
Final Master’s Thesis
Master’s Degree in Cybersecurity

Securing a REST API Server
September 1, 2022

Thesis Supervisor :
Silvia Llorente Viejo

Barcelona School of Telecommunication Engineering
&

Computer Science Faculty of Barcelona
at

Polytechnic University of Catalonia

ABSTRACT
Nowadays, there are more sources of cyber-threats and more cyber-attacks that target all
kind of victim profiles. From big companies with big architectures, to small businesses
that only have a web site as a platform to sell or advertise themselves. Hence, the need
of security awareness among users, developers and systems administrators, as well as
the application of security measures and best practices, is mandatory. There are a lots of
organisations promoting security recommendations or standardisation of procedures,
in order to build more robust applications or infrastructures.

The purpose of this thesis is to provide a practical application of those recommendations,
sets of best practices, design patterns and standards. This will serve as an example of
a minimum standard to achieve regarding security when developing an application
or service, as can be an e-commerce platform. This project implemented different
security measures and basic infrastructure security designs and configurations in order
to create a more robust application. This measures and designs will be considered for all
components as well, not only the server. This includes the database, web server, firewall
and the virtual machine where the project is hosted.

Securing a REST API Server pàg. 1

Contents

Introduction 3
1 State of the art . 3
2 Justification . 5
3 Methodology . 6

3.1 Chosen Methodology . 6
3.2 Methodology applied to API development 6

4 Scope . 7
4.1 OWASP Top 10 measures implementations 7
4.2 Protection applied at all levels . 7
4.3 Docker security implementation 7
4.4 Security by design . 8

5 Stakeholders . 8
5.1 Software Developers . 8
5.2 Internet users / clients . 8
5.3 Service owners / providers . 8
5.4 Myself . 8

Applying Security Measures 10
6 Organisations . 10
7 Open Web Application Security Project (OWASP) 10

7.1 OWASP Top 10 recommendations 11
7.2 OWASP Top 10 API . 11

7.2.1 A01:2021 – Broken Access Control 11
7.2.2 A02:2021 – Cryptographic Failures 11
7.2.3 A03:2021 – Injection . 12
7.2.4 A04:2021 – Insecure Design 12
7.2.5 A05:2021 – Security Misconfiguration 12
7.2.6 A06:2021 – Vulnerable and Outdated Components . . . 12
7.2.7 A07:2021 – Identification and Authentication Failures . 12
7.2.8 A08:2021 – Software and Data Integrity Failures 13
7.2.9 A09:2021 – Security Logging and Monitoring Failures . 13
7.2.10 A10:2021 – Server-Side Request Forgery (SSRF) 13

8 Other important organisations . 13
8.1 International Organisation for Standardisation (ISO) 13
8.2 Internet Engineering Task Force (IETF) 13

1

Securing a REST API Server pàg. 2

Project architecture design 15
9 Architecture design . 15

9.1 CI/CD flow and description . 15
9.2 Design details and description . 16

10 Project Description . 18
10.1 Authentication, Authorisation and Roles 18
10.2 API Endpoints description . 21

10.2.1 Authentication and Authorisation endpoints 22
10.2.2 Products endpoints . 22
10.2.3 Categories endpoints . 24
10.2.4 Orders endpoints . 24
10.2.5 Users endpoints . 25

11 Security Measures applied . 26
11.1 Fixing A01:2021 – Broken Access Control 27
11.2 Fixing A02:2021 – Cryptographic Failures 29
11.3 Fixing A03:2021 – Injection . 29
11.4 Fixing A04:2021, A05:2021 and A06:2021 vulnerabilities 30
11.5 Fixing A07:2021 – Identification and Authentication Failures . . . 31
11.6 Fixing A08:2021 – Software and Data Integrity Failures 32
11.7 Fixing A09:2021 – Security Logging and Monitoring Failure . . . 32
11.8 Fixing A10:2021 – Server-Side Request Forgery (SSRF) 32

12 Additional Security Measures . 32
12.1 Dockers . 32
12.2 NGINX . 33
12.3 CSRF Tokens . 34
12.4 Type Guards and Type Sanitisers 35
12.5 Azure Server . 37

Conclusions 39
13 Results and Discussion . 39
14 Future improvements . 40

Acronyms 41

Bibliography 44

2

Securing a REST API Server pàg. 3

Introduction

The main goal of this thesis is to apply security protections and mechanisms to an
e-commerce application, in order to provide a useful example of how to check and
correct common vulnerabilities. An e-commerce is an example of a typical service we
can find in the Internet, hence, the reason behind choosing it. The order of topics that
we are going to talk about in this thesis is the following. First, we will introduce some
technologies, technical words and ideas regarding the application and the architecture
we are going to follow for the development. Furthermore, there will be examples of
common methodologies in software development, explaining which have been applied
to this project and why.

Afterwards, it will be discussed some examples of different organisations that work on
creating and developing standards regarding cybersecurity, protocols, etc, andwhich ref-
erenceswe took in order to tackle themost common vulnerabilities in a server application.
To finalise that section, a big appreciation about the importance of these organisations in
educating people and developers and how they encourage the community into following
those standards and good practices will also be included.

After that, it will be explained in detail how the application will work, the different
technologies involved, the functionalities available and all of the security measures
implemented, regarding both the server and the other technology components. And last
but not least, a summary of all the results and conclusions will be reported along a list of
future improvements in order to provide more ideas or alternatives to be implemented
in a application.

1 State of the art
In our project, an Application Program Interface (API) has been developed as our appli-
cation server. An API [1] is a set of definitions and protocols for building and integrating
application software. In our case, we used NodeJS to develop it, an asynchronous and
event-driven JavaScript run-time, designed to build scalable network applications. In
addition to that, we are also going to use ExpressJS, a NodeJS framework for building
APIs in JavaScript. The current state of the art of developing an API using ExpressJS, is
to use the Model View Controller (MVC) design pattern.

3

Securing a REST API Server pàg. 4

Figure 1: Model-View-Controller design pattern. [2]

The MVC [2] seen in Figure 1, is a pattern design commonly used to implement user
interfaces, data, and controlling logic. It emphasises a separation between the business
logic and the display of the software, in three components. The Model component,
which stores and manage the data (usually a database). The View component, which
is a visual representation of the data-like a chart or a diagram (nowadays this goes in
a separated component in the frontend, outside of the backend scope). And finally,
the Controller component, which provides the brains of the application, and connects
the views with the models by converting the inputs from the views to demands to
retrieve/update data in the models. The principle of this pattern is that each component
is separated into different objects, i.e. components cannot be combined within the same
class.

Along with the MVC pattern, that defines how the different components in our ap-
plication are classified and interact with each other, we are also going to follow the
REpresentational State Transfer (REST) architecture. REST [3] is a type of API archi-
tecture that allows the client and the server to be implemented independently without
the knowledge of the other entity. This means that code at either side can be modified
without having to worry about the effect of the modification on the other side. As long
as both sides agree on the format of communication between them, they can be kept
modular.

4

Securing a REST API Server pàg. 5

In order to strengthen the application from the development phase, we are going to
code the REST API in Typescript. Typescript [4] is a super set of JavaScript, that allows
static typing, class based objects, it is a compiled compiled language instead of an
interpreted language, and supports type definitions. There are some advantages in
using Typescript instead of pure Javascript. The first one being that it helps preventing
errors or bugs before they happen, in an early development phase. This makes the
development more consistent, and scalable. Moreover, since it prevents some common
(or not so common) errors or bugs, it strengthens security from the very beginning, since
less bugs leads to less potential vulnerabilities, increasing the overall level of security
of the application. This helps us make our application more robust and bug free from
the beginning thanks to these features. It is also imperative to provide a Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) certificate, and redirect all connections
to Hypertext Transfer Protocol Secure (HTTPS), in order to protect the transmission
channel. Alongside securing the channel, in order to authenticate user, it is usually
implemented a Token-Based Authentication, using the Open Authorization (OAuth)
standard.

2 Justification
As technology evolves over time, so do vulnerabilities, which leads to new emerging
threats regarding security. Nowadays there is even a black market in which malware is
developed as a service, and it is easier to obtain and to execute. Black Hats [5] are evil
hackers that provide and/or perform attacks usingmalware, towhommay have different
motivations than theirs. Some of them just want to make money out of it, and some
other just follow an ideology or their own ethical code to justify the attacks. Regarding
black hats,there are some of them providing Open Source INTelligence (OSINT) [6]
services for clients, which consist in data gathering and infrastructure reconnaissance
against targets that can be either competitors or other organisations. Furthermore, many
black hats make a living by developing malware using the previous mentioned services
as source of information, and developing the code that will exploit those gathered
vulnerabilities, being the ransomware one of the most popular nowadays.

This completely changes the view of security since there are more and more frequent
attacks that affect not only public services, but private services and all kinds of institu-
tions as well. Hence, the need for platforms, applications and services to increase the
minimum security features implemented, in order to be more secure.

Therefore, this project aims to implement as many security features and good practices
in a API application and in each of the components of the service, the web server and
the database (both connection and information obfuscation). There is a frontend as
well for this project, however is designed for visual purposes only, the main purpose
of this project is applying the best code practices, security features, and web server
configurations to harden the API security. This project aims to be example of the
minimum security every application or service should implement.

5

Securing a REST API Server pàg. 6

3 Methodology
To manage a project efficiently, the project manager or the development team must
choose the software development methodology that will work best for the project at
hand. All methodologies have different strengths and weaknesses and exist for different
reasons. By choosing the appropriate methodology we can organise and fulfill the
deadlines we set and therefore manage the workload in an optimal way.

The more commonly used software development methodologies [7] are the following:

• Agile development: Minimises risks such as bugs, cost overruns, and changing
requirementswhen adding new functionalities. In all agilemethods, teams develop
software in iterations that contain mini-increments of new functionalities. There
are many different variants of the agile development method, including scrum,
crystal, Extreme Programming (XP), and Feature-Driven Development (FDD).

• DevOps deployment: Focuses on organisational change that enhances collabora-
tion between the departments responsible for different segments of the develop-
ment life cycle, such as development, quality assurance, and operations.

• Waterfall development: Rigid linear model that consists of sequential phases
(requirements, design, implementation, verification, maintenance) which focus
on different goals. Each phase must be 100% complete before the next phase can
start. There is usually no process for going back to modify the project or direction.

