Monaghan 2012; Rosswog 2015a, 2020b; Wadsley et al.
2017; Cabezón et al. 2017; Price et al. 2018). A landmark in that
evolution concerns the estimation of derivatives and gradients,
which can be done using a number of different approaches.

The standard way of calculating gradients is by directly tak-
ing the analytic derivative of the interpolating kernel function,
which leads to E0-errors, even in the presence of constant pres-
sure fields in non-uniform particle distributions (Agertz et al.
2007; Zhu et al. 2015). One alternative adapts the moving-least
squares technique (MLS) to SPH (Dilts 1999) to ensure an exact
interpolation of linear functions. In the MLS methods, the SPH

kernel is replaced by a new interpolant that is built by combining
the original kernel with a linear operator. Such techniques ensure
the linear consistency of the interpolations but they also require
the solution of a linear system of d + 1 equations (where d is
the dimension) for each particle at each integration step. Alter-
natively, adding renormalization corrections to both the kernel
and the gradient of the kernel have been shown to enhance the
accuracy in the calculation of gradients and to reduce the ten-
sile instability (Bonet 1999). Tensile instability often arises at
boundaries in the flow, separating fluid regions of varying densi-
ties. The inconsistency in the treatment of gradients induces an
nonphysical surface tension of numerical origin, which inhibits
fluid mixing and suppresses hydrodynamic instabilities. A vari-
ational principle applied jointly with a kernel renormalization
was used by Oger et al. (2007) to reduce the tensile instabil-
ity and simulate fluid systems with free surfaces. Nevertheless,
these MLS and renormalization techniques, in general, do not
guarantee the perfect conservation of the whole set of physi-
cal laws governing the motion of the fluid, which are at the
foundations of the SPH technique. A recent proposal has been
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the conservative reproducing kernel SPH method (CRKSPH)
from Frontiere et al. (2017) and although it is not derived from
a Lagrangian, it still enforces a perfect linear interpolation and
retains the linear momentum and energy conservation properties.

Another alternative way of estimating gradients was devised
by García-Senz et al. (2012). In their proposal, gradients are cal-
culated from an integral expression, so that there is no need to
explicitly calculate the analytic derivative of the kernel function.
These authors also proved that such an integral approach can be
completely compatible with the Lagrangian formulation of the
SPH equations, leading to the integral smoothed particle hydro-
dynamics (ISPH) scheme, named IAD0 in the seminal paper by
García-Senz et al. (2012). It has been shown that the ISPH for-
mulation has the same conservation properties as the standard
Lagrangian-derived SPH (Springel & Hernquist 2002). We note
that a particularly remarkable feature of ISPH is that it effec-
tively reduces the E0-error in the derivatives (García-Senz et al.
2012; Rosswog 2015a; Valdarnini 2016).

In this work we dig further into the conditions that the ISPH
scheme should meet in order to improve the calculation of gradi-
ents, which can approach greater precision for linear functions.
We found that these conditions are connected with another basic
SPH requirement, namely: the correct partition of unit volume.
By using one-dimensional numerical experiments, we clarify the
link between these two basic properties, namely: any enhance-
ment in the partition of unity leads to a better gradient estima-
tion within the ISPH framework. The results of these 1D toy
models are confirmed by detailed 3D hydrodynamic simulations
of explosions, collisions, and instabilities.

Here, we propose and discuss a new type of volume ele-
ments (VEs) that lead to a better partition of the unity. The ISPH
equations of density, movement, and energy are consequently
re-formulated, within the Lagrangian framework, so that they
become fully compatible with the particular choice of the VEs.
The resulting scheme is not only fully conservative, but it also
enhances the density estimation and the gradient of linear func-
tions with practically no computational overload.

Thus, the present work is a natural extension of the dis-
cussion in Cabezón et al. (2017; hereafter Paper I), where the
code SPHYNX was introduced and verified. Here, we focus
on modifying the proposal in Paper I, so that the new SPH
scheme (Appendix A) incorporates an implicit treatment of the
VEs, which is now fully compatible with the Lagrangian deriva-
tion of SPH equations, with a consistent treatment of grad-h
terms. A second improvement is the use of a novel self-adaptive
scheme to surgically reduce the tensile instability in regions
with large density gradients. Unfortunately, suppressing that
instability requires us to abandon the Lagrangian formulation
(Read et al. 2010; Wadsley et al. 2017; Wissing & Shen 2020).
In our proposal, the departure from such a formulation is min-
imal and is limited to regions hosting significant density con-
trasts. Additionally, we show that our formulation leads to a bet-
ter behavior in terms of entropy in shocks than other schemes
that suppress the tensile instability.

In Sect. 2, we review the main features of the ISPH scheme.
We discuss the choice of the generalized volume elements used
to compute the summations in Sect. 3. The link between the per-
formance of the ISPH calculation of gradients and the adequate
choice of the VEs is highlighted in Sect. 4. Section 5 presents the
resulting ISPH equations, while in Sect. 6, we apply our code to
several standard tests calculated in three dimensions and we ana-
lyze the results in the context of the VEs choice. A summary of

our findings and prospects for future works is given in the con-
clusions section.

2. ISPH formulation

The classical way of evaluating gradients in SPH takes the mul-
tidimensional derivative of a function f as:

∇ f =

∫
V

f (r′) ∇W(|r′ − r|, h) dr′3, (1)

where W(|r′ − r|, h) is commonly a Dirac δ-like function named
interpolating kernel, which is continuous and derivable, and h is
the smoothing length. In the classical SPH formulation, the gra-
dient of the function is estimated by: (1) approaching the inte-
gral of Eq. (1) by summations; (2) taking the analytic derivative
of the kernel; and (3) assuming that the volume element dr′3 is
adequately represented by m/ρ. Specifically1,

〈∇ f 〉a =
∑

b

mb

ρb
fb∇W(|rb − ra|, ha), (2)

where a and b refer to neighbouring particles with masses ma

and mb, respectively. Alternatively, in ISPH, the gradient is cal-
culated from an integral approach (IA), which does not require
the explicit analytic derivative of W(|r− r′|, h). A vector integral
I(r) is defined as (García-Senz et al. 2012):

I(r) ≡
∫

V

[
f (r′) − f (r)

]
(r′ − r)W(|r′ − r|, h) dr′3. (3)

The integral I(r) can be used to find the gradient of a func-
tion f (r) in a similar way that the Laplace operator is usually
approached from another integral expression in standard SPH
(Brookshaw 1985; Monaghan 2005). The IA interpretation of
SPH is the consequence of approaching Eq. (3) with summa-
tions, along with approaching the function f (r) by a Taylor
expansion around the evaluated point,

f (rb) − f (ra) ' ∇ f a · (rb − ra), (4)

with ∇ f a defined below. The RHS in the integral expression in
Eq. (3) becomes:

I(ra) =

∑
b

mb

ρb
f (rb)(rb − ra)W(|rb − ra|, ha)

 − [
f (ra)〈∆r〉a

]
,

(5)
where

〈∆r〉a =
∑

b

mb

ρb
(rb − ra)W(|rb − ra|, ha). (6)

Setting Eqs. (4) and (5) into Eq. (3) allows us to obtain the
gradient ∇ f a, ∂ f /∂x1
∂ f /∂x2
∂ f /∂x3


a

=

 τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33


−1  I1

I2
I3

 , (7)

1 Admittedly, this is not the most used implementation of the deriva-
tive in SPH. The most commonly used version is a variation involving
differences of the derived function. Nevertheless, it is formally the same
as Eq. (2).
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where

τi j,a =
∑

b

mb

ρb
(xi,b − xi,a)(x j,b − x j,a)Wab(ha) ; i, j = 1, 3, (8)

and where the spatial coordinates are represented by x with sub-
indexes i or j. Henceforth, we note Wab(ha) ≡ W(|rb− ra|, ha) for
the sake of clarity.

It was shown in García-Senz et al. (2012) that Eq. (7) leads
to a perfect linear interpolation. Unfortunately, the price to pay is
the loss of the full conservation of linear and angular momentum.
The exact conservation of the SPH Euler equations and a perfect
linear interpolation can only be retrieved simultaneously when
〈∆r〉a → 0. We refer to ISPH as the conservative scheme which
simply neglects the term f (ra)〈∆r〉a in Eq. (5). This is justified
because 〈∆r〉 is, in fact, the indefinite integral of an odd function,
which is zero2.

On the other hand, the complete integral approach, which
takes into account the f (ra)〈∆r〉a term in the RHS of Eq. (5),
leads to a perfect linear interpolation but is not fully conser-
vative. We refer to it as non-conservative ISPH (ncISPH, here-
after). As commented above, both schemes, ISPH and ncISPH,
converge to the same outcome when 〈∆r〉a ' 0. Having both, a
perfect partition of unity and 〈∆r〉a = 0, has been identified for
a long time as the main constraint in order to ensure complete
linear consistency in SPH (Liu & Liu 2006).

3. Choice of the volume elements

A common choice with regard to the volume elements in SPH is
Va = ma/ρa, which leads to the widely used density equation,

ρa =

nb∑
b=1

Vb ρb Wab(ha) =

nb∑
b=1

mbWab(ha), (9)

which works well provided that the density does not change very
much within the kernel range. Nevertheless, the density may
appreciably be miscalculated in the presence of shocks and den-
sity discontinuities. In these cases, the partition of the unity con-
dition is not fully satisfied:

nb∑
b=1

mb

ρb
Wab(ha) , 1. (10)

The errors in the normalization constraint would introduce a
level of uncontrolled errors in the remaining SPH equations. To
reduce the normalization errors, the most obvious recipe is to
renormalize the kernel itself:

ρa =
∑

b

mb

 Wab(ha)∑
c

mc

ρ0
c
Wac(ha)

 , (11)

where ρ0
c =

∑
b mbWcb(hc) is the standard density. A more clever,

albeit more complex, variation of that scheme was developed
by Colagrossi & Landrini (2003) within the MLS approach,
which exactly reproduces the linear variation of a density field
(see Gomez-Gesteira et al. 2010 for a review of these topics).
Nevertheless, none of those SPH schemes are totally compat-
ible with the Lagrangian formulation of SPH. The Lagrangian
formulation of the equations of movement has the advantage

2 Interestingly, this argument has been used for the whole history of
SPH to justify that it is a second-order method, which is true in the
continuum limit, but not always numerically ensured.

that the grad-h terms can be consistently incorporated to the
scheme, so that a complete preservation of mass, linear and
angular momentum, energy, and entropy is guaranteed. Most
MLS applications belong to the realm of computational fluid
dynamics (CFD), which usually works with incompressible or
weakly-compressible fluids. Having an almost constant density
field for the entire simulation implies that the smoothing length
also remains constant and the grad-h corrections are negligible
(except at the boundaries, which are usually handled with spe-
cial techniques). For that reason, the MLS methods are mostly
used in CFD simulations; however, in the case of astrophysical
scenarios, where density contrasts of orders of magnitude are not
rare, the Lagrangian approach with a self-consistent treatment of
the grad-h terms is preferable. Nevertheless, due to its properties,
we are convinced that the methods presented in this paper can be
also of use for CFD simulations.

