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ABSTRACT

This project, entitled “Development of a control and monitoring system for an auto-
correlator of ultrashort light pulses” is devoted to the study and implementation
of single-shot characterization method of ultrashort laser pulses using second-
harmonic generation in nonlinear ferroelectric crystals. The main objective is the
development of a program that uses the experimental measurement of the auto-
correlation trace and measures the duration and other parameters of the Gaussian
pulse by image processing. The basic principle of operation is related to the second
harmonic signal emitted by two crossing light pulses in a non-linear (NL) crystal,
constituting the autocorrelation trace. As NL crystal, we use a ferroelectric crystal
with random size and distribution of the NL domains, which allows the second
harmonic generation in the transverse direction with respect to the beam propaga-
tion direction. This method had been implemented for pulses from a few tens to
a few hundreds of femtoseconds. In this project, the method will be automatized
and applied in the femtosecond regime. This technique presents different improve-
ments against other traditional methods. Furthermore, it allows getting automatic
phase matching without temperature control or angular alignment over a very wide
spectrum.

The program will be initially built in the original setup (which works in the
femtosecond regime), and it will consist of a Matlab program that reads the images
taken by a camera and makes the calculations of the pulse duration, chirp parameter
etc. and a LabVIEW program that allows to take the images and obtain the results in
a user-friendly software. Once the program is complete, different experiments will
be realized to observe how the program responds to different set-ups and lasers.
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Chapter 1

Introduction

Nowadays, ultrashort laser pulses are becoming an important tool in numerous
technological and scientific applications, such as materials processing, the measure-
ments of the dynamics of complex molecules or optical communications. All these
applications need a precise knowledge of the laser pulses properties, like the dura-
tion of the pulse, but a precise characterization of an ultrashort pulse properties is
not easy to obtain since electronic measurements are limited to the ps scale.Shorter
pulse duration, in the range of ps and fs domain, need top be measured by indirect
methods. The pulses we will use in the experiments of this project, can be repre-
sented either in temporal or spectral domain, and since both domains are related by
the Fourier transform, by only measuring the pulse intensity and phase in either
temporal or spectral domain, we obtain the complete characterization of the pulse.

When working with pulses longer than 1 nanosecond, there are many electronic
devices that measure different pulse properties. For example, an energy detector
detects pulse energy, and a photodiode measures the pulse duration. Anyway,
pulses with a duration lower than 100ps can not be measured by any electronic
detector, which makes it impossible to make a direct measurement. The existing
techniques of ultrashort pulse measurements usually rely on optical gating between
the pulse and its replica that is typically realized through a nonlinear optical process,
like the second harmonic generation [1].
The objective of this project is then, first, to analyse and understand the measure-
ment methods for ultrashort laser pulses, implementing an image recording system
on an already existing measurement system in the laboratory. And finally, build
a program able to measure the pulse duration from the obtained measures and a
visual environment that allows observing the signal, and analyse the obtained data
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results in real time.
Before explaining this concepts in detail, a brief introduction to light pulses propa-
gation in linear media must be taken.

1.1 Mathematical description of light pulses

The electric field of a light pulse can be expressed as a temporal-dependent function.
Using the quasi-monochromatic approximation, it looks like:

E⃗(z, t) = E⃗+
0 (z, t)e−iω0t

Where E⃗+
0 (z, t) is known as the complex pulse envelope and ω0 is the carrier

frequency.
For the moment, we are assuming no transverse dependence of the light pulses,
and we are not considering polarization effects (we can omit the vector character of
the fields). Later in this chapter we will consider them both beside other additional
effects. The expression of the pulse can also be written in terms of its real amplitude
and temporal phase like:

E+(t) = |E+
0 (t)|eiϕ(t)e−iω0t (1.1a)

The real electric field is given by:

E(t) = Re[E+(t)]

The temporal intensity of the pulse is proportional to the modulus squared of
the real amplitude, and it can be used to describe the light pulse:

I(t) ∝ |E+
0 |2

U+(t) =
√

I(t)eiϕ(t)e−iω0t (1.1b)

We can also define these equations in the frequency space by using the Fourier
transform:

Ẽ(ω) =
∫ +∞

−∞
E(t)eiωtdt ⇔ E(t) =

1
2π

∫ +∞

−∞
Ẽ(ω)e−iωtdω (1.2)
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These mathematical expressions can be physically interpreted as the fact that a
pulse is obtained as a superposition of different frequencies.
We can also factor out an oscillatory term proportional to the carrier frequency,
define Ω = ω − ω0 and some other mathematical changes in order to obtain the
spectral representation of 1.1a:

Ẽ+(ω0 + Ω) = |Ẽ+
0 (Ω)|eiΨ(Ω) ⇒ S(Ω) ∝ |Ẽ+

0 (Ω)|2 (1.3)

Where |Ẽ+
0 (Ω)| is the spectral pulse envelope, Ψ(Ω) is the spectral phase, and

S(Ω) is the pulse spectrum.