• Rapid application: Is a condensed development process that produces a high-
quality system with low investment costs. The ability to quickly adjust is what
allows such a low investment cost.

3.1 Chosen Methodology
The chosen methodology for this project will be a hybrid between the Agile and DevOps
methodologies. Agile allows us to develop the application in a fast and comfortable
way, given the deadlines of this project and since we need to be aware of bugs and
security flaws that we may encounter or detect while developing, and keep up with
those changes fast enough. The DevOps methodology is used in addition to the Agile
in order to make the deployment and integration of every dependency or version of the
app as well as the app itself, faster and fully automated thanks to a good Continuous
Integration / Continuous Deployment (CI/CD) infrastructure design.

3.2 Methodology applied to API development
For the DevOps methodology we used Dockers [8], an open platform for develop-
ing, shipping, and running applications, along with the Docker-Compose orchestrator.
Docker allows us to encapsulate all dependencies in a Docker Image, in order to make
it completely portable, and the Docker-Compose orchestrator, allows us to manage
the different dockerized services that we need, creating a Docker Container (a virtual
machine running one or more services) for each service, those being the web server
service, the database, and the API server itself. Regarding CI/CD, we will make use of

6

Securing a REST API Server pàg. 7

Github Actions [9] to easily create a CI/CD pipeline. In this pipeline we will build the
Docker images for our services, and push them to DockerHub, a repository platform to
store Docker Images. After this step, the pipeline then will connect to our Azure Virtual
Machine (VM), pull those images, and start the Docker containers.

For the Agile methodology, whenever a bug or feature fix is added, or a feature or
security feature is added, we will create a branch in GitHub, and once it is finished,
merge it to the main branch. This will allow us to have more control and a better git
historic of what we have been doing or implementing, in order to keep up with this low
granularity integration.

4 Scope
The aim of this project is not the development itself of a fully functional e-commerce REST
API application. It is the research and implementation of the best security measures
and features of the current state-of-the-art, regarding API development. This of course,
involves not only the API server, but also the components that interact with it, and may
be a target as well. Hence, security at code level is far from enough, and is also needed
to apply security in the web server level (if used, which is commonly the case), the
database (from connection to data protection), and in our case, Docker Images and
Containers as well.

4.1 OWASP Top 10 measures implementations
One of the main goals of this project is to implement all the OWASP Top 10 recommen-
dations regarding API security, HTTP security headers, database secure configuration
and data protection, authorisation and authentication. Following this measures, and
being able to implement protection mechanism against those issues / vulnerabilities,
grants a very good base level of security. This is because those vulnerabilities, tend to
be the most exploited ones in every application, since the lack of control or protection
against them, and many of these vulnerabilities may allow complete control over the
business, with relatively ease, if not taken care of.

4.2 Protection applied at all levels
As explained before, given a target, there are many attack vectors, and of course it is
impossible to control and protect all of them. However, the main goal of any developer
or security engineer is to make the application as much robust as possible. This is done
by implementing as many security measures as possible, so potential attackers have to
take lots and lots of time and resources to eventually exploit them. Given that, we need
to cover the security of the virtual machine as well.

4.3 Docker security implementation
In Docker there are also security improvements and recommendations, in order to
properly isolate the services running in the machine, from the machine itself. This will

7

Securing a REST API Server pàg. 8

be covered in the security feature section, but Dockers can indeed be a security flaw and
become an attack vector.

4.4 Security by design
The main idea of this application is to build it having security as the main focus, rather
than number of functionalities, or to provide an operable e-commerce platform. Hence,
there is no payment functionality implemented, since this would require to have an
account in any of the typical payment provider platform like Stripe, and develop all
the payment process which really is not the main objective. However, we will provide
and develop the basic operations available in an e-commerce application, providing all
Create Read Update Delete (CRUD) functions, but properly implementing role control.

5 Stakeholders
Since the aim of this thesis is to show tools and follow security standards or recom-
mendations in order to build safer applications, the amount of profiles that might be
interested in the topics explained here and the solutions applied, cover from common
users to security specialists, auditors or developers.

5.1 Software Developers
As a developer, nowadays is more and more of a requirement to be educated in security,
not only in general Internet security, but specific technologies and security patterns or
recommendations. In the development takes place the major part of the securisation,
testing and functionality implementation, hence, the need of being able to identify
possible weaknesses while coding, or be able to audit it and discover vulnerabilities, as
well as keep informed about cybersecurity news.

5.2 Internet users / clients
Regular users need to be educated in the matter of cybersecurity as well. However, this
project will help them in a more indirect way, since making the Internet a safer place,
will affect them as users as well. The more robust the applications, the more protected
the user will be against malicious users.

5.3 Service owners / providers
For an e-commerce platform owner, it is very important that the service is as secure as
possible. Not only brings more confidence to the users / clients, but it is crucial to avoid
major losses in income, data and clients. Moreover, having a higher rating in security
also rewards the Search Engine Optimization (SEO) of the service.

5.4 Myself
As a Security IT Engineer, with developer experience and strong interest in applying
the maximum security possible in app development or infrastructure (DevOps) and as

8

Securing a REST API Server pàg. 9

a fan of Ethical Hacking, this thesis brings me the perfect opportunity to improve and
grow in all those aspects. Being aware of security issues, and being able to tackle them
or detect them is a huge factor and something I would like to be able to do, not only to
make the Internet more secure but help others detect security weaknesses and be able to
know the risk of each vulnerability, understand how they work and help patch them.

9

Securing a REST API Server pàg. 10

Applying Security Measures

6 Organisations
There are a lot of organisations that work towards standardisation and security. Follow-
ing the standards is very important because it helps to apply a common methodology
or to keep a reference in all regarding Information Technology (IT), which at the same
time helps enhancing security. Those organisations that develop and promote standards
are very often used as reference for good practices regarding code, protocols to use, etc
and even for cybersecurity.

There are many organisations that work on this matter, theWorldWideWeb Consortium
(W3C) and the National Institute of Standards and Technology (NIST) are a couple of
examples. W3C [10] is an international consortium in which member organisations,
full-time staff and the general public work together to develop web standards and
guidelines designed to ensure the long-term growth of the web. Moreover, the NIST
[11] is an agency of the Technology Administration of the U.S. Department of Commerce
that is authorised to provide measurement services, including calibration services, for
organisations or individuals located outside the United States.

In the case of NIST, they provide many frameworks, one being the cybersecurity frame-
work [12], in which they develop cybersecurity standards, guidelines, best practices,
and other resources to meet the needs of U.S. industry, federal agencies and the broader
public.

7 Open Web Application Security Project (OWASP)
The Open Web Application Security Project (OWASP) [13] is a nonprofit foundation
that works to improve the security of software. Through community-led open-source
software projects, hundreds of local chapters worldwide, tens of thousands of members,
and leading educational and training conferences, the OWASP Foundation is the source
for developers and technologists to secure the web.

In this project we will be using what is called the OWASP recommendations, which are
articles summarising the top ten best practices and security measures regarding a topic.
This topics are either regarding APIs, databases, web server or security http headers and
more. The aim of these articles is to provide information about the most common or/and
critical mistakes that can be made in the aspect of code, design, or implementation of

10

Securing a REST API Server pàg. 11

each of the aspects. Thanks to this, developers can be more aware of the most common
vulnerabilities and learn about them in order to fix them, hence enhancing the overall
security int he Internet.

7.1 OWASP Top 10 recommendations
The OWASP Top 10 [14] is a standard awareness document for developers and web
application security, which represents a broad consensus about the most critical security
risks to web applications. The list has been very successful and well received among
the community due to the fact that it is easy to understand and master, it helps users
prioritise risk and it is litigable. Therefore, when developing an application, or adding
security features, this is the first place we can check, and review all vulnerabilities that
have to be covered.

7.2 OWASP Top 10 API
The Top 10 vulnerabilities regarding APIs are described as followed in descending order,
being the first one the most important vulnerability. This is also and up-to-date with
the OWASP Top 10 version of 2021, which implemented some changes regarding the
list order. For each vulnerability, a Common Vulnerabilities and Exposures (CVE) and
a Common Vulnerability Scoring System (CVSS) is assigned. CVE is a list of publicly
disclosed computer security flaws, however, whenever someone refers to CVE, it means
a security flaw that has been assigned a CVE identification number. Every CVE has a
corresponding CVSS, which is a number score assigned to that vulnerability regarding
its criticality and how easy is to be exploited.

7.2.1 A01:2021 – Broken Access Control

Access control enforces policy such that users cannot act outside of their intended per-
missions. Failures typically lead to unauthorised information disclosure, modification,
or destruction of all data or performing a business function outside the limits of the
user.

A couple of examples of this vulnerability are:

• Cross-origin resource sharing (CORS) misconfiguration allows API access from
unauthorised/untrustworthy origins.

• Bypassing access control checks bymodifying theUniformResource Locator (URL)
(parameter tampering or force browsing), internal application state, or the HTML
page, or by using an attack tool modifying API requests.

7.2.2 A02:2021 – Cryptographic Failures

Failures related to cryptography (or lack thereof), which often lead to exposure of
sensitive data. This concerns protocols such as Hypertext Transfer Protocol (HTTP),
Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP) also using TLS
upgrades like STARTTLS, or any protocol or operation that sends sensitive data in clear
text, or encrypted data using weak cipher algorithms.

11

Securing a REST API Server pàg. 12

7.2.3 A03:2021 – Injection

An attack perform when user-supplied data is not validated, filtered, or sanitised by
the application. Furthermore, dynamic queries or non-parameterised calls without
context-aware escaping if used directly in the interpreter, are also vulnerable to this
attack. A successful Injection attack may lead into leaking data from columns, tables or
whole databases within the system, or even control over the database itself, allowing its
modification or deletion.

7.2.4 A04:2021 – Insecure Design

Insecure design is a broad category representing different weaknesses, expressed as
“missing or ineffective control design.” Meanwhile, a secure design can still have imple-
mentation defects leading to vulnerabilities that may be exploited, an insecure design
cannot be fixed by a perfect implementation as by definition, needed security controls
were never created to defend against specific attacks. One of the factors that contribute
to insecure design is the lack of business risk profiling inherent in the software or system
being developed, and thus the failure to determine what level of security design is
required.

