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Optical turbulence control by non-Hermitian potentials
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We propose a method for a control of turbulence by modifying the excitation cascade leading to turbulence.
The method is based on the asymmetric coupling between the spatiotemporal excitation modes by non-Hermitian
potentials. The non-Hermitian potentials are recently known to enable unidirectional coupling between modes.
We demonstrate that such unidirectional coupling towards larger (smaller) wave numbers can increase (reduce)
the energy flow in turbulent states, and therefore, influence the character of turbulence. The study is based on
the complex Ginzburg-Landau equation, a universal model for pattern formation and turbulence in a wide range
of systems including nonlinear optical resonators. We show that enhancement or reduction of turbulence is
indeed dependent on the imposed direction of the energy flow, controlled by the phase shift between the real and
imaginary parts of the temporal oscillation of the non-Hermitian potential.
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I. INTRODUCTION

In spite of the intensive efforts of the last century to build
the dynamical theory of turbulence, pioneered by Landau
[1], Kolmogorov [2], Richardson [3], Arnold [4], Lorentz
[5], and others, the dynamical mechanisms of turbulence are
still not completely understood, remaining as a long-standing
problem. Different physical systems show different kinds of
turbulence (in the atmosphere [6], in fluids [7], in optics [8],
and in financial markets [9]). An attempt at classification
may be in terms of weak [10], intermittent [11], and strong
turbulence [12] or dynamical chaos [13]. The descriptive (phe-
nomenological) analysis of turbulence, however, goes far back
in time, see Reynolds [14], Prandl [15], or even to ancient
times.

Despite some confusion in the quantitative understanding
of turbulence, a major class of turbulent systems follow quite
a general scenario. The general picture is that the excita-
tions imposed on a large spatial scale in a continuous system
migrate through spatial scales due to different nonlinear
wave-mixing processes, until finally entering into a dissipa-
tive wavelength range on a small spatial scale. This results
in an energy cascade through the spatial scales, or equiva-
lently, through wave numbers, where turbulence bridges the
input and output scales. Most celebrated is the excitation en-
ergy distribution of Kolmogorov E (k) ∼ k−5/3 in the inertial
range [16], i.e., between the large scale of imposed excita-
tion (kexc ∼ 1/dexc is small) and the small space scale where
viscosity dominates (kdis ∼ 1/ddis is large). Although the Kol-
mogorov −5/3 law is strictly valid for three-dimensional
(3D), isotropic, homogeneous systems, qualitatively the idea
of the excitation cascade through wave numbers is applicable
to a wide range of systems [for instance, in two-dimensional
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(2D) case, turbulence follows a power law with different
power factor, inverse cascade appears, etc.].

II. MODEL

We here propose a mechanism to influence this excitation
cascade through spatial scales, with the purpose to affect
the turbulence. Turbulence is simulated by probably one of
the simplest and most universal mathematical models, the
Complex Ginzburg-Landau Equation (CGLE). CGLE models
a wide range of physical systems covering from nonlinear
waves to second-order phase transitions, from superconduc-
tivity, superfluidity, and Bose-Einstein condensation to liquid
crystals and strings in field theory [17]. As written in one of
several possible conventions, it reads

∂A

∂t
= (1 + iα)A(1 − |A|2) + (d − i)∇2A + iV (r, t )A, (1)

where, the order parameter A(r, t ) is a complex function of
time t and space r [we analyze one-dimensional (1D) and
2D cases], α is the self-focusing coefficient, d the diffusion
coefficient, and V (r, t ) is a complex valued potential. The gain
and dispersion coefficients are normalized to unity, without
loss of generality. For α > d the homogeneous solution of
Eq. (1) is unstable, and the Modulational Instability (MI) of
the homogeneous solution induces low-scale perturbation into
the system.

