
OmpSs-2@Cluster: Distributed memory execution
of nested OpenMP-style tasks

Jimmy Aguilar Mena1, Omar Shaaban1, Vicenç Beltran1, Paul Carpenter1,
Eduard Ayguade1, and Jesus Labarta Mancho1

Barcelona Supercomputing Center

Abstract. State-of-the-art programming approaches generally have a
strict division between intra-node shared memory parallelism and inter-
node MPI communication. Tasking with dependencies offers a clean, de-
pendable abstraction for a wide range of hardware and situations within
a node, but research on task offloading between nodes is still relatively
immature. This paper presents a flexible task offloading extension of the
OmpSs-2 programming model, which inherits task ordering from a se-
quential version of the code and uses a common address space to avoid
address translation and simplify the use of data structures with point-
ers. It uses weak dependencies to enable work to be created concurrently.
The program is executed in distributed dataflow fashion, and the runtime
system overlaps the construction of the distributed dependency graph,
enforces dependencies, transfers data, and schedules tasks for execution.
Asynchronous task parallelism avoids synchronization that is often re-
quired in MPI+OpenMP tasks. Task scheduling is flexible, and data
location is tracked through the dependencies. We wish to enable future
work in resiliency, scalability, load balancing and malleability, and there-
fore release all source code and examples open source.

1 Introduction

The dominant programming approach for scientific and industrial computing on
clusters is MPI+X. While there are a variety of approaches within the node,
described by the “X”, such as OpenMP, OmpSs, OpenACC and others, the de
facto standard for programming multiple nodes is MPI. In all cases the pro-
gram must combine two fundamentally different programming models, which
is difficult to get right [30,29]. The tasking approach of OpenMP and OmpSs
offers an open, clean and stable way to improve hardware utilization through
asynchronous execution while targeting a wide range of hardware, from SMPs,
to GPUs, to FPGAs. This paper extends the same approach, of OmpSs-2 task-
ing, to multiple nodes. We develop OmpSs-2@Cluster, which provides a simple
path to move an OmpSs-2 program from single node to small- to medium-scale
clusters. We also present the runtime techniques that allow overlapping of the
construction of the distributed dependency graph, efficient concurrent enforcing
of dependencies, data transfers among nodes, and task execution.

A number of research groups are looking into tasks as a model for all scales
from single threads and accelerators to clusters of nodes, as outlined in Section 7.

This version of the contribution has been accepted for publication, after peer review but is not the Version of Record and does not 
reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: 
http://dx.doi.org/10.1007/978-3-031-12597-3_20. Use of this Accepted Version is subject to the publisher's Accepted Manuscript 
terms of use http://www.spingernature.com/gp/open-research/policies/accepted-manuscript-terms"



Our approach is unique, in that, in many cases, a functional multi-node version
of an existing OmpSs-2 program can be obtained simply by changing the con-
figuration file supplied to the runtime system. The meaning of the program are
defined by the sequential semantics of the original program, which simplifies de-
velopment and maintenance. All processes use the same virtual memory layout,
which avoids address translation and allows direct use of existing data structures
with pointers. Improvements beyond the first version can be made incrementally,
based on observations from performance analysis. Some optimizations that are
well-proven within a single node, such as task nesting to overlap task creation
and execution, [26] are a particular emphasis of OmpSs-2@Cluster, since they
clearly have a greater impact when running across multiple nodes, due to the
greater node-to-node latency and larger total number of execution cores.

The program is executed in distribution dataflow fashion, which is naturally
asynchronous, with no risk of deadlock due to user error. In contrast, MPI+X
programs often use a fork–join model, due to the difficulty in overlapping com-
putation and communication [30]. We show how well-balanced applications have
similar performance to MPI+OpenMP on up to 16 nodes. For irregular and un-
balanced applications like Cholesky factorization, we get a 2× performance im-
provement on 16 nodes, compared with a high performance implementation using
MPI+OpenMP tasks. All source code and examples are released open source [9].

2 Background

OmpSs-2 [8,7,9] is the second generation of the OmpSs programming model. It is
open source and mainly used as a research platform to explore and demonstrate
ideas that may be proposed for standardization in OpenMP. The OpenMP con-
cept of data dependencies among tasks was first proven in OmpSs. Like OpenMP,
OmpSs-2 is based on directives that annotate a sequential program, and it en-
ables parallelism in a dataflow way [27]. The model targets multi-cores and
GPU/FPGA accelerators. This decomposition into tasks and data accesses is
used by the source-to-source Mercurium [5] compiler to generate calls to the
Nanos6 [6] runtime API. The runtime computes task dependencies and sched-
ules and executes tasks, respecting the implied task dependency constraints and
performing data transfers and synchronizations.

OmpSs-2 differs from OpenMP in the thread-pool execution model, targeting
of heterogeneous architectures through native kernels, and asynchronous paral-
lelism as the main mechanism to express concurrency. Task dependencies may
be discrete (defined by start address), or regions with fragmentation [26].

OmpSs-2 extends the tasking model of OmpSs and OpenMP to improve task
nesting and fine-grained dependences across nesting levels [26,2]. The depend
clause is extended with weakin, weakout and weakinout dependency types,
which serve as a linking point between the dependency domains at different
nesting levels, without delaying task execution. They indicate that the task does
not itself access the data, but its nested subtasks may do so. Any subtask that
directly accesses data needs to include it in a depend clause in the non-weak

2



Feature Description

Sequential semantics Simplifies development, porting, and maintenance. Tasks can be defined at
any nesting level and can be offloaded to any node.