7.2.5 A05:2021 – Security Misconfiguration

This vulnerability refers to missing appropriate security hardening across any part of the
application stack, improperly configured permissions on cloud services, default accounts
and their passwords are still enabled and unchanged or unnecessary features enabled or
installed. All this misconfigurations may create vulnerabilities in the application, given
the lack of control around them, or providing attack entries for malicious attackers.

7.2.6 A06:2021 – Vulnerable and Outdated Components

Lack of knowledge or compatibility test of the versions of all components used, both
client-side and server-side, including components nested dependencies. If the software
is vulnerable, unsupported, or out of date, an attacker can use the security flaws of
those components versions to perform an attack. This includes the OS, web/application
server, database management system (DBMS), applications, APIs and all components,
run-time environments, and libraries.

7.2.7 A07:2021 – Identification and Authentication Failures

Confirmation of the identity of the user, authentication, and session management is
critical to protect against authentication-related attacks. Hence, if the application permits
automated attacks such as credential stuffing, where the attacker has a list of valid
usernames and passwords, brute force or other automated attacks, default, weak, or
well-known passwords, such as "Password1" or "admin/admin", thatmakes it vulnerable.
The authentication process is very delicate, and sometimes is one of the least robust
mechanism, allowing attackers to login with session ids that are not verified, etc.

12

Securing a REST API Server pàg. 13

7.2.8 A08:2021 – Software and Data Integrity Failures

Software and data integrity failures relate to code and infrastructure that does not protect
against integrity violations. For instance, when an application relies upon plugins,
libraries, or modules from untrustworthy sources, repositories, and Content Delivery
Networks (CDNs). Furthermore, an insecure CI/CD pipeline can also introduce the
potential for unauthorised access, malicious code, or system compromise.

7.2.9 A09:2021 – Security Logging and Monitoring Failures

This is not a vulnerability per se, since there is not much CVE or CVSS data for this
category. However, the lack of risk or breach detection given by a poor logging and
monitoring system is critical. Thismay occurwhen auditable events, such as logins, failed
logins, and high-value transactions, are not logged, or warnings and errors generate no,
inadequate, or unclear log messages.

7.2.10 A10:2021 – Server-Side Request Forgery (SSRF)

Server-Side Request Forgery (SSRF) flaws occur whenever a web application is fetching
a remote resource without validating the user-supplied URL. It allows an attacker to
coerce the application to send a crafted request to an unexpected destination, even when
protected by a firewall, a Virtual Private Network (VPN), or another type of network
Access Control List (ACL).

8 Other important organisations
There are other organisations that even though are not completely focused on cyberse-
curity, help the whole community with creating standards, in order to be followed as
examples of good practices or good process definitions. A couple of examples of the
most important ones are the International Organisation for Standardisation (ISO) and
Internet Engineering Task Force (IETF).

8.1 International Organisation for Standardisation (ISO)
The ISO [15] is an independent, non-governmental international organisation that
brings together experts to share knowledge and develop voluntary, consensus-based,
market relevant International Standards that support innovation and provide solutions
to global challenges. They also promote the use of proprietary, industry and commercial
standards worldwide.

8.2 Internet Engineering Task Force (IETF)
The IETF [16] is an open international standardisation organisation, which aims to
contribute to the engineering of the Internet, acting in several areas, such as transport,
routing and security. The technical work of the IETF is done in Working Groups, which
are organised by topic into several Areas. For instance, IETF participants have been
updating both the core specifications to HTTP, affecting all versions of the protocol,
and they have been developing HTTP/3, the latest version of the protocol. The entire

13

Securing a REST API Server pàg. 14

definition of HTTP has been revised, with definitions for HTTP/1.1, HTTP/2, and
HTTP/3 either revised or new.

14

Securing a REST API Server pàg. 15

Project architecture design

9 Architecture design
For the architecture of the project, we wanted to design something that follows the
common way of structuring an Application of the sort we are building. This consists in
having a frontend, a backend and a web server. The web server will grant SSL to our
communication channel with the clients, and will perform as a reverse proxy for our
frontend, and our backend. The backend must only be dependent of the Database, since
without that service, it cannot run. The frontend however, must be able to be launched
or loaded regardless if the backend is available or not. In case it is not available, error
messages may appear in the frontend to notify the user. Even though the web server
will act as a reverse proxy, it will only do so for the frontend and backend, since only
the backend needs to be able to connect to the database, it shall not provide reverse
proxying for the database service, it must only be accessed internally.

9.1 CI/CD flow and description
The whole environment will be hosted on a VM in Azure, a Cloud Computing service
provided by Microsoft , and we will be using Github Actions, a Github tool to build
pipelines for deployments, to automate the CI / CD of our project. In this pipeline,
whenever we make a push to the master branch, the pipeline will trigger. There are three
jobs to be performed, tow of them can be run in parallel, whereas the third requires
both of the previous jobs to be finalised before starting. In all jobs, our secrets will be
available to be retrieved from Githubs secret storing system, and their value are not
shown anywhere, not even in the pipeline logs.

15

Securing a REST API Server pàg. 16

Figure 2: CI/CD Pipeline flow. Source: Own compilation.

The Build APP job performs tasks to build the app image, and push it to the image
repository in Docker Hub. On the other hand, the Deploy App Files job deploys the
scripts, docker compose file and configuration files required for starting the application
in the final job. This job is required since we do not want to copy all the application
repository files to the server, just the files needed. The last job only connects to the server
in Azure, and perform a series of shell commands to start the app again.

9.2 Design details and description
We have each service running in its own container, and all containers will run in a
specific network built for them. The network is configured with a mask of /28, since we
do not have many services and do not need many IPs. Using a private network with
docker has many advantages compared on using the default network bridge created by
Docker. The first is that with a custom network, we can isolate our components from

16

Securing a REST API Server pàg. 17

other networks in the machine. The second one, is that we can configure our database
to only accept connections from that network IP range, rejecting any other device that
may try to connect to our database. Furthermore, having control of our network, allows
us to specify the number of IPs available in that sub-network, hence allowing only as
many containers as we need.

Figure 3: Final API architecture design. Source: Own compilation.

As seen in Figure 3, our NGINXweb server will provide TLS for our connections, loading
our SSL certificates, and provide security headers for all HTTP responses. This will
harden the communication between the client and the server, providing an encrypted
channel, removing unwanted HTTP headers that may reveal too much information, and
allowing only the HTTP methods that we want, hence, rejecting vulnerable methods
like the OPTION HTTP method. The reason behind applying everything regarding
TLS and HTTP header configurations in our web server rather than in the API server, is
because the web server is supposed to abstract those settings from the server, and leave
the server to only perform the business logic. A reverse proxy configuration, allows us
to redirect the incoming requests to the appropriate service. For instance, if the request
is asking for the /api resource, it will redirect that request internally, to our express
server container. Hence, the server can provide the actual functionalities, and perform
the operations to the database. On the other hand, if the client wants to access the home
(/) resource, the NGINX will return the frontend web page to the client.

The backend consists of a RESTAPI server built with ExpressJS andwritten in Typescript,
from which we can highlight two important parts. On the one hand we will have the
definitions of all our models, which will be in charge of operating each of the database
tables, and represent them in the code as a class, like the User model or the Product

17

Securing a REST API Server pàg. 18

model, for instance. On the other hand, we will have the definitions of all our controllers,
which have the function definitions that will handle each request, and will have the
methods that provide the functionality for each endpoint. All operations needed to
manage the database are declared in repositories, which are classes that take a specific
model and providemethods tomanage the table represented by thatmodel. Therefore, in
our controllers we only need an instance of the repositories that the controller may need
to fulfill the function of the endpoint. This allows us to have the model and controller
components completely modular, since the do not share dependencies between them,
but through the repositories, as explained in the MVC pattern in section 1.

For the database we chose PostgreSQL [17], a powerful, open source object-relational
database system that has earned it a strong reputation for reliability, feature robustness,
and performance. We chose PostgreSQL rather than other solutions, first because it is a
Structured Query Language (SQL) [18] database, and second because is one of the most
active in applying and promoting the standards, regarding databases or data types.

Finally, for the frontend, we will use a JavaScript library called React. React [19] is the
current most popular JavaScript technology used for building User Interface (UI)s. We
chose react, because it has the biggest active community, and the biggest number of
technology related package repositories. Furthermore, given that it is a library and
not a framework, it allows us to only install the packages that we need, and avoid any
unnecessary boilerplate. It allows Typescript as well, which of course we will be using
in order to write the code of the frontend.

10 Project Description
Our project will simulate a common e-commerce application. This application is owned
by a business owner, and its purpose it is to show the products and allow the purchase
of those products. Hence, only the owner or designated employees are allowed to add
more products to the platform, whereas clients are only allowed to authenticate against
the application, browse products, and place orders. However, and as mentioned before,
since the purpose of this project is not to develop a complete application ready for be
used for business, the payment process it is not implemented, but only simulated. This
means that there is no payment gateway whatsoever, only by pressing the pay button,
the order will be marked as payed. The reason behind that is because implementing a
real payment system, requires several steps that are non-related to the application, and
it does fall out of the scope of the project.

10.1 Authentication, Authorisation and Roles
The authentication of this project will be performed via local user accounts, and via
Google using OpenID Connect [20]. OpenID Connect is a simple identity protocol and
open standard that is built on theOAuth 2.0 [21] protocol, which is the industry-standard
protocol for authorisation. OAuth 2.0 verifies the clients identity via third party, provides
consented access on the users resources on the third party applications by the client app
on behalf of the user and restricts actions of what the client app can perform on those
resources on behalf of the user, without ever sharing the users credentials.

18

Securing a REST API Server pàg. 19

Figure 4: OpenID Connect authentication flow [22].

OpenID Connect enables client applications to rely on authentication that is performed
by an OpenID Connect Provider or Relaying Party (RP), which is a server that is capable
of providing claims to a client, to verify the identity of a user. The reason of using
OpenID Connect instead of OAuth2.0, is because we only want to provide authentication
to the user, not authorisation, since we do not need to access any of the Google protected
resources of the user. In fact, authorisation will be managed by our application, to allow
or restrict access to the endpoints that provide the different functionalities summarised
in previous sections.

Nevertheless, once the user has been authenticated successfully, by either local or Google
authentication, we get the ID of that user, and store it in a signed JSONWeb Token (JWT),
following our Token-Based Authentication mechanism mentioned in the introduction
of this thesis. A JWT [23] is an open standard (RFC 7519) [24] that defines a compact
and self-contained way for securely transmitting information between parties as a JSON
object. This information can be verified and trusted because it is digitally signed. JWTs
can be signed using a secret (with the HMAC [25] algorithm) or a public/private key
pair using RSA [26] or ECDSA [27]. We chose to use the first the secret method since
symmetric encryption is faster and easy to manage, since that key has not to be send to
anyone.