The CGLE was systematically derived as an order pa-
rameter equation for a variety of continuous systems, hy-
drodynamical [18–20], chemical [21,22], or optical [23–25],
in different orders of approximation. The CGLE can be de-
rived from general symmetry considerations as well: it is the
normal form (the minimum equation) describing the lowest-
order phase-invariant nonlinearity (the cubic one), space
isotropy (Laplacian), gain, dissipation, and MI. Note that, in
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a conservative limit, the CGLE converts into the nonlinear
Schrödinger equation describing the quantum hydrodynam-
ics. The CGLE shows different turbulent regimes [26]. Also
some approaches were done to control these different turbu-
lent regimes by means of the introduction of delayed global
feedback [27–29], local injections [30,31], or introducing lo-
calized inhomogeneities [29,32]. In optics, multitransverse
mode lasers are also governed by a two-dimensional CGLE
in the lowest-order approximation. Energy is injected on large
spatial scales (the pump is usually relatively homogeneous),
which primarily feeds the lowest-order transverse modes
of the laser cavity. Nonlinear processes (four-wave mixing)
cause the energy transfer from lower- to higher-order modes.
Finally, the highest-order transverse modes are dissipated due
to intrinsic diffusion, and also due to the aperture effects
included in the potential, V (r, t ). This excites a turbulent state
with a flow of energy through the transverse modes, which
leads to a particular statistical distribution of the transverse
modes’ excitation. Optical turbulence involves an intricate
intermode coupling, a combination of a linear part given by
background potential V (r, t ) (accounting for the gain and
refraction index profile in the optical case) and a nonlinear
mode coupling due to the intrinsic nonlinearity of the system.
In the usual case of Hermitian potentials, the linear part of the
mode coupling is bidirectional and symmetric. For instance,
for the 1D simple real-valued potential V (r) ∼ cos (qx) =
[exp (iqx) + exp (−iqx)]/2 the spatial modulation with wave
numbers ±q symmetrically couples any mode k with modes
k + q and k − q.

Recently, it was discovered that non-Hermitian potentials
can induce asymmetric or even unidirectional coupling be-
tween the modes. In particular, such a situation occurs for
the so-called Parity-Time (PT) symmetric systems close to the
phase transition point [33–35]. For potentials with complex-
valued amplitudes of the modulation (involving gain or loss
and refractive index modulations in the case of optics) con-
structed in the form V (r) ∼ cos (qx) + i sin (qx) = exp (iqx),
the mode coupling becomes, evidently, unidirectional: the
mode k is efficiently coupled to mode k + q by such a po-
tential, but not vice versa, as the exp (−iqx) component in the
potential V (r) is absent.

The idea prompted by this article is to make use of the
asymmetric mode coupling to influence the excitation cas-
cade of optical turbulence by dominantly coupling modes
towards modes with either smaller or larger wave vectors
(modulus). In other words, we aim to control turbulence by
introducing a unidirectional coupling towards either lower-
or higher-order transverse modes. However, such a spatially
unidirectional coupling potential alone would not solve our
intentions to influence the energy cascade through spatial
scales. While a modulation component with a positive wave
number q would couple modes with negative wave num-
bers to lower-order modes (with a wave-number modulus
closer to zero values −|k| + q), it would, in turn, couple
the waves with positive wave numbers towards higher-order
modes (with the wave-number modulus further away from
zero, |k| + q). Therefore, while breaking the symmetry in
the wave-number domain, this does not affect the energy
cascade throughout the spatial scales, neither towards larger
nor towards smaller wave numbers. We propose to solve this

issue by introducing asymmetric mode coupling in the fre-
quency domain. The different modes in Eq. (1) oscillate with
different frequencies and the traveling wave solution A(r, t ) =
(1 − dk2)1/2 exp (ikr + iωt ) obeys the parabolic dispersion
relation ω(k) = k2. Generally, in turbulence a continuum of
excitations appear, therefore the dispersion plays an indicative
role only. To explore the turbulence spectra we numerically in-
tegrate the 1D CGLE, using a conventional split-step method,
and calculate the Fourier spectrum of the recorded solution,
both in space and in time. A snapshot of the turbulent field
is displayed in Fig. 1(a). Its spectrum is merely a cloud of
points in (k, ω) space, indeed distributed around the disper-
sion parabola, see Fig. 1(b).