Other options for the volume elements, Va, may be of inter-
est to address specific problems. The code SPHYNX3 from
Cabezón et al. (2017), makes use of the concept of generalized
volume elements (Hopkins 2013; Saitoh & Makino 2013). First,
a scalar estimator Xa is defined so that the particle volume is:

Va =
Xa

ka
, (12)

with ka =
∑

b XbWab(ha). The density of the particle is then cal-
culated as ρa = ma/Va. Current choices for the estimator that
can be found in the literature are Xa = 1,ma, Pk

a, where P is
the pressure and k ≤ 1. There is, however, a particular choice
which, according to Paper I, provides a better partition of the
unity, namely:

Xa =

(
ma

ρa

)p

. (13)

Setting p = 0 produces the standard volume element for particles
with identical mass, whereas 0 < p ≤ 1 gradually improves the
kernel normalization when p→ 1.

There are two ways to implement the estimator in Eq. (13).
The first is to make use of the density calculated in the previous
time-step, ρn−1

a , to estimate the volume elements and density at
the current iteration n:

ρn
a =

ma
∑

b Xn−1
b Wab(ha)

Xn−1
a

with Xn−1
a =

(
ma

ρn−1
a

)p

. (14)

The second is to make use of the density calculated in the stan-
dard way in the current time-step, ρ0

a =
∑

b mbWab(ha), to esti-
mate Xa and then ρn

a = ma/Vn
a (Vn

a calculated with Eq. (12)). That
is:

Xa =

(
ma

ρ0
a

)p

. (15)

We refer hereafter to the first method as an explicit procedure
driven by X1,a (Eq. (14)), an to the second as an implicit method,
driven by X2,a (Eq. (15)).

In the simple, static, toy models discussed below, X1,a con-
vergence is achieved after a few iterations. Once the estimator
has converged, there is always an enhancement of the partition of
unity, which is almost perfect when the exponent p→ 1. Thanks
to its simplicity and good results, X1,a was the estimator chosen
in Paper I. It has, however, a couple of drawbacks that are worth

3 https://astro.physik.unibas.ch/sphynx
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noting. Firstly, because of the explicit nature of Eq. (14), a com-
plete Lagrangian consistency is never achieved. Secondly, taking
p = 1 makes it too sensitive to particle noise and not recom-
mended. Therefore, p = 0.7−0.8 are the recommended values,
which slightly degrades the performance of X1,a and introduces
an undesirable free parameter (the particular value of the expo-
nent p). These issues can be overcome with the second proce-
dure to implement Xa which, in the end, was the one chosen in
this work. Therefore, Xa consistently refers to X2,a hereafter.

In the second method, the calculation of the VEs makes use
of the value of ρ0

a calculated in the current integration step. As
we go on to see in the static toy models (Sect. 4), the explicit
option X1,a leads to a better partition of the unity and interpola-
tions than X2,a for identical values of the p exponent, but the for-
mer is less numerically robust and not fully compatible with the
Lagrangian formulation of the SPH equations. On the contrary,
the estimator X2,a allows us to build a Lagrangian-consistent
scheme (Appendix A), which incorporates the grad-h terms –
provided that the exponent p in Eq. (15) is chosen equal to one
(p = 1). This allows us to eliminate a parameter.

In the following sections, we show that reducing the error in
the kernel normalization (E1, hereafter) of particle a, as in:

E1 =

∑
b

VbWab(ha) − 1

 , (16)

usually improves the requirement:

E2 · ha = |〈∆r〉|a =

∣∣∣∣∣∣∣∑b

Vb (rb − ra) Wab(ha)

∣∣∣∣∣∣∣ ' 0, (17)

where E2 is the normalized error module |〈∆r〉|a/ha of particle
a. The error reduction is the consequence of using the estima-
tors X1,2 to evaluate the volume elements. Any reduction in both
errors (E1, E2) will potentially improve the dynamic evolution of
the simulated physical system.

4. Estimating the errors E1 and E2 for different
particle distributions

A good control of errors E1 and E2 is of utmost importance to
the SPH technique. This is because the quality of both the inter-
polated function 〈 f (r)〉,

〈 f (r)〉 ' f (r)
∑

b

VbWab(ha) +∇ f ·
∑

b

Vb(rb − ra)Wab(ha), (18)

and its gradient 〈∇ f (r)〉 (Eq. 7), are very sensitive to these errors
(Rosswog 2015a). Nevertheless, both errors are correlated, as it
can be inferred from the following argumentation in one dimen-
sion. We first take the kernel normalization condition as a func-
tion of the spatial coordinate,

G(xa) =
∑

b

VbWab(ha). (19)

Using the Gaussian kernel Wab(ha) = C
ha

exp[−( xb−xa
ha

)2], the
standard SPH derivative of G(x) is expressed as:(

dG
dx

)
a

= −
2
h2

a

∑
b

Vb(xb − xa)Wab(ha), (20)

thus,∑
b

Vb(xa − xb)Wab = −
h2

a

2

(
dG
dx

)
a
. (21)

Table 1. Value of the different parameters in profiles A, B, and C that
mimic different types of sharp density gradients.

Profile ρ0 ∆ρ δ h

A 1.0 1.0 0.040 0.0230
B 2.0 1.0 0.008 0.0051
C 1.5 0.5 0.020 0.0230
D 10 11 0.040 0.0230

Notes. Profile D is the same as C but with different parameters.

We note that the LHS of Eq. (21) is in fact E2, suggesting that
having a good partition of the unity (G ' 1, i.e., E1 → 0) makes
dG/dx ' 0 and, as a consequence, the E2 error is suppressed.
An independent proof of the link between E1 and E2 obtained
with an exponential kernel (Fulk & Quinn 1996) is given in the
Appendix A of Paper I.

It should be recognized, however, that the proof above is only
indicative because, unlike the interpolators widely used in prac-
tical calculations, the Gaussian and the exponential kernels are
functions without compact support. Moreover, it could happen
that even when G(x) is close to one, it shows fluctuations around
the particles and its derivative may significantly differ from zero.

In this regard, additional insights about the impact of the VE
choice in the errors E1 and E2 can be obtained by studying a
handful of static particle distributions and using kernels with
compact-support. These errors are expected to be large close to
discontinuities, which in SPH are usually spread over a few times
the smoothing-length distance (h). We chose three representa-
tive discontinuities that often appear in practical calculations:
a Gaussian (model A), an inverted-Gaussian (model B), and a
wall (model C). These are given by the following mathematical
expressions:

ρ(x) = ρ0 + ∆ρ e−
( x−x0

δ

)2

, (A) (22)

ρ(x) = ρ0 − ∆ρ e−
( x−x0

δ

)2

, (B) (23)

ρ(x) = ρ0 + ∆ρ
e
( x−x0

δ

)
− e−

( x−x0
δ

)
e
( x−x0

δ

)
+ e−

( x−x0
δ

) , (C) (24)

where the values of the parameters ρ0, ∆ρ, and δ are specified in
Table 1.

We arranged these profiles into a 1D distribution of N = 100
particles with equal mass and distributed according to the density
profile, with reflective boundary conditions. We used an interpo-
lating sinc-kernel with exponent n = 5 (Cabezón et al. 2008),
which has a shape similar to the M6 spline. The different profiles
of errors E1 and E2 at each point, for the estimators X1 and X2,
are depicted in Fig. 1. As we can see, X1 leads to a clear improve-
ment in the kernel normalization condition as p increases. For
p ' 1 the E1 error becomes negligible, hence it is not shown.
Interestingly, the estimator X2 with p = 1 (black crosses) leads
to similar E1 and E2 errors as X1 with p = 0.8 in all profiles. The
normalized error E2 = |〈∆x〉|/h follows a similar trend, suggest-
ing that having a good partition of unity is not only beneficial
to approaching an estimation of the density, but also to calculate
the gradient of any magnitude of interest with ISPH.

4.1. Impact of VE in estimating gradients

We can use our simple sharp profiles above to gain insight into
the relationship between E1, E2 in Eqs. (16), (17), as well as the
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Fig. 1. Results of the SPH evaluation of the test profiles A, B, and C using different VEs. Top row: density profiles of models A (Gaussian), B
(Inverted-Gaussian), and C (Wall), of Table 1, calculated with X1 using p = 0.0 (magenta) and p = 0.8 (blue) in Eq. (13). Crosses (×) in black are
for X2 (Eq. (15), with p = 1) and points in light blue are the analytic values. Central row: E1 (partition of unity) error for the same three profiles
following the same color schemes, with the black lines for X2 with p = 1. Bottom row: same as central row but for error E2 = |〈∆x〉|/h.

accuracy of the first derivative. To do so, we assume that the den-
sity of the test particle distribution follows profile A, Eq. (22), so
that it totally determines the VEs through Eq. (13). Let us also
assume that we wish to obtain the SPH derivative of a generic
wall-like function f given by profile D in Table 1, Eq. (24)4.
Such a derivative, d f

dx , is sensitive to the choice of the estimator
X to compute the VEs. We can thus compare the analytic and the
numerical value of d f

dx and carry out the L1 analysis of the results
with Eq. (26).

4 This test would mimic, for example, a thermal wave passing through
a star.

Figure 2 depicts the wall-like function f (x) (black solid line)
and its analytical gradient of d f /dx (light-blue line). Although
the value around the maximum of d f

dx is similar for p = 0.0
(magenta solid line) and p = 0.9 (blue solid line), the last option
fits better the derivative around the coordinate x = 0.6, which is
in turn similar to that obtained using the estimator X2 with p = 1
(black dots).

