
On the MC/DC Code Coverage
of Vulkan SC GPU Code

Jaime Luis Martin Aleman∗ Antonio Agenjo∗ Sergio Carretero∗ Leonidas Kosmidis†,‡
∗Airbus Defence and Space (ADS) †Universitat Politècnica de Catalunya (UPC) ‡Barcelona Supercomputing Center (BSC)

Abstract—Next generation avionics systems require high per-
formance, which can be provided by graphics processing units
(GPUs). The newly introduced API Vulkan SC, enables the
development of safety critical GPU software with complex control
flow, whose certification is subject to DO-178C certifiability
objectives, such as MC/DC code coverage.

In this paper we explain for the first time how MC/DC
coverage can be applied in Vulkan SC code as well as the
type of potential development errors which can arise in GPU
programming. We show how GPU code can be converted in
equivalent sequential CPU code and how both versions can
achieve 100% MC/DC code coverage.

Index Terms—code coverage, MC/DC, graphics processing unit
(GPU), Vulkan SC

I. INTRODUCTION

Graphics Processing Units (GPUs) are ideal candidates
for accelerating demanding general purpose computations to
enable new features in upcoming aircraft [1], but first, a
number of challenges must be overcome. This is because all
airborne software, including the GPU one, must comply with
the corresponding airworthiness safety requirements, therefore
it must be developed according to the certification basis agreed
with the competent authority.

Even when there is applicable regulation for the develop-
ment of critical airborne systems (such as the DO-178C [2]
for software, the DO-254 [3] for complex hardware, and even
for embedded applications in parallel processing architectures,
like EASA AMC 20-193 for multicores [4]), the only exist-
ing airborne regulation covering graphics processing units is
related to their usage in display systems [5], but currently no
certification basis exists for using GPUs in general purpose
airborne software applications.

Certifiability objectives considered in the DO-178C standard
could be applicable to GPUs [6], but, so far, compliance
with these objectives has only been demonstrated for CPUs.
When these objectives are analyzed for completion in GPU-
based airborne software applications, test coverage of software
structure, up to MC/DC, arises as a challenge, due to the lack
of qualified tools providing the capabilities to perform this
analysis and the need to define specific design strategies.

Very recently, in March 2022, the next generation GPU
programming API targeting safety-critical domains, Vulkan
SC [7], has been ratified, including its GPU programming
languages GLSL and SPIR-V, for source code and byte-code
programming respectively.

Although previous solutions based on safety-critical graph-
ics APIs such as OpenGL SC 1.0.1 [8] and 2.0 [9] limited
control flow structures in GPU code, Vulkan SCs GLSL allows
arbitrary complex control flow in GPU software, similar to
CPU code, allowing much more general purpose algorithms to
be accelerated [6]. For this reason, MC/DC code coverage is
required to be performed in the GLSL code. Moreover, unlike
previous safety-critical APIs [6], Vulkan SCs GLSL permits
multiple outputs per GPU thread and synchronization among
the threads. This means that race conditions can be introduced
when threads are writing in the same position, or stale data
can be read in the absence of missing synchronization be-
tween reading and writing operations of the same or different
threads. Finally, incorrect use of synchronization may result
in problems at program execution including deadlocks.

In the following sections of this paper we explain in more
detail these challenges and how they could be addressed by
tool providers, using representative code examples.

It is worth noting that MC/DC coverage is barely addressed
in the literature beyond single threaded code, not to mention
the massively parallel execution model of GPUs. Therefore,
since it is still an open problem, we do not intend to provide
a definitive solution. The goal of our paper is to initiate and
motivate future works in this area. Finally, we explain the
potential data access and synchronization issues that can arise
by the incorrect use of the synchronization in GLSL and we
argue that MC/DC testing and static analysis methods could
prevent the incorrect use of the aforementioned features.

To the best of our knowledge, this is the first work dis-
cussing this topic, not only for Vulkan SCs GLSL, but also
for other GPU languages and we believe that our insights are
very useful for future works in this direction.

The rest of the paper is organised as follows: Section II pro-
vides the necessary background on GPUs and code coverage.
Section III presents our view on MC/DC code for both CPU
and GPU parts of Vulkan SC code with concrete examples.
Finally, Section IV summarises the conclusions of our paper.

II. BACKGROUND

A. The GPU Programming Model

GPUs are accelerators, thus they are not standalone pro-
cessors, but they need to be connected to a system with at
least one CPU (central processing unit). GPUs can be either
discrete or integrated. Discrete GPUs have their own DRAM
memory which is distinct from the one of the host processor,

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI 10.1109/DASC55683.2022.9925766

and they are usually connected to the host system through
a high performance bus system, such as AGP (Accelerated
Graphics Port) in legacy systems or PCIe (Peripheral Com-
ponent Interconnect Express) in modern computing systems.
Integrated GPUs are implemented in the same die with the
host processor and therefore share the same DRAM memory
available to the system. Some manufacturers like AMD, refer
to this combination of CPU and GPU as APU (Advanced
Processing Unit).

Regardless of whether a GPU is integrated or discrete, and
therefore whether it is sharing the same physical DRAM with
the system CPU, the default programmer view includes two
separate address spaces, one for the CPU and one for the
GPU. Therefore, the programmer is responsible of allocat-
ing memory and explicitly transferring data between these
two address spaces in order to program the GPU. This is
achieved via various GPU programming APIs (eg. OpenGL,
CUDA, OpenCL, Brook, Vulkan or their safety critical variants
OpenGL SC [9], Brook Auto [10], Vulkan SC [7]), which
all offer the same programmer view. It is worth noting that
some of these APIs offer the possibility to use a single
memory allocation in integrated GPUs, and therefore sharing
the same physical memory and avoiding memory copies.
However, for the rest of this paper we focus on the default
case, which is shown in Figure 1 and we consider the Vulkan
SC programming API.