1.2 Pulse duration and bandwidth

The main goal of this project is to measure the temporal pulse duration. In general,
pulse durations down to roughly 10 ps can be measured with the fastest available
photodiodes in combination with fast sampling oscilloscopes. We will work with
lasers with a Gaussian profile, which have different expressions to define the pulse
duration or the spectral width. We can define full-width-half-maximum (FWHM),
half-width-l/e (HW1/e), half-width-1/e2 (HW1/e2), root-mean-squared (RMS)
width and equivalent pulse width. [2]
In this project, we will work with (HW1/e2), defining T as the distance between the
two points whose intensities are 1/e2 = 0.135 times the maximum value. Although
we work with HW1/e2, it is good to make some other explanations about FWHM.
FWHM defines the pulse duration T as the time between the most- separated points
that have half of the pulse’s peak intensity.
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Figure 1.1: Definition of T working with HW1/e2

In the same way, the spectral FWHM ∆ω can be defined. And due to the fact
that T and ∆ω are related by Fourier transforms, they are dependent of each other.
The product of temporal duration T and spectral width ∆ω of a pulse is known as
the Time-Bandwidth product, and it has a minimum value [3]:

∆ω · T = 2π · ∆ν · T ≥ K (1.4)

Where K is a constant that depends on the pulse temporal shape and can be
derived analytically in each case. The smaller the TBP, the cleaner the pulse. The
minimum possible value of the TBP comes when the spectral components are
perfectly phase-locked, in other words, that is, when all the frequencies forming the
pulse are added in phase. This case is named Fourier Transform Limited (FTL), and
it represents the minimum pulse duration that can be attained for a given frequency
spectrum.

For the phase-locked Gaussian pulse:

E(t) = exp(−(
t

T/4
√

ln2
))2 (1.5)

Which leads to:

S(ω) = exp(−(
ω

2
√

ln2/T
))2 (1.6)

where ∆ω = (2
√

ln2)2/T and then:

TBP = ∆ν · T = 0.441 = K (1.7)
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In a more general case, the different frequencies forming the pulse are not
added in phase because the spectral phase is temporal-dependent. This leads to a
broadening of the pulse, and consequently the time-bandwidth product is larger
than from the FTL pulse.

1.3 Instantaneous frequency and chirp

Sometimes, in propagation of ultrashort pulses, it is relevant to make a general
treatment with spatio-temporal coupling. In this project, spatial and temporal
evolution of the fields can be decoupled, simplifying the problem. The expression
for an optical pulse is then 1.1a, where we can omit the amplitude since we only
care about the temporal pulse shape and duration. This expression can also be
expressed as:

E+
0 (t) = e−i(ω0t−ϕ(t)) = e−iΦ(t)

The instantaneous frequency can then be defined as:

ωinst(t) =
dΦ(t)

dt
= ω0 −

dϕ(t)
dt

(1.8)

From this definition, one can see that if ϕ(t) is constant, ωinst is constant across
the pulse. When this happens, ωinst = ω0 which is the Fourier-transform-limited
case. But, as explained before, in a more general case, ϕ(t) will be time-dependent.
Using the Taylor expansion, it can be written like:

ϕ(t) = ϕ0 + ϕ1t +
1
2

ϕ2t2 +
1
3!

ϕ3t3 + ...

Introducing this expression in 1.8:

ωinst(t) = ω0 − ϕ1 − ϕ2t − 1
2

ϕ3t2 − ...

Where only the first few terms are needed to describe the pulses we will work
with. When the instantaneous frequency is time dependent, we can say that the
pulse is chirped. The second order term ϕ2 is called the linear chirp coefficient,
and if it is the only temporal phase term (ϕ2 >> ϕ3, ϕ4...), we say that the pulse is
linearly chirped. If the chirp coefficient is positive (ϕ2 > 0) the pulse is up-chirped
and if it is negative (ϕ2 < 0) it is down-chirped. Any other higher terms of the
temporal phase different from 0 lead to pulse distortions.
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Figure 1.2: Up-chirped pulse on the left and down-chirped pulse on the right

1.4 Pulse Propagation in dispersive media

A dispersive medium is characterized by a frequency-dependent refractive index
n(ω) and absorption coefficient. As it is known that any pulse is composed by a
superposition of different frequencies added coherently. A change in refractive
index also means a change in phase velocity, thus meaning that any different
monochromatic wave composing the pulse will travel through the medium with
different velocity and undergo different attenuations. Hence, the different spectral
components will change their relative phases upon propagation. As a result, the
pulse is broadened and chirped.
In this project, we will work with ultrashort pulses. The properties of ultrashort
pulses can undergo complicated changes when propagating in transparent optical
media, but if we consider an ultrashort pulse with low power propagation in a
dispersive media, the only effect that must be taken into account is the chromatic
dispersion.
This effect will be predominant in our experiment, since we will measure the chirp
parameter evolution through our crystal. In order to describe this phenomenon,
our goal will be to trace the evolution of the pulse with initial envelope E+(0, t)
along the propagation distance z: E+(z, t). We consider that this pulse has a finite
bandwidth ∆ω centred at frequency ω0. Since the ultrashort pulses we will be
working with have durations of pico or femtoseconds, the relation ∆ω << ω0

holds, and we can define Ω = ω − ω0 like we did for 1.3. The chromatic dispersion
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can be defined via the Taylor expansion of the wave number k as a function of ω:

k(ω) =
n(ω)ω

c
(1.9a)

Using now the relation ∆Ω << ω0:

k(ω) = k(ω0) +

[
∂k
∂ω

]
ω0

(ω − ω0) +
1
2

[
∂2k
∂ω2

]
ω0

(ω − ω0)
2 + ... (1.9b)

Expressed in terms of Ω:

k(Ω) = k(0) +
[

∂k
∂ω

]
ω0

Ω +
1
2

[
∂2k
∂ω2

]
ω0

Ω2 + ...