The left panel in Fig. 3 shows the averaged L1 value for E1
(Eq. (16)) and E2 (Eq. (17)):

L1(E1,2) = 〈|E1,2|〉, (25)
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Fig. 2. Wall-like function f (x) (black line) and its analytical gradient
d f /dx (light-blue solid line). The solid lines in magenta and blue were
obtained with X1 and p = 0.0, 0.9 respectively, while the black points
are for X2 with p = 1.

calculated in the interval 0.3 ≤ x ≤ 0.7 for the test presented
above. The L1 values for the partition of the unity and 〈∆x〉/h
decreases as the exponent p increases, as expected. Nevertheless,
the quantitative details again depend on the type of estimator, X1
or X2. As the figure shows, there is a factor ten reduction of the
L1 errors for X1 and p ' 0.9. The errors become negligible when
p ' 1. Although the option X2 shows a lower convergence rate
at larger p values, it still provides a significant reduction of L1,
decreasing the errors in almost a factor ten when p = 1.

The panel on the right in Fig. 3 shows the averaged L1 error
of d f

dx normalized to 〈
(

d f
dx

)
analytic

〉,

L1 =
1

N〈
(

d f
dx

)
analytic

〉

∑
b=1,N

∣∣∣∣∣∣∣
(d f

dx

)
analytic

−

(
d f
dx

)
sph


b

∣∣∣∣∣∣∣ , (26)

and how both schemes (ISPH and ncISPH) converge in light of
the flavor used for the estimator X (X1 solid blue line and X2
solid magenta line). We note that because the ncISPH scheme
(Eq. (5)) makes exact linear interpolations, the results (black
line) are not sensitive on the adopted value of p. On the other
hand, the results of the conservative scheme, ISPH (blue and
magenta lines), show a clear dependence on the choice of the
volume element, as expected. The profile of L1(p) decreases lin-
early, achieving the same accuracy as the ncISPH scheme when
p > 0.9 for X1 or close to it for X2.

Even though the test cases presented in this section were cal-
culated in 1D with ordered particle settings, the results unam-
biguously support the idea that: a better partition of unity
improves both the estimation of density and the calculation of
gradients in ISPH. Hereafter, we focus on the volume elements
calculated with the estimator X2 (Eq. (15)) with p = 1, because,
unlike X1, it fits in with the Lagrangian formulation of the SPH
equations perfectly and also allows us to eliminate the parame-
ter, p. Additionally, the grad-h terms can be easily incorporated
to the scheme with this choice of VEs. The resulting ISPH equa-
tions are described in Sect. 5.1.

4.2. The quest for fully implicit VEs

In principle, the best procedure for calculating the volume ele-
ments would be to directly obtain them from the inversion of
the kernel normalization matrix. Unlike the indirect methods
described in the previous section, a fully implicit implementa-
tion of the VEs has the advantage of always leading to the per-
fect partition of the unity. Previous attempts to build implicit
SPH schemes (Knapp 2000; Escartín 2016), have made use of
advanced techniques to efficiently invert large sparse matrices,
as, for example, the PARDISO library5. These types of libraries
could also be used to implicitly find the volume elements Vb
by solving large linear systems with N × N equations and
unknowns:
nb∑

b=1

Vb Wab(ha) = 1. (27)

Unfortunately, finding the VEs with such a direct approach gen-
erally leads to non-physical results. We calculated, in a fully
implicit manner, the VEs of the Gaussian function (Eq. (22))
by solving the linear system above and found that the volume
elements strongly oscillate around the explicit solution given by
Eq. (14) with p = 1 (see Fig. 4). Furthermore, in many points, the
volume elements become negative, which is also non-physical.
Therefore, we discarded the fully implicit route to finding the
VEs in this work.

5. ISPH equations

Here, we summarize the set of ISPH equations used to compute
the 3D tests on the following section. We provide two sets of
momentum and energy equations, one corresponding to a “stan-
dard” of generally used VEs (i.e., Xa = ma) and another one to
our suggested VEs, which are the equations used to perform the
comparisons in the tests of Sect. 6. We also provide the details
of the procedure used to build these equations in Appendix A.

5.1. Description of the ISPH equations

The density equation is expressed as:

ρa =
ma

Va
, (28)

with Va defined by Eq. (12).
The momentum equation is:

ẍi,a =



For Xa,b = ma,b :

−
Xa
ma

∑
b mb

[
XbPa

Ωak2−σ
a kσb
Ai,ab(ha) + XbPb

Ωbk2−σ
b kσa
Ai,ab(hb)

]
;

For Xa,b = ma,b/ρ
0
a,b :

−
∑

b mb

[
X2−σ

a Xσ
b Pa

Ωam2
a ka
Ai,ab(ha) +

X2−σ
b Xσ

a Pb

Ωbm2
b kb
Ai,ab(hb)

]
;

,

(29)

with ρ0
a =

∑
b mbWab(ha), and Ωa,b is given in Appendix A.

We introduced a parameter, 0 ≤ σ ≤ 1, which allows us to
choose between the pure Lagrangian scheme developed in the
Appendix A (σ = 0) and a progressive deviation of it, which

5 The widely used Intel MKL PARDISO library function is based on
a legacy version of this project: https://www.pardiso-project.
org/
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Fig. 3. L1 calculation of the errors in the numerical experiments shown in Fig. 2. Left: averaged value of L1 for the partition of the unity (solid
lines) and 〈∆x〉/h (dotted lines). Blue lines are for the estimator X1 and magenta lines for X2. Right: averaged value of L1, obtained with Eq. (26),
for the derivative of the wall function calculated with X1 (solid blue line) and X2 (solid magenta line). The black line is the calculation with the
non-conservative ISPH, which is independent of the particular value of the exponent p. We note that when p ' 1 both schemes (ISPH and ncISPH)
converge, albeit faster for estimator X1 than for X2.

suppresses the tensile instability when σ → 1 (see Sect. 5.2 for
more details on σ). Moreover,

Ai,ab(ha,b) =

d∑
j=1

ci j,a(ha)(x j,b − x j,a)Wab(ha,b), (30)

with ci j,a as the coefficients of the inverse matrix in the IA given
by Eq. (7), and d as the number of dimensions. Any expression
of standard SPH can indeed made compatible with the IA by
taking the kernel derivative as (Cabezón et al. 2012):

∂Wab(ha)
∂xi,a

= Ai,ab(ha); i = 1, d. (31)

The energy equation is:

u̇a =



For Xa,b = ma,b :
XaPa

maΩak2−σ
a

∑
b
∑d

i=1
Xb
kσb

[
(vi,a − vi,b)Ai,ab(ha)

]
;

For Xa,b = ma,b/ρ
0
a,b :

X2−σ
a Pa

m2
aΩaka

∑
b
∑d

i=1 mbXσ
b
[
(vi,a − vi,b)Ai,ab(ha)

]
;

. (32)

The necessary terms of artificial viscosity (AV) are added
to the right of the equations above as in Paper I, but explicitly
including a quadratic term in the signal velocity:

vsig
ab = ᾱabc̄s,ab − βwab, (33)

where wab = uab · r̂ab (Monaghan 1997; Price et al. 2018). The
parameter β is kept constant with a default value β = 2. The AV
coefficient α is controlled with the switches scheme described in
Read et al. (2010) so that α ' 1 in strong shocks but it decays
to a minimum value of α ' 0.05 away from them. Finally, ᾱab
and c̄s,ab are the average α and speed of sound between neigh-
boring particles. According to Monaghan (1997), the AV contri-
bution to the energy equation should include a heat-conduction

Fig. 4. Implicit versus explicit estimation of the volume elements, Vb,
in the numerical experiments with the Gaussian curve (Eq. (22)).

term which smooths the pressure in wall-shock conditions. The
precise form of such heat-conduction term is:(

dua

dt

)AV

cond
=

∑
b

d∑
i=1

mbαu

vsig
ab,cond(ua − ub)

ρ̄ab

ri,ab

|rab|
Āi,ab(ha, hb),

(34)

with Ā(ha, hb) = 0.5(A(ha) + A(hb)), which in the SPHYNX
code is implemented as:(

dua

dt

)AV

cond
=

∑
b

d∑
i=1

1
2
αu vsig

ab,cond(ua − ub){
Va

mb

ma

ri,ab

|rab|
Ai,ab(ha) + Vb

ri,ab

|rab|
Ai,ab(hb)

}. (35)
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The signal velocity vsig
cond used in our tests is (Price 2008):

vsig
ab,cond =

√
|Pa − Pb|

ρ̄ab
. (36)

The results of the tests below suggest that adding a small amount
of conductive heat by Eq. (35) is beneficial because it contributes
to reduce the tensile instability and to smooth the numerical
noise. Nonetheless, the value of the constant αu should not be
high, otherwise the density-peak in strong shocks may be under
estimated (see Sect. 6.4). We chose αu = 0.1, which is low and
in agreement with the choice by other authors, such as Tricco
(2019). The equation of state (EOS) is that of an ideal gas, with
γ = 5/3.

5.2. Obtaining the value of σ

When using the SPH equations deduced from the Euler–
Lagrange formulation a drawback appears wherever∇ρ becomes
large as in the case of contact discontinuities, for instance. In
such cases, the incorrect estimation of gradients may lead to
numerical artifacts, with the tensile instability standing as one
of the most harmful and most common. Several solutions have
been postulated to cope with this problem, all of them requir-
ing some departure from the exact Lagrangian formulation. For
example, Ritchie & Thomas (2001) proposed to estimate the
density by averaging over the internal energies so that the ensu-
ing density field is smooth. A similar approach was described
in Saitoh & Makino (2013), who suggested that the volume ele-
ments be redefined so that they depend on the pressure rather
than density. Another solution was proposed by Read et al.
(2010), where a typical element within the summations of the
momentum and energy equations is changed from the standard
[Pa/ρ

2
a] to [Pa/(ρaρb)]. While it is not totally Lagrangian com-

patible, such a simple change is mathematically consistent with
the standard derivation of the SPH equations (Monaghan 1992;
Price 2004)6 and can totally suppress the tensile instability. All
of these SPH variants have a feature in common, namely, that
the main magnitudes in the movement equation are somehow
“crossed” for particles a and b (f.e. ub/ρa in Ritchie & Thomas
2001 or Pa/(ρaρb) in Read et al. 2010). In Cabezón et al. (2017),
the choice of X1,a (Eq. (14)), combined to the SPH equa-
tions defined in Rosswog (2015b), naturally led to an almost
“crossed” scheme7. In spite of not being totally Lagrangian-
compatible and with the grad-h terms only approximated, this
code behaved well and was able to pass a suite of verifying
tests.