19

Securing a REST API Server pàg. 20

The JWT will be signed with HMAC using SHA-256 hash algorithm, set with an ex-
piration time of five hours, because low expiration times are recommended in case of
stolen tokens, and with the issuer and audience set to "https://tfm.jediupc.com" and
"https://tfm.jediupc.com/api", respectively.All this configuration information is stored
in environment variables, through an ENV file. Moreover, below we have the JWT
creation function that receives a parameter, with the data to store inside the token, and
creates a signed token with that data, the secret for the signature and the configuration
mentioned before.

1 public static createNewJWTToken = (info: JWTAccessSignInfo):
string => {

2 const algorithm = (process.env.JWT_ALG! as Algorithm) ||
undefined;

3 const expiresIn = parseInt(process.env.JWT_EXPIRATION !)
|| 5 * 60 * 60;

4 const token = jwt.sign(info , process.env.JWT_SECRET!, {
5 algorithm ,
6 expiresIn ,
7 issuer: process.env.JWT_ISSUER!,
8 audience: process.env.JWT_AUDIENCE!
9 });
10
11 return token;
12 };

Listing 1: JWT creation and configuration.

The info variable contains the ID of the existing or recently created user, which is the
only information that we need to store. The secret used for the signature is a 32 byte
key generated manually with OpenSSL [28], a full-featured toolkit for general-purpose
cryptography and secure communication. Since this secret (among others) will be
stored in a Github variable secret, to be written afterwards in an environment file for
our application, we do not need to think about storage or how to hide this value.

Since JWTs are stateless, we cannot "end" the user session per se. However, we can
simulate a logout process, by blacklisting the current access token when the user wants
to log out. The JWT blacklisting process inside the logout endpoint consists in banning
that access token, storing into a Blacklist Token table within the database. In all requests
that require authentication, we do not only check if an access token is present, but if
exists an entry in the Blacklisted Tokens table, with that token. If the token is in the
database, or in other words, blacklisted, we will return a 401 HTTP code, as if the user
was not logged in, thus, forcing the user to authenticate again.

In order to send the token to the user, so it can be used for authentication and authori-
sation purposes, we used Signed HTTP Cookies [29]. An HTTP cookie (web cookie,
browser cookie) is a small piece of data that a server sends to a users web browser. The
browser may store the cookie for sending it back to the same server in future requests.
In our case, we will used signed cookies, which are cookies which value is still visible

20

Securing a REST API Server pàg. 21

but have a signature, so the server can detect if the client modified the cookie in any way.
1 // using signed cookies
2 this.app.use(cookieParser(process.env.COOKIE_SIGNATURE));

Listing 2: Cookies configuration with secret

1 // signed cookies configuration
2 public readonly login = (req: Request , res: Response , next:

NextFunction): Response | void => {
3 logger.info("In [POST] - /login");
4 try {
5 ...
6
7 return res.status (200).cookie('access_token ', token ,

{
8 secure: true ,
9 signed: true ,
10 httpOnly: true ,
11 maxAge: parseInt(process.env.JWT_EXPIRATION! || "

0") || 5 * 60 * 60 * 1000
12 }).send(user).end();
13 } catch (error: unknown) {
14 next(error);
15 }
16 };

Listing 3: Cookies configuration parameters

Our cookies have the signed attribute to true, in order to sign themwith the secret passed
in Listing 2. Moreover, the cookies have the httpOnly and secure flags set to true. The
first flag being set to true, forbids any JavaScript code on the client side to read the
cookie, whereas the second flag, only allows to send the cookie via a secure channel
using HTTPS. Finally, we set the cookies expiration time the same as with the access
token, in milliseconds format.

Regarding authorisation, we designed a role based user administration consisting of
three user roles. The most basic one is designed for the clients, which will be able to
authenticate itself, browse all products and categories, and make a purchase (place an
order). The second level of privilege is the Administrator role, which will be able to
do all operations mentioned before, with the addition of being able to create, delete, or
edit everything regarding products, categories, and user orders. Last but not least, the
Super Admin role, which can perform all that the Admin can, but with the addition of
managing users as well. This means, creating, editing (which allows editing other users
privileges) or deleting users.

10.2 API Endpoints description
In order to have better control over the different functionalities available for the three
different user roles, the endpoints have been divided in two groups. The first group

21

Securing a REST API Server pàg. 22

are the public endpoints, available for the Client role, and then the admin endpoints,
available for the Admin and Super Admin roles. To check if a user has access to an
endpoint, we use a JWT, in which we store the database ID of that user. In the database,
all identifiers are defined as a string with Universally Unique Identifier (UUID) format.
An UUID [30] is a 128-bit (32 alphanumeric characters) unique label used for identifying
information. Once a user attempts a HTTP request against an endpoint, we extract the
token, we obtain the users id from that token, and check in the database its privileges.

10.2.1 Authentication and Authorisation endpoints

Here we group all endpoints regarding authentication for the user, this means being
able to create an account, logging in, or logging out.

• [POST] /auth/login: Allows the user to log into the application with a local
created account.

• [GET] /auth/google: Allows the user to log into the application via a Google
account using OpenID Connect protocol.

• [GET] /auth/google/callback: If the Google authentication has succeeded, the
user is redirected by Google to this route, where we use that information to create
a JWT token for the users session.

• [POST] /auth/signin: Allows the user to create a new local account in the appli-
cation.
The data expected is an object with the following properties:

– username: A string.

– password: A string.

• [GET] /auth/logout: Stores the users current valid JWT in a blacklist database,
whenever a user accesses an endpoint that requires authentication, if that JWT is
stored in the blacklist, the user wont be granted access.

At the end of the login, google callback and signin endpoints, when the user has au-
thenticated successfully, is where we create a JWT with the users ID as payload. Once
we have that token, we send back the response with a 200 status, the cookie set with
previous mentioned parameters and with the token as value, and the whole user data
(without the password) back as body payload.

10.2.2 Products endpoints

In these endpoints we have all functionality regarding products, clients can browse them
all, browse one specific product, or apply a filter search. All other CRUD operations are
only allowed to Admin users. For assigning an image to the product, only files with Joint
Photographic Experts Group (JPEG) (or JGP) or Portable Network Graphics (PNG)
extensions will be accepted, otherwise it will be rejected.

• [GET] /products: Obtain all products information from the database.

22

Securing a REST API Server pàg. 23

• [GET] /products/:id: Obtain a the products information with the corresponding
id from the database.

• [POST] /products/filter: Create a filter resource to get only the products that
meet the filter options.
The data expected is an object with the following properties:

– name (optional): A string.

– price (optional): A number.

– stock (optional): A number.

– category (optional): A string, that must match the name attribute in a row
in the Categories table.

– premium (optional): A number between 0 or 1, being 1 considered as pre-
mium.

– description (optional): A string.

• [GET] /products/filter/:category_name: Obtain all products that have a certain
category assigned.

• [POST] /admin/products: Add a new product to the database. (Admin only)
The data expected is an object with the following properties:

– name: A string.

– image: A file with JGEP, JPG or PNG formats.

– price: A number.

– stock: A number.

– category: A string, that must match the name attribute in a row in the Cate-
gories table.

– premium (optional): A number between 0 or 1, being 1 considered as pre-
mium.

– description: A string.

• [PUT] /admin/products/:id: Edit the product with the corresponding id. (Admin
only)
The data expected is an object with the following properties:

– name: A string.

– image: A file with JGEP, JPG or PNG formats.

– price: A number.

23

Securing a REST API Server pàg. 24

– stock: A number.

– category: A string, that must match the name attribute in a row in the Cate-
gories table.

– premium (optional): A number between 0 or 1, being 1 considered as pre-
mium.

– description: A string.

• [DELETE] /admin/products/:id: Delete the product with the corresponding id
from the database. (Admin only)

Since every product needs a category, which has to exist in the categories database, if
the category we want to assign does not yet exists, we need to create it first.

10.2.3 Categories endpoints

In these endpoints we have all functionality regarding categories, clients can browse
them all or browse one specific category. All other CRUD operations are only allowed
to Admin users.

• [GET] /categories: Obtain all categories information from the database.

• [GET] /categories/:id: Obtain a the categories information with the correspond-
ing id from the database.

• [POST] /admin/categories: Add a new category to the database. (Admin only)

• [PUT] /admin/categories/:id: Edit the category with the corresponding id. (Ad-
min only)

• [DELETE] /admin/categories/:id: Delete the category with the corresponding id
from the database. (Admin only)

The only data needed to create or edit a category is to provide a name with an alphanu-
meric string as a value.

10.2.4 Orders endpoints

In the orders endpoints we have the available functionalities for the client user, which
involves browsing and editing all orders that are considered owned by that client (being
the client_id property equal to the current users ID obtain from the current JWT). The
date of the order is always automatically added in the server, it is not provided. This
date will be a string in a ISO Date-Time format. This format refers to the ISO 8601 format,
that represents date and time by starting with the year, followed by the month, the day,
the hour, the minutes, seconds and milliseconds.

• [GET] /orders/own: Obtain all owned orders information from the database.

• [GET] /orders/own/:id: Obtain the information of owned order with the corre-

24

Securing a REST API Server pàg. 25

sponding id.

• [PUT] /orders/own/:id: Edit owned order with the corresponding id.

• [PUT] /orders/own/:id/cancellation: Change the status of owned order with
the corresponding id to cancelled.

• [POST] /orders/own/place-order: Add a new owned order.
The data expected is a list of objects with the following properties:

– product_id: A string with UUID format referencing an existing product in
the database.

– quantity: A number above zero.

– price: A number above zero.

• [GET] /admin/orders: Obtain all orders information from the database. (Admin
only)

• [GET] /admin/orders/:id: Obtain a specific orders information from the database.
(Admin only)

• [PUT] /admin/orders/:id: Edit the order with the corresponding id. (Admin
only)
The data expected is an object with the following properties:

– date (optional): A string with a date in ISO Date-Time format.

– status (optional): A string that can only take the following values: pending,
payed, shipped, delivered or cancelled.

– orderItems (optional): A list of objects with the following properties:

∗ product_id: A string with UUID format referencing an existing product
in the database.