Next, we want to introduce a potential that induces asym-
metry in the coupling to higher- or lower-order modes. A
spatiotemporally modulated Hermitian potential V (r, t ) =
cos (qx) cos (�t ) = 1/4

∑
± exp (±iqx ± i�t ) would couple

a particular mode (k, ω) to four modes (k ± q, ω ± �) as
indicated by the arrows in Fig. 1(b). Evidently, the coupling
components indicated by arrows 1 and 4 do not result in
a functional coupling since they couple the resonant modes
to the nonresonant ones (located further away from the dis-
persion curve in double Fourier space). The other coupling
components indicated by arrows 2 and 3 couple to the higher-
and lower-frequency (and wave number) modes, respectively.
Therefore, such spatiotemporal modulation of the potential
does not lead to a unidirectional mode coupling to low (high)
order modes.

The coupling asymmetry between low- and high-order
modes can be imposed by the non-Hermitian character
of the temporal part of the modulation of the potential:
V (r, t ) = cos (qx) exp (−i�t ) = 1/2

∑
± exp (±iqx − i�t ).

Such a coupling from (k, ω) excites the modes with
(k ± q, ω − �), i.e., only the coupling arrows 1 and 2
are present in the diagram. Having in mind that the coupling
arrow labeled as 1 is nonfunctional (k, ω) → (k + q, ω − �)
maintains the functional coupling (k, ω) → (k − q, ω − �),
corresponding to arrow 2 in Fig. 1. This introduces a
unidirectional coupling towards lower frequency and smaller
|k| modes. Analogously, the modulation of the potential
V (r, t ) = cos (qx) exp (+i�t ) would result in functional
coupling indicated by arrow 3, i.e., towards higher frequencies
and larger wave numbers. Both situations are, respectively,
depicted in Figs. 1(c) and 1(d), where the 1D turbulent
system is modulated with the above-proposed non-Hermitian
spatiotemporal potentials. Temporal modulation with −�

favors an efficient coupling towards lower-order modes
(indicated by arrows), and the energy cascade accumulates
the spectrum intensity near k = 0 [Fig. 1(c)]. In contrast, �

favors the energy cascade towards higher-order modes, thus
supporting the energy flow towards higher wave numbers |k|
and enhancing the turbulence [Fig. 1(d)].

This is the physical idea of the article. Next follows the nu-
merical verification of the proposal. By integrating the CGLE
numerically and manipulating the shapes of the complex po-
tential, we indeed manage to influence the turbulence cascade.
We show, in particular, that the width of the spectrum of
excited spatial modes depends on the phase-shift between the
real and imaginary parts of the temporal modulation of the
potential.
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FIG. 1. Turbulence spectra. (a) Temporal evolution of the intensity of the turbulent field. (b) Intensity of the spatiotemporal Fourier
spectrum |A(kx, ω)|2 of a 1D turbulent system. Dashed lines show the unstable spatial modes range. Solid lines correspond to integrals of
the spectrum intensity over ω and kx , respectively. The parabola in (a) represents the parabolic dispersion ω = k2

x . (c) and (d) show spectral
intensity of the system with an inward and outward non-Hermitian coupling. The arrows in (b) indicate all possible mode couplings, while in
(c) and (d) correspond to the efficient unidirectional mode couplings. (b), (c), and (d) share same color map. α = 0.7 and d = 0.03 for all three
figures.

III. RESULTS

Note that, while discussing the general CGLE, we refer to
the optical system since, in optics, in laser-like systems, it is
relatively easy to manipulate the real and imaginary parts of
the potential (gain and refractive index, respectively), contrary
to other systems described by the CGLE. To be concise, we
introduce the spatiotemporally modulated potential

V (r, t ) = V (r)[m1 cos (�t ) + im2 cos (�t + φt )], (2)

where V (r) is the spatial part of the modulation, � is the
temporal modulation frequency, m1 and m2 are the amplitudes
of the real and imaginary parts of the time modulation, and
φt is the phase shift between them. We assume the resonant
case � = q2, yet some slight deviation of this condition is also
possible due to the spectral fuzziness of the dispersion curve,
as explained in detail in the Appendix.

The character of turbulence may be characterized by the
second-order moment μ of the spatiotemporal Fourier spec-
trum, which represents the overall width of the turbulent
spectrum.