= k(ω0) +
Ω
u
+

1
2

Ω2g +
1
6

Ω3β3... (1.9c)

Where we defined some terms: the group velocity u(ω) =
[

∂k
∂ω

]−1
, the group-

velocity dispersion coefficient (GVD) g(ω) =
[

∂2k
∂ω2

]
, and the third order dispersion

(TOD) coefficient: β3(ω) =
[

∂3k
∂ω3

]
. Since the first two are the most important, let’s

describe them in more detail below:

1.4.1 Group velocity

The group velocity can also be defined as:

u(ω) =

[
∂k
∂ω

]−1

=

[
ωdn(ω)/dω

c
+

n(ω)

c

]−1

u(ω) =
c

n(ω) + dn(ω)
dω ω

Which can be rewritten in terms of the wavelength using the relation:

ω =
2πc

λ
⇒ dω

dλ
= −2πc

λ2 dλ =
−ω

λ
dλ ⇒ ω

dω
= − λ

dλ

u(λ) =
c

n(λ)− dn(λ)
dλ λ

(1.10)
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1.4.2 Group-velocity dispersion

The group-velocity dispersion (GVD) is the phenomenon because of which the
different frequency components from the pulse suffer different delays due to the
fact that the group velocity itself is frequency dependent. As a result, the pulse
spreads in time.

The GVD can be expressed in terms of the group velocity:

g(ω) =

[
∂2k
∂ω2

]
= − 1

u(ω2)

du(ω)

dω

We call normal group velocity dispersion, the regime in which the group velocity
decreases with frequency, and anomalous group dispersion when the group velocity
increases with frequency. In the first regime, low frequency components travel faster
and in the second one high frequency components travel faster.

The GVD coefficient is a measure of the pulse-time broadening per unit distance
per unit spectral width. And, in the same way as for the group velocity, it is usually
expressed in terms of the wave length:

g(λ) =
λ3

2πc2

[
d2n(λ

dλ2

]
(1.11)

1.4.3 Propagation equation

The general propagation equation can be quite complex. However, a simplified
version of the propagation equation can be derived from the general wave equation
by truncating the dispersion effects up to the second order:

∇⃗ × (∇⃗ × E⃗) + µ0
∂2D⃗
∂t2

And the resulting simplified propagation equation is:

∂A(t, z)
∂z

+
ig
2

∂2A(t, z)
∂t2 = 0 (1.12)

Where A is the complex amplitude of the pulse, coming from:

E(t, z) = A(t, z)ei(k0z−ω0t) (1.13)

The solution of this equation can be easily obtained, and is:
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A(ω, z) = A(Ω + ω0, z) = A(ω, 0)ei 1
2 gΩ2z (1.14)

If TOD were also considered, the solution would be quite similar:

A(ω, z) = A(Ω + ω0, z) = A(ω, 0)ei 1
2 gΩ2z+i 1

6 β3Ω3z (1.15)

From these results, one can observe that S(0, ω) = S(z, ω), or, in other words,
that the spectrum remains constant during the pulse propagation. It is also impor-
tant to see that when GVD dominates the dispersion the pulse acquires a quadratic
phase, while if the TOD does dominate the dispersion, the pulse acquires a cubic
phase. Finally, the electric field of the pulse in the temporal domain can be obtained
straight forward using the Fourier transform:

E(t, z) =
1

2π

∫ +∞

−∞
E(ω, z)eiωtdω (1.16)

1.5 Second harmonic generation and Phase-matching

The main goal of this project is to measure the duration of ultrashort pulses. This
process is not direct, since today’s oscilloscopes and other measurement instruments
can deal and measure pulses up to the nanosecond’s regime. When dealing with
shorter pulses, it is necessary to use non-direct measurement methods. The existing
techniques of ultrashort pulse measurements usually rely on optical gating between
the pulse and its replica that is realized through generation of the second harmonics.
[1] Noncollinear second-harmonic generation (SHG) is one of the best methods to
measure ultrashort pulses. Two beams cross inside a nonlinear crystal with a small
angle, and a second harmonic beam is generated in the forward direction if the
phase matching conditions are fulfilled. Since these conditions are not trivial, but
they must be fulfilled, let’s make a brief explanation.
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After some manipulations with the Maxwell equations in nonlinear media and
doing some reasonable assumptions [4], one can obtain the equation of the SHG
intensity:

I2(L) = 2ϵ0cn|E2(L)|2 = 2
√

µ0

ϵ2
ω2

2d2
e f f |E2

1|2L2 sin2(∆kL/2)
(∆kL/2)2 (1.17)

Which allows us to obtain the conversion efficiency η as:

η(L) ≡ I2(L)
I1

∝
d2

e f f I1L2

n3
sin2(∆kL/2)
(∆kL/2)2 (1.18)

Where ϵ1 ≈ ϵ2 ≈ ϵ0n2. This expression gives us the efficiency with which
the original fundamental beam generates the second-harmonic. In this expression
appears ∆k which is the phase mismatch factor ∆k = K2 − 2k1. When ∆k = 0
the phase-matching condition is fulfilled, sinc(∆kL/2) = 1, and the conversion
efficiency is proportional to some parameters and to the total intensity of the initial
propagation beam. But ∆k = 0 is not an easy condition to fulfil in the laboratory,
and when ∆k ̸= 0 the conversion efficiency decrease drastically. This means that
when the SH wave generated in a point z1 arrives to a point z2,it will not be in phase
with the SH generated in z2. This interference is described by the sinc function,
which means that the efficiency and the intensity will both have an oscillatory
behaviour. Furthermore, as the sinc function has a maximum at the phase π, the
propagation distance that makes the accumulated phase difference π is known as
the coherent length Lc, and when L = Lc the nonlinear parametric process reverse
its direction transferring energy back from SH to fundamental wave. From this
distance, the intensity of the SH starts decreasing.