∗ quantity: A number above zero.

∗ price: A number above zero.

• [DELETE] /admin/orders/:id: Delete the user with the corresponding id from
the database. (Admin only)

10.2.5 Users endpoints

Finally, we have the user endpoints, a user that is not a Super Admin, will only have
access to the profile endpoints, otherwise access will be forbidden. Only Super Admins
will be allowed to edit, delete, or create other users besides itself.

• [GET] /profile: Obtain own user information from the database.

25

Securing a REST API Server pàg. 26

• [PUT] /profile/edit: Edit own user information.
The data expected is an object with the following properties:

– email (optional:) A string with email format.

– firstName (optional): A string.

– secondName (optional): A string.

• [PUT] /profile/edit/password: Edit own user password.
The data expected is an object with the following properties:

– password: A string longer than 20 characters.

• [POST] /admin/users: Add a new user to the database. (Super Admin only)
The data expected is an object with the following properties:

– email: A string with email format.

– firstName: A string.

– secondName: A string.

– privileges (optional): A number between 0 and 2, being 0 the basic role, and,
1 and 2 the Admin and Super Admin roles respectively.

– password: A string longer than 20 characters.

• [PUT] /admin/users/:id: Edit the user with the corresponding id. (Super Admin
only)
The data expected is an object with the following properties:

– email (optional): A string with email format.

– firstName (optional): A string.

– secondName (optional): A string.

– privileges (optional): A number between 0 and 2, being 0 the basic role, and,
1 and 2 the Admin and Super Admin roles respectively.

– password (optional): A string longer than 20 characters.

• [DELETE] /admin/users/:id: Delete the user with the corresponding id from the
database. (Super Admin only)

11 Security Measures applied
The first measure taken was regarding the NGINX configuration, to allow and ensure
that all connections are made using TLS. Therefore, we needed to install SSL certificates
in our machine and load them in the configuration file of the web server, and also ensure

26

Securing a REST API Server pàg. 27

that we only allow TLS versions 1.2 and 1.3, since versions 1.0. and 1.1 are deprecated
due to being vulnerable to attacks.

1 ## SSL LetsEncrypt
2 ssl_certificate /etc/letsencrypt/live/tfm.jediupc.com/

fullchain.pem;
3 ssl_certificate_key /etc/letsencrypt/live/tfm.jediupc.com/

privkey.pem;
4
5
6 ssl_session_timeout 1d;
7 ssl_session_cache shared:MozSSL :1m;
8 ssl_session_tickets off;
9
10 # Intermediate configuration
11
12 ssl_protocols TLSv1 .2 TLSv1 .3;
13 ssl_ciphers TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:

TLS_CHACHA20_POLY1305_SHA256:ECDHE -ECDSA -AES128 -GCM -
SHA256:ECDHE -RSA -AES128 -GCM -SHA256:ECDHE -ECDSA -AES256 -
GCM -SHA384:ECDHE -RSA -AES256 -GCM -SHA384:ECDHE -ECDSA -
CHACHA20 -POLY1305:ECDHE -RSA -CHACHA20 -POLY1305:DHE -RSA -
AES128 -GCM -SHA256:DHE -RSA -AES256 -GCM -SHA384;

Listing 4: SSl/TLS configuration

The next security measures we tackled are the ones described by the OWASP Top 10
article, summarised in section 7.2. Since they are the most common present vulnerabili-
ties, and many of them are critical, meaning that a successful attack could compromise
the entire business, we consider that it is the best place to start.

11.1 Fixing A01:2021 – Broken Access Control
Therefore, for the first vulnerability, the Broken Access Control, the first thing we im-
plemented was to add and set the Access-Control-Allow-Origin to our domain in the
configuration file of the NGINX web server. Doing so we make the web server to only
accept requests that come from our domain, which are devices hosted in our Azure VM.
Therefore, our frontend will be the only one allowed to do so.

1 add_header Access -Control -Allow -Origin "tfm.jediupc.com";

In addition to that, we applied an authorisation mechanism using JWT tokens, and
roles, as well as two middleware functions (isAdmin and isSuperAdmin) to check the
permissions in every endpoint, to make sure that the user is allowed to that resource.
Since we store the database ID of the authenticated user in the signed JWT, we can check
the privileges of the user in the database, in each middleware.

If the privilege checks fails, we return a 403 HTTP status code in the HTTP response,
which is the standard status when a user is forbidden to access that endpoint. Fur-
thermore, in order to implement a logout system in our application. We have a table

27

Securing a REST API Server pàg. 28

to store blacklisted JWTs, of the users that log out. We need this table, because every
time a user logs in our application, the resulting token will be different every time, no
matter what information we store inside. Hence, in order to simulate the log out, and
complete a proper Authentication/Authorisation system, is to store this token when
the user logs out, and for every request, add another middleware, that will check if the
token used is not allowed (blacklisted) and the user requires to re-authenticate. If the
token is no longer allowed, we return a 401 HTTP status code, which is the standard for
an Unauthorised request.

1 // check if token is blacklisted - middleware
2 export const isTokenBlacklisted = async (req: Request , res:

Response , next: NextFunction): Promise <Response | void > =>
{

3 try {
4 if (!req.signedCookies['access_token '] || !req.user)

return res.sendStatus (401);
5
6 const token: string = req.signedCookies['access_token '];
7 const blacklisted = await Token.findOne ({ where: { token

}, raw: true });
8 if (blacklisted) return res.sendStatus (401);
9
10 return next();
11 } catch (error: unknown) {
12 res.sendStatus (500);
13 throw error;
14 }
15 };
16
17 // check if token is blacklisted - middleware
18 export const isAdminUser = (req: Request , res: Response , next

: NextFunction): Response | void => {
19 if (!(req.user as User).privileges) return res.sendStatus

(403);
20
21 return next();
22 };
23
24 export const isSuperAdminUser = (req: Request , res: Response ,

next: NextFunction): Response | void => {
25 if ((req.user as User).privileges !== 2) return res.

sendStatus (403);
26
27 return next();
28 };

Listing 5: Authorisation Middlewares

Furthermore, since only our server needs to establish a connection to the database

28

Securing a REST API Server pàg. 29

and operate it, in our database Docker configuration we create a specific database
for the application, and prepare a user with only access to connect to that database,
and perform SELECT, UPDATE, INSERT and DELETE queries, over the tables in that
database. However, this user does not have access to other databases, and can the only
operation allowed at database level is to connect to it and nothing else. In addition, we
define in our PostgreSQL pg_hba.conf file, that will only allow two type of connections.
The first one being a localhost connection for the root user, with a SHA-256 hashed
password, and the second one for the user server, againwith a SHA-256 hashed password
but only that comes from our Docker network and to the database of our application
specifically.

1 local all root scram -sha -256
2 host tfm -database server 192.168.80.0/28 scram -sha -256

Listing 6: PostgreSQL ph_hba configuration file

11.2 Fixing A02:2021 – Cryptographic Failures
In order to fix this vulnerability we just need to keep up to date with the most secure
ciphers nowadays, and check which ones are insecure. Regarding TLS ciphers, in the
code listing 4 we already allowed only TLS versions 1.2 and 1.3, and the allowed ciphers
specified below. Furthermore, regarding password hashing, the general scenario is to use
a package called Bcrypt [31] that uses key derivation functions to hash the passwords,
in order to store the resulting hash in the database. However, we used Argon2 [32], a
package to hash content as well, but uses a stronger key derivation function compared
to Bcrypt to achieve it. This results in a more robust and brute force resistant hashes,
and provides a key derivation function to create hashes resistant to Graphics Processing
Units (GPU) brute force attacks as well.

11.3 Fixing A03:2021 – Injection
This vulnerability refers to the ability of an attacker to inject malicious code to our
application, via input fields or via a payload sent to our server. Themost typical injections
are SQL Injection, since a successful SQL injection attack may lead to a complete leakage
of data from the database, or absolute control over the database, database tables or all
databases. This attack consists in injecting SQL queries in inputs of our frontend, than
will be sent afterwards as payload to our server, to try to overwrite our own predefined
queries to perform another operation. This happens only if we concatenate the query
values (malicious query) of our payload directly to our SQL query.

For instance, given the following insecure query:
1 "SELECT * FROM products WHERE category = '";

Listing 7: SQL Injection vulnerable query

If we send the following payload:

https :// insecure.com/products?name=Computer '+OR+1=1--

29

Securing a REST API Server pàg. 30

When we concatenate that query to our query string, the first character (´) will break
the string and the last two characters (- -) will comment the rest of the query. Resulting
in the following computed query:

1 SELECT * FROM products WHERE name = 'Computer ' OR 1=1 --';
Listing 8: SQL Injection Attack performed on vulnerable query

This is solved by using parameterised queries, instead of plain strings, and sanitising our
inputs. Since we are using Sequelize, a NodeJS package to define our database Models,
which also provides functions that already have parameterised queries, so we only need
to sanitise our input, in order to be protected against this attacks. We have to many
functions to validate the payloads in the HTTP requests, and check the payload format
corresponds to the expected inputs described in section 10.2.2.

Injection can be applied to headers as well. An example of that is the Host Header
Injection [33] attack. This attack consists of exploiting vulnerable websites that handle
the value of the Host header in an unsafe way. If the server implicitly trusts the Host
header, and fails to validate or escape it properly, an attacker may be able to use this
input to inject harmful payloads that manipulate server-side behaviour. In order to
protect against this attack, what is needed is to check if the value of the Host header of
a request is valid, if not so, a 444 HTTP error code is returned, otherwise, we proceed
with the request. This 444 HTTP code is special in NGINX, since it is done to close the
connection without sending a response. This is commonly used in NGINX when an
attack or bad behaviour is detected.

1 if ($host !~* ^(tfm.jediupc.com)$) {
2 return 444;
3 }
4
5 if ($http_host !~* ^(tfm.jediupc.com)$) {
6 return 444;
7 }

Listing 9: Protection against Host Header Injection

In our case, we just need to check if the value is different from our domain, if it is different
in any way, we return the 444 code. We check both the $host and $http_host variables
of NGINX. Usually with just the first one is enough, however, some plugins or modules
of NGINX may use the second one as well, so we just check both of them.