Common address space Simplifies porting of applications with complex data structures by
supporting pointers and avoiding address translation.

Distributed dataflow
execution

Task ordering and overlapping of data transfers with computation are
automated, reducing synchronizations and avoiding risk of deadlock.

Distributed memory
allocation

Informs runtime that memory is only needed by subtasks, reducing
synchronization and data transfers. Provides data distribution affinity hint.

Minimizing of data
transfers

The taskwait on and taskwait noflush directives help minimize
unnecessary data transfers.

Early, late or auto
release of dependencies

A tradeoff between parallelism and overhead is exposed through control
over the release of dependencies.

Cluster query API and
scheduling hint

Optional ability to instruct the runtime to control detailed behavior and
optimize decisions.

Table 1: Key features of OmpSs-2@Cluster

variant. Any task that delegates accesses to a subtask must include the data in
its depend clause in at least the weak variant. This approach enables effective
parallelization of applications using a top-down methodology. The addition of
weak dependences exposes more parallelism, allows better scheduling decisions
and enables parallel instantation of tasks with dependencies between them.

3 OmpSs-2@Cluster programming model

The main features of OmpSs-2@Cluster are summarized in Table 1. Like OmpSs-
2 on an SMP, tasks are defined by annotations to a program with sequential
semantics, and offloadable tasks can be nested and defined at any nesting level.
There is a common address space across cluster nodes, with data mapped to
the same virtual address space on all nodes. As long as the task’s accesses are
described by dependencies, any data allocated on any node can be accessed at
the same location on any other node. There is sufficient virtual address space on
all modern 64-bit processors to support up to 65k cores with a typical 2GB/core
footprint. Almost any OmpSs-2 program can therefore be executed using OmpSs-
2@Cluster and, conversely, if new features are ignored or implemented with a
stub, any OmpSs-2@Cluster program is a valid OmpSs-2 program. This property
minimizes porting effort and allows re-use of existing benchmarks.

Figure 1 shows an optimized matrix–matrix multiplication kernel using OmpSs-
2@Cluster. Execution starts on node 0, which runs main as the first task. The
example offloads one task per node then subdivides the work among the cores
using a task for. The outer task with weak dependencies is an optimization to
allow subtask creation to be overlapped with task execution, as shown in Sec-
tion 6 (results). In general, the program as a whole is executed in a distributed
dataflow fashion, with data transfers and data consistency managed by the run-
time system. Data location is passed through the distributed dependency graph.

Compared with OmpSs-2 on SMP, OmpSs-2@Cluster has one new require-
ment for correctness (full dependency specification) and a few programming

3



1 void matmul(double *A, const double *B, const double *C, int dim , int ts)
2 {
3 int rowsPerNode = dim / nanos6_get_num_cluster_nodes ();
4
5 for(int i = 0; i < dim; i += rowsPerNode) {
6 #pragma oss task label("weakmatvec") \
7 weakin(A[i*dim; rowsPerNode*dim]) weakin(B[0; dim*dim]) \
8 weakout(C[i*dim; rowsPerNode*dim])
9 {
10 #pragma oss task for label("taskformatvec") \
11 in(A[i*dim; rowsPerNode*dim]) in(B[0; dim*dim]) \
12 out(C[i*dim; rowsPerNode*dim])
13 for(int j = i; j < i + rowsPerNode; j += ts) {
14 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans ,
15 ts, dim , dim , 1.0, &A[j * dim], dim ,
16 B, dim , 0.0, &C[j * dim], dim);
17 }
18 }
19 }
20 }

Fig. 1: OmpSs-2@Cluster program: optimized dense matrix–matrix multiply, us-
ing a weak parent task to overlap task creation and execution.

model extensions to improve performance. Only a minor revision to the com-
piler is required to support these new features.

Full dependency specification: offloadable tasks (see below) require a full de-
pendency specification, i.e., in, out, and inout dependencies must specify all
accesses, rather than just the constraints needed for task ordering. This is the
only reason that a valid OmpSs-2 program may not be a valid OmpSs-2@Cluster
program, as in SMP systems accesses that are not needed to resolve dependen-
cies may be omitted. This is not a new issue because a similar requirement exists
for accelerators with separate memory spaces.

Distributed memory allocation: The new distributed malloc, nanos6_dmalloc,
is an alternative memory allocation primitive for large data structures manip-
ulated on multiple nodes. This call expresses three important distinguishing
characteristics. Firstly, since the data is intended to be manipulated by concur-
rent tasks on several nodes, it can be assumed that the data is not used by the
enclosing task, only its subtasks or descendants, similarly to a weak dependency.
Secondly, since large allocations are infrequent and use significant virtual mem-
ory, it is efficient to centralize the memory allocator, as the overhead is tolerable
and it leads to more efficient use of the virtual memory. Thirdly, it is a con-
venient place to provide a data distribution hint. The data distribution hint is
communicated to all nodes, and is intended to help the scheduler improve load
balance and data locality, using information from the programmer, if available.
The hint does not mandate a particular data distribution, only the data affin-
ity. The scheduler can take account of both the affinity and current location,
depending on the chosen scheduling policy.