Moreover, due to the accelerator programming model of
GPUs, the programmer needs to provide two different types
of code, one for the host (CPU) and one for the GPU
(accelerator). First, there is the host code which is executed on
the CPU and is responsible for the aforementioned allocations
and transfers between the CPU and GPU. In addition, this
code is used to initiate the offloading of a computation to the
GPU, which is known as kernel launch. Depending on the
GPU API, e.g. in Vulkan SC which is the focus of our paper,
the kernel launch API call requires to specify the number of
threads (also known as work-items or invocations) which will
execute the computation and how they are organised in a grid
(also known as NDRange) of threads. The grid can have up
to 3 dimensions (x, y, z) and is composed by work-groups. In
turn, each work-group can have also up to 3 dimensions (x, y,
z) and consists of a group of threads. Finally, the CPU code
can synchronise the execution between the CPU and the GPU,
by waiting for the completion of the GPU operations such as
the memory transfers and GPU computations, using barriers.

The GPU code is written in another language and it is
organised in the form of functions known as kernels, which can
be offloaded to the GPU. The kernel code is written following
the SIMT (Single Instruction, Multiple Threads) approach, that
is describing the computation to be performed by each thread
of the GPU. In the particular case of Vulkan SC, the GPU
kernels are written using a version of GLSL (OpenGL shading
language), which is compiled to an intermediate representation
called SPIR-V (Standard Portable Intermediate Representa-
tion). SPIR-V is finally converted to GPU executable code
and can be loaded to the GPU using the Vulkan SC API.

CPU code +

GPU code (kernel)
GPU Programming Language

GPU Programming API

PCIe

GPU (device)

CPU (host)

Global Memory (Device Memory)Host Memory

Grid
Work-group (0,0)

Local Memory

Registers

Work
Item
(0,0)

Constant Memory

Work-group (x,y)

Local Memory

Registers

Work
Item
(0,0)

…

Fig. 1. Overview of the generic GPU programming model and the default
programmer’s view of the GPU program.

GPU programming languages, including GLSL, provide the
programmer with multiple memory spaces within the GPU, as
shown in the right part of Figure 1. In particular, the local
variables of each kernel are private to each thread and they
are allocated to GPU registers, while array thread memory
operations access by default the device Global Memory, which
resides in the DRAM and it is visible to all threads. More-
over, GPUs feature another type of fast, read-only memory,
Constant Memory, which is also visible to all threads.

Each GPU consists of multiple compute units (CUs), which
are equivalent to the CPU cores in multi-cores. However, their
main difference is that each CU supports the execution of a
high number of threads which is implementation defined, and
can reach up to thousands of threads.

CUs are executing threads which belong to the same work-
group and which can potentially communicate through a
fast on-chip memory called Local Memory and synchronise
their execution using work-group barrier instructions. Local
Memory is also known with different names depending on the
GPU manufacturer, e.g. AMD uses the term Local Data Store
(LDS) while the term shared memory is used by NVIDIA and
other GPU vendors.

In the SIMT programming model, each GPU thread can
query its thread identifier, either its local one i.e. within the
work-group or the global one, i.e. in the grid, as well as
the sizes of each dimension of the work-group and the grid.
Local identifiers always range between 0 and the size of
each dimension of the work-group, while global identifiers
range between 0 and the total number of threads in each
grid dimension. Usually, these identifiers are used in order
to specify which memory positions each thread will access in
the different GPU memory spaces, as well as to differentiate
the execution of each thread if it is required by an algorithm.

CUs are scheduling work-items in groups of threads which
are executed in lockstep and are called wavefronts. All threads
within a wavefront, which usually consists of 64 threads in

AMD GPUs, follow exactly the same control flow. If during
the execution of a control flow construct (e.g. if-else), the
boolean condition of every thread within the wavefront does
not evaluate in the same value, the execution of the work-
group is serialised. This is known as control divergence. First
the threads whose condition evaluate as true (and therefore
take the if path) are executed, while the rest of the threads
in the wavefront are disabled. When the execution of the
wavefront reaches the else path, the condition is inverted
and the threads of the if path are disabled, until the control
flow of all threads of the work-group is joined again.

Thread divergence is only affecting the performance of the
algorithm on a GPU since it reduces the computational effi-
ciency of the GPU execution. However, from the programmer
point of view, the functionality of each GPU thread is the same
as if it was executed by a separate core or processor.

B. Code Coverage

Structural code coverage is one of the code testing methods
which is required by DO-178C, the current certification stan-
dard in airborne software. The purpose of code coverage is to
ensure that software testing has covered extensively complex
software, such that potential hidden bugs are revealed.

Avionics code is primarily tested using a requirement-based
testing method, in which the test cases which correspond to
software requirements are tested, and the parts of the software
which are exercised during this procedure are collected. In this
way, it can be demonstrated that the software complies with
its requirements. In addition to this, structural code coverage
ensures that the requirements-based testing has exercised the
software up to the level required by the applicable criteria
depending on the software’s DAL (Design Assurance Level).

Code coverage can be applied either at source code, object
code or executable object code. However, DAL-A software
requires that traceability to the source code is analysed in order
to check that, if the compiler toolchain introduces any structure
which is not directly traceable to the source code statements,
the code coverage needs to be verified with additional means.