For the 1D case, for V (r) = cos (qx) we analyze the width
of the turbulence spectra μ in parameter spaces. Figure 2(a)
shows the map μ(m2, φt ) for equal amplitudes of the real
and imaginary parts of the temporal modulation, m1 = m2,
exploring the influence of the phase shift between two mod-
ulation components. The optimum phase shift that allows
the maximally asymmetric coupling between modes φopt is
found to be centered around 0 or π . Note that the maximum
asymmetry effect in the conventional theory of stationary
PT-symmetric systems occurs at ±π/2 [33]. This apparent
inconsistency occurs due to the fact that, in this case, the
potential is modulated in time; this point is further discussed
in detail below. Figure 2(b) shows a map μ(m2, m1) for the
optimum value of the phase φt . Interestingly, the optimal
ratio of the modulation quadratures m1/m2 is proportional to
the nonlinearity coefficient α. We check this conclusion by
repeating calculations with different coefficient α. Figure 2(c)
shows the integral spatial spectrum, i.e., the spectrum inten-
sity integrated over time, or equivalently, over the frequency

I (k) = ∫ |A(k, ω)|2dω. It is evident that the coupling towards
the higher (lower) order modes broadens (narrows) the inte-
gral spectrum I (k). However, apart from a global narrowing of
the overall spectrum, the spectral distribution becomes more
“coherent,” i.e., consisting of discrete modes on a weak turbu-
lent background, see Fig. 2(c) in the case of coupling towards
lower modes. The presence of many distinct harmonics on
a relatively weak turbulent background is not related to the

FIG. 2. Taming the turbulent spectrum. (a) (m2, φt ) map of the
overall width of turbulence spectrum, μ, with m2 = m1. The white
dashed line indicates φt = π/2 − arctan (1/�). (b) (m2, m1) map of
the second-order momentum μ. The white dashed line indicates the
slope m1 = α/

√
(�2 + 1)m2. (c) Spectra of the unmodulated (black)

and modulated CGLE for an inwards coupling (yellow) [φt = 0.063,
m2 = 0.926, and m1 = αm2] and outwards coupling (lilac) [φt =
−3.078, m2 = 0.926, and m1 = αm2]. The shaded gray areas indi-
cate the stable modes of the homogeneous solution. (d) (m1, φt ) map
of the normalized central intensity. α = 0.7, d = 0.03, q = 0.356,
and � = q2 for all four figures.
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additional disorder in the system. Therefore, a better charac-
terization of the strength of the turbulence may be provided
by a normalized central intensity of the integral spectrum ξ =
I (0)/

∫ ∞
−∞ I (k)dk, which indicates the level of the condensa-

tion of energy into lowest-order modes (homogeneous state),
and does not take into account the presence of the coherently
excited comb of harmonics. The map of ξ , shown in Fig. 2(d)
evidences the best (worst) condensation to the homogeneous
state for the phase difference 0 (π ) between the potential
modulation quadratures and it is a good correspondence with
Fig. 2(a). In this particular case, the condensation level of ξ

increases by more than one order of magnitude while vary-
ing the phase to favor the excitation cascade towards lower
(higher) wave numbers. Figure 2(c) shows the integral spec-
trum, which evidences that, for the modulation favoring an
outwards excitation flow (φt = φopt − π ), the energy cascade
is directed to high-order modes, yet for the modulation with
(φt = φopt) the effect is reversed.

The management of the turbulence spectrum can be
directly generalized to higher-dimensional systems, for in-
stance, to the 2D one. Figure 3 shows the results of integration
of the 2D CGLE for different geometries of the spatial mod-
ulation of the potential: V (r) = 1/n

∑n
i=1 cos (qir) being the

qi lattice vectors. Figures 3(a) and 3(b) provide the unaffected
turbulent field and its spectrum while Figures 3(c) and 3(d)
correspond to a striped spatial modulation of the potential.
The narrowing (broadening) of the turbulent spectrum is evi-
dent along the modulated horizontal x direction, whereas the
spectrum along the vertical y direction remains unaffected.
Figures 3(e) and 3(f) show the results for 2D modulation
with a square symmetry of the potential. For this potential,
the broadening or narrowing of the spectrum occurs in both
directions kx and ky. A similar result is found for a hexagonal
modulation (not shown in the article) and for an octagonal
modulation depicted in Figs. 3(g) and 3(h).