Minimising of data transfers: OmpSs-2@Cluster adds the noflush clause
for taskwaits, in order to separate synchronization from data dependency. The
contents of the memory allocated by nanos6_dmalloc and weak dependencies

4



are by default noflush, so that tasks can wait for their child tasks without copying
data that is not needed. The noflush variant is also useful for timing parts of the
execution. When only a subset of locally-allocated data is needed by the enclosing
task, the dependency and data transfer can be expressed using taskwait on.

Early, late or auto release of dependencies: As per the OmpSs-2 specification
on SMPs, non-offloaded OmpSs-2@Cluster tasks by default early release all of
their dependencies, so that data is passed directly to the successor task without
additional synchronization. Late release of dependencies is possible, using the
OmpSs-2 wait clause, which adds an implicit taskwait after the completion of
the task body (and release of the stack). On OmpSs-2@Cluster, offloaded tasks
by default have auto release of dependencies, which means that early release is
supported to successors on the same node, but all other dependencies wait. The
alternatives are available through the wait and nowait clauses.1

Cluster query API: There is also a simple API to read information about the
execution environment: nanos6_get_num_cluster_nodes() returns the number
of processes, and nanos6_get_cluster_node_id() returns the current rank.

Scheduling hint : The runtime schedules tasks, among and within nodes, tak-
ing account of current data location and/or affinity from the data distribution
hint of nanos6_dmalloc. The programmer can override scheduling using the
node clause on the task directive, which can specify the process that will exe-
cute the task, mark it as non-offloadable or employ a different scheduling policy.

4 Nanos6 runtime implementation

An OmpSs-2@Cluster application is executed in the same way as any MPI pro-
gram, e.g., using mpirun or mpiexec. All processes contain a Nanos6 runtime
instance, as shown in Figure 2. The nodes are peers, the only distinction among
them being that node 0 executes main and it performs runtime operations that
require internal collective synchronizations like nanos6_dmalloc (which may be
called on any node). Each node (including node 0), creates a single “namespace”
task, which is the implied common parent of all tasks offloaded to that node.
The processes communicate via point-to-point MPI, with a dedicated thread on
each node to handle MPI control messages.

During runtime initialization, all processes coordinate to map a common vir-
tual memory region into their virtual address space, organized as in Figure 3.
Each node owns a portion of the local memory region, so that it can allocate
stacks and user data without coordinating with other nodes. Similarly, the dis-
tributed memory region is available for allocations using nanos6_dmalloc. Any
data residing in any of these regions can be used by a task on any node. At
initialization time only the virtual memory is mapped, physical memory will be
allocated on demand, when accessed by a task that executes on the node. Since
all regions are pre-allocated on all nodes, there is no need for temporary memory
allocation, address translation or user intervention.

1 Currently nowait is available through a Nanos6 API call.

5



Node 0
Application

(main)

Nanos6@Cluster

MPI

Node 1
Application

Nanos6@Cluster

MPI . . .

Node N − 1

Application

Nanos6@Cluster

MPI

Fig. 2: OmpSs-2@Cluster architecture. Each node is a peer, except that Node 0
runs the main task and performs distributed memory allocations.

Node 0
Local Memory 0

Local Memory 1

Local Memory N − 1

Distributed Memory

Node 1
Local Memory 0

Local Memory 1

Local Memory N − 1

Distributed Memory

. . . Node N − 1

Local Memory 0

Local Memory 1

Local Memory N − 1

Distributed Memory

L
oc
al

M
em

or
y

Fig. 3: Runtime memory map, which is common to all processes on all nodes.

The problem of running the whole program, which is a hierarchy of tasks with
dependencies, is conceptually separated into building the distributed dependency
graph (Section 4.1), tracking dependencies among tasks (4.2), scheduling ready
tasks for execution (4.3), and performing data transfers before executing tasks
(4.4). All, of course, happen for multiple tasks concurrently.

4.1 Building the distributed dependency graph

Tasks are created by their parent task (which may be main). Once tasks become
ready, they are allocated to a cluster node. Many offloadable tasks have only weak
dependencies, so they are ready immediately and are offloaded in advance (e.g.
“weakmatvec” in Figure 1). This allows concurrent subtask creation on all nodes,
overlapped with execution and optimizations to reduce the number of control
messages on the critical path. If the task is offloaded, a Task New message is sent
from the creation node, where the task was first created, to the execution node,
where it will be executed. This is shown in steps 1○ and 2○ in Figure 4, which il-
lustrates the execution of two offloaded tasks on different nodes sharing an inout
dependency. The execution node uses the taskInfo information embedded in the
message to create and submit the proxy task that will execute the task body.

A key design choice of OmpSs-2@Cluster is that no cluster node builds the
whole computation graph of the application. Distributing the computation graph
across cluster nodes minimizes coordination, thus allowing more potential for
scalability. Nodes independently choose whether, and to which node, to offload
any task created on that node. When a task is offloaded, the predecessor task
for each access is known, and in many cases, its execution node is also known.

6



Node 0

main

Task 1

Task 2

Node 1

Task 1
1○ Task New

6○ Task Finished

Node 2

Task 2

3○ Remote Connect
4○ Satisfiability5○Data Transfer2○ Task New

7○ Task Finish and Access Release

Critical Path Non critical Path

Fig. 4: Direct connection between Task 1 on Node 1 and Task 2 on Node 2. All
messages are point to point.