Depending on the DAL, different types of structural code
coverage methods are required, as summarised in Table I. For
the top 3 ones, each one is a subset of the following ones and
therefore can be satisfied if the most strict coverage method
is achieved. Statement coverage needs to verify whether all
source code statements have been exercised at least once.
Decision coverage, requires to test each conditional path in the
software (i.e. each entry and exit point, as well as that every
decision has taken all its possible outcomes at least once).
Modified Condition/ Decision Coverage (MC/DC), which is
the main focus of this paper, requires in addition to decision
coverage that every condition has also taken all possible
outcomes at least once and that each condition in a decision
has been shown to affect the decision outcome independently.
This can be achieved either by varying a single condition while
the rest of the conditions remain fixed, or at least only the
conditions which affect the decision outcome remain fixed.
Finally, DO-178C defines also another type of structural code

TABLE I
APPLICABILITY OF STRUCTURAL CODE COVERAGE ACCORDING TO THE

SOFTWARE’S DAL. ++ MEANS THAT IT HAS TO BE ACHIEVED WITH
INDEPENDENCE, + THAT IT NEEDS TO BE ACHIEVED, WHILE BLANK

MEANS THAT IT IS UP TO THE END USER TO DECIDE.

Structural Code
Coverage Method DAL-A DAL-B DAL-C DAL-D
Statement ++ ++ +
Decision ++ ++
MC/DC ++
Data and control coupling ++ ++ +

coverage method related to data and control coupling. This
method requires to cover the control flow and data dependence
of a software module on other software modules.

MC/DC is a well studied field in the avionics literature.
Prior studies have analysed the effectiveness of MC/DC under
various implementation schemes, showing that when inlining
is enabled its bug revealing capability is maximised [11].
Although MC/DC achieves a good balance between software
detection effectiveness and feasibility compared to more ex-
haustive coverage methods like Multiple Condition Coverage
(MCC), recent studies have shown that for languages with
short circuit evaluation, MCC can also be feasible for software
with decisions with up to 5 conditions [12].

There are several qualified code coverage tools for C and
Ada which are widely used in the verification of avionics
systems nowadays, however, to our knowledge none of them
is currently supporting parallel programs such as GPU support
for Vulkan SC, since current avionics software is inherently
sequential.

III. MC/DC COVERAGE IN VULKAN SC

A recent work on general purpose computations on
GPUs [6] has argued that since Vulkan SC and GLSL are
based on the C language, the existing code coverage tools
for C can be extended to cover these dialects. In this paper
we discuss in detail what are the implications of implementing
MC/DC code coverage for GPU code, apart from the syntactic
similarities of the GPU languages with sequential C code, and
therefore what is the interpretation of MC/DC coverage in
SIMT code. Moreover, we explain the potential issues which
can arise in GPU software and can be detected using code
coverage.

In order to support our discussion with code snippets, we
are using an example of a frequently used GPU kernel (matrix
multiplication) extracted from the GPU4S Bench [13] open
source benchmarking suite. GPU4S Bench is an open source
benchmarking suite which includes several application kernels
which are common in several aerospace application domains,
and which are implemented in multiple parallel programming
models and with multiple versions, i.e. with a straightforward
parallelisation, with an optimised version and with a vendor
provided library when available. GPU4S Bench forms part of
the European Space Agency (ESA) OBPMark (on-board pro-
cessing benchmark) Kernels benchmarking suite [14] hosted
at [15].

A. Vulkan SC Host API

As we described in Section II, Vulkan SC uses a set
of API calls in order to manage the GPU execution. The
code excerpt in Figure 2 shows an example of such code,
which is used in order to launch a kernel to the GPU. Since
Vulkan SC is a very low API, several steps are required
for such an operation. Lines 1-4 setup a GPU command
buffer, which in this example includes an one time kernel
submission. Line 5 sets up the constant kernel arguments, i.e.
the non-array parameters used in the call of the kernel function
executed in the GPU. These arguments are stored in the GPU
constant memory which we mentioned in Section II-A and in
Figure 1. Lines 8-12 create a pipeline with the GPU operations
which will be executed in the GPU, which in this example
consists of a single GPU kernel launch. Line 13 computes
the total number of GPU threads based on the sizes of the
multiplied matrices as we discuss in the next subsection and
line 14 specifies the kernel configuration, which is composed
by number_of_threads/256 work-groups. Lines 15-19
actually launch the kernel, and line 20 specifies a CPU barrier,
in which the CPU remains idle until the GPU kernel finishes
its execution.

It is worth noting that the Vulkan SC API calls are
asynchronous, which means that the execution is returned
immediately to the CPU, even if there is some memory transfer
or parallel GPU computation taking place, such as between the
lines 19 and 20. Despite this difference the (MC/DC) code
coverage of the above code snippet can be computed on the
CPU side with any existing qualified tool for C.

Regardless of the fact that some computation is performed at
the same time on another computing element (i.e. in the GPU),
the code statements which correspond to the CPU are executed
one after the other, as in the case of conventional avionics
code. Therefore, in terms of verifying the functionality of
the host API code, it is enough to ensure the structural code
coverage in the same way it is done in sequential code. In fact,
we can argue that similar asynchronous operations already
exist in avionics software when DMA (direct memory access)
is used, or when a network message is transmitted over an
AFDX (Avionics Full-Duplex Switched Ethernet) [16] or over
another type of avionics network.

B. GLSL / GPU Code Coverage

GPU code in Vulkan SC can be specified either in GLSL
source code or directly in SPIR-V. Since GLSL provides a
more human friendly programming interface than the machine
oriented bytecode of SPIR-V, in this paper we discuss code
coverage at the source code level of this C-like language.

In the following subsections we are going to examine
various elements related to GPU code coverage. First we
reason about the conceptual meaning of MC/DC coverage in
GPU source code and its equivalence to the MC/DC coverage
of sequential CPU code. Next, we discuss additional points
which can arise in GPU code and how they can be detected
by MC/DC testing or static analysis.