11.4 Fixing A04:2021, A05:2021 and A06:2021 vulnerabilities
Here will be summarised the measures applied for this group of vulnerabilities since
they share many among them. This refers to Insecure Design, Security Misconfiguration
and Vulnerable and Outdated Components vulnerabilities respectively. Since we are
applying a security by design pattern, meaning that we are focusing always in the
most secure version of any implementation we want to make, we are already covering

30

Securing a REST API Server pàg. 31

the first vulnerability. For instance, a good example is all the security mechanism we
implemented from the beginning, including in the architecture of the project, with all the
docker containers isolated in a network for their own, watching permissions in the app
itself regarding authentication and authorisation, and so on. Furthermore, we also have
a firewall provided by Azure, and we only have HTTP and HTTPS ports to the outside
traffic, nothing else. This links with the second and third vulnerabilities, since we are
handling all our file permissions and configurations with Docker compose, allowing
only what each container absolutely needs, and with the Github CI/CD pipeline, which
in order to connect to our VM and deploy the needed files, it uses an SSH key to make
the connection. Moreover, all variables needed to create the environment files needed for
our application are injected via Github secrets, which are encrypted and private. Finally,
one thing we did with dockers is specify the version for each of all the technologies used,
so we can ensure that always will be used that version, and manually install updates if
needed, to avoid deprecated packages.

11.5 Fixing A07:2021 – Identification and Authentication Failures
This topic has been already addressed in section 10.1, however, one of the measures
applied regarding authentication, is to ensure all user passwords are twenty characters
long. Password length is one of the biggest vulnerabilities in every system, since weak
passwords can be guessed via brute force attacks. In order to fix this, we applied two
more measures together with our password length requirements. Rate limits have
been applied in our NGINX configuration file, in which we set a maximum limit of
ten requests per second for our /api resource. If this limit is reached, the web server
returns a 429 HTTP status code (standard response for making too many requests) and
block that IP address for twenty minutes. This block means rejecting automatically any
requests sent by that IP during the duration of the penalty.

1 limit_req_zone $binary_remote_addr zone=serverlimit :20m
rate =10r/s;

2 limit_req_status 429;
Listing 10: Request rate limit configuration.

1 location /api {
2 limit_req zone=serverlimit;
3 ...
4 }

Listing 11: Request rate limit zone application.

The second additional measure taken consists in, for any authentication failure, always
return the same error message, alerting that the credentials provided are wrong to avoid
User Enumeration attacks. This attacks consist in introducing random users or known
existing users to know if the error message received changes between an existing user
an non existing one. This allows an attacker to map all user accounts in the database,
and performed a more targeted brute forcing attack, which a higher chance of success.

31

Securing a REST API Server pàg. 32

11.6 Fixing A08:2021 – Software and Data Integrity Failures
In our project we only relay on third-parties regarding our NodeJs packages, and our
Github repository, where we store the secrets needed by our application. All NodeJs
packages used are well-known among the community and are developed, patched
and reviewed constantly not only by the main authors of the packages but also by
authorised members of the community, in order to correct bugs, add features, and
improve. Regarding Github, we only depend on for our CI/CD pipeline infrastructure.
Github is also a very well-known platform, and provide an encrypted storing system for
secrets, which ciphertext still appears in the logs of the pipeline while running, instead
of plane text, as an additional security measure. Therefore, for this reasons, we can trust
those third-parties to maintain secrecy and ensuring security.

11.7 Fixing A09:2021 – Security Logging and Monitoring Failure
In order to implement logging in our application, to be able to trace back through all
events after a successful attack or a server shutdown produced by an error, we used the
NodeJS packaged Winston. Winston [34] is one of the most popular logging packages
used which also receives lots of support from the community. In essence, it is a simple
and universal logging library with support for multiple transports. A transport is
essentially a storage device for logs, in our case, we used File transports, to store all
events in a file in our container file system.

11.8 Fixing A10:2021 – Server-Side Request Forgery (SSRF)
In our application, we can only be affected by this vulnerability, in the products endpoints.
Since we accept a URL, pointing to the image of the product that is served by the server,
this can be a possible flaw. Hence, to correct that, we do not allow a user to manually
change the URL value of that parameter. Instead, it can upload a new image in JPEG (or
JPG) or PNG formats, since any other file format will be rejected, and internally a new
URL will be computed and updated in database. Since we do not allow a user to input
any URL that could make random and uncontrolled HTTP requests to uncontrolled
servers or networks, we are protected against this vulnerability.

12 Additional Security Measures
There are more security measures and good practices applied to the project, although
not all of them are regarding the server alone. Some of them may be regarding Docker
containers and images or regarding HTTP security headers applied in the configuration
file of NGINX, for instance.

12.1 Dockers
In order to improve security on our docker environment, we followed another list of
OWASP security measures [35] to ensure the services work properly and following good
practices. All containers will be running with a non-privileged user, which is provided
by all the images we are using, but need to be specified in every one in other to use it.
Otherwise, all containers will run with the root user by default, which is a very bad

32

Securing a REST API Server pàg. 33

practice, since it could escalate to delete the container. Furthermore, all permanent
volumes created in the Host VM, which are folders maped to container folder inside of
the file system of a container, will be set as readonly by default. An exception of this
will be the /var/log directory, since the containers will need write access to create the
log files.

In case of a Denial of Service (DoS) or a Distributed Denial of Service (DDoS) attack
would occur, all containers will run with specific minimum and maximum limits of
resources. Finally, when running Docker compose, the log level will be set to info, to log
events of info and above, in case we would want to review them later.

12.2 NGINX
A part from the settings applied that are already mentioned and explained in previous
sections, we added the following HTTP headers as well following the OWASP HTTP
recommendations [36]:

1 add_header X-XSS -Protection "0";
2 add_header X-Frame -Options "DENY";
3 add_header Access -Control -Allow -Methods "GET";
4 add_header Access -Control -Allow -Credentials "true";
5 add_header Access -Control -Allow -Origin "tfm.jediupc.com";
6 add_header Access -Control -Allow -Headers "Authorization ,

Origin , X-Requested -With , Content -Type , Accept";
7 add_header X-Content -Type -Options nosniff;
8 add_header Referrer -Policy "strict -origin -when -cross -origin

";
9 add_header Strict -Transport -Security "max_age =31536000;

includeSubDomains; preload" always;
10 add_header Content -Security -Policy "default -src 'self ';

font -src 'self ';img -src 'self' data:; script -src 'self ';
style -src 'self' 'unsafe -inline '";

Listing 12: Security HTTP headers.

1 proxy_hide_header X-Powered -By;
Listing 13: Removing X-Powered-By header.

The X-Frame-Options is used to indicate that a browser should not be allowed to render
a page embedded in a site, in order to avoid clickjacking attacks. Clickjacking attacks
consists in using multiple transparent or opaque layers to trick a user into clicking on a
button or link on another page when they were intending to click on the top level page.

The header X-XSS-Protection blocks the browser if detects a Cross Site Scripting (XSS)
attack. We disabled it because implementing would only result in undesired behaviours.
Instead, there is a way better option which is the Content-Security-Policy header. This
header helps to detect and mitigate certain types of attacks, including XSS and data
injection attacks, but which better results and more control over the resulting behaviour.

33

Securing a REST API Server pàg. 34

In this header we set everything to self, meaning that we will only allow resources
(javascript files, images, multi-media files, etc...) only from our domain. In addition
to that, the X-Content-Type-Options header is set to nosniff, to indicate that the types
advertised in the Content-Type headers should be followed and not to be changed.

The Referrer-Policy header is used to send information about the previous website.
The recommended practice is to only send referrer information to other sites, and not
within the application. Furthermore, we also add the Strict-Transport-Security header,
also known as HTTP Strict Transport Security (HSTS) header. This header is used to
inform browsers that the site should only be accessed using HTTPS, and that any future
attempts to access it using HTTP should automatically be converted to HTTPS. We set
the HSTS header to also apply to all subdomains, to be pre-loaded and always present
in all responses.

The Access-Control-Allow headers define the configuration regarding CORS policy.
The Access-Control-Allow-Credentials header tells browsers whether to expose the
response to the frontend JavaScript code when the requests credentials mode is include.
We want to allow this, since we will be expecting credentials in the requests for the
authentication required endpoints. The Access-Control-Allow-Origin is one of the
most important security headers, since it indicates whether the response can be shared
with requesting code from the given origin. In our configuration is set to only allow
sharing the responses with the "tfm.jediupc.com" origin, which is our application.This
is done in order to ensure that non cross domain requests can see the responses of
any requests made against our server. However, this does not stop the request from
being made, its sole purpose is to not send the response back to the cross domain client.
The Access-Control-Allow-Methods and Access-Control-Allow-Headers define the
methods allowed and to indicate which HTTP headers can be used during the actual
request, in CORS pre-flight requests. Since all requests will be made from within the
domain, we will only allow GET request in CORS pre-flight requests, since it is the only
method that is not a potential thread to our data. The allowed headers specified by the
second header refer to some common metadata headers.

Finally, we remove the X-Powered-By header from all responses. This header is automat-
ically added by one of NGINX modules, and it shows information about the technology
used in the server. This is a clear example of Information Disclosure, since it is revealing
to potential attackers the technology used in the server, allowing them to narrow down
the research of vulnerabilities.

12.3 CSRF Tokens
An additional security measure implemented, is the use of Cross-Site Request Forgery
(CSRF) tokens. A CSRF [37] token is a unique, secret and unpredictable value that is
generated by the server-side application and transmitted to the client in such a way that
it is included in a subsequent HTTP request made by the client. Since an attacker cannot
determine or predict the value of a user’s CSRF token, they cannot construct a request
with all the parameters that are necessary for the application to fulfill the requirements
of the request, therefore it can not construct a fully valid HTTP request suitable for
feeding to a victim user.

34

Securing a REST API Server pàg. 35

As seen in the previous subsection 12.2 about the NGINX security headers, if an attacker
performs a Cross Domain request, with a DELETE method for instance, to a valid url
with valid parameters, the request will succeed. The Access-Control-Allow-Origin will
not stop the request, it will just not send a response back to the attacker. In other words,
the request will be passed to the server, handled and the requested resource will be
deleted, if everything is correct. This of course is a problem, because even if the attacker
is not able to know whether the request was successful or not since there is no response,
the attack is successful regardless. CSRF tokens allow us to have a mechanism in our
endpoints controllers to check whether a request is legit or not.