Here, we propose a similar procedure as in Read et al.
(2010), but allowing for a self-adaptive crossing of indexes in
the original Lagrangian equations derived in the Appendix A.
The resulting expressions, Eqs. (29) and (32), are steered by a
parameter σ so that 0 ≤ σ ≤ 1. The value σ = 0 leads to the
fully Lagrangian SPH equations whereas σ = 1 gives a fully
crossed expression. We make use of a ramp function (R) to auto-
matically decide the instantaneous value of σ as a function of

6 The possibility of working with Pa/(ρ2−σ
a ρσb ) (with some preference

for σ = 0) was already suggested by Monaghan (1992) in his popular
review, but σ was thought to be a constant real number.
7 Specifically, it can be shown that the scheme in Paper I involve terms
such as Pa/(ρ

2−p
a ρ

p
b ), with p = 0.7 being the exponent of the explicit

estimator (Eq. (14)) considered in that work.

the density contrast between any pair of particles.

σab =


0; Atab ≤ Atmin

R(Atab − Atmin); Atmin ≤ Atab ≤ Atmax

1; Atab ≥ Atmax

, (37)

with R = 1
Atmax−Atmin

and Atab =
∣∣∣∣ ρa−ρb
ρa+ρb

∣∣∣∣ as the Atwood num-
ber. Equation (37) leads to σ ' 1 only in those regions host-
ing large density gradients, while the fully Lagrangian scheme
is preserved wherever σ = 0, which is taken by the major-
ity of the particles of the system. We empirically found that
Atmin = 0.1, Atmax = 0.2 produce satisfactory results in all the
numerical experiments described in this work.

6. Tests

In this section, we analyze the results of four well-known tests
that require the solution of the full system of Euler equations in
three dimensions. The first test deals with the hydrostatic equi-
librium of a two-phase fluid. It aims to analyze the abilities of
our Lagrangian scheme to handle sharp density discontinuities.
Then we applied this scheme to the study of the growth of the
Kelvin–Helmholtz (KH) instability, to the interaction of a super-
sonic wind with an isothermal, high-density spherical cloud (the
wind-cloud test), as well as to simulate the evolution of a point-
like explosion (the Sedov test). The simulations were carried
out using the ISPH code SPHYNX and the outcomes have been
compared to well-known solutions. Tests were run with varying
parameters to disentangle the effects of IA, VE, heat transport
in the AV, and σ. Special emphasis is placed on a comparison
among models with different choices of σ and volume elements,
namely, the standard choice8 of Xa = ma and the improved VEs
with Xa = ma/ρ

0
a.

We find that the conservation properties are excellent and
that linear momentum is preserved to almost machine precision
in all tests. The angular momentum, with respect to the center of
mass, deviates less than 10−6 from the initial value. The relative
deviation, |∆E|/E0 in the total energy was less than 10−5, except
in the isobaric two-fluid test (Sect. 6.1), where it was '10−4 at
late times.

6.1. Isobaric two-fluid test

The simulation of the hydrostatic evolution of a two-phase sys-
tem with very different densities and internal energies is far from
being trivial with SPH codes. We considered a system of two
fluids separated by a contact discontinuity but in pressure equi-
librium:

ρ =

{
4 0.25 ≤ x, y, z ≤ 0.75,
1 otherwise.

(38)

The system is isobaric with P = 2.5 and we use N = 1103 equal-
mass particles spread in two nested body-centred cubic (bcc)
lattices. The EOS is P = (γ − 1)ρu with γ = 5/3, the num-
ber of neighbors is set to nb = 100, and the sinc (n = 5) kernel
(Cabezón et al. 2008) is used to interpolate. If the density around
the contact discontinuity is not adequately smoothed, the two

8 Actually, any constant magnitude is a suitable choice as Xa, but
taking the mass of the particle allows for the fine-tuning of the den-
sity (if needed) by slightly modifying the mass of the particles. In
nearly isobaric systems, with shallow pressure gradients, the choice
Xa = Pk

a, k ≤ 1 could also be appropriate.
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Table 2. L1 values for errors E1 and E2 at t = 1.5 in the hydrostatic
square test.

Model σ αu X L1(E1) L1(E2) L1(d)
[×10−3] [×10−3] [×10−2]

H1 0.0 0.1 m 3.0 2.5 3.2
H2 0.0 1.0 m 3.0 2.6 3.1
H3 1.0 0.1 m 4.4 3.2 1.6
H4 [0–1] 0.1 m 5.0 3.5 2.0
H5 0.0 0.1 m/ρ0 2.1 2.7 3.2
H6 0.0 1.0 m/ρ0 2.5 2.9 3.0
H7 1.0 0.1 m/ρ0 2.5 3.2 1.5
H8 [0–1] 0.1 m/ρ0 2.7 3.3 2.0

Notes. The significance of the columns: σ is the magnitude defined in
Eq. (29), αu controls the amount of heat transport in the AV (Eq. (34)),
X is the estimator connected to the VE choice and L1(E1), L1(E2), L1(d)
are the averaged L1 values of the partition of unity, the 〈∆r〉/h condi-
tion, and the deviations of the SPH particles from their initial position,
respectively.

Fig. 5. Slices around Z = 0 showing the density colormap of mod-
els H5,H6,H7,H8 (Very similar results for H1–H3 models, calculated
with standard VEs can be found in plots given in previous works
(Cabezón et al. 2017, their Fig. 4).) in Table 2 (rows) at different times
(columns), with the sound-crossing time being τsc = 0.9.

phase system evolves non-physically when the full Lagrangian
scheme (Eqs. (29) and (32), with σ = 0) is applied. The reason
is that the error in ∇ρ becomes too large at the contact disconti-
nuity, inducing the tensile instability. This is just the kind of sim-
ulation where the use of the magnitude σ (see Sect. 5.2), defined
by Eq. (37), becomes especially helpful.

The results of applying Eqs. (29) and (32) to the hydrostatic
square test are summarized in Table 2 and Fig. 5. Only mod-
els with Xa = ma/ρ

0
a are shown in Fig. 5, and calculations with

Xa = ma give similar results, albeit with higher L1 values. The
density color map slices depicted in Fig. 5 show that the behav-
ior of the square is primarily controlled by the value of σ. In
the case of the full Lagrangian formulation (models H5,H6),
calculated with σ = 0, the system completely looses its shape
in half of the sound-crossing time, τsc ' 0.9 s. Nevertheless,

Fig. 6. Isobaric two-fluid numerical experiment. Upper panel: slice
around Z = 0 showing the averaged σ-parameter (Eq. (37)), in model
H8 at t = 0.55. Appreciable values of σ are only attained at the
fluid inter-phase. Lower panel: time evolution of averaged L1(E1) (solid
lines), L1(E2) (dashed lines) for models H3, H7, and H8 in Table 2.

increasing the conductivity in the AV (model H6) slightly delays
the deformation; although, in the end, it is not able to prevent
it. Model H7, calculated with σ = 1, leads to the best results.
The cube maintains its profile at t/τsc ' 1.7 (last snapshot in
third row in Fig. 5) and beyond. Such behavior is in fair agree-
ment with the results of other density-based schemes (Read et al.
2010; Wadsley et al. 2017) calculated in 2D and 3D respectively.
It also matches the 2D calculation in Paper I (first row in Fig. 4
of that work, with 0 ≤ t/τsc ≤ 2) calculated with the explicit
X1,a given by Eq. (14) with p = 0.7 (see footnote 7). It is worth
noting that model H8, calculated with σ[0 − 1], preserves the
shape of the square until t/τsc ' 1 and still does at the last snap-
shot in Fig. 5 at t/τsc = 1.7, although not as well as in model
H7. As shown in Fig. 6 (upper panel), the algorithm (Eq. (37))
that self-adapts σ as a function of the local density contrast
works splendidly, increasing the value of σ only where it is
needed.

To investigate the dependence of the errors E1,2 (Eqs. (16)
and (17)) with respect to the VE estimator and σ we calculated
the L1 values (Eq. (25)) in a rectangular shell with width 0.3
around the contact discontinuity.
The column L1(d) of Table 2 is defined by the average error of
the absolute displacement of the SPH particles located in the
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Table 3. Simulated models in the Kelvin–Helmholz test.

Model σ X αmin ρ1/ρ2 L1(E1) L1(E2)
[×10−3] [×10−3]

KH1 0 m 0.05 2 10.0 4.4
KH2 [0–1] m 0.05 2 9.9 4.3
KH3 0 m/ρ0 0.05 2 2.8 3.7
KH4 [0–1] m/ρ0 0.05 2 2.9 3.8
KH5 [0–1] m 0.5 2 10.0 3.5
KH6 [0–1] m/ρ0 0.5 2 2.2 2.6
KH7 [0–1] m 0.05 8 18.0 7.7
KH8 [0–1] m/ρ0 0.05 8 5.8 6.1

Notes. The columns present the following: σ is the magnitude defined
in Eq. (37), X is the estimator connected to the VE choice, αmin is the
minimum value of the AV parameter, ρ1/ρ2 is the density ratio, and
L1(E1) and L1(E2) are the averaged L1 values of the partition of unity
and the 〈∆r〉/h condition, respectively, at t = 2.

shell, with respect to their initial positions:

Ld
1(t) =

1
N

N∑
b=1

√
(xb(t) − xb,0)2 + (yb(t) − yb,0)2 + (zb(t) − z2

b,0),

(39)

where x, y, and z are the Cartesian coordinates of the particles
while x0, y0, and z0 coordinates represent their initial position.
Sub-index b runs from 1 up to the N particles contained in the
rectangular shell.

The full Lagrangian models H1, H2, H5, and H6, calculated
with σ = 0, give the worst results, with L1(d) ≥ 3 × 10−2 at
t = 1.5. The minimum value of L1(d) corresponds to model H7
(L1(d) = 1.5 × 10−2), calculated with σ = 1 and improved VEs.
However, model H8 calculated with the self-adaptiveσ[0−1] and
improved VEs, also displays a similarly good behavior, while
keeping full Lagrangian consistency (σ ' 0) in a large fraction
of the domain (see Fig. 6, upper panel).