1 VkCommandBufferBeginInfo b e g i n I n f o {} ;
2 b e g i n I n f o . sType=VK STRUCTURE TYPE COMMAND BUFFER BEGIN INFO ;
3 b e g i n I n f o . f l a g s =VK COMMAND BUFFER USAGE ONE TIME SUBMIT BIT ;
4 vkBeginCommandBuffer (commandBuffer , &b e g i n I n f o) ;
5 p u s h C o n s t a n t s pC{ . n = n , .m = m, . k = k} ;
6 vkCmdPushConstants (commandBuffer , p i p e l i n e L a y o u t ,
7 VK SHADER STAGE COMPUTE BIT, 0 , s i z e o f (p u s h C o n s t a n t s) ,&pC) ;
8 vkCmdBindPipe l ine (commandBuffer ,
9 VK PIPELINE BIND POINT COMPUTE , p i p e l i n e) ;

10 v kC m d B i n d D e s c r ip t o r S e t s (commandBuffer ,
11 VK PIPELINE BIND POINT COMPUTE , p i p e l i n e L a y o u t , 0 , 1 ,
12 &d e s c r i p t o r S e t , 0 , n u l l p t r) ;
13 u i n t 6 4 t n u m b e r o f t h r e a d s = m * n * k ;
14 vkCmdDispatch (commandBuffer , n u m b e r o f t h r e a d s / 2 5 6 , 1 , 1) ;
15 VkSubmit Info s u b m i t I n f o = {} ;
16 s u b m i t I n f o . sType = VK STRUCTURE TYPE SUBMIT INFO ;
17 s u b m i t I n f o . commandBufferCount = 1 ;
18 s u b m i t I n f o . pCommandBuffers = &commandBuffer ;
19 vkQueueSubmit (queue , 1 , &s u b m i t I n f o , VK NULL HANDLE) ;
20 vkQueueWai t Id le (queue) ;

Fig. 2. Example of Vulkan SC host code excerpt for launching a GPU kernel.

1) Code coverage concept in GPU Code: In Figure 3
we can see the naı̈ve implementation of the single precision
general matrix-matrix multiplication (sgemm) kernel in GLSL,
which multiplies a matrix (m×n) with a matrix (n × k).
With naı̈ve implementation we refer to the straightforward
parallelisation scheme, in which each thread is responsible
for the computation of a single element of the output matrix,
independently of the other threads.

Line 1 specifies the version of GLSL used in the kernel,
and line 3 specifies the kernel configuration, which in this
case uses a work-group size of 16×16. Recall that in the host
code in Figure 2, the number of work-groups was specified as
number_of_threads divided by 256, which is the number
of threads within a work-group. Although the actual size of
the work-group is not important for the correct functionality of
the kernel, it is important that these two sizes match in order
ensure the correct functionality of the GPU code. This creates
a data coupling between the host Vulkan SC code (Figure 2,
line 14) and the GLSL kernel code (Figure 3, line 3). Note
however that the work-group size does have an impact in
the kernel’s performance and that it needs to be within the
hardware limits of the target GPU, otherwise the kernel will
not be possible to be executed.

Lines 5-14 specify the kernel array (buffer) and constant
arguments. Again there is an additional data coupling of
these lines with the corresponding Vulkan SC host code, e.g.
Figure 2 line 5, as well as the part of the code which is
responsible for the buffer creation and binding on the host side,
which has been omitted from the code excerpt of Figure 2.

Lines 16-34 implement the actual executable code of the
kernel. Notice that lines 17-18 obtain the position of the output
matrix element computed by the current thread as a function
of the global thread identifier, since the kernel is written in
a SIMT programming model. These global thread identifiers
are equivalent to the commented lines 20-23, which compute
them as a function of the local thread identifiers, the thread
work-group identifier and the work-group size.

In line 25, we ensure that the position of the current element

1 # v e r s i o n 450
2
3 l a y o u t (l o c a l s i z e x =16 , l o c a l s i z e y =16 , l o c a l s i z e z =1) i n ;
4
5 l a y o u t (s td430 , s e t =0 , b i n d i n g =0) b u f f e r inA { f l o a t a [] ; } ;
6 l a y o u t (s td430 , s e t =0 , b i n d i n g =1) b u f f e r inB { f l o a t b [] ; } ;
7 l a y o u t (s td430 , s e t =0 , b i n d i n g =2) b u f f e r outR {
8 f l o a t r e s u l t [] ; } ;
9

10 l a y o u t (p u s h c o n s t a n t) un i fo rm p u s h C o n s t a n t s {
11 u i n t m;
12 u i n t n ;
13 u i n t k ;
14 } ;
15
16 void main (){
17 u i n t x = g l G l o b a l I n v o c a t i o n I D . x ;
18 u i n t y = g l G l o b a l I n v o c a t i o n I D . y ;
19 / / E q u i v a l e n t t o :
20 / / u i n t x = gl WorkGroupID . x * g l WorkGroupSize . x +
21 g l L o c a l I n v o c a t i o n I D . x ;
22 / / u i n t y = gl WorkGroupID . y * g l WorkGroupSize . y +
23 g l L o c a l I n v o c a t i o n I D . y ;
24
25 i f (x < k && y < m){
26
27 f l o a t r = 0 . 0 ;
28 f o r (u i n t i = 0 ; i < n ; i ++) {
29 r += a [y*n + i] * b [i *k + x] ;
30 }
31
32 r e s u l t [y*k + x] = r ;
33 }
34 }

Fig. 3. GLSL kernel implementation of naı̈ve matrix multiplication.

TABLE II
MC/DC COVERAGE OF LINE 20 OF THE GPU CODE OF FIGURE 3

Test x < k y < m result x < k y < m
Case independence independence

1 T T T 3
2 T F F 1
3 F - F 1

TABLE III
MC/DC COVERAGE OF LINE 23 OF THE GPU CODE OF FIGURE 3

Test i < n result i < n
Case independence

4 T T 5
5 F F 4

is within the matrix limits. In the loop of lines 28-30 we iterate
over the entire line of matrix a and column of matrix b, and
we compute their inner product. Finally, in line 32 we store
the output to the result matrix.