1 this.app.use(csurf ({
2 cookie: {
3 path: '/',
4 httpOnly: true ,
5 key: 'XSRF -TOKEN ',
6 domain: 'tfm.jediupc.com',
7 secure: process.env.NODE_ENV === 'production ',
8 signed: process.env.NODE_ENV === 'production ',
9 }
10 }));

Listing 14: CSRF middleware protection

By default, CSRF tokens will only be checked in requests with methods that are not the
HEAD or GETmethods. Wewill leave this as default, since there is absolutely no issue in
allowing get requests even from attackers, since it cannot modify the data. Moreover, the
CSRF token is configured as a cookie, with the same configuration as the authentication
cookies. We also set the cookie name to one of our choosing instead of using the default
value, which would reveal information to an attacker about the technology used in the
backend. The secret used for signing the cookie containing the CSRF token will be the
same as the cookies for the JWT.

12.4 Type Guards and Type Sanitisers
As an example of sanitisers mentioned in section 11.3, the following couple of func-
tions are used to sanitise primitive type inputs, and are used in all other validators aswell:

1 export const sanitizeString = (input: string): string =>
input.replace (/[<>\n\t]/g, "");

2
3 export const sanitizeObject = (input: any): void => {
4 Object.keys(input).map(key => {
5 if (input[key] && typeof input[key] === 'string ') {
6 input[key] = sanitizeString(input[key]);
7 if (!isNaN(input[key])) input[key] = parseInt(

input[key]);
8 }
9 });

35

Securing a REST API Server pàg. 36

10 };
Listing 15: Sanitiser functions for primitive inputs

The first function ensures that the characters that match the regular expression defined
in the first parameter of the function replace, are replaced by an empty string. This way
we avoid a string with white spaces, or HTML tags that can perform a XSS attack or
a HTML injection attack. These functions are used in all validators to ensure that the
values of the payloads not only fulfill the corresponding expected type but also to make
sure that no malicious data ends being stored in the database.

Furthermore, we have implemented Type Guards as well, to ensure that all request body
payloads are of the expected types, hence acting as validators.

1 export const isUserLogin = (instance: UserLogin): instance is
UserLogin => {

2 if (Object.keys(instance).length === 0) return false;
3
4 const mandatoryTemplate: number = 2;
5 const template: UserLogin = {
6 email: "example@gmail.com",
7 password: "templateString"
8 };
9
10 let isTemplate: boolean = true;
11 let mandatoryAmount: number = 0;
12 Object.keys(instance).find(key => {
13 // if property does not exists
14 if (template[key as keyof UserLogin] === undefined) {
15 isTemplate = false;
16 return true; // break loop
17 }
18
19 mandatoryAmount ++;
20
21 if (typeof instance[key as keyof UserLogin] !==

typeof template[key as keyof UserLogin]) {
22 isTemplate = false;
23 return true; // break loop
24 }
25
26 if (key === "email" && !validator.isEmail(instance["

email"])) {
27 isTemplate = false;
28 return true; // break loop
29 }
30
31 return false;

36

Securing a REST API Server pàg. 37

32 });
33
34 if (mandatoryAmount !== mandatoryTemplate) return false;
35
36 return isTemplate;
37 };

Listing 16: Type Guard function for user login type.

Inside all validators, the instance is examined in order to check that has exactly all the
mandatory data fields required by the type, no less. In the example shown in Listing 16,
we check that the instanced passed as parameter, contains only the mandatory fields
defined by the UserLogin interface. If the instance is empty or has more fields that the
ones required, is also rejected.

12.5 Azure Server
The server where the whole application is hosted is in Azure. Therefore, we have many
tools to provide extra security. In our case, we decided to harden the SSH security, and
apply a good firewall policy. Allowing SSH connections is always delicate, and the
best case scenario, is only enabling ssh connections whenever is absolutely needed, and
disable them afterwards. However, since we have a CI/CD pipeline that relies on SSH to
be able to connect and deploy the application, that was not a possible solution. Instead,
we made changes in the SSH configuration to try to harden it as much as possible to
lower the risk.

1 # What ports , IPs and protocols we listen for
2 Port 52525
3
4 # Authentication:
5 PermitRootLogin no
6
7 PasswordAuthentication no
8
9 UsePAM no
10
11 ...

Listing 17: SSH configuration.

We only changed some attributes inside the configuration, but ones that really make a
huge difference regarding connection security. First, the well known port for ssh service
is 22, so we changed it to a random Port number out of the well known ports interval.
Doing this will make that massive attacks targeted to SSH ports will not work in our
machine, since it is no longer using port 22. Of course, an attacker that performs a
targeted port scanning to our machine, will be able to see that the SSH service is running
on port 52525, but we are already making things more difficult.

37

Securing a REST API Server pàg. 38

Furthermore, we disable root login in order to only allow SSH connections to unprivi-
leged users. In case of a successful connection by an attacker, root will not be available
as user to be connected via SSH. In addition to that, only connections with ssh keys
are allowed, no passwords at all. This is a very substantial change, the most important
one even. Disabling password authentication removes the possibility for an attacker
to perform brute force attacks with passwords. In fact, the Github pipeline has two
different ssh keys of 4096 bits length (being 2048 bits the minimum considered secure)
for the frontend and backend deployments. PAM is disabled in order to run ssh in a
non-root user, to strengthen security against privilege escalation.

Regarding the firewall configuration, the ACL is set to only allow packets with ports
destination 80, 443 and 52525 via TCP. Since we only want packets to directed to either
the application, or the SSH service and rejecting protocols like Internet Control Message
Protocol (ICMP) (ping packets) as well.

38

Securing a REST API Server pàg. 39

Conclusions

13 Results and Discussion
In summary, we successfully built a functional e-commerce API application following all
the appropriate procedures and good practices previously proposed in order to achieve
a good level of security. In addition to that, we added additional security measures to
not only the server, but the rest of components involved in the architecture as well.

Specifically, we applied functionalities, security mechanisms and other technologies to
protect against all the vulnerabilities described in the OWASP Top 10. We researched
about the best encryption algorithms and password hashing functions, as well as adding
many security headers and numerous security configurations regarding logging or access
controls to strengthen even more our application security and reliability. Moreover,
we applied additional measures like the CSRF tokens that prevent malicious actions
over our data, as well as type guards and type sanitisers to avoid potential malicious
payloads, and have control about what data we are getting and whether is acceptable or
not.

On the other hand, regarding infrastructure, we applied different security measures
to isolate the different components of our app running on different docker containers,
and a very specific control policy for database connections. Not only that, but also
was added a strong firewall configuration and the SSH connection configuration was
hardened significantly. The hardening of SSH connections was crucial, since we rely on
that service for our CI/CD infrastructure and service availability.

However, in cybersecurity new threats arise every day, and what used to be secure
eventually might not be it anymore. That is why we need to raise the minimum number
of security mechanisms in every application, to make the Internet safer. This thesis pro-
vided a practical example and reference of the many different organisations involved in
cybersecurity and standardisation, and all the information regarding security measures
and good practices that is available about this topic. the world of Cybersecurity grows
larger every day, and so do the threats and complexity of the attacks, in addition to the
growing market for malicious techniques and malware.

39

Securing a REST API Server pàg. 40

14 Future improvements
As a future improvement, an authentication and authorisation system performed using
Zero Knowledge Proofmechanismsmight be very interesting. Zero Knowledge Proof is a
protocol that allows to proof an statement to an entity, without revealing anything about
the statement apart from the veracity of the statement. This requires a more complex
setup, since requires managing certificates and perform client encryption in order to
do so. However, many technologies are trying to implement this kind of protocols, to
protect the users and protect their data as well, and can be a very good way to increase
not only security but data privacy as well.

40

Securing a REST API Server pàg. 41

Acronyms

ACL Access Control List.

API Application Program Interface.

CDNs Content Delivery Networks.

CI/CD Continuous Integration / Continuous Deployment.

CORS Cross-origin resource sharing.

CRUD Create Read Update Delete.

CSRF Cross-Site Request Forgery.

CVE Common Vulnerabilities and Exposures.

CVSS Common Vulnerability Scoring System.

DDoS Distributed Denial of Service.

DoS Denial of Service.

FDD Feature-Driven Development.

FTP File Transfer Protocol.

GPU Graphics Processing Units.

HSTS HTTP Strict Transport Security.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

ICMP Internet Control Message Protocol.

IETF Internet Engineering Task Force.

41

Securing a REST API Server pàg. 42

ISO International Organisation for Standardisation.

IT Information Technology.

JPEG Joint Photographic Experts Group.

JWT JSONWeb Token.

MVC Model View Controller.

NIST National Institute of Standards and Technology.

OAuth Open Authorization.

OSINT Open Source INTelligence.

OWASP Open Web Application Security Project.

PNG Portable Network Graphics.

REST REpresentational State Transfer.

RP Relaying Party.

SEO Search Engine Optimization.

SMTP Simple Mail Transfer Protocol.

SQL Structured Query Language.

SSL Secure Sockets Layer.

SSRF Server-Side Request Forgery.

TLS Transport Layer Security.

UI User Interface.

URL Uniform Resource Locator.

UUID Universally Unique Identifier.

VM Virtual Machine.

VPN Virtual Private Network.

42

Securing a REST API Server pàg. 43

W3C World Wide Web Consortium.

XP Extreme Programming.

XSS Cross Site Scripting.

43

Securing a REST API Server pàg. 44

Bibliography

[1] © 2022 Red Hat, Inc.What is an API? [Online; accessedMarch 2, 2022]. url: https:
//www.redhat.com/en/topics/api/what-are-application-programming-
interfaces.

[2] ©1998–2022 by individual mozilla.org contributors. MVC - MDNWeb Docs Glos-
sary: Definitions of Web-related terms: MDN. [Online; accessed March 2, 2022]. url:
https://developer.mozilla.org/en-US/docs/Glossary/MVC.

[3] Copyright ©2022 Educative, Inc.What is rest? [Online; accessed March 2, 2022].
url: https://www.educative.io/answers/what-is-rest.

[4] © 2012-2022 Microsoft. Documentation - typescript for the new programmer. [Online;
accessed June 4, 2022]. url: https://www.typescriptlang.org/docs/handbook/
typescript-from-scratch.html.

[5] Copyright © 2022 Fortinet, Inc. What is Black Hat Security? definition. [Online; ac-
cessedMarch 2, 2022].url: https://www.fortinet.com/resources/cyberglossary/
black-hat-security.