IV. DISCUSSION

This qualitative behavior in 2D systems is analogous to
the 1D case, and the narrowing (broadening) of the integral
spectrum occurs for the phase shift close to 0 (π ) between
the potential modulation quadratures. Some comments are
appropriate to interpret the optimum values of the phase shift.
A stationary spatial modulation of the potential results in the
corresponding modulation of the wave function, in the lowest-
order (Born) approximation. For instance, for the potential
weakly modulated only in space, V (x) = cos (qx),

A(x) ≈ 1 + V (x)(2 + iq2)/[iq2(2α − q2)], (3)

as straightly follows from the CGLE (1) in a weak mod-
ulation limit m � 1. In other words, the response equally
follows both modulation quadratures of the potential, real,
and imaginary. Yet, for the temporally modulated potentials,
there is a phase shift between the temporal modulation of the
potential and the response, which depends on the modulations
of the real and imaginarys part of the potential. To achieve
the maximal asymmetry of response, the modulation compo-
nents must be shifted by ±π/2, however, with a correction:
φt = φ′ − arctan ( 1

�
), where φ′ corresponds to the phase shift

FIG. 3. 2D turbulence. (a) Snapshot of the computed spatial
distribution in two space dimensions. (b) Time-averaged turbulent
Fourier spectrum intensity for the 2D CGLE. Lattice vectors cor-
respond q1 = q[1, 0], for (c) and (d), q1, q2 = q[0, 1] (e) and (f)
and q1, q2, q3 = q[

√
2/2,

√
2/2], q4 = q[

√
2/2, −√

2/2] for (g) and
(h). Left column corresponds to the a temporal phase shift φt = φopt,
while the right one to φt = φopt − π . The dashed white circle cor-
responds to the range of unstable spatial modes. Solid white curves
correspond to cross sections at kx = 0 and ky = 0. Thin white curves
correspond to cross sections at kx = 0 and ky = 0 of the unmodu-
lated system. α = 0.7, d = 0.03, q = 0.356, and � = q2 for all four
configurations.

without temporal modulation. This issue is mathematically
elaborated on the Appendix.

V. CONCLUSION

Summarizing, we showed that periodic potentials in space
with non-Hermitian modulations in time can significantly in-
fluence the excitation cascade mechanism in turbulence. Such
potentials may favor the coupling towards lower frequencies
and smaller wave numbers, reduce the cascade to turbulence,
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and regularize the spatiotemporal spectra. In contrast, po-
tentials that favor coupling towards higher frequencies and
larger wave numbers enhance the turbulence cascade, broad-
ening the turbulence spectra. The proposed turbulence control
mechanism is mainly governed by the phase shift between
the real and imaginary parts of the complex temporal mod-
ulation and their amplitude ratio. We prove this general idea
on the CGLE for 1D and 2D systems with different spatial
modulation arrangements: linear, square grid, hexagonal, and
octagonal. The proposed turbulence control method could be,
in principle, implemented in different physical systems for
being proved in a universal model. Most promisingly, this
method can be particularly useful for controlling turbulence in
nonlinear optics in models based on the CGLE, such as broad
area lasers and nonlinear resonators.
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APPENDIX A: OPTIMUM PHASE SHIFT BETWEEN
TEMPORAL MODULATION QUADRATURES

For the analytical treatment it is more convenient to rewrite
the potential [Eq. (2)] in the following form:

V (x, t ) = cos (qx)[(m1 + im2eiφt )ei�t

+ (m1 + im2e−iφt )e−i�t ]. (A1)

A nonzero homogeneous solution of the unmodulated CGLE
A0 = 1 is subjected to a small perturbation a: A = A0 + a.
Linearization of A in the CGLE and around A0 leads to
∂t a = −(1 + iα)(a + a∗) + (d − i)∇2a + iV (x, t ). The per-
turbation a corresponds to the driven Bogoliubov mode of
CGLE, and consists of the positive and negative frequency
components a = cos (qx)[a+ exp (i�t ) + a− exp (−i�t )]. In
the presence of the modulation of potential the Bogoliubov
modes are driven by the potential and can enter into the sta-
tionary regimes. Neglecting the small diffusion in the CGLE,
we obtain

i�a+ = −(1 + iα)(a+ + a∗
−) + iq2a+ + im1 − m2eiφt ,

−i�a− = −(1 + iα)(a∗
+ + a−) + iq2a− + im1 − m2e−iφt ,

(A2)
which can be explicitly solved, for instance, with respect to
a+:

a+ = m1(� + q2 − 2i) + im2eiφt (� + q2 − 2α)