Since the actual executable code of the kernel is in lines
16-34, this is the part of the GPU code that is subject to the
MC/DC code coverage analysis. As we have explained, the
kernel code is executed for each of the threads of the kernel
which are in total: number of threads = m × n × k. By
applying the concept of coverage in SIMT source code in the
same way as it is applied in sequential CPU code, the meaning
of coverage is interpreted as follows.

For statement coverage, checking whether each source code
statement is executed at least once, it means that it needs to

1 f o r (u i n t x = 0 ; x < n u m b e r o f t h r e a d s x ; x ++)
2 {
3 f o r (u i n t y = 0 ; y < n u m b e r o f t h r e a d s y ; y ++)
4 {
5 i f (x < k && y < m){
6 f l o a t r = 0 . 0 ;
7 f o r (u i n t i = 0 ; i < n ; i ++) {
8 r += a [y*n + i] * b [i *k + x] ;
9 }

10
11 r e s u l t [y*k + x] = r ;
12 }
13 }
14 }

Fig. 4. Equivalent sequential C code of the naı̈ve matrix multiplication.

TABLE IV
MC/DC COVERAGE OF LINE 1 OF THE CPU CODE OF FIGURE 4

Test x < no of threads x result x < no of threads x
Case independence

1 T T 2
2 F F 1

TABLE V
MC/DC COVERAGE OF LINE 3 OF THE CPU CODE OF FIGURE 4

Test y < no of threads y result y < no of threads y
Case independence

3 T T 4
4 F F 3

TABLE VI
MC/DC COVERAGE OF LINE 5 OF THE CPU CODE OF FIGURE 4

Test x < k y < m result x < k y < m
Case independence independence

5 T T T 7
6 T F F 5
7 F - F 5

TABLE VII
MC/DC COVERAGE OF LINE 7 OF THE CPU CODE OF FIGURE 4

Test i < n result i < n
Case independence

8 T T 9
9 F F 8

be executed by at least one of kernel threads.
For decision coverage, the entry and exit points of the kernel

are exercised by default when a kernel is invoked, since its
code is executed by all of its threads. In a similar way, since
each thread is executing exactly the same code, it is enough to
test that every decision has taken all its possible outcomes at
least once, but not necessarily in the same thread. This means,
that at least one thread needs to exercise each decision of the
kernel.

The same concept applies for MC/DC, so every condition
in the kernel needs to be tested with all possible outcomes at
least once and that each condition in a decision need to have
been shown to affect the decision outcome independently. This
needs to be exercised by at least one thread of the kernel, not

each thread of the kernel.
Apart from the fact that each thread of the kernel is

executing the same code, another way to reason about why
it is enough to make sure that each condition and decision are
exercised by at least one thread is to consider the equivalent
sequential code. To that end, we introduce the concept of
single thread equivalence of SIMT code. Figure 4 shows the
equivalent sequential matrix multiplication code in C. The
code is identical to the kernel code with the difference that it
is executed within two nested loops, taking all possible values
of x and y, which represent the number of threads in which
the computation is partitioned in the x and y dimensions.
Recall that according to the kernel configuration in Figure 2,
line 14, the total number of threads in the x direction is
number of threads and in y direction is 1. Therefore, the
thread identifiers in the GPU kernel are equivalent to the loop
counters of the CPU version.

Since in the sequential version during MC/DC coverage we
are not interested in which loop iteration each decision/condi-
tion was exercised, but only about the fact it was exercised at
least once, naturally in the GPU version we are only interested
whether each decision/condition was exercised by any thread
at least once. This observation reduces significantly the effort
and the amount of evidence required in order to collect
coverage data for GPU code, because it keeps the required
memory overhead for the collection of MC/DC information in
the same range as in the one used by existing qualified code
coverage tools.

Next, we examine the equivalence of MC/DC between the
GPU and CPU code. In Figure 3, we have to cover two
conditions. The condition of the if statement in line 25, and
the loop condition in line 28. Table II and Table III show
the test cases required to achieve MC/DC coverage for both
conditions, following the method presented in [17]. The first
column corresponds to the identifier of the test case, while
the column marked as ”independence”, corresponds to the test
case which provides decision independence with respect to that
condition, as required by MC/DC.

Notice that due to the short circuit evaluation of the &&
(logical and) operator in GLSL (and in any other C-based
language), test case 3 does not need to consider the value
of the second condition. For the loop construct in line 28,
Table III shows that it is trivial to achieve MC/DC coverage
of the loop condition, as it requires only two test cases, one
in which the loop is executed and one that it is not [18].

For comparison, Tables IV, V, VI and VII show the test
cases required to achieve 100% MC/DC coverage in the
sequential CPU code. We observe that the CPU and the GPU
test cases only differ in the 4 additional trivial test cases, which
correspond to the two additional loops which iterate over all
thread identifiers. Therefore, the CPU test cases required to
achieve MC/DC code are a superset of the GPU ones. In other
words, the same test cases that achieve 100% MC/DC for the
CPU code, can be used in order to achieve 100% MC/DC code
in the GPU code.

In the general case, every naı̈ve kernel parallelisation of

sequential CPU code can be transformed to its equivalent
sequential version by iterating over the grid dimensions, and
the MC/DC test cases for the sequential version can be used to
achieve 100% MC/DC coverage in the GPU version as well.

2) Code Coverage for complex parallelisation: In the
previous subsection we considered the case where each ker-
nel thread writes to a single memory position and operates
independently of the other threads, which is usually found
in naı̈ve GPU implementations. However, such an implemen-
tation can be suboptimal in terms of performance as in the
case of the matrix multiplication example we have examined.
Moreover, some algorithms such as histograms, require to
write in arbitrary output positions not determined by the thread
identifier, a computation pattern known as scatter [6]. In that
case, multiple potential programming issues can arise in GPU
implementations, which we examine next.