Lc ≡ π

∆k
=

π

k2 − 2k1
=

λ

4|n2 − n1|
(1.19)

Another possible definition from the coherence length is the maximum crystal
length that is useful producing the SH power. From the figure below, one can
observe how the intensity always decrease as ∆k increases, and how the intensity
has a maximum at the coherence length for a given ∆k

As stated before, it is really complicated to reach the perfect phase matching
condition, and it has been also shown that the efficiency decrease really fast if it is
not reached. Anyway, there are some phase-matching techniques and also quasi
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Figure 1.3: Normalized SHG intensity versus propagation distance for different ∆k

phase-matching techniques that allow to work in proper conditions.

One of the most famous PM techniques is the birefringent phase-matching,
which is based on the properties of the birefringent crystals. In those crystals, the
electrons do not move in the same direction of the applied field, but they will
follow a path imposed by the crystalline structure, thus resulting in a polarization
vector that is not parallel to the electric field. Without entering any more detail, this
technique is not useful for our thesis due to few reasons:

• PM condition is highly dependent on the incident angle, the polarization state
of the beam and the wavelength. Since ultrashort pulses span over a broad
frequency bandwidth, it is a big issue trying to achieve PM (or approximate
PM) condition for all the frequencies.

• The range of frequencies that can reach the PM condition (known as PM
bandwidth) increases as the thickness of the crystal decreases, and since we
will work with ultrashort pulses, very thin crystals will always be needed.
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1.5.1 Quasi-phase-matching

Another important phase-matching technique is the one dimensional quasi-phase-
matching (QPM) technique, which was experimentally proved in 1992 [5]. This
technique is based on the oscillatory behaviour of the SHG intensity when the PM
conditions are not satisfied, specially, in the first and biggest intensity peak at Lc.
As stated before, when the propagation length is equal to Lc the phase difference
is equal to π and the SHG reverses its direction transferring energy back to the
fundamental beam. The QPM technique consists in adding periodically a phase
shift of π, with that the intensity will keep increasing monotonically instead of
decaying from Lc. In the figure below, it is illustrated the difference between the
complex amplitude contributions from the nonlinear crystal to the SH wave when
working with or without PM. It can be observed how with QPM the sign of the
contributions is reversed every coherence length and the total amplitude keeps
increasing. The realization process with which the π phase shift is applied consists

(a) Addition of amplitude contributions
from different parts of the crystal

(b) SH intensity under different condi-
tions.

in periodically invert the sign of second-order NL susceptibility χ(2) of the material
every coherent length. A strong field is applied to the ferroelectric nonlinear crystal
for some time, so that the crystal orientation and thus the sign of the nonlinear
coefficient are permanently reversed. The periodically spatial distribution creates a
constant reciprocal lattice vector G = 2πm/Λ. With that, the phase-mismatch can
be compensated through this G that applies directly in the momentum conservation
relation as:

k⃗2 − 2⃗k1 = ∆⃗k − G⃗ = 0 (1.20)
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This technique has some benefits over the birefringent PM, for example, it can
be implemented in non-birefringent crystals, thus solving the need for it to be thin.
The problem is that this one dimensional quasi-phase-matching is still not useful
to our experiments, because it still has the SHG bandwidth problem. The final
QPM technique that solves this problem and consequently, the one we will use
in the experiments of this thesis, is the QPM in 2D random ferroelectric crystals.
Without entering much detail, in these crystals (such the Strontium Barium Niobate
(SBN), which is the one used in this project) the linear susceptibility is constant,
while the second order nonlinear susceptibility is spatially random modulated by
the disordered ferroelectric domains [4]. The random χ(2) distribution creates a
continuous set of lattice vectors G, thus yielding t he SHG in the xy plane

1.6 Ultrashort pulse duration measurement techniques

Here, two different methods of measurement of ultrashort pulses using SHG will
be explained. The first one is the most common one, and the second is a different
faster method which we will use in this project.

1.6.1 Intensity autocorrelation method

The most common technique in ultrashort pulse measurement is the intensity
autocorrelation (AC). This technique provides quantitative information about the
temporal structure of an unknown signal. The unknown signal is split in two parts
of equal intensity, and one of the pulses is delayed by τ. The two pulses are focussed
into a nonlinear optical crystal, which is designed for efficient second harmonic
generation over the full bandwidth of the pulse, what requires sufficient intensity
and that the phase-matching conditions are fulfilled, either by crystal birefringence,
QPM etc. With that, the two signals recombine inside the crystal and a SH signal is
generated. This new SH signal is separated in the collinear and the noncollinear
part thanks to the nonlinear crystal and its noncollinear geometry. The energy of
this new signal is measured with the form IAC(τ). By doing so, the same experiment
needs to be repeated applying different delays and measuring the intensity of the
new signal with an integrating detector, obtaining a relation between the delay τ
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and the intensity of the noncollinear SH signal. The relation between this function
and the original signal is given by:

IAC(τ) =
∫ +∞

−∞
|E(t)E(t − τ)|2dt =

∫ +∞

−∞
I(t)I(t − τ)dt (1.21)

Figure 1.5: Intensity autocorrelator

The fact that the obtained function is symmetric means that this technique only
provides information about the pulse duration, and although the intensity AC do
not give information about the pulse shape, it depends on the assumed signal shape.
Assuming a Gaussian-shaped signal, one obtains that the relation between the AC
pulse and the original is

√
2T = TAC.