The lower panel in Fig. 6 depicts the evolution of the aver-
aged estimator L1 of the partition of the unity (solid lines) and
〈∆r〉/h (dashed lines) for models H3, H7, and H8 in Table 2.
Comparing H3 to H7 highlights the relevance of the VEs, while
comparing H7 to H8 shows the impact of a variable σ. Is it
clear that the partition of the unity is enhanced with the choice
X = m/ρ0, nevertheless the behavior of 〈∆r〉/h is less defined.
The error L1(E2) remains lower for models H7 and H8 than
model H3 until t ' 0.2. Afterwards the error grows to eventu-
ally reach a similar value to that of model H3, calculated with
Xa = ma. Thus, we expect a degradation in the behavior 〈∆r〉/h
with respect the results shown in Figs. 1 and 3 whenever the dis-
order of the particles is high. In summary, the dominant parame-
ter for the dynamic evolution of the system is σ, which basically
determines the stability of the square. Using X = m/ρ0 improves
the partition of unity at any time, but the magnitude 〈∆r〉/h does
not show a definite enhancement in this test.

6.2. Kelvin–Helmholtz instability

The correct simulation of the evolution of the contact layer
between fluids with different densities is of capital importance
for the adequate growth of the Kelvin–Helmholtz (KH) insta-
bility. García-Senz et al. (2012) proved that the use of ISPH
improves the evaluation of gradients overall (particularly in the

contact layer). Provided the density contrast is not very high,
it prevents the appearance of tensile instabilities that otherwise
suppress the growth of the KH instability. Because SPHYNX
uses ISPH by default, all KH simulations presented here show
no signs of tensile instability and have growth rates close to
the reference calculation by McNally et al. (2012) with the code
PENCIL. Nevertheless, using a volume element that is better at
fulfilling conditions (16) and (17) should additionally improve
the accuracy of ISPH and, as a consequence, obtain a better KH
growth rate.

We ran this test in a thin three-dimensional layer of size
[1 × 1 × 0.0625] with 4.2 × 106 equal-mass particles, distributed
in a ratio 2:1 between the high and low density regions. For the
initial setting, we have three stratified layers, being the central
layer the high-density one. Each region was generated from a
random particle distribution relaxed to a glass-like configuration.
The equation of state, initial velocities, and initial pressure are
the same as those in Sect. 5.4.1 in Paper I. Times are normal-
ized to the characteristic Kelvin–Helmholtz growth time tKH, as
defined in Agertz et al. (2007), which results in tKH = 1.06 for
our models. As discussed at the end of Sect. 6.4, we adopted a
low value, namely, αu = 0.1, of the AV conductive parameter.

We used two different VEs (the standard Xa = ma and the
enhanced version proposed here Xa = ma/ρ

0
a) and, for each case,

we performed two simulations: one fixing σ = 0, hence ensuring
fully Lagrangian compatibility, and another one allowing σ to
vary according to Eq. (37). All simulations are summarized in
Table 3.

In Fig. 7, we represent the particle distributions for each sim-
ulated model (each snapshot corresponds to one model, from
KH1 to KH4) at t = 2. The color represents density. As it can
be seen, there are very few differences among all the simulated
models. In all cases, the KH billows are able to develop, with
small differences among simulations, mostly at the extremes of
the billows.

We can also explore the growth of the amplitude mode for
the vy field and compare it with a reference evolution taken from
the PENCIL code (McNally et al. 2012). Figure 8 (left) shows
this evolution and it is clear that there are very little differ-
ences among both VEs implementations, in agreement with the
results in Paper I. These results are in good match with those by
Frontiere et al. (2017) and Rosswog (2020a) for similar resolu-
tion and initial conditions, provided that the Cullen & Dehnen
(2010) AV trigger is chosen to steer dissipation in the last case.

Figure 9 presents the time evolution of the averaged L1 value
for errors E1 and E2. To average the L1 values we restricted to
those particles that had σ ≥ 0.025. This condition returns all
those particles that are found in the inter-phase (see Fig. 10),
which is the region the error comes from and where the accurate
evaluation of the VEs is more critical. It is clear that whenever
the improved VEs are used (dashed lines in Fig. 9), these errors
decrease, independently of the scenario being simulated. The last
two columns of Table 3 show the numerical value of L1 for all
simulated tests at t = 2, where we can see that the choice X =
m/ρ0 reduces both, the L1(E1) and the L1(E2) errors.

From these results, we can conclude that despite decreasing
the errors E1 and E2, the VEs choice has little influence in the
growth of the KH instability when the density contrast is mod-
erate. The most important element here is having the IA imple-
mentation to calculate gradients, as shown in Paper I. Additional
improvement in the conditions (16) and (17) via using improved
VEs is subdominant. The dominant source of error at this level is
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Fig. 7. Particles distribution in a thin slice around Z = 0 for models KH1 to KH4 at t = 2 (tKH = 1.06). The density [1:2] is color-coded.

Fig. 8. Amplitude growth of the vy field in the KH instability test for all calculated models. Solid lines correspond to αmin = 0.05, while dashed
lines are from the models with increased AV (αmin = 0.5). Those with a density jump by a factor of 2 are compared with the reference PENCIL
simulation in the left panel. Right panel: two simulations with a density jump by a factor of 8 for both choices of the VEs.

Fig. 9. L1 evolution of errors E1 and E2 for the KH models. Solid lines correspond to X = m, while dashed lines are those of X = m/ρ0.

the artificial viscosity. To test this we performed two additional
simulations, KH5 and KH6, with an artificially increased αmin
in our AV switches. This αmin controls the amount of dissipation
when the AV switch is off. Therefore, is the minimum dissipation
present in the whole system. Our standard value is αmin = 0.05,
while for KH5 and KH6 we used αmin = 0.5. To have a ref-
erence, traditional AV without switches employ a global value
αmin ' 1−1.5. The amplitude growth of the vy field is also shown

in the left panel of Fig. 8 (dashed lines). It is clear that the AV
has a major effect in the development of the instability. Still, the
VEs have a negligible impact when the IA formalism is used.

Our final test was to explore if the VEs can exert an influence
when the density contrast is higher. To do that we decreased the
density of the low-density regions by a factor of 4, simply by
generating a new relaxed model with four times fewer particles,
along with repeated simulations KH2 and KH4, now with this
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Fig. 10. Color map of σ (Eq. (37)), in a thin slice around Z = 0 for
model KH4 at t = 2.

new density jump by a factor of 8 (simulations KH7 and KH8).
We present the evolution of the amplitude growth of the vy field
in the right panel of Fig. 8. In this case, the growth is more irreg-
ular and there is a clear difference between the VEs in the linear
regime. The improved VEs are able to growth faster than the
standard VEs in the initial stages of the development of the KH
instability, despite converging later, in the non-linear phase. The
IA formalism still does a good job evaluating gradients even with
a density jump by a factor 8. Nevertheless, using improved VEs
at this density contrast shows to have a noticeable effect.

In summary, if there is a mild density contrast, the IA imple-
mentation is good enough to make the choice of VEs sub-
dominant. The most relevant parameter in these situations is to
keep the dissipation at its lowest possible value, so that random
noise is still dissipated, but it doesn’t affect the shear between
the different fluid layers. In this respect, an improved handling of
the AV would be welcomed, such as that presented in Rosswog
(2020a) based on the instantaneous numerical entropy genera-
tion rate. If there is a bigger density contrast, the IA formalism
can be further improved by using a VE that better fulfills condi-
tions (16) and (17) along with σ[0−1].

6.3. Wind-cloud collision

The wind-cloud collision scenario, also called “blob” test
(Agertz et al. 2007) is a challenging test for SPH, involving sev-
eral pieces of physics such as strong shocks and mixing due to
the KH instability, amidst a two-phase medium with a large den-
sity contrast. In this test, a spherical cloud of cold gas, initially at
rest, is swept by a low-density stream of gas (the wind) moving
supersonically. As a consequence, the cloud deforms and, after a
while, it is fragmented and mixed with the background owing to
the combined effect of ablation and hydrodynamic instabilities.
This scenario has been extensively studied during the last years
(Agertz et al. 2007; Read et al. 2010; Saitoh & Makino 2013;
Hopkins 2013; Frontiere et al. 2017), where the tensile insta-
bility appearing at the wind-cloud contact was identified as the
main difficulty to overcome.

We sought to check the ability of our numerical scheme to
handle this test. The initial conditions were those described in
Paper I, except that the calculation is now carried out in 3D with
approximately Nw = 11.23 × 106 and Nc = 1.23 × 105 par-
ticles for the wind and the cloud, respectively. The initial par-

Table 4. Simulated models in the wind-cloud test.

Model σ X L1(E1) L1(E2)
[×10−2] [×10−2]

W1 0 m 3.84 2.17
W2 1 m 2.79 1.43
W3 [0–1] m 2.60 1.35
W4 0 m/ρ0 1.39 1.76
W5 1 m/ρ0 0.93 1.12
W6 [0–1] m/ρ0 0.92 1.12

Notes. The columns present the following: σ is the magnitude defined
in Eq. (37), X is the estimator connected to the VE choice, and L1(E1)
and L1(E2) are the averaged L1 values of the partition of unity and the
〈∆r〉/h condition, respectively, at t/tKH = 3.

Fig. 11. L1 values for E1 (solid lines) and E2 (dashed lines) in the wind-
cloud collision tests. Using the improved VEs reduces both L1 values
for the whole simulation.

ticle distribution for both was that of a stable glass-like con-
figuration. The box has a size {0.25 × 0.25 × 1} with periodic
boundary conditions. The high-density cloud is initially located
at (0.125, 0.125, 0.125) with a radius R = 1/40 and a den-
sity ρc = 10, ten times bigger than the surrounding wind. The
internal energy of the wind and the cloud are uw = 3/2 and
uc = 3/20, respectively, so that both regions are in pressure equi-
librium. The wind has an initial velocity (2.7, 0, 0). The charac-
teristic KH growth time used in this test to normalize the time is
τKH = 0.0937.

In Table 4 we present the L1 values of errors E1 and E2 for
the simulated models. Both errors are clearly lower when the
improved VEs are used, independently of the value of σ. This
trend is constant during the whole evolution of the simulation as
it can be seen in Fig. 11. In particular, it is clear that the models
with σ = 0 lead to the largest L1 errors in the long run, proving
that the pure Lagrangian scheme is the most sensitive to tensile
instability with such large density gradients. As in the case of
the KH test, we make use of a variable σ to track the L1 error
generated by the particles in the inter-phase. In Fig. 12 we show a
series of snapshots where the color represents the value of σ and
proves the capabilities of our algorithm to track density jumps.

The density color map at t/tKH = 1.5 is shown in Fig. 13
for both choices of VEs. We see here that, independently of the
VE choice, mixing is taking place, which will eventually destroy
the cloud – albeit more efficiently if σ , 0. Figure 14 shows
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Fig. 12. Particle distribution of the wind-cloud test in a thin slice around
Y = 0 for model W6 at t/tKH = 0, 1, 2, and 3. The parameter σ is color-
coded.