Figure 5 shows an optimised implementation of the matrix
multiplication kernel using tiling. Tiling [19] (also known
as blocking [20]) is a technique in which a computation is
performed in smaller chunks of data called tiles, in order
to exploit data locality. The implementation in our example
uses a 16×16 tile size. For this reason, the implementation
features two 16×16 tile buffers in local memory (lines 18-19),
in which we store the intermediate values fetched from each
matrix used in the computation. Each thread of the kernel is
again responsible of computing a single element of the output,
however, all threads in the work-group are reusing the values
fetched in the local memory. In fact, each thread in the work-
group is responsible to load one element of each tile (lines 33-
34) in every iteration. This creates an additional data coupling
over the naı̈ve implementation, since the working group size
needs also to match the tile sizes in the local memory.

The loop in line 32 ensures that the processing is performed
in steps of the size of the tile. After each thread in a work-
group is loading the corresponding values in the two tiles,
all threads of the work-group are waiting on a barrier (line
35) in order to ensure that the subsequent reads from the
local memory (line 38) will see the correct values. This is
required because each thread is reading values which were
stored in the local memory by other threads. The loop in line
37 computes the inner product between the corresponding row
and column of the two tiles in the local memory, and the
barrier in line 40 ensures that all threads in the working group
have computed their inner product and therefore consumed
the local memory data, before proceeding with loading the
next tile in the following loop iteration. Finally, when all
tiles have been processed, the output element is written in the
result matrix (line 42). In terms of MC/DC coverage, the tiled
implementation has just an additional loop construct compared
to the naı̈ve one.

Figure 6 shows the equivalent tiled implementation for a
CPU. In order to convert the SIMT model of the GPU kernel,
we follow the same approach as before, by executing the code
of the kernel as many times as the kernel work-groups for
each grid dimension, using two nested loops (lines 1-4).

The difference in this case is for the parts of the kernel

1 # v e r s i o n 450
2 # d e f i n e BLOCK SIZE 16
3
4 l a y o u t (l o c a l s i z e x =BLOCK SIZE , l o c a l s i z e y =BLOCK SIZE ,
5 l o c a l s i z e z =1) i n ;
6
7 l a y o u t (s td430 , s e t =0 , b i n d i n g =0) b u f f e r inA { f l o a t a [] ; } ;
8 l a y o u t (s td430 , s e t =0 , b i n d i n g =1) b u f f e r inB { f l o a t b [] ; } ;
9 l a y o u t (s td430 , s e t =0 , b i n d i n g =2) b u f f e r outR {

10 f l o a t r e s u l t [] ; } ;
11
12 l a y o u t (p u s h c o n s t a n t) un i fo rm p u s h C o n s t a n t s {
13 u i n t m;
14 u i n t n ;
15 u i n t k ;
16 } ;
17
18 s h a r e d f l o a t t i l e A [BLOCK SIZE] [BLOCK SIZE] ;
19 s h a r e d f l o a t t i l e B [BLOCK SIZE] [BLOCK SIZE] ;
20
21 void main (){
22 u i n t x = gl WorkGroupID . x * gl WorkGroupSize . x
23 + g l L o c a l I n v o c a t i o n I D . x ;
24 u i n t y = gl WorkGroupID . y * gl WorkGroupSize . y
25 + g l L o c a l I n v o c a t i o n I D . y ;
26 u i n t t x = g l L o c a l I n v o c a t i o n I D . x ;
27 u i n t t y = g l L o c a l I n v o c a t i o n I D . y ;
28 f l o a t r = 0 . 0 ;
29
30 i f (x < k && y < m){
31
32 f o r (u i n t p = 0 ; p < n / BLOCK SIZE ; ++p) {
33 t i l e A [t y] [t x]= a [y*n + p*BLOCK SIZE+ t x] ;
34 t i l e B [t y] [t x]= b [(p*BLOCK SIZE+ t y)* k + x] ;
35 b a r r i e r () ;
36
37 f o r (u i n t i = 0 ; i < BLOCK SIZE ; i ++) {
38 r += t i l e A [t y] [i] * t i l e B [i] [t x] ;
39 }
40 b a r r i e r () ;
41 }
42 r e s u l t [y*k + x] = r ;
43 }
44 }

Fig. 5. Tiled matrix multiplication using local memory in GLSL.

TABLE VIII
MC/DC COVERAGE OF LINE 30 OF THE GPU CODE OF FIGURE 5 AND

LINES 20 AND 41 OF THE CPU CODE OF FIGURE 6.

Test x < k y < m result x < k y < m
Case independence independence

1 T T T 3
2 T F F 1
3 F - F 1

TABLE IX
MC/DC COVERAGE OF LINE 32 OF THE GPU CODE OF FIGURE 5 AND

LINES 22 AND 43 OF THE CPU CODE OF FIGURE 6.

Test p < n/BLOCK SIZE result i < n/BLOCK SIZE
Case independence

4 T T 5
5 F F 4

TABLE X
MC/DC COVERAGE OF LINE 37 OF THE GPU CODE OF FIGURE 5 AND

LINE 44 OF OF THE CPU CODE FIGURE 6.