Although this technique is the most used due to its simplicity, it has several limita-
tions:

• It requires multiple measurements. This technique relies on measure the SHG
for different delays in order to obtain the complete AC trace. This means
that one has to repeat the same experiment many times, which makes this
measurement process slow.

• Because the pulse duration can only be measured at the output of the crystal,
one can never get rid of the pulse distortion acquired during the propagation
inside the crystal.
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• The PM conditions. In this case, it is highly dependent on the angle and
wavelength, and as stated in 1, PM problems have to be fixed to obtain a
proper efficiency. To do so, different nonlinear crystals are needed to work
with pulses with different central wavelengths. Furthermore, thin crystals are
also required in order to get a proper PM bandwidth, and the SHG efficiency
is proportional to the square of crystal length, which makes it complicated to
find a proper crystal length.

1.6.2 Transverse second-harmonic generation in SBN crystal

For these reasons, in this project we will use another autocorrelation technique,
using a parametric conversion process in SBN crystals. These crystals consist of
antiparallel nonlinear ferroelectric domains with random sizes and spatial distribu-
tion. In this media, the PM condition is relaxed and SHG has a similar efficiency
over the full transparency range of the crystal, since the phase matching conditions
are fulfilled over a broad frequency bandwidth. The thickness of the crystal is no
longer a problem either, since the only limitation is the transparency region of the
crystal.
Inside these crystals, depending on the direction of propagation of the original
incident beam, the SHG can take the form of a plane (when the beam propagates
perpendicular to the z axis) or a cone if it propagates in any other direction[6]. In
this project, we will focus on the planar noncollinear SHG, that is emitted in the
plane perpendicular to the two beams propagation direction, like can be observed
in 1.6.

This planar SHG is formed by doing a similar procedure of the AC technique,
when two replicas of the pulse overlap inside the SBN crystal, and it represents the
autocorrelation of the pulse. Different pulse overlap regions are directly formed
at different positions of the planar SHG plane, thus meaning that in a single shot
one can not only obtain the pulse duration and the initial chirp parameter of the
original pulse, but also the evolution of the interaction between the two replicas of
the beam inside the crystal.
One big difference between this technique and the commercial AC, is that the SHG
signal is captured at 90º with respect to the propagation direction of the incident
beams.
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Figure 1.6: Representation of the transverse AC Setup [6]

Figure 1.7: Planar SHG in SBN crystal [6]

The experimental setup is quite similar to the AC technique. The fundamental
beam is split in two delayed replicas, that enter the SBN crystal with angles −α and
α to the x-axis (as shown in 1.7). Each one of the beams generates a SHG in the form
of a cone, and the interaction between the two beams inside the crystal gives rise
to the above-mentioned planar noncollinear SH emission [7]. This emission can
not only be measured in the transverse direction, but also in the forward direction,
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but it is easier to measure it from above because the desired signal is more isolated
from the two other cone-shape emissions. The SH signal can be then detected by a
CCD camera placed above the SBN crystal, imaging the xz-plane 1.7, and recording
the evolution of the SH signal through the crystal. We assume that the two incident

Figure 1.8: Interaction of two pulse replicas in SBN crystal [4]

beams have a Gaussian spatial and temporal profile, and that they cross at an angle
2α at the entrance of the crystal. Their amplitudes would be:

A1 = A10exp(−
z2

1
2ρ2 )exp(

−(t − x1/u)2

2T2 ), (1.22a)

A2 = A20exp(− z2
2

2ρ2 )exp(
−(t − x2/u)2

2T2 ), (1.22b)

Where (x1, z1) and (x2, z2) are the coordinates in reference systems oriented
along the propagation direction of each one of the beams 1.8, u = c/n is the light
speed inside the crystal, and ρ and T are half beam and pulse width at 1/e levels in
intensity, respectively.
If we assume that the random QPM process fulfil the PM conditions [1], and
introducing a common coordinate system for both beams, we obtain:

B(x, y, z) ∝ P(2)(2ω) ∝ d(2)e f f A1A2 (1.23)
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Now, assuming that the SH signal recorded by the camera is actually a cross-
correlation function of the two incident pulses [7], the SH field generated by the
two Gaussian pulses is represented as:

B(x, z, t) = B0(x)exp(−z2cos2α + x2sin2α

ρ2 )× exp(− (tu − xcosα)2 + z2sin2α

u2T2
c (x)

)

(1.24)
Where α is the halph angle between the wave vectors of the two intersecting funda-
mental beams inside the SBN and B0 is an amplitude.
The generated signal emitted from the overlapping region of the fundamental
beams, as can be observed in 1.7 and 1.8. This region depends on the spatial extent
of the beam and the temporal duration of the pulses. When working with long
pulses T >> 2ρtanα/u, the region is limited by the spatial dimensions of the beams,
while when working with short pulses T << 2ρtanα/u it is limited by the pulse
lengths.
The resulting intensity of the SH generated is give by:

I2ω(x, z) =
T4 I2ω(0)

T4
ch(x + L/2)

exp(− 2z2sin2α

u2T2
ch(x + L/2)

)× exp(−2z2cos2α + 2x2sin2α

ρ2 )

(1.25)
where

Tch(x) = T

[(
1 +

Cβ2x
T2

)2

+

(
β2x
T2

)]1/2

(1.26)

When a time delay between the two pulses is applied, the SH appears moving along
the Z-direction, and its thickness depends directly on the pulse duration.