[6] The Daily Swig. OSINT: What is open source intelligence and how is it used? [Online;
accessed March 7, 2022]. url: https://portswigger.net/daily-swig/osint-
what-is-open-source-intelligence-and-how-is-it-used.

[7] ©2022 Synopsys, Inc. Application Security Blog. [Online; accessed March 18, 2022].
url: https://www.synopsys.com/blogs/software-security/top-4-software-
development-methodologies/.

[8] © 2013-2021 Docker Inc. Docker overview. [Online; accessed June 4, 2022]. url:
https://docs.docker.com/get-started/overview/.

[9] © 2022 GitHub, Inc. Understanding github actions. [Online; accessed June 4, 2022].
url: https://docs.github.com/en/actions/learn-github-actions/understanding-
github-actions.

[10] © W3C. About W3C. [Online; accessed April 2, 2022]. url: https://www.w3.org/
Consortium/.

[11] © NIST. About NIST. [Online; accessed April 2, 2022]. url: https://www.nist.
gov/about-nist.

[12] ©NIST. Cybersecurity. [Online; accessed April 4, 2022]. url: https://www.nist.
gov/cybersecurity.

[13] © 2022, OWASP Foundation, Inc. About the OWASP Foundation. [Online; accessed
March 1, 2022]. url: https://owasp.org/about/.

[14] © 2022, OWASP Foundation, Inc. OWASP Top 10:2021. [Online; accessed March
22, 2022]. url: https://owasp.org/Top10/.

[15] © ISO All Rights Reserved. About Us.

44

https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://www.educative.io/answers/what-is-rest
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.fortinet.com/resources/cyberglossary/black-hat-security
https://www.fortinet.com/resources/cyberglossary/black-hat-security
https://portswigger.net/daily-swig/osint-what-is-open-source-intelligence-and-how-is-it-used
https://portswigger.net/daily-swig/osint-what-is-open-source-intelligence-and-how-is-it-used
https://www.synopsys.com/blogs/software-security/top-4-software-development-methodologies/
https://www.synopsys.com/blogs/software-security/top-4-software-development-methodologies/
https://docs.docker.com/get-started/overview/
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://www.w3.org/Consortium/
https://www.w3.org/Consortium/
https://www.nist.gov/about-nist
https://www.nist.gov/about-nist
https://www.nist.gov/cybersecurity
https://www.nist.gov/cybersecurity
https://owasp.org/about/
https://owasp.org/Top10/

Securing a REST API Server pàg. 45

[16] © IETF. About. [Online; accessed April 4, 2022]. url: https://www.ietf.org/
about/.

[17] © 1996-2022 The PostgreSQL Global Development Group. PostgreSQL. [Online;
accessed June 9, 2022]. url: https://www.postgresql.org/.

[18] ©2022 Educative, Inc.What is SQL? [Online; accessed June 9, 2022]. url: https:
//www.educative.io/answers/what-is-sql.

[19] © 2022 Meta Platforms, Inc. React – a JavaScript library for building user interfaces.
[Online; accessed June 9, 2022]. url: https://reactjs.org/.

[20] ©Copyright IBMCorporation 2012, 2022.Openid Connect. [Online; accessed June 4,
2022]. url: https://www.ibm.com/docs/en/was-liberty/base?topic=liberty-
openid-connect.

[21] Dick Hardt - Microsoft. The oauth 2.0 authorization framework. [Online; accessed
June 10, 2022]. url: https://www.rfc-editor.org/rfc/rfc6749.

[22] OktaDev. OAuth 2.0 and OpenID Connect (in plain English). [Online; accessed June
10, 2022]. url: https://www.youtube.com/watch?v=996OiexHze0.

[23] © 2013 - 2022 Auth0® Inc. JSON web tokens introduction. [Online; accessed June 10,
2022]. url: https://jwt.io/introduction.

[24] Michael B. Jones, John Bradley and Nat Sakimura. RFC 7519 - JSON web token
(JWT). [Online; accessed June 10, 2022]. url: https://datatracker.ietf.org/
doc/html/rfc7519.

[25] © 2022 Okta.HMAC (hash-based message authentication codes) definition. [Online; ac-
cessed June 10, 2022].url: https://www.encryptionconsulting.com/education-
center/what-is-rsa/.

[26] © 2018 – 2022 All Rights Reserved - Encryption Consulting LLC. RSA: What is
RSA?: Encryption consulting. [Online; accessed June 10, 2022]. url: https://www.
okta.com/identity-101/hmac/.

[27] © 2018 – 2022 All Rights Reserved - Encryption Consulting LLC. Elliptic Curve
Digital Signature Algorithm (ECDSA) | Encryption Consulting. [Online; accessed
June 10, 2022]. url: https : / / www . encryptionconsulting . com / education -
center/what-is-ecdsa/.

[28] © 1999-2021 The OpenSSL Project Authors. OpenSSL. [Online; accessed June 10,
2022]. url: https://www.openssl.org/.

[29] ©1998–2022 by individual mozilla.org contributo. HTTP cookies - http: MDN. [On-
line; accessed June 10, 2022]. url: https://developer.mozilla.org/es/docs/
Web/HTTP/Cookies.

[30] © ITU 2022 All Rights Reserved. Universally unique identifiers (uuids). [Online;
accessed June 15, 2022]. url: https://www.itu.int/en/ITU-T/asn1/Pages/
UUID/uuids.aspx.

[31] © 2013-2022 Auth0 Inc. Hashing in action: Understanding bcrypt. [Online; accessed
June 22, 2022].url: https://auth0.com/blog/hashing-in-action-understanding-
bcrypt/.

[32] Alex Biryukov, Daniel Dinu, DmitryKhovratovich. P-H-C/PHC-winner-argon2:
The password hash argon2, winner of PHC. [Online; accessed June 22, 2022]. url:
https://github.com/P-H-C/phc-winner-argon2.

[33] © 2022 PortSwigger Ltd. Web Security Academy. [Online; accessed June 22, 2022].
url: https://portswigger.net/web-security/host-header.

[34] Charlie Robbins. Winstonjs/Winston: A logger for just about everything. [Online;
accessed June 22, 2022]. url: https://github.com/winstonjs/winston#readme.

45

https://www.ietf.org/about/
https://www.ietf.org/about/
https://www.postgresql.org/
https://www.educative.io/answers/what-is-sql
https://www.educative.io/answers/what-is-sql
https://reactjs.org/
https://www.ibm.com/docs/en/was-liberty/base?topic=liberty-openid-connect
https://www.ibm.com/docs/en/was-liberty/base?topic=liberty-openid-connect
https://www.rfc-editor.org/rfc/rfc6749
https://www.youtube.com/watch?v=996OiexHze0
https://jwt.io/introduction
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://www.encryptionconsulting.com/education-center/what-is-rsa/
https://www.encryptionconsulting.com/education-center/what-is-rsa/
https://www.okta.com/identity-101/hmac/
https://www.okta.com/identity-101/hmac/
https://www.encryptionconsulting.com/education-center/what-is-ecdsa/
https://www.encryptionconsulting.com/education-center/what-is-ecdsa/
https://www.openssl.org/
https://developer.mozilla.org/es/docs/Web/HTTP/Cookies
https://developer.mozilla.org/es/docs/Web/HTTP/Cookies
https://www.itu.int/en/ITU-T/asn1/Pages/UUID/uuids.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/UUID/uuids.aspx
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://github.com/P-H-C/phc-winner-argon2
https://portswigger.net/web-security/host-header
https://github.com/winstonjs/winston#readme

Securing a REST API Server pàg. 46

[35] ©Copyright 2021 - CheatSheets Series Team. Docker security cheat sheet. [On-
line; accessed June 22, 2022]. url: https://cheatsheetseries.owasp.org/
cheatsheets/Docker_Security_Cheat_Sheet.html.

[36] ©Copyright 2021 - CheatSheets Series Team. HTTP security response headers cheat
sheet. [Online; accessed June 22, 2022]. url: https://cheatsheetseries.owasp.
org/cheatsheets/HTTP_Headers_Cheat_Sheet.html.

[37] © 2022 PortSwigger Ltd. CSRF tokens. [Online; accessed June 22, 2022]. url: https:
//portswigger.net/web-security/csrf/tokens.

46

https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://portswigger.net/web-security/csrf/tokens
https://portswigger.net/web-security/csrf/tokens

	Introduction
	State of the art
	Justification
	Methodology
	Chosen Methodology
	Methodology applied to API development

	Scope
	OWASP Top 10 measures implementations
	Protection applied at all levels
	Docker security implementation
	Security by design

	Stakeholders
	Software Developers
	Internet users / clients
	Service owners / providers
	Myself

	Applying Security Measures
	Organisations
	Open Web Application Security Project (OWASP)
	OWASP Top 10 recommendations
	OWASP Top 10 API
	A01:2021 – Broken Access Control
	A02:2021 – Cryptographic Failures
	A03:2021 – Injection
	A04:2021 – Insecure Design
	A05:2021 – Security Misconfiguration
	A06:2021 – Vulnerable and Outdated Components
	A07:2021 – Identification and Authentication Failures
	A08:2021 – Software and Data Integrity Failures
	A09:2021 – Security Logging and Monitoring Failures
	A10:2021 – Server-Side Request Forgery (SSRF)

	Other important organisations
	International Organisation for Standardisation (ISO)
	Internet Engineering Task Force (IETF)

	Project architecture design
	Architecture design
	CI/CD flow and description
	Design details and description

	Project Description
	Authentication, Authorisation and Roles
	API Endpoints description
	Authentication and Authorisation endpoints
	Products endpoints
	Categories endpoints
	Orders endpoints
	Users endpoints

	Security Measures applied
	Fixing A01:2021 – Broken Access Control
	Fixing A02:2021 – Cryptographic Failures
	Fixing A03:2021 – Injection
	Fixing A04:2021, A05:2021 and A06:2021 vulnerabilities
	Fixing A07:2021 – Identification and Authentication Failures
	Fixing A08:2021 – Software and Data Integrity Failures
	Fixing A09:2021 – Security Logging and Monitoring Failure
	Fixing A10:2021 – Server-Side Request Forgery (SSRF)

	Additional Security Measures
	Dockers
	NGINX
	CSRF Tokens
	Type Guards and Type Sanitisers
	Azure Server

	Conclusions
	Results and Discussion
	Future improvements

	Acronyms
	Bibliography