The identity of the predecessor’s execution node is passed through the de-
pendency system as tasks are offloaded. When the task’s execution node creates
the proxy task, dependencies from a predecessor on the same node are con-
nected inside the namespace task, in the same way as any other sibling tasks.
If the predecessor’s execution node is different, then a Remote Connect message
is sent to the previous node (step 3○). Messages to connect the graph are off
the critical path and are distributed among the implied nodes with non-blocking
point-to-point communications.

4.2 Tracking dependencies among tasks

When tasks complete, dependencies are released by sending point-to-point Sat-
isfiability messages from the predecessor to successor node (step 4○). These mes-
sages indicate which dependency regions are satisfied and their locations, and
the MPI tags for associated eager data sends (see Section 4.4). If the access of an
offloaded task has no successor on another node, the access is instead released
back to the offloader (step 7○). Write-after-read accesses, i.e. inout following
multiple in accesses, are synchronized at the creation node, with satisfiability
passed to the inout access once all the in accesses have released the access back.

4.3 Scheduling ready tasks for execution

When a task becomes ready, the node that created the task decides whether to
offload it, and, if so, it decides which node it should be offloaded to. Currently
the majority of programs have two levels of nesting: one level across nodes and
one level across the cores on the node. These programs have a single level of
offloadable tasks, so all offloaded tasks are created on the same node, so no coor-
dination among nodes is required for load balancing. Future work will improve
the scheduler to support distributed load balancing among nodes. The schedul-
ing of ready tasks to be executed on a node, whether offloaded or not, is done
using the normal Nanos6 scheduler. The scheduler exploits all the cores on the
node, and it allows variants of tasks and/or subtasks to execute on accelerators.

7



4.4 Data transfers

Data transfers may be configured to be either lazy or eager. Lazy data transfers
are the safest option, but delaying the initiation of the data transfer until the
data is required by a strong access may cause latency on starting tasks that
require data from another node. This latency is somewhat mitigated when there
are sufficient tasks to keep the cores busy. Eager data transfers initiate the data
transfers at the earliest moment, even for weak accesses, which is when Satis-
fiability is sent. The Satisfiability message (step 4○) is immediately accompanied
with a data transfer (step 5○). This is generally a good optimization, but it may
happen that data contained in a weak access is not accessed by any subtask with
a strong access, in which case the data transfer would be unnecessary. This situ-
ation happens in Cholesky factorization, due to the pattern of the data accesses
of the dgemm tasks. Since all subtasks are assumed to be created some time in
advance, this situation can be detected when a task with weak accesses com-
pletes, at which point all subtasks have been created, but no subtask accesses
all or part of the weak access. In this case a No Eager Send message is sent to
the predecessor. In all cases, when a task completes, the data is not copied back
to the parent (write-back) unless needed by a successor task or taskwait. The
latest version of the data remains at the execution node until needed.

5 Evaluation methodology

5.1 Hardware and software platform

We evaluate OmpSs-2@Cluster on MareNostrum4 [4]. Each node has two 24-core
Intel Xeon Platinum 8160 CPUs at 2.10GHz, for a total of 48 cores per node.
Each socket has a shared 32MB L3 cache. The HPL Rmax performance equates
to 1.01TF per socket. Communication uses Intel MPI 2018.4 over 100Gb/s Intel
OmniPath, with an HFI Silicon 100 series PCIe adaptor. The runtime and all
the benchmarks were compiled with Intel Compiler 18.0.1, and all the kernels
use the same code and same standard BLAS functions from Intel MKL2018.4.

5.2 Benchmarks

We use simple and optimized variants of four benchmarks all executed in con-
figurations of 2 processes per node (one per NUMA node) from 1 to 16 nodes
for a total of 32 MPI processes:

matvec is a sequence of row cyclic matrix–vector multiplications without
dependencies between iterations. This benchmark has fine-grained tasks with
complexity O(N2) and no data transfers. It exposes the need to implement and
improve the namespace and direct propagation approaches; as well as exhibiting
patterns that require reduction and grouping of control messages. The results
in Section 6 show how this benchmark performs with a simple implementation
using a single level of strong tasks vs. an optimized implementation with nested
weak and strong tasks.

8



Bench-
mark

MPI+ OpenMP OmpSs-2@Cluster
Simple

OmpSs-2@Cluster
Optimized

matvec MPI point-to-point,
OMP parallel for

10 One level strong tasks 11 Nested weak and strong
tasks

18

matmul MPI point-to-point,
OMP parallel for

10 Nested only strong
tasks

18 Nested weak and strong
tasks

18

jacobi MPI collective gather,
OMP parallel for

20 Task for 25 Nested weak and strong
tasks with wait clause

30

cholesky MPI point-to-point
OMP Tasks

135 strong tasks 30 Task for, memory
reordering and priority

134

Table 2: Benchmark characteristics and number of lines of code of kernels.

matmul is a matrix–matrix multiplication performed to study the behavior
with bigger tasks of O(N3) with a similar access pattern. This benchmark was
useful to detect redundant unneeded data transfers negligible withmatvec. In this
case we compare a simple version with nested strong tasks vs. nested weak and
strong tasks to compare the impact of early offloading vs access fragmentation
consequence of early release without data transfers or wait clause.

jacobi is an iterative Jacobi solver for strictly diagonally dominant systems. It
has the same O(N2) complexity as matvec, but it has (N−1)2 data transfers be-
tween iterations. The objective was to measure the impact of data transfers and
control messages to detect optimization opportunities. With this benchmark we
detected fragmentation associated with early release and therefore implemented
the autowait feature. The simple version uses task for (simpler) and the opti-
mized version adds a helper task to reduce control messages and fragmentation.

cholesky is a Cholesky factorization with a complex execution and depen-
dencies pattern. This benchmark performs a higher number of smaller tasks,
compared with matmul, and it introduces load imbalance and irregular patterns.
The simple version code uses strong tasks and only needs few lines, while the op-
timized version uses task for and memory reordering optimizations to reduce
fragmentation and data transfers.