∆z(x) =
uTch(x)√

2sinα
(1.27)

This thickness is the most important unit in this project, as it is the only one that
is measured directly from the obtained image of the SH trace. One example of the
images we have worked with in the laboratory is in 1.9. This ∆(z)(x) is directly
obtained measuring the thickness of the autocorrelation trace obtained directly from
a picture taken in the laboratory.

What will be very important in this work, because that implies that using a slow
enough pulse, a bigger crystal will be needed.
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Figure 1.9: The AC trace of transversely emitted SHG from two intersecting funda-
mental beams [6]

If we measure the width of the SH trace at the input of the crystal ∆z(0), we obtain
a measure of the time duration:

T = (
√

2sinα)∆z(0)/u (1.28)

Which is one of the most important values we will be searching for in this project.
The same equation can be obtained working with the experimentally measurable
FWHM τ

τ = (
√

2sinαext)∆zFWHM(0)/c (1.29)

Where this αext is the one observed in 1.7.
An equation that gives us the initial chirp of the pulse can be derived using 1.26
and 1.27. When β2 is known, we only need to measure ∆z(x) at a given x to obtain
the initial chirp of the pulse:

C =

√
(4∆z(0)2∆z(x)2/u4)sin4α − (xβ2)2

xβ2
−
(
2∆z(0)2/u2) sin2α

xβ2
(1.30)

For β2 and C having the same sign, the SH trace will grow constantly with x, the
distance from the entrance of the crystal, while when they have different signs,
the trace will start decreasing its width, since it find its minimum, from which the
width begins to grow.
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Chapter 2

Automation programs

The experimental methods explained in the previous section had been studied
previously. The set-up corresponding to this technique has been already imple-
mented in the laboratory, shown in 2.1. Anyway, this set-up was not automized, it

Figure 2.1: Experiment set-up

only allowed to take one single picture at a time to obtain the pulse duration after
using the equations from 1.27 to 1.30. The key goal of this project is to build up a
program that allows to automate this measurement process and obtain the desired
parameters (from 1.27 to 1.30) and different graphs in real time. This is something
that have never been realized before, and it would mean a major improvement,
because it would make the measurement process much faster and easy to do.
The program consists of two main different parts, one programmed using Matlab,
and the other using LabVIEW.
The Matlab program is in charge of the mathematics and the calculations. Different
versions have been proved, but essentially, it takes an image of the SH trace as an
input, and it gives as an output the duration of the incident pulse, the initial chirp
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parameter, the evolution of the beam radius over the crystal etc.
The LabVIEW part, is in charge of the automation. It is the part that the user of the
program will see and interact with. It shows the images recorded by the camera in
real time, and allows the user to take the photos and see the desired results.

2.1 Matlab program

The famous and well-known Matlab is a non-free software and programming
language and numeric computing environment developed by Mathworks. It has
been the chosen programming language above others because it is very simple
and fast to import external data (like images) as it has native toolboxes designed
for image processing, and it is really fast on doing the mathematical calculations.
Anyway, Python could have also been used, but it would have been slower. The
worst aspect about Matlab would be the fact that it is non-free, but since the UPC
provides licences to its students and professors, it has not been an inconvenient.
Anyhow, this code could be translated to Python in order to obtain a free-license
version of the program.
Now, the built program will be explained in detail. Firstly, the images are imported
to the script. The photos are red in a ”.txt” file, what means that Matlab transforms
it directly to a matrix which can be easily manipulated from now on. We tried two
different cameras from the laboratory. The first camera we tried is the ueye camera
UI-1480SE-M-HQ, which we discarded after taking some images and processing
them. This camera only took the photos in image formats like ”JPG” and although
Matlab is able to transform image formats to a matrix in such a way it does with the
”txt” files, the resolution becomes worse respect the other case. This is the reason
why we finally we opted for the Spiricon SP620U, because it captures the image with
a proper resolution in a ”.csv” file that can be instantly changed to ”.txt”. Another
plus point for this camera, is that it allows to be controlled from LabVIEW using its
packages.

One example of an image obtained by this camera is 2.2. The SH signal we want
to measure is the orange-yellow line from the middle, thus meaning we want to
select the region of interest (ROI) of the image. The light blue part surrounding the
yellow line is the light emitted by the two cones from each of the two incident split
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(a) Image obtained with Spiricon SP620U
(b) Experimental set-up

Figure 2.2: At the left, an image obtained by the camera. At the right, the experi-
mental set-up in the laboratory.

beams, and there are other non-interesting parts in the image. In order to retrieve
the important part of the image, we chose the method of taking a background image.
This is easy to do in the laboratory, where one can move manually the position of
the beams to obtain an image like 2.3a.
With that, Matlab reads 2 images, one from the SH signal itself, like 2.2a and another
one of the background only (which contains the light from the two cones described
in the previous section) and it subtracts the Background matrix from the signal
matrix. Although there are other methods of retrieving the important part of the
signal, we chose this one because it was not only easy to apply in the program but
also for the user, who can decide with which background and set up wants to work,
and change the background when needed.