Fig. 13. Particle distribution of the wind-cloud test in a thin slice around
Y = 0 for models W3 and W6 at tKH = 1.5. Density is color-coded.

the maximum density attained in the cloud during the first stages
of the interaction. Because of the strong impact of the wind, a
shock-wave is born, which moves through the dense cloud and
compresses its matter. The density jumps from the original value
of ρ0 = 10 and tends toward the limiting value ρ = 4ρ0, which
is characteristic of a strong shock in a gas with γ = 5/3. All
models show a similar behavior but the profile from models cal-
culated with X = m/ρ0, give in general larger values than models
calculated with X = m.

In order to characterize the destruction of the high-density
cloud, we tracked the percent of surviving cloud mass (criteria:
ρ ≥ 0.64ρc and u ≤ 0.9uw) in function of t/tKH in Fig. 15. From
this result, we can see that the choice of the VEs is less relevant
than using a crossed formulation of the equations (i.e., variable
σ or σ = 1). Indeed, the cloud is mostly destroyed in all sim-
ulations, and this is mainly due to the integral formulation of
the SPH equations combined with the addition of the heat trans-
fer term in the AV equation. Nevertheless, the surviving fraction
of the cloud decreases faster and to lower values – provided we
do not use σ = 0, independently of the VE choice. The slight
delay in the evolution of the surviving fraction with X = m/ρ0

simply reflects the fact that the ensuing VEs better track the den-

Fig. 14. Evolution of the maximum density in the cloud at t/tKH ≤ 1.6
for all models in Table 4.

Fig. 15. Percent of surviving cloud in function of t/tKH for the wind-
cloud collision tests.

sity peak at the forward shock moving through the cloud. Such
a density enhancement results in the slight delay in crossing the
above threshold condition ρ ≥ 0.64ρc. The disintegration rate of
the cloud depicted in Fig. 15 when σ , 0 is in close agreement
with that obtained with the CRKSPH scheme by Frontiere et al.
(2017).

In summary, when large density contrasts are present, better
accuracy is achieved by the proposed generalized volume ele-
ments, while the suppression of the tensile instability is handled
via a surgical departure of the Lagrangian scheme, using a vari-
able σ.

6.4. Sedov explosion

We simulated this test in a three-dimensional square box of side
L = 1 and total number of particles N = 1003 arranged in a
glass-like configuration. The mass of all the particles was the
same, resulting in an homogeneous initial density profile with
ρ = 1 ± 0.005. The explosion was initiated at the center of the
box by depositing an amount of energy ∆U = 1. That energy was
spread following a Gaussian profile with characteristic width δ =
0.1.
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Table 5. Summary of all calculated Sedov tests stating the values of σ,
heat transport constant in the AV, VE choice, density peak, and L1 errors
at t = 0.09.

Model σ αu X ρmax L1(E1) L1(E2)
[×10−2] [×10−2]

S 1 0 0.1 m 3.34 3.10 2.20
S 2 0 0.5 m 3.16 2.85 1.96
S 3 1 0.1 m 3.33 3.05 2.20
S 4 [0–1] 0.1 m 3.35 3.10 2.20
S 5 0 0.1 m/ρ0 3.71 1.53 1.72
S 6 0 0.5 m/ρ0 3.47 1.33 1.52
S 7 1 0.1 m/ρ0 3.70 1.45 1.67
S 8 [0–1] 0.1 m/ρ0 3.71 1.45 1.63

Fig. 16. Sedov explosion for models S 4 and S 8 in Table 5. Top row:
density profiles at t = 0.09 calculated with Xa = ma (model S 4, standard
VEs) and Xa = ma/ρ

0
a (model S 8, improved VEs). The black line is the

analytical solution. Note that the spherical symmetry is well preserved
in both cases and that the density peak is very well reproduced with
the improved VEs. Bottom row: same but with the partition of unit. All
particles are represented in the plots.

To investigate the dependence of the errors E1,2 (Eqs. (16)
and (17)) with respect the VEs estimator choice and σ, we cal-
culated the L1 errors in the shocked region9 with Eq. (25).

The outcome of the simulations is summarized in Table 5
and Figs. 16–18. The best results were obtained in those mod-
els which incorporate the improved VEs. Unlike in the hydro-
static square test, the particular value adopted for the magnitude
σ plays a secondary role in the Sedov test. Figure 16 shows the
profiles of density at t = 0.09 for models S 4 and S 8. In both
cases, the self-adaptive algorithm to estimate σ was active. The
best match with the analytic profile (black line) was obtained
with Xa = ma/ρ

0
a, not only in the peak values, which were better

reproduced, but also in the width of the shock front. The rela-
tive errors of the maximum density with respect to the analyti-
cal value at t = 0.09 are '16% and '7% for the standard (S 4)

9 Defined as the volume with specific internal energy u(t) ≥ 0.1.

Fig. 17. Color map slice around Z = 0 showing the value of the averaged
σ-parameter defined in Eq. (37), for model S 8 in Table 5 at t = 0.09.

Fig. 18. Sedov explosion. Evolution of the averaged L1 error, (Eq. (25)),
in the shocked region corresponding to models S 4, (Xa = ma), and
S 8, (Xa = ma/ρ

0
a), in Table 5. We show both the partition of unity and

the normalized 〈∆r〉/h condition, for the estimator choices: Xa = ma
(purple and orange lines) and Xa = ma/ρ

0
a (blue and magenta lines).

Also shown is the evolution of the maximum density for the two volume
estimators (dashed lines, black is for S 4 and light-blue for S 8) during
the explosion.

and improved VEs (S 8), respectively. Figure 17 shows the dis-
tribution of the averaged σ in a thin slice along the system for
model S 8. As it can be seen, the value of σ self-adapts so that
it approaches to 1 across the shock front, goes down to ' 0.5 in
the post-shock region and vanishes in the central region.

The profile of the normalization function
∑

b VbWab(ha) at
t = 0.09 is also shown in Fig. 16, bottom row. As it can be seen,
the choice Xa = ma/ρ

0
a substantially improves the partition of

the unity with respect the standard choice Xa = ma. Such assess-
ment is quantitatively confirmed by the temporal evolution of the
error estimators L1(E1, E2) shown in Fig. 18. The enhancement
is especially good in the case of the partition of unity, although
less pronounced in the 〈∆r〉/h condition. Therefore, we conclude
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that combining ISPH with the VEs obtained with Xa = ma/ρ
0
a

reduces both errors and improves the simulations.
The impact of increasing the conductive term in the AV was

also analyzed. Raising the parameter αu from our default choice,
αu = 0.1 to αu = 0.5, substantially reduces the density peak from
ρmax(t = 0.09) = 3.34 in model S 1 to ρmax(t = 0.09) = 3.16 in
model S 2. In light of these results, it is advisable to choose a not
too high value for αu.

6.5. Choice of σ and entropy evolution in a shock

In light of the results of the tests presented here, the question of
why we would need a variable σ at all might arise. Obviously,
the case σ = 0 would be the most desirable one, as it is fully
Lagrangian-compatible. Nevertheless, it is clear that the crossed
σ = 1 scheme leads to a more efficient removal of the tensile
instability, but the price to pay is the lack of a complete com-
patibility between the Euler–Lagrange formulation and the stan-
dard density equation (Eq. (28)). Such a weakness with regard
to the crossed scheme is highlighted in the following test, which
considers the behavior of entropy in weak and strong shocks.
We want to prove that the entropy does not evolve as well when
σ , 0. We additionally show that the new volume elements have
a positive impact on the evolution of entropy.

Our numerical experiment is the same as in the Sedov test
above but with an additional case where the initial energy of the
explosion has been reduced in a factor of ten to simulate the case
of a weak explosion. During the evolution of the explosion, the
contribution to the entropy of the gas is separated in two com-
ponents: that arising from pressure forces ∆sP and that from the
artificial viscosity ∆sAV. Ideally, ∆sP ' 0 because the dissipation
is basically driven by the AV.

The second law of thermodynamics states:

Tds = du −
P
ρ2 dρ, (40)

where T, s, u, P are temperature, specific values of entropy and
internal energy, and pressure. For an ideal gas with specific heat
at constant volume, cv, we have:

ds
cv

=
du
u
− (γ − 1)

dρ
ρ
, (41)

with u = cv T . Thus, integrating on both sides:

∆s
cv

= ln
(

u
u0

)
− (γ − 1) ln

(
ρ

ρ0

)
, (42)

where ρ0, u0 are the initial values of density and internal energy.
To obtain the evolution of entropy of the ideal gas, without
the AV contribution, we first calculate the increment of entropy
(∆s)AV/cv due to the AV. Subtracting (∆s)AV/cv from (42) gives
the ideal gas contribution, which should remain negligible dur-
ing an adiabatic evolution.

The AV contribution to the entropy in a process involving an
energy/heat variation dQ is:

dQ
T

= (ds)AV →
cv dQ

u
= (ds)AV →

dsAv

cv
=

dQ
u
, (43)

which, integrating on both sides, leads to:

(∆s)AV

cv
=

∫
dQ
u

=

∫ t

0

1
u

(
du
dt

)
AV

dt, (44)

Fig. 19. Radial profile of the entropy variation by pressure forces,
|∆sP|/cv, for weak (upper row, at t = 0.18) and strong (lower row, at
t = 0.08) point-like explosions and different σ choices. The first col-
umn is for estimator Xa = ma and the second for Xa = ma/ρ

0
a.

where
(

du
dt

)
AV

is directly obtained from the SPH code. The vari-
ation of the entropy of the gas, due to pressure forces (∆s)P/cv,
and excluding the AV contribution, is determined subtracting
Eq. (44) from Eq. (42):

(∆s)P

cv
=

∆s
cv
−

(∆s)AV

cv
. (45)

In absence of heat transport and providing that there are nei-
ther entropy sources (e.g., nuclear reactions) nor entropy sinks,
(∆s)P/cv ' 0.

In Fig. 19, we show the radial profile of |∆sP|/cv for the dif-
ferent calculated models. First of all, we note that there is a spu-
rious variation of entropy in all cases. Nevertheless, the com-
bination (Xa = ma/ρ

0
a;σ = 0) shown in the fourth panel leads

to the best behavior with regard to the entropy in the shocked
region (magenta lines). Not surprisingly, the worst cases are for
σ = 1 (blue lines). These results clearly prove that Lagrangian
compatibility is of utmost relevance for keeping the entropy vari-
ations at low levels in adiabatic flows. Furthermore, upgrading
the partition of unity with a Lagrangian-compatible estimator,
such as Xa = ma/ρ

0
a, substantially improves the results. The

mixed option with σ = [0 − 1] (black lines) is, for most of the
cases, closer to σ = 0 or in between both curves, as expected.
It therefore represents a balanced solution between Lagrangian-
compatibility and the suppression of the tensile instability.