Test i < BLOCK SIZE result i < BLOCK SIZE
Case independence

6 T T 7
7 F F 6

1 f o r (unsigned i n t g r o u p I d x =0;
2 g r o u p I d x < number of workgroups x ; g r o u p I d x ++){
3 f o r (unsigned i n t g r o u p I d y =0;
4 g r o u p I d y < number of workgroups y ; g r o u p I d y ++){
5 f l o a t t i l e A [BLOCK SIZE] [BLOCK SIZE] ;
6 f l o a t t i l e B [BLOCK SIZE] [BLOCK SIZE] ;
7
8 f o r (unsigned i n t t h r e a d I d x =0;
9 t h r e a d I d x < g r o u p s i z e x ; t h r e a d I d x ++){

10 f o r (unsigned i n t t h r e a d I d y =0;
11 t h r e a d I d y < g r o u p s i z e y ; t h r e a d I d y ++){
12
13 unsigned i n t x = g r o u p I d x * g r o u p s i z e x
14 + t h r e a d I d x ;
15 unsigned i n t y = g r o u p I d y * g r o u p s i z e y
16 + t h r e a d I d y ;
17 unsigned i n t t x = t h r e a d I d x ;
18 unsigned i n t t y = t h r e a d I d y ;
19
20 i f (x < k && y < m)
21 {
22 f o r (i n t p =0; p < n / BLOCK SIZE ; p++){
23 t i l e A [t y] [t x]=A[y*n+p*BLOCK SIZE+ t x] ;
24 t i l e B [t y] [t x]=B [(p*BLOCK SIZE+ t y)* k + x] ;
25 }
26 }
27 }
28 }
29 f o r (unsigned i n t t h r e a d I d x =0;
30 t h r e a d I d x<g r o u p s i z e x ; t h r e a d I d x ++){
31 f o r (unsigned i n t t h r e a d I d y =0;
32 t h r e a d I d y<g r o u p s i z e y ; t h r e a d I d y ++){
33 unsigned i n t x = g r o u p I d x * g r o u p s i z e x
34 + t h r e a d I d x ;
35 unsigned i n t y = g r o u p I d y * g r o u p s i z e y
36 + t h r e a d I d y ;
37 unsigned i n t t x = t h r e a d I d x ;
38 unsigned i n t t y = t h r e a d I d y ;
39 f l o a t r = 0 ;
40
41 i f (x < k && y < m)
42 {
43 f o r (i n t p =0; p < n / BLOCK SIZE ; p++){
44 f o r (i n t i =0 ; i < BLOCK SIZE ; i ++){
45 r += t i l e A [t y] [i] * t i l e B [i] [t x] ;
46 }
47 }
48 C[y*k+x] = r ;
49 }
50 }
51 }
52 }
53 }

Fig. 6. Equivalent sequential C code implementation of the tiled matrix
multiplication.

TABLE XI
MC/DC COVERAGE OF LINE 1 OF THE CPU CODE OF FIGURE 6.

Test groupIdx < groups x result groupIdx < groups x
Case independence

8 T T 9
9 F F 8

TABLE XII
MC/DC COVERAGE OF LINE 3 OF THE CPU CODE OF FIGURE 6.

Test groupIdy < groups y result groupIdy < groups y
Case independence
10 T T 11
11 F F 10

TABLE XIII
MC/DC COVERAGE OF LINES 8 AND 29 OF THE CPU CODE OF FIGURE 6.

Test threadIdx < group size x result threadIdx < group size x
Case independence
12 T T 13
13 F F 12

TABLE XIV
MC/DC COVERAGE OF LINES 10 AND 31 OF THE CPU CODE OF FIGURE 6.

Test threadIdy < group size y result threadIdy < group size y
Case independence
14 T T 15
15 F F 14

where the work-group execution is synchronised using the
barrier. The barrier, divides the loop of the lines 32-41 of
Figure 5 in two parts which need to be completed before
executing the second part which is serialised. In order to do
this, each of these parts of the loop needs to be executed
for each local thread identifier within the work-group. This
can be achieved by executing them within another set of
nested loops, one for each work-group dimension, which take
all values of the work-group’s thread identifiers. Notice that
again, the thread and work-group identifiers become the loop
counters in the introduced loop constructs. The indices of the
elements accessed by each thread are redundantly computed
within the loops (lines 13-18 and lines 33-38), as well as the
conditions depending on them (lines 20 and 41). Despite the
code reorganisation of the sequential version, the conditional
statements and the computed indices are identical to the GPU
version shown in Figure 5.

Tables VIII, IX and X show the test cases required in order
to achieve 100% MC/DC coverage for the GPU version, as
well as for the conditions which are the same in the equivalent
CPU code. In addition to these, Tables XI, XII, XIII and
XIV provide the additional test cases which are unique to the
equivalent sequential version.

Comparing the MC/DC conditions which are required to
be covered, the CPU version has the additional loops which
iterate over all working groups and their threads for both x and
y dimensions, as well as the redundant conditions and loops
which are repeated for each part of the GPU kernel which
is divided by the barriers. However, the redundant conditions
are identical, which means that they can be covered with the
same test cases. For example, the for loops in lines 8 and
29 have the same condition, therefore can be covered with the
same test cases which are provided in Table XIII. Similarly,
the redundant if conditions in lines 20 and 41, are covered
with the same test cases provided by Table VIII, which are
also the same with the ones needed for the coverage of this
condition in the GPU version (line 30).

Therefore, again we notice that the test cases required in
order to achieve 100% MC/DC coverage in the tiled sequential
version, is a superset of the test cases which can achieve 100%
MC/DC coverage of the tiled kernel implementation.

In addition to the implications of MC/DC coverage which
have examined in this example, when different threads are
writing to buffers which are accessible by other threads either
in the global or local memory, we need to make sure that
they use different indices, otherwise a race condition can be
introduced. In case the threads need to write in the same
index because it is required by the algorithm as it is the case
in histograms, atomic instructions need to be used for the
write. Moreover, whenever a thread is reading from a memory
position which another thread of the same work-group has
written to, a barrier instruction is required, as we have seen
in the case of the tiled matrix multiplication example.

Such programming mistakes can either be identified with
static analysis methods [21] [22], or can manifest themselves
with wrong output during the execution of the MC/DC tests.
However, similar to the case of the existing qualified MC/DC
coverage tools for CPUs, the existing static analysis GPU
methods need to be extended to cover Vulkan SC and its GLSL
variant, as well as to be qualified for use in avionics.

IV. CONCLUSION

In this paper we discussed in detail the concept of MC/DC
coverage for Vulkan SC code using examples of GPU code.
We have demonstrated that for the host (CPU) part of the
Vulkan SC code, existing qualified code coverage tools can
be used without modifications.