It is still necessary to select the important part of the image, and to do so, no
methods of image recognition worked properly, since the photos are taken in the
dark in the laboratory and it is so difficult to distinguish what is the crystal or not,
and since to capture the whole crystal including the non illuminated by the pulses
part was necessary, the better option was to fix the camera in the set-up, and always
cut the same part of the image.
After that, the resulting matrix is treated in order to obtain a cleaner one with less
distortion. Different functions were tested. The first option was to interpolate the
matrix to obtain a new one with more points and therefore more resolution, but
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(a) Image of the background only (b) Image without the background

the obtained results make not significant changes, and, additionally, the program
becomes much slower. It was impossible to distinguish the two images before and
after interpolate, and although in the resulting graphics of, for example, T(z) were a
bit cleaner, the computational cost was not worth the implementation.
With these bad results, the next approach was trying using image processing tool-
boxes. One can observe how the graph oscillated sharply, so the idea was to smooth
the obtained T(z) function using moving average, and the obtained solution was
much cleaner.

Figure 2.4: Duration of the pulse (T) along the crystal length (z). On the left side,
the result using moving average, and on the right side, without interpolation.

What the Matlab function did was just:
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ynew(1) = y(1);

ynew(2) =
y(1) + y(2) + y(3)

3
;

And from there:

ynew(i) =
y(i − 2) + y(i − 1) + y(i) + y(i + 1) + y(i + 2)

5

The last image processing done was a Gaussian filter applied to the image ma-
trix, because we are working with Gaussian profiles. This is because the obtained
Gaussian curves (the different pulses along the z-axis) were still too sharp after
applying the moving average method.
Once the image processing part is over, the program starts making the calculations.
The most important part is the calculation of the beam radius using a numerical
knife-edge method. This method consists in a very sharp edge placed at the z plane
where the beam is measured. A detector placed on the beam axis measures the beam
energy, and as the edge moves into the beam, the energy going into the detector de-
creases. As a result, the beam radius corresponds to the edge displacement between
the positions for which the intensity measured corresponds to the 16% and the
84% of the total beam intensity. The objective of this method applied numerically
corresponds then to calculate the D16−84 profile, which is the equivalent to ∆z(x)
from 1.27. By doing so, the beam width evolution across the crystal is obtained.
The program calculates the points where the area of the Gaussian are the 16% and
the 84% of the total area, respectively, and it calculates the difference. Different
numerical integration methods have been tested, but finally, the best option was to
use the trapezoidal method, which is fast and precise for sinusoidal-type functions
like the Gaussian profiles we are working with. With that, using 1.28 one can
calculate the desired pulse duration. In any case, the obtained values are measured
in pixels, so it is necessary to change the units to the international system to obtain
∆z in mm and T in fs.

One of the most important points in the technique is to obtain the right calibra-
tion factor to relate the pixel size with trace size and to femtoseconds. Different
methods could be used. The first method applied to change the units of our system
was by using an autocorrelation technique. By a thorough work in the laboratory,
different measurements of the SH trace separated from them by a given interval
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Figure 2.5: Gaussian profile of the laser, with lines at the points where the area is the
16% and the 84% of the total area. The program calculates the difference between
these 2 points as ∆z

were realized. With that, one obtain different images of the SH trace displaced one
from the other, and by measuring the distance between measurements in the labo-
ratory precisely, one can compare the images in Matlab and correlate the distance
measured in the lab with the distance in pixels between the images. To do so, there
are some mathematics to be used. When a little displacement is applied between
the two incident split beams, one can know the applied delay on time by simply
applying δt = δx/c. Changing the pulse delay by a known amount δt, induces
displacement of the correlation trace in the Z-direction δz = cδt/(2sinα), which
can be precisely measured [1]. In 2.6 the distance between the two traces in the
lab was δx = 0.12mm, which corresponds to δz = 0.68842279mm. Counting in the
image, one can see that the distance between the two traces is 48 pixels, what let us
a relation of 0.01434mm/pı́xel.

The second method is much simpler, it consists in take the total amount of
pixels from the crystal, and take into account that the crystal used for this project
measurements are 10x5x5mm, what means that one needs to multiply the obtained
values of ∆z by 5mm and divide them by the number of pixels on that direction
of the crystal. For example, in 2.6 the total number of pixels is 341, what gives the
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Figure 2.6: Two autocorrelated signals added up in the same image.

result of 5/341 = 0.01466mm/pixel. One can observe how using both methods one
obtain a very similar result, but since this second method is much faster to apply as
it does not need to take images of different displaced traces, we chose to use this
second easier method.
With the values of ∆z and T measured, one way to check if these results make sense,
is to plot a Gaussian profile from the processed image matrix and compare it to a

theoretical Gaussian calculated by using the beam radius obtained: I0e
− 2x2

D2
16−84 and

taking xo (the centre of the Gaussian) as an average of the points near the pixel
where the area is half the total area of the Gaussian.

In 2.7 is easy to see how the two curves fits good enough to consider that our
calculations are correct.
Finally, the program compares the obtained function of τ with different theoretical
curves of τ obtained using 1.26 and 1.29 for different values of the chirp coefficient
α. The equation in terms of α can be written as:

Tch = T0

(
1 +

(
2αx
Ld

)
+

(
x2(1 + α2)

L2
d

))1/2

(2.1)

With that comparison, one is able to observe not only if the measured tau curve
is within the expected range, but to observe what is the possible chirp coefficient
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Figure 2.7: Comparative between the obtained in the laboratory and a theoretical
Gaussian profile

value.