All MPI+OpenMP versions were implemented in two variants, using parallel
for and OpenMP tasks. The best version was selected and reported in Section 6.

Table 2 shows the key benchmark characteristics and the number of lines of
code for all implementations. The values consider only the computational parts,
ignoring initialization, range specific code and conditions needed in MPI and not
required in OmpSs, they also exclude timing, prints and comments. We see that
matmul, matvec and jacobi are all small kernels, with no major differences in size.
The OmpSs-2@Cluster versions of some of these small benchmarks are larger,
due to the enclosing weak task (see Figure 1), at little increase in complexity.

6 Results

Figure 5 shows the strong scaling results for all the benchmarks. Every experi-
ment was executed 10 times; jacobi and matvec with 400 iterations each. All
points in the graphs include error bars, but in most cases they are hard to see
as the standard deviation is usually insignificant.

9



0 5 10 15

0

200

400

600

800

1,000

Nodes

G
F
L
O
P
/s

MPI+OpenMP

Simple

Optimized

(a) matvec

0 5 10 15
0

1,000

2,000

3,000

4,000

Nodes

G
F
L
O
P
/s

MPI+OpenMP

Simple

Optimized

(b) matmul

0 5 10 15
0

200

400

600

800

Nodes

G
F
L
O
P
/s

MPI+OpenMP

Simple

Optimized

(c) jacobi

0 5 10 15
0

10

20

Nodes

T
F
L
O
P
/s

MPI+OpenMP

Simple

Optimized

(d) cholesky

Fig. 5: Strong scaling for OmpSs-2@Cluster and MPI+OpenMP. The x-axis is
the number of nodes and the y-axis is the compute throughput in GFLOP/sec.

In all subplots, the x-axis is the number of nodes, from 1 to 16 (see Sec-
tion 5.2), and the y-axis is the performance. We see that the simple (unoptimized)
OmpSs-2@Cluster matvec, matmul and jacobi have similar performance to MPI
on up to 8 nodes. The optimized code for matvec and matmul has somewhat bet-
ter performance and is similar to MPI up to 16 nodes. These two benchmarks
perform multiple iterations, and do not require data transfers between iterations,
so they evaluate the impact of task offload and enforcing of dependencies. On
the other hand, jacobi has all-to-all communication, which is optimized using a
collective in the MPI implementation but is done with point-to-point transfers
by Nanos6. This limits the scalability and is an avenue for future research.

Finally, cholesky has a more complex communication and dependency pat-
tern. Due to asynchronous tasking and early release of dependencies, the OmpSs-
2@Cluster implementation achieves better performance than MPI+OpenMP
tasks, and it has twice its performance on 16 nodes. The simple OmpSs-2@Cluster
implementation of cholesky achieves better performance than MPI + OpenMP
with a 4.5× reduction in code size. The optimized OmpSs-2@Cluster code for
cholesky has similar length to the MPI+OpenMP version as shown in Table.2.

10



(a) MPI + OpenMP

GEMM
TRSM
SYRK
POTRF
MPI_Isend
MPI_Irecv
MPI_Wait

(b) OmpSs-2@Cluster

Fig. 6: Paraver/Extrae traces showing synchronization for cholesky: 16384×16384
matrix on four nodes, 12 cores per node

To understand this in more detail, Figure 6 compares Paraver/Extrae traces
for cholesky with MPI + OpenMP vs. optimized OmpSs-2@Cluster. To show
an intelligible trace, it is a small example of a 16384×16384 matrix on four
nodes, with 12 cores per node. Both traces show a time lapse of 1160ms since
the algorithm start; the zoomed regions are 50ms. The traces show the BLAS
kernels and MPI communications (only non-negligible in the MPI version).

We see that the OmpSs-2@Cluster version has almost 100% utilization, but
synchronization among tasks and MPI communication causes the MPI+OpenMP
version to have a utilization of only about 50%. As MPI is not task-aware, there
are limitations on how MPI calls may be used with OpenMP Tasks to avoid
deadlock. Otherwise, tasks in all threads may try to execute blocking MPI calls,
occupying all threads even though other tasks may be ready, leading to a dead-
lock. Resolving this needs synchronization, such as serializing waits or limiting
the number of send or receive tasks in every step with artificial dependencies.
Figure 6a shows how the waits (gray) stop parallelism between iterations.

On the other hand, Figure 6b does not show any waits because all commu-
nication in OmpSs-2@Cluster is non-blocking. Tasks not satisfied are not ready,
so they remain in the dependency system; while ready tasks with pending data
transfers, are re-scheduled when they can execute. This approach allows the run-
time to concurrently execute tasks from multiple iterations and keep the workers
busy while transfers occur. The priority clause is advantageous to prioritize the
scheduling of critical-path tasks, in a similar way to OmpSs-2 on SMP, but it is
more important for OmpSs-2@Cluster due to the network latency.