For the case of the GLSL GPU code, we have seen that
GPU kernels can be easily converted to sequential code, by
simply calling their SIMT code within appropriately translated
loops. Based on this single thread equivalence, we argued that
the requirements of MC/DC coverage need to be satisfied by
at least one thread of the kernel, similar to the fact that in
conventional sequential code they need to be satisfied by any
loop iteration. This means that existing qualified code coverage
tools for source code MC/DC can be extended to work in the
same way on GPU code coverage. As we have seen in our
example, the test cases used to achieve 100% MC/DC coverage
in the equivalent CPU implementations are a superset of the
test cases that can achieve 100% MC/DC coverage in the GPU
implementations.

Finally, we discussed that in complex GPU kernels data
races may be introduced when multiple threads are writing in

the same memory position and/or are reading from memory
positions written by other threads if barrier synchronisation or
atomic operations are not used. We argued that this situation
can be revealed either with static analysis methods, or they can
be manifested with MC/DC testing. However, in both cases
existing qualified MC/DC code coverage tools for CPUs and
static analysis methods for GPUs need to be extended with
support for Vulkan SC and GLSL.

ACKNOWLEDGMENT

This work was performed within the Airbus TANIA-
GPU Project ADS (E/200). It was also partially sup-
ported by the European Space Agency (ESA) through the
GPU4S (GPU for Space) activity, the Spanish Ministry
of Economy and Competitiveness under grants PID2019-
107255GB-C21 and IJC-2020-045931-I (Spanish State Re-
search Agency / Agencia Española de Investigación (AEI) /
http://dx.doi.org/10.13039/501100011033) and the HiPEAC
Network of Excellence.

REFERENCES

[1] M. Benito, M. M. Trompouki, L. Kosmidis, J. D. Garcia, S. Carretero,
and K. Wenger, “Comparison of GPU Computing Methodologies for
Safety-Critical Systems: An Avionics Case Study,” in Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), 2021.

[2] RTCA and EUROCAE, DO-178C / ED-12C, Software Considerations
in Airborne Systems and Equipment Certification, 2012.

[3] ——, DO-254 / ED-80, Design Assurance Guidance for Airborne
Electronic Hardware, 2000.

[4] EASA, AMC 20-193 Use of multi-core processors (MCPs), 2022.
[5] CAST-29, Use of COTS Graphical Processors (CGP) in Airborne

Display Systems. Certification Authorities Software Team (CAST),
1997.

[6] M. M. Trompouki and L. Kosmidis, “DO-178C Certification of General-
Purpose GPU Software: Review of Existing Methods and Future Direc-
tions,” in 40th Digital Avionics Systems Conference (DASC), 2021.

[7] Khronos Group, Vulkan SC 1.0.10 - A Specification, 2022.
[8] ——, OpenGL SC Safety-Critical Profile Specification, Version 1.0.1,

2009.

[9] ——, OpenGL SC 2.0.0 (Full Specification), 2016.
[10] M. M. Trompouki and L. Kosmidis, “Brook Auto: High-level

Certification-friendly Programming for GPU-powered Automotive Sys-
tems,” in Design Automation Conference (DAC), 2018.

[11] M. P. Heimdahl, M. W. Whalen, A. Rajan, and M. Staats, “On MC/DC
and Implementation Structure: An Empirical Study,” in 27th Digital
Avionics Systems Conference (DASC), 2008, pp. 5.B.3–1–5.B.3–13.

[12] S. Kandl and S. Chandrashekar, “Reasonability of MC/DC for Safety-
relevant Software Implemented in Programming Languages with Short-
circuit Evaluation,” in Computing, vol. 97, 2015, p. 261279.

[13] I. Rodriguez, L. Kosmidis, J. Lachaize, O. Notebaert, and
D. Steenari, “GPU4S Bench: Design and Implementation
of an Open GPU Benchmarking Suite for Space On-board
Processing,” Universitat Politècnica de Catalunya, Tech. Rep.
UPC-DAC-RR-CAP-2019-1, https://www.ac.upc.edu/app/research-
reports/public/html/research center index-CAP-2019,en.html.

[14] D. Steenari, L. Kosmidis, I. Rodriguez-Ferrandez, A. Jover-
Alvarez, and K. Forster, “OBPMark (On-Board Processing
Benchmarks) - Open Source Computational Performance Benchmarks
for Space Applications,” in 2nd European Workshop on On-
Board Data Processing (OBDP), 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5638577

[15] D. Steenari et al., “On-Board Processing Benchmarks,” 2021,
http://obpmark.github.io/.

[16] ARINC, ARINC Specification 664: Aircraft Data Network, Part 7-
Avionics Full Duplex Switched Ethernet (AFDX) Network, Aeronautical
Radio, Inc, 2005.

[17] J. J. Chilenski and S. P. Miller, “Applicability of Modified Condi-
tion/Decision Coverage to Software Testing,” IET Software Engineering
Journal, vol. 9, no. 5, pp. 193–200, September 1994.

[18] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A
Practical Tutorial on Modified Condition/ Decision Coverage,” NASA,
Tech. Rep. NASA/TM-2001-210876, 2001.

[19] M. Wolfe, “Iteration space tiling for memory hierarchies,” in Parallel
Processing for Scientific Computing, 1989.

[20] R. Schreiber, “Block Algorithms for Parallel Machines,” in Numerical
Algorithms for Modern Parallel Computer Architectures, 1988.

[21] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “GPU-
Verify: A Verifier for GPU Kernels,” in ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2012, p. 113132.

[22] E. Bardsley and A. Donaldson, “Warps and Atomics: Beyond Barrier
Synchronization in the Verification of GPU Kernels,” in NASA Formal
Methods, 2014, pp. 230–245.