The profiles of the total entropy variation is shown in Fig. 20.
The strong shock dissipates much more entropy than the weak.
Thus, the spurious generation of entropy in weak shocks, as
shown in the upper panels of Fig. 19, is comparatively more
acute.

The results of this test support the idea that working with
an adaptive σ is a useful option that allows us to suppress
the tensile instability across shocks and contact discontinuities,
while reducing the unwanted growth of entropy in the post-shock
regions.
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Fig. 20. Radial distribution function of total entropy, |∆stot|/cv, released
in weak or strong shocks with σ = 0 and the two VEs considered in this
work. The entropy in the weak shock cases has been multiplied by 10.

7. Conclusion

The main goal of this work is to devise and check an SPH
scheme that fulfils as many basic physical and numerical con-
straints as possible, with regard to the demands of modern
hydrodynamic codes. The former include conservation of mass,
linear and angular momentum, energy, and entropy. The latter
requires a good depiction of gradients and shocks besides a
correct numerical representation of basic kernel properties, as
for example, the kernel normalization. The proposed scheme
strongly relies in the ISPH method plus enhanced volume ele-
ments described in Cabezón et al. (2017), but with an improved
Lagrangian compatibility and a better treatment of sharp density
gradients.

To this end, here we introduce an easy scheme to improve
the partition of the unity in SPH, with a special emphasis on
the connections between the partition of unity and the accu-
racy in estimating the gradients. By combining analytical rea-
soning with simple 1D toy models and full 3D simulations, we
have shown that improving the constraint

∑
b VbWab(ha) = 1

automatically leads to an enhancement of the condition 〈∆r〉 =∑
b Vb(rb − ra)Wab(ha) = 0. When gradients are approached with

an integral expression (the ISPH scheme via Eq. (7)), the fulfill-
ment of the 〈∆r〉 constraint is shown to be a sufficient condition
to perform exact linear interpolations.

One of the novelties of this work, is the improvement of
the partition of the unity, without leaving the Lagrangian for-
mulation of ISPH, so that the enhancement is totally compatible
with the inclusion of grad-h terms in the momentum and energy
equations. To do that the volume elements, Va, have been re-
defined so that Va = Xa/ka with Xa = ma/ρ

0
a; ka =

∑
b XbWab(ha)

and ρ0
a =

∑
b mbWab(ha). That particular choice of Va results in

the new set of ISPH equations described in Appendix A. These
ISPH equations are not only Lagrangian-compatible, displaying
perfect conservation properties, but they manifestly improve the
partition of the unity which translates into a better estimation of
gradients. The computational cost of including these improved
VEs, mainly due to the implicit search of the coupled ha and ρ0

a

magnitudes with a Newton-Raphson algorithm, is subdominant.
The behavior of the new ISPH scheme has been checked with a
number of standard 3D tests that involve large density jumps and
contact discontinuities.

A second novelty in the present work has to do with the cor-
rect handling of abrupt density jumps. The numerical handling
of fluid regions with large density contrasts usually requires us
to abandon the Lagrangian formulation of the SPH equations in
favor of other schemes. We propose here a self-adaptive scheme,
steered by a single parameter of 0 ≤ σ ≤ 1 (see Eqs. (29), (32),
and (37)), which selectively chooses the optimal integration
scheme. When σ ' 0, the Lagrangian-compatible scheme is
recovered, while σ ' 1 is more adequate to handle large gra-
dients.

The proposed scheme with σ = [0−1] gets rid of the tensile
instability around contact discontinuities, as it is the closest
possible to the compatibility with the Lagrangian formalism
because the fraction of particles with a significant σ value is
usually low. We can therefore expect to obtain a better depiction
of the entropy evolution in shocks than in completely crossed
schemes (i.e., with σ = 1). According to Eq. (37), a value of
σ ≤ 0.1 is taken in those fluid regions with ∆ρ

ρ̄
≤ 22%, meaning

that acoustic waves and weak shock-waves can be handled with,
or bordering, the uncrossed option σ ' 0. Such moderate density
ratios over the kernel domain are also found in self-gravitational
structures in equilibrium and in subsonic turbulence
experiments.

Table 6 presents a summary of the above-mentioned contri-
butions and contrasts them with our previous works, which sets
the current extension into context. Following García-Senz et al.
(2012), Cabezón et al. (2012), our chosen method was ISPH,
which uses the integral approach to the derivatives, IAD0, to
implement the equations. Further developments were bound to
the inclusion of generalized volume elements that improved the
partition of the unity.

The results of the hydrodynamic tests unambiguously sup-
port the conclusions drawn by the analytical arguments and sim-
ple toy models described in Sect. 4. In particular, we find that
the proposed volume elements improve both the partition of the
unity and the 〈∆r〉 condition in all studied cases. Nevertheless,
the level of enhancement in the hydrodynamic simulations is
lower than that promised by the toy model experiments, espe-
cially those concerning the 〈∆r〉 constraint. Such a degradation
is attributable to the larger particle disorder in the real three-
dimensional simulations, but still the results with the improved
VEs are valuable. On another note, the novel self-adaptive σ
scheme works very well, providing much better results in the
hydrostatic and wind-cloud tests than the σ = 0 calculation.
The results of the Kelvin–Helmholtz test suggest that the arti-
ficial viscosity algorithm plays a central role here, with the VEs
and σ choice being subdominant. Finally, the Sedov test clearly
shows the best performance of the proposed VEs, which allow us
to reproduce the correct density jump across the shock, even in
three-dimensional calculations with moderate number of parti-
cles. Interestingly, the improved evolution of entropy in shocked
regions when the σ = [0−1] scheme is used (see Sect. 6.5) rein-
forces the recent proposal by Rosswog (2020a), who suggested
using the entropy as a useful variable for building physically
motivated AV triggers in SPH.

As an immediate prospect, we plan to use our improved
ISPH code to numerically reproduce the isothermal as well
as sub- and supersonic turbulence. Works to implement the
ISPH scheme to handle magneto-hydrodynamics effects are also
underway.
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Table 6. Summary of the features of the approach presented in this work within the context of the works on which it is based.

Method Gradient accuracy Tensile instability suppression Conservative (a) Lagrangian compatibility (b) Reference

IAD Very high Small and moderate density jumps No No García-Senz et al. (2012)
IAD0 High Small and moderate density jumps Yes Yes Cabezón et al. (2012)
IAD0 + GVE (Explicit) Very high Large density jumps Yes No Cabezón et al. (2017)
IAD0 + GVE (Implicit) + σ Very high Large density jumps Yes Mostly yes This work

Notes. The first column shows the method, where IAD stands for the integral approach to derivatives, which is at the core of our proposed ISPH;
GVE stands for generalized volume elements, and σ is the methodology presented in this work that is used to obtain a crossed version of the
momentum and energy equations only where it is needed to suppress the tensile instability. The second and third columns give a qualitative idea of
the associated accuracy when evaluating gradients and when then tensile instability is suppressed. The fourth and fifth columns state if the method
is fully conservative and Lagrangian compatible. The last column shows the associated reference. We note that the first row corresponds to the
ncISPH scheme mentioned at the end of Sect. 2, whereas the other three are conservative ISPH schemes. (a)Linear momentum, angular momentum
and energy; (b)leading to an optimal handling of entropy.

Acknowledgements. We thank the anonymous referee for insightful comments
and suggestions that helped to greatly improve this manuscript. This work
has been supported by the MINECO Spanish project PID2020-117252GB-100
(D.G.), by the Swiss Platform for Advanced Scientific Computing (PASC)
project SPH-EXA: Optimizing Smooth Particle Hydrodynamics for Exascale
Computing (R.C. and D.G.). The authors acknowledge the support of sciCORE
(http://scicore.unibas.ch/) scientific computing core facility at Univer-
sity of Basel, where part of these calculations were performed.

References
Agertz, O., Moore, B., Stadel, J., et al. 2007, MNRAS, 380, 963
Bonet, J. 1999, Comput. Methods Appl. Mech. Eng., 180, 97
Brookshaw, L. 1985, PASA, 6, 207
Cabezón, R. M., García-Senz, D., & Relaño, A. 2008, J. Comput. Phys., 227,

8523
Cabezón, R. M., García-Senz, D., & Escartín, J. A. 2012, A&A, 545, A112
Cabezón, R. M., García-Senz, D., & Figueira, J. 2017, A&A, 606, A78
Colagrossi, A., & Landrini, M. 2003, J. Comput. Phys., 191, 448
Cullen, L., & Dehnen, W. 2010, MNRAS, 408, 669
Dilts, G. A. 1999, Int. J. Numer. Methods Eng., 44, 1115
Escartín, J. 2016, Ph.D. Thesis, Polytechnical University of Catalonia, http:
//hdl.handle.net/10803/384002

Frontiere, N., Raskin, C. D., & Owen, J. M. 2017, J. Comput. Phys., 332, 160
Fulk, D. A., & Quinn, D. W. 1996, J. Comput. Phys., 126, 165
García-Senz, D., Cabezón, R. M., & Escartín, J. A. 2012, A&A, 538, A9
Gingold, R. A., & Monaghan, J. J. 1977, MNRAS, 181, 375
Gomez-Gesteira, M., Rogers, B., Dalrymple, R., & Crespo, A. J. 2010,

J. Hydraulic Res., 48, 6

Hopkins, P. F. 2013, MNRAS, 428, 2840
Knapp, C. E. 2000, Ph.D. Thesis, Los Alamos National Laboratory, https://
www.osti.gov/biblio/754046

Liu, M., & Liu, G. 2006, Appl. Numer. Math., 56, 19
Lucy, L. B. 1977, AJ, 82, 1013
McNally, C. P., Lyra, W., & Passy, J.-C. 2012, ApJS, 201, 18
Monaghan, J. J. 1992, ARA&A, 30, 543
Monaghan, J. J. 1997, J. Comput. Phys., 136, 298
Monaghan, J. J. 2005, Rep. Prog. Phys., 68, 1703
Monaghan, J. J. 2012, Ann. Rev. Fluid Mech., 44, 323
Oger, G., Doring, M., Alessandrini, B., & Ferrant, P. 2007, J. Comput. Phys.,