11



P
ro
gr
am

m
in
g

m
od

el

L
an

gu
ag
es

C C
+
+

F
or
tr
an

T
as
k
de
fi
n
it
io
n

F
ro
m

se
qu

en
ti
al

E
xp

li
ci
t

T
as
k
di
sc
ov
er
y

St
at
ic

D
yn

am
ic

N
es
te
d
ta
sk
s

Su
pp

or
te
d

O
ffl
oa

da
bl
e

A
dd

re
ss

sp
ac
e

C
om

m
on

D
iff
er
en
t

D
ep
en

de
n
ci
es

F
le
xi
bl
e

E
ar
ly

re
le
as
e

D
ep
en

d.
gr
ap

h
D
is
tr
ib
ut
ed

C
en
tr
al
iz
ed

D
up

li
ca
te
d

L
oc
at
io
n
tr
ac
ki
n
g

V
ia

de
p
en

de
nc

ie
s

D
ir
ec
to
ry
-b
as
ed

O
w
ne

r
co
m
pu

te
s

OmpSs-2@Cluster XXX XX X XX X XX X X
OmpSs-1@Cluster XXX XX X X? X X X
StarPU-MPI XX X X X X ? X X
DuctTeip X X X X X X X
DASH X X X X X X X
PaRSEC X? X X XX ? ? X X X
Charm++ XXX X X X X

Table 3: Comparison of distributed tasking models

7 Related work

Shared memory: Numerous frameworks support shared memory task parallelism
with dependencies, with the de facto standard being OpenMP version 4.0 or
above [23]. Cilk [12] is perhaps the first well known task-based programming
model, which identifies tasks with the spawn keyword and supports synchroniza-
tion using the sync statement. Cilk++ [21] adds support for parallel loops.
XKappi [34] also has a directed acyclic graph of tasks like OpenMP. Wool [16]
is a low overhead library for nested tasks.

Partee [24] is an OmpSs programming model alternative implementation
using BDDT [33] with strong effort to better handle more fine-grained tasks and
irregular dependencies. Raja [11] and its associated libraries provide a similar
C++11 approach to performance portable programming.

Distributed memory: Table 3 summarizes the main frameworks for fine-grained
distributed memory task parallelism. Most of them wrap or extend existing
frameworks for shared memory tasking.

OmpSs-1@Cluster is a variant of OmpSs-1 for clusters of GPUs [13]. It
has a similar approach to OmpSs-2@Cluster, but task creation and submission
is centralized, dependencies are only among sibling tasks, and address translation
is needed for all task accesses. It uses a directory on one node to track all data
location, rather than passing the location through the edges of a distributed
dependency graph. It has only strong tasks, so it has limited ability to overlap
execution with task creation overhead.

StarPU-MPI [3] is the multi-node extension of StarPU. In this model all
processes create the same graph of top-level tasks and it uses an owner-computes
model as shown in Table 3. Task allocation to nodes and communications for data
transfers are at task creation. Posting the receives in advance removes the need
of Satisfiability messages, but it implies high memory consumption and some
throttling mechanism which limits parallelism discovery [31].

12



DuctTeip [35] is a distributed task-parallel framework implemented on top
of SuperGlue [32]. This approach based on data versioning supports general task
graphs to implement common application structures. It divides the computation
into levels to build the task graph in parallel. Child tasks are created like the
strong tasks of OmpSs-2, so task creation could be on the critical path.

CHAMELEON [20] is a library for fine-grained load-balancing in task-
parallel MPI+X applications. The implementation is optimized for responsive-
ness to changing execution conditions. They do not optimize for strong scaling
of task offloading. Data is always copied back to the parent after the task, and it
uses a collective distributed taskwait and the OpenMP target construct. PaR-
SEC [18] is a platform for distributed task execution. A front-end compiler
generates a parameterized Directed Acyclic Graph (DAG). Tasks can be gen-
erated dynamically and could be submitted by other tasks. Dependencies are
not just of the DAG type, but they support nesting, concurrent and commu-
tative dependencies, and weak and strong dependencies. The tasks’ data can
be described by region dependencies with fragmentation. DASH [17] is a C++
template library that extends C++ STL concepts to distributed memory. It is
based on a PGAS-based distributed task programming approach. Every process
creates a local dependency graph in parallel. The dependencies on non-local
memory are automatically resolved by the runtime system. The execution is di-
vided into phases because there is no total ordering on the dependencies among
nodes. Charm++ [25] is a C++-based object oriented programming model for
running migratable objects known as “chares”. It uses a message-driven runtime
model in which methods on chares result in sending a message to the chare,
resulting in asynchronous function execution with similarities to task execution.

Legion [10] is a parallel programming system with an OOP syntax similar
to C++ based on logical regions to describe the organization of data, with an
emphasis on locality and task nesting via an object-oriented syntax. Part of Le-
gion’s low-level runtime system uses UPC’s GASNet. Other approaches include
COMPSs [22], which is a Java, C/C++ and Python framework to run paral-
lel applications on clusters, clouds and containerized platforms. The execution
granularity is much coarser with data transfer via files. Pegasus [15] is another
workflow management system that uses a DAG of tasks and dependencies. GPI-
Space [28] is a fault-tolerant execution platform for data-intensive applications.
It supports coarse-grained tasks that helps decouple the domain user from the
parallel execution of the problem. HPX [19] is an implementation of the Par-
alleX programming paradigm, with an Active Global Address Space (AGAS) to
manage the locality of global objects. X10 [14] is an object-oriented program-
ming language for high-productivity programming that spawns asynchronous
computations, with the programmer responsible for PGAS data distribution.