�(� − 2i) + q2(2α − q2)
. (A3)

The amplitude of the excited Bogoliubov mode |a+| de-
pends on the phase shift of the temporal part of the potential
φt , as follows from Eq. (A3). Considering the resonant case
� = q2 (the general case leads to more clumsy expressions
but does not affect the main conclusion), the expression (A3)
simplifies to

a+ = m1

√
�2 + 1e−iφ′ + im2(� − α)

�(α − i)
eiφt , (A4)

FIG. 4. (a) Phenomenological intensity spectrum distribution
|A(k, ω)|2. The inset corresponds to the mode coupling probability
C(k, ω). (b) Total energy transfer ζ (q, Q). (c) Integral spectrum ξ

mapped as a function of the resonant parameter Q and the spatial fre-
quency modulation q for a fixed m1 = m2 = 0.5. We consider a 1D
system with a temporal modulation phase shift φt = φopt. (d) Cross
section of (b) ζ (0.356, Q).

containing the modified phase

φ′ = φt + arctan

(
1

�

)
. (A5)

In the limit � � 1 the amplitude of the excited Bogoliubov
mode |a+| becomes maximal (minimal) for φt = ±π/2. This
is consistent with the general understanding of PT-symmetric
systems, stating that the maximally asymmetric coupling oc-
curs for φt = ±π/2 phase shifts between the quadratures of
potential modulation. However, for � ≈ 1 and especially for
� � 1 the optimum phase difference shifts towards 0/π for
minimum or maximum |a+|2. For instance, when φt → 0, the
|a+| reaches minimum, which implies the maximum coupling
“inwards”, i.e., towards the lower-order modes. The minimum
values of |a+| (at optimum phase shift) are given by

|a+|2 = (m1

√
�2 + 1 − m2α)2

�2(α2 + 1)
, (A6)

from where we get the relation m2α = m1

√
�2 + 1 to achieve

|a+| = 0. This is the optimum ratio between the quadratures
of the potential modulation.

APPENDIX B: ROLE OF NONRESONANT
TEMPORAL MODULATION

To inspect the role of the temporal potential we define the
resonance parameter Q = �/q2, � the temporal modulation
frequency of the non-Hermitian potential and q the spatial
wave number. In the main text we consider the resonant
condition � = q2 that corresponds to Q = 1. However, by
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building the map shown in Fig. 4(c) we observe that this
condition is not sharp since, for a sufficiently strong mod-
ulation, the range of efficient values of Q exhibits a certain
spread centered around Q ≈ 1. Therefore, we scanned the
temporal modulation frequency � for a fixed value of the
spatial modulation q to explore the spread. It is possible to
determine how the resonant condition becomes a more lax
condition by considering an initial intensity spectrum distri-
bution |A(k, ω)|2, as shown in Fig. 4(a); which is analogous
to the turbulence spectrum from Fig. 2(b). We now assess
the probability to transfer energy from each spectral point
to the central neighboring mode by all possible successive
cascade couplings (k, ω) − n(±q,�) [marked as red arrows
in Fig. 4(a)]. The coupling probability may be evaluated as

C(k, ω) =
∑

n

2−n exp
[−d2

n (k, ω)
]
, (B1)

where d2
n (k, ω) = (k ± nq)2 + (ω − n�)2 [see inset in

Fig. 4(a)] stands for the squared distance between a
coupled mode and the central order mode (0,0). We find
the total energy transferred to central modes proportional to
ζ (q, Q) = ∫ ∞

−∞ |A(k, ω)|2C(k, ω)dωdk, see Fig. 4(b). The
value of Q corresponding to the maximal coupling strongly
depends on the spatial modulation q. For large q values, only
n = 1 or small n couplings contribute to the energy transfer
and the maximum is near the resonant condition Q = 1.
However, for small q values the cascade to reach the central
mode involves more steps, yet the optimum relation �/q2

proportionally increases. In particular, for q = 0.356, the
energy transfer and the function ζ (q, Q) exhibit a maximum
near Q = 1.5. Such a maximum is analogous to the maximum
obtained in the main text for the integral spectrum ξ as it is
represented in Fig. 4(c).
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