225, 1472
Price, D. 2004, Ph.D. Thesis, University of Cambridge, UK,

[arXiv:astroph/0507472]
Price, D. J. 2008, J. Comput. Phys., 227, 10040
Price, D. J., Wurster, J., Tricco, T. S., et al. 2018, PASA, 35, e031
Read, J. I., Hayfield, T., & Agertz, O. 2010, MNRAS, 405, 1513
Ritchie, B. W., & Thomas, P. A. 2001, MNRAS, 323, 743
Rosswog, S. 2015a, MNRAS, 448, 3628
Rosswog, S. 2015b, Liv. Rev. Comput. Astrophys., 1, 1
Rosswog, S. 2020a, ApJ, 898, 60
Rosswog, S. 2020b, MNRAS, 498, 4230
Saitoh, T. R., & Makino, J. 2013, ApJ, 768, 44
Springel, V. 2010, ARA&A, 48, 391
Springel, V., & Hernquist, L. 2002, MNRAS, 333, 649
Tricco, T. S. 2019, MNRAS, 488, 5210
Valdarnini, R. 2016, ApJ, 831, 103
Wadsley, J. W., Keller, B. W., & Quinn, T. R. 2017, MNRAS, 471, 2357
Wissing, R., & Shen, S. 2020, A&A, 638, A140
Zhu, Q., Hernquist, L., & Li, Y. 2015, ApJ, 800, 6

A175, page 17 of 18

http://scicore.unibas.ch/
http://linker.aanda.org/10.1051/0004-6361/202141877/1
http://linker.aanda.org/10.1051/0004-6361/202141877/2
http://linker.aanda.org/10.1051/0004-6361/202141877/3
http://linker.aanda.org/10.1051/0004-6361/202141877/4
http://linker.aanda.org/10.1051/0004-6361/202141877/4
http://linker.aanda.org/10.1051/0004-6361/202141877/5
http://linker.aanda.org/10.1051/0004-6361/202141877/6
http://linker.aanda.org/10.1051/0004-6361/202141877/7
http://linker.aanda.org/10.1051/0004-6361/202141877/8
http://linker.aanda.org/10.1051/0004-6361/202141877/9
http://hdl.handle.net/10803/384002
http://hdl.handle.net/10803/384002
http://linker.aanda.org/10.1051/0004-6361/202141877/11
http://linker.aanda.org/10.1051/0004-6361/202141877/12
http://linker.aanda.org/10.1051/0004-6361/202141877/13
http://linker.aanda.org/10.1051/0004-6361/202141877/14
http://linker.aanda.org/10.1051/0004-6361/202141877/15
http://linker.aanda.org/10.1051/0004-6361/202141877/16
https://www.osti.gov/biblio/754046
https://www.osti.gov/biblio/754046
http://linker.aanda.org/10.1051/0004-6361/202141877/18
http://linker.aanda.org/10.1051/0004-6361/202141877/19
http://linker.aanda.org/10.1051/0004-6361/202141877/20
http://linker.aanda.org/10.1051/0004-6361/202141877/21
http://linker.aanda.org/10.1051/0004-6361/202141877/22
http://linker.aanda.org/10.1051/0004-6361/202141877/23
http://linker.aanda.org/10.1051/0004-6361/202141877/24
http://linker.aanda.org/10.1051/0004-6361/202141877/25
http://linker.aanda.org/10.1051/0004-6361/202141877/25
https://arxiv.org/abs/astroph/0507472
http://linker.aanda.org/10.1051/0004-6361/202141877/27
http://linker.aanda.org/10.1051/0004-6361/202141877/28
http://linker.aanda.org/10.1051/0004-6361/202141877/29
http://linker.aanda.org/10.1051/0004-6361/202141877/30
http://linker.aanda.org/10.1051/0004-6361/202141877/31
http://linker.aanda.org/10.1051/0004-6361/202141877/32
http://linker.aanda.org/10.1051/0004-6361/202141877/33
http://linker.aanda.org/10.1051/0004-6361/202141877/34
http://linker.aanda.org/10.1051/0004-6361/202141877/35
http://linker.aanda.org/10.1051/0004-6361/202141877/36
http://linker.aanda.org/10.1051/0004-6361/202141877/37
http://linker.aanda.org/10.1051/0004-6361/202141877/38
http://linker.aanda.org/10.1051/0004-6361/202141877/39
http://linker.aanda.org/10.1051/0004-6361/202141877/40
http://linker.aanda.org/10.1051/0004-6361/202141877/41
http://linker.aanda.org/10.1051/0004-6361/202141877/42


A&A 659, A175 (2022)

Appendix A: SPH and ISPH formalisms with
generalized VE

According to the Euler–Lagrange formulation of SPH (Springel
(2010) and references therein) the movement equations are
expressed as:

mar̈a = −
∑

b

mb
Pb

ρ2
b

∂ρb

∂ra
=

∑
b

Pb
∂Vb

∂ra
, (A.1)

where Vb is the characteristic volume occupied by the particle,
and ρb = mb/Vb. The derivative on the RHS embodies the effect
of h-gradients. The spatial part of the derivative can be per-
formed in the standard way, ∇Wab or, better, with the integral
approach given by Eq. (31)

We first calculate the value of ∂Vb/∂ra in Eq. (A.1),

∂Vb

∂ra
= ∇aVb +

∂Vb

∂hb

∂hb

∂ra
. (A.2)

The grad-h part of equation above can be estimated differentiat-
ing the constraint h3

bV−1
b = C with respect ra which, after some

algebra, gives:

∂Vb

∂hb

∂hb

∂ra

1 − 3Vb

hb

(
∂Vb

∂hb

)−1 = −∇aVb, (A.3)

when combined with expression (A.2) gives:

∂Vb

∂ra
= ∇aVb

[
1 −

hb

3Vb

∂Vb

∂hb

]−1

, (A.4)

where ∇aVb refers to the spatial gradient whereas the grad-h
effects are included in the term in brackets.

To estimate ∇aVb, the precise form of the volume elements
has to be known. A general form for these elements comes from
Hopkins (2013), namely:

Vb =
Xb

kb
with kb =

∑
c

XcWbc(hb), (A.5)

where Xb is a scalar estimator. Here we have considered two dif-
ferent estimator families, leading to slightly different expressions
of the movement and energy equations:

(a) Constant Xb, as for example Xb = mb and Xb = 1 both
reproducing the standard volume elements Vb = mb/ρb. Other
choice is Xb = Pk

b where P is the pressure and k ≤ 1. In this case,
the estimator is strictly constant only in isobaric systems.

∇aVb → [b = a]∇aVa = ∇a

(
Xa

ka

)
= −

Xa

k2
a
∇aka

= −
Xa

k2
a

∑
b

Xb∇aWab(ha), (A.6)

∇aVb → [b , a]∇aVb = ∇a

(
Xb

kb

)
= −

Xb

k2
b

∇akb

= −
Xb

k2
b

Xa∇aWab(hb). (A.7)

Combining expressions (A.4), (A.6), and (A.7) with Eq. (A.1),
and making use of Eq. (31) to carry out the IA approach of the
kernel gradient, the i-component of the acceleration of particle a
is finally obtained:

ẍi,a = −
Xa

ma

∑
b

XbPa

Ωak2
a
Ai,ab(ha) +

XbPb

Ωbk2
b

Ai,ab(hb)
 , (A.8)

with

Ωa =

[
1 −

ha

3Va

∂Va

∂ha

]
=

[
1 +

ha

3ρa

∂ρa

∂ha

]
. (A.9)

(b) Adaptive Xb = mb/ρ
0
b, being ρ0

b =
∑

c mcWbc(hb) the standard
SPH density. Because of the normalization condition, this choice
leads to a constant kb =

∑
c XcWbc(hb). Now we have

∇aVb −−−→
b=a
∇aVa = ∇a

(
Xa

ka

)
=
∇aXa

ka
= −

ma

(ρ0
a)2ka

∇aρ
0
a

= −
ma

(ρ0
a)2ka

∑
b

mb∇aWab(ha),

(A.10)

∇aVb −−−→
b,a
∇aVb = ∇a

(
Xb

kb

)
=
∇aXb

kb
= −

mb

(ρ0
b)2kb

∇aρ
0
b

= −
mbma

(ρ0
b)2kb

∇aWab(hb).

(A.11)

Combining expressions (A.4), (A.10), and (A.11) with Eq. (A.1),
and making use of Eq. (31) to compute the IA approach of the
kernel gradient, the i-component of the acceleration of particle a
is obtained,

ẍi,a = −
∑

b

mb

 X2
a Pa

Ωam2
a ka
Ai,ab(ha) +

X2
b Pb

Ωbm2
b kb
Ai,ab(hb)

 .
(A.12)

According to expression (A.9), to estimate Ωa it is necessary to
know the derivative of the density with respect the smoothing-
length (∂ρa/∂ha). The result relies in the choice the estimator Xa
used to compute the density.

– For constant Xa, as for example (but not necessarily), the
standard choice Xa = ma:
∂ρa

∂ha
=

ma

Xa

∑
b

Xb
∂Wab(ha)
∂ha

. (A.13)

– The choice Xa = (ma/ρ
0
a) requires a bit more algebra:

∂ρa

∂ha
=

ma

Xa

(
∂ka

∂ha

)
−

maka

X2
a

(
∂Xa

∂ha

)
, (A.14)

with:
∂ka

∂ha
=

∑
b

∂

∂ha

(
mb

ρ0
b

)
Wab(ha) +

∑
b

Xb
∂Wab(ha)
∂ha

= −

(
ma

(ρ0
a)2

)
Waa(ha)

∂ρ0
a(ha)
∂ha

+
∑

b

Xb
∂Wab(ha)
∂ha

,

(A.15)

and,

∂Xa

∂ha
=

∂

∂ha

(
ma

ρ0
a

)
= −

(
ma

(ρ0
a)2

)
∂ρ0

a(ha)
∂ha

= −

(
ma

(ρ0
a)2

)∑
b

mb
∂Wab(ha)
∂ha

.

(A.16)
Setting expressions (A.15) and (A.16) into Eq. (A.14) and

via the ensuing manipulation, we have:

∂ρa

∂ha
=

[
ρa

ρ0
a
− XaWaa(ha)

]∑
b

mb
∂Wab(ha)
∂ha

+
ma

Xa

∑
b

Xb
∂Wab(ha)
∂ha

.

(A.17)
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