8 Acknowledgements and data availability

The datasets and code generated during and/or analyzed during the current
study are available in the Figshare repository: [1]. This research has received

13



funding from the European Union’s Horizon 2020/EuroHPC research and inno-
vation programme under grant agreement No 955606 (DEEP-SEA) and 754337
(EuroEXA). It is supported by the Spanish State Research Agency - Ministry of
Science and Innovation (contract PID2019-107255GB and Ramon y Cajal fellow-
ship RYC2018-025628-I) and by the Generalitat de Catalunya (2017-SGR-1414).

9 Conclusions

This paper presented OmpSs-2@Cluster, a programming model and runtime sys-
tem, which provides efficient support for hierarchical tasking from distributed
memory to threads. We describe the programming model and runtime optimiza-
tions to build the distributed dependency graph, enforce dependencies, perform
eager data fetches and execute tasks.

The results show that performance of OmpSs-2@Cluster is competitive with
MPI+OpenMP for regular and well-balanced applications. For irregular or un-
balanced applications it may be significantly better without increasing the code
complexity or sacrificing the programmer productivity. This work opens future
work to leverage this model for (a) resiliency, (b) scalability, (c) intelligent multi-
node load balancing, and (d) malleability. With this aim, all source code and
examples are available open source [9].

References

1. Aguilar Mena, J., Shaaban, O., Beltran, V., Carpenter, P., Ayguade,
E., Labarta Mancho, J.: Artifact and instructions to generate experi-
mental results for the Euro-Par 2022 paper: "OmpSs-2@Cluster: Dis-
tributed memory execution of nested OpenMP-style tasks" (2022).
https://doi.org/10.6084/m9.figshare.19960721

2. Álvarez, D., Sala, K., Maroñas, M., Roca, A., Beltran, V.: Advanced Syn-
chronization Techniques for Task-Based Runtime Systems, p. 334–347.
Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3437801.3441601

3. Augonnet, C., Aumage, O., Furmento, N., Namyst, R., Thibault, S.: StarPU-MPI:
Task programming over clusters of machines enhanced with accelerators. In: Euro-
pean MPI Users’ Group Meeting. pp. 298–299. Springer Berlin Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33518-1_40

4. Barcelona Supercomputing Center: MareNostrum 4 (2017) System
Architecture (2017), https://www.bsc.es/marenostrum/marenostrum/
technical-information

5. Barcelona Supercomputing Center: Mercurium (2021), https://pm.bsc.es/mcxx
6. Barcelona Supercomputing Center: Nanos6 (2021), https://github.com/bsc-pm/

nanos6
7. Barcelona Supercomputing Center: OmpSs-2 releases (2021), https://github.

com/bsc-pm/ompss-releases
8. Barcelona Supercomputing Center: OmpSs-2 specification (2021), https://pm.

bsc.es/ftp/ompss-2/doc/spec/

14

https://doi.org/10.6084/m9.figshare.19960721
https://doi.org/10.1145/3437801.3441601
https://doi.org/10.1007/978-3-642-33518-1_40
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://pm.bsc.es/mcxx
https://github.com/bsc-pm/nanos6
https://github.com/bsc-pm/nanos6
https://github.com/bsc-pm/ompss-releases
https://github.com/bsc-pm/ompss-releases
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/


9. Barcelona Supercomputing Center: OmpSs-2@Cluster releases (2022), https://
github.com/bsc-pm/ompss-2-cluster-releases

10. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
pp. 1–11 (2012). https://doi.org/10.1109/SC.2012.71

11. Beckingsale, D.A., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A.J.,
Pearce, O., Robinson, P., Ryujin, B.S., Scogland, T.R.: Raja: Portable perfor-
mance for large-scale scientific applications. In: IEEE/ACM international work-
shop on performance, portability and productivity in HPC (P3HPC) (2019).
https://doi.org/10.1109/P3HPC49587.2019.00012

12. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. Journal of Parallel and Distributed
Computing 37 (02 1999). https://doi.org/10.1006/jpdc.1996.0107

13. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguade, E.,
Labarta, J.: Productive programming of GPU clusters with OmpSs. In: IEEE
26th International Parallel and Distributed Processing Symposium (5 2012).
https://doi.org/10.1109/IPDPS.2012.58

14. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: An object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. p. 519–538.
OOPSLA ’05, Association for Computing Machinery, New York, NY, USA (2005).
https://doi.org/10.1145/1094811.1094852

15. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G., Good, J., Laity, A., Katz, D.S.: Pegasus: A framework
for mapping complex scientific workflows onto distributed systems. Scientific Pro-
gramming 13(3), 219–237 (01 2005). https://doi.org/10.1155/2005/128026

16. Faxén, K.F.: Wool user’s guide. Tech. rep., Technical report, Swedish Institute of
Computer Science (2009)

17. Fürlinger, K., Gracia, J., Knüpfer, A., Fuchs, T., Hünich, D., Jungblut, P.,
Kowalewski, R., Schuchart, J.: DASH: Distributed data structures and paral-
lel algorithms in a global address space. In: Software for Exascale Computing-
SPPEXA 2016-2019. pp. 103–142. Springer International Publishing (07 2020).
https://doi.org/10.1007/978-3-030-47956-5_6

18. Hoque, R., Herault, T., Bosilca, G., Dongarra, J.: Dynamic task discovery in par-
sec: a data-flow task-based runtime. In: Proceedings of the 8th Workshop on Lat-
est Advances in Scalable Algorithms for Large-Scale Systems. pp. 1–8 (11 2017).
https://doi.org/10.1145/3148226.3148233

19. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: A task
based programming model in a global address space. In: 8th International
Conference on Partitioned Global Address Space Programming Models (2014).
https://doi.org/10.13140/2.1.2635.5204

20. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.: CHAMELEON:
Reactive load balancing for hybrid MPI+OpenMP task-parallel applica-
tions. Journal of Parallel and Distributed Computing 138 (12 2019).
https://doi.org/10.1016/j.jpdc.2019.12.005

21. Leiserson, C.E.: The Cilk++ concurrency platform. The Journal of Supercomput-
ing 51(3), 244–257 (2010). https://doi.org/10.1007/s11227-010-0405-3

15

https://github.com/bsc-pm/ompss-2-cluster-releases
https://github.com/bsc-pm/ompss-2-cluster-releases
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1155/2005/128026
https://doi.org/10.1007/978-3-030-47956-5_6
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.13140/2.1.2635.5204
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1007/s11227-010-0405-3


22. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F.,
Lezzi, D., Sirvent, R., Talia, D., Badia, R.M.: ServiceSs: An interoperable pro-
gramming framework for the cloud. Journal of grid computing 12(1) (2014).
https://doi.org/10.1007/s10723-013-9272-5

23. OpenMP Architecture Review Board: OpenMP 4.0 complete specifications (July
2013)

24. Papakonstantinou, N., Zakkak, F.S., Pratikakis, P.: Hierarchical parallel dynamic
dependence analysis for recursively task-parallel programs. In: 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). pp. 933–942
(2016). https://doi.org/10.1109/IPDPS.2016.53

25. Parallel Programming Lab, Dept of Computer Science, U.o.I.: Charm++ docu-
mentation, https://charm.readthedocs.io/en/latest/index.html

26. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: 2017 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS). pp. 809–818 (5 2017).
https://doi.org/10.1109/IPDPS.2017.69

27. Pérez, J., Badia, R.M., Labarta, J.: A dependency-aware task-based program-
ming environment for multi-core architectures. In: Proceedings - IEEE Inter-
national Conference on Cluster Computing, ICCC. pp. 142–151 (09 2008).
https://doi.org/10.1109/CLUSTR.2008.4663765

28. Rotaru, T., Rahn, M., Pfreundt, F.J.: MapReduce in GPI-Space. In: Euro-Par
2013: Parallel Processing Workshops. pp. 43–52. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54420-0_5

29. Sala, K., Macià, S., Beltran, V.: Combining one-sided communica-
tions with task-based programming models. In: 2021 IEEE International
Conference on Cluster Computing (CLUSTER). pp. 528–541 (2021).
https://doi.org/10.1109/Cluster48925.2021.00024

30. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta,
J.: Integrating blocking and non-blocking MPI primitives with task-
based programming models. Parallel Computing 85, 153–166 (2019).
https://doi.org/10.1016/j.parco.2018.12.008

31. Sergent, M., Goudin, D., Thibault, S., Aumage, O.: Controlling the memory sub-
scription of distributed applications with a task-based runtime system. In: 2016
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). pp. 318–327 (2016). https://doi.org/10.1109/IPDPSW.2016.105

32. Tillenius, M.: SuperGlue: A shared memory framework using data versioning for
dependency-aware task-based parallelization. SIAM Journal on Scientific Comput-
ing 37(6) (2015). https://doi.org/10.1137/140989716

33. Tzenakis, G., Papatriantafyllou, A., Kesapides, J., Pratikakis, P., Vandierendonck,
H., Nikolopoulos, D.S.: BDDT: Block-level dynamic dependence analysisfor deter-
ministic task-based parallelism. In: Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. PPoPP ’12, vol. 47,
pp. 301–302. Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2145816.2145864

34. Virouleau, P., Broquedis, F., Gautier, T., Rastello, F.: Using data dependen-
cies to improve task-based scheduling strategies on NUMA architectures. In:
European Conference on Parallel Processing. pp. 531–544. Springer (2016).
https://doi.org/10.1007/978-3-319-43659-3_39

35. Zafari, A., Larsson, E., Tillenius, M.: DuctTeip: An efficient programming
model for distributed task-based parallel computing. Parallel Computing (2019).
https://doi.org/10.1016/j.parco.2019.102582

16

https://doi.org/10.1007/s10723-013-9272-5
https://doi.org/10.1109/IPDPS.2016.53
https://charm.readthedocs.io/en/latest/index.html
https://doi.org/10.1109/IPDPS.2017.69
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1007/978-3-642-54420-0_5
https://doi.org/10.1109/Cluster48925.2021.00024
https://doi.org/10.1016/j.parco.2018.12.008
https://doi.org/10.1109/IPDPSW.2016.105
https://doi.org/10.1137/140989716
https://doi.org/10.1145/2145816.2145864
https://doi.org/10.1007/978-3-319-43659-3_39
https://doi.org/10.1016/j.parco.2019.102582

	OmpSs-2@Cluster: Distributed memory execution of nested OpenMP-style tasks