Figure 2.8: Comparative between the T obtained in the laboratory and theoretical
Tth profiles for different α

In 2.8 one can observe that although the T function measured from the laboratory
oscillates randomly along his graph, its behaviour fits quite well the different
theoretical curves. Before obtaining this graph, we expected the measured T would
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be closer to the curve with α = 0, so this results shows us that the laser is not
perfectly calibrated or that there is some other distortion that affects the laser pulse.
All in all, the Matlab program has proved to work successfully.
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2.2 LabVIEW program

Labview is a system-design platform and development environment for a visual
programming language from National Instruments, which is commonly used for
data acquisition, instrument control, and industrial automation on a variety of
operating systems, like Microsoft Windows. It was first released in 1986, and it has
several versions, the program of this project has been built using the version of
Labview 2018 SP1.
The most remarkable aspect of labview is that it uses graphical programming. It
integrates the creation of user interfaces into the development cycle, what is one of
the main aspects why it has been chosen for this project, because since the beginning
of the programming process, the so-called front panel (the user interface) can be
observed, tested and modified, and each VI (which are the LabVIEW programs-
subroutines) can be easily tested before being embedded as a subroutine into a
larger program.
The other important benefit that made LabVIEW be the final choice for this project
is its extensive support for interfacing to devices, like cameras. It has many libraries
with numerous functions for data acquisition, mathematics etc. Furthermore, it is
simple to integrate Matlab codes in LabVIEW, thus saving a lot of time to translate
the Matlab program to other programming language.
Both Matlab and LabVIEW has the inconvenience that are not free software, but
since UPC software distribute licence to their students, this does not suppose a
problem.
Anyway, LabVIEW has inconveniences. It has very bad compatibility between
different versions of the same program, specially when using external programs in
the VI. If the version of an external software actualizes, the VI needs to be rebuilt
and change all the libraries for the newer ones. This can be a huge problem and
makes it necessary to work always in all the computers with the same versions of
every software used in the program.
All in all, the pros of LabVIEW outweigh the cons, and this is the reason why
LabVIEW was chosen instead of other free software. Anyway, as it was stated for
the Matlab part, one of the main goals to continue this work is to translate this
program to a free-license software, like Arduino, which will be tried in the near
future.
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Once the introduction on why LabVIEW was the chosen option is done, the program
will be explained below in detail. Firstly, the script needs to capture in real time
the image from the camera, to do so, LabVIEW reads the input from BeamGage.
BeamGage is a software that shows in real time the image being captured by a
camera connected to the computer, and allows applying many filters to the observed
image. The program, as expected, allows saving captures of the shown image
in different formats. Using different BeamGage LabVIEW libraries in different
steps, LabVIEW is able to open BeamGage, inject an initial setup, and project
what BeamGage is showing in the program. That means that one has to open the
BeamGage on the computer after LabVIEW opens it. That could be a problem to be
solved, as one could expect the same LabVIEW to do all the job, so the user does not
need to use at the same time different software products. Anyway, this initialization
part was taken from another project from years ago and only the work to translate
it to another LabVIEW version (the initial program was built in LabVIEW 2013
and this project was realized in LabVIEW 2018) and also change the BeamGage
libraries to the newest ones (because the BeamGage version was also actualized)
was a heavy work. So after many problems and different versions, when the VI that
initializes the BeamGage start working in the desired versions of both programs
we realized that the program would be faster and easier for the user (who usually
is already familiarized with the BeamGage software) if the filters and effects were
previously selected directly from BeamGage. After selecting the desired camera
and filters in BeamGage, all the rest of the program works entirely inside Labview.
From here, the block diagram splits in two parts, both regulated by a Start/stop
mechanism, which is the photo button. When the user clicks the photo button, the
first half of the block diagram is in charge of capture the image itself and translate it
to a real 2D matrix. The second half is more complex. It consists of a loop inside a
switch case. The loop has two important parts, the first one does save the matrix
obtained from the image in a .txt file. This part has a button that the user can
press to distinguish when the photo is the background or the signal itself, thus
letting the user change the background when it is necessary. The only change that
exists between the two cases is that the saved file is named ”background.txt” or
”signal.txt” in order to let the Matlab code import both matrix separately. The
next part from the loop is the Matlab code itself. Thanks to the Matlab script from
LabVIEW a Matlab code can be directly integrated in the VI. Furthermore, some
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inputs and outputs can be inserted and taken out from the Matlab script. There’s
an input called ”Gaus pos” that lets the user of the program select from which
pixel from the original image wants to see the Gaussian profile and its theoretical
comparative. And there are some outputs, like the value of the initial T and τ, and
the Gaussian curve at the entrance of the crystal. This loop stops either when the
program is forced to stop, or when the user presses the Stop Server button, that
makes the program stop running and closes the BeamGage too. The final version of
the program is shown in 2.9

Figure 2.9: Final version of the LabVIEW program

As it is shown in 2.9, at the top left of the program the image that is capturing
the camera in real time is shown. Below the camera image, there is the Gaussian
profile of the image in the pixel position selected by the control ”Gaus pos”. At the
right of the image there is the ”Foto” button, which takes a photo and starts the loop
of the program, as expected. Next to it there are the Background and the Matlab
buttons. The background button indicates when the next photo to be taken is the
Background image. The Matlab indicates if, after taking an image, the program
does the calculations and show the resulting graphs and results. These buttons
do nothing by themselves, but they need to be selected before clicking the ”Foto”
button. It is important to observe that the Matlab button needs to be pressed after
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taking the initial background in order to pass the Matlab the two photos it needs
(it is also possible to take first the signal image and then take the next photo with
both the background and Matlab buttons selected). The Stop Server button ends
the program, as explained before.
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Chapter 3

Results

Finally, with the program finished and fully functional, the last step consists in
measure 3 different pulses, analyse the obtained results and check if they are correct.
It is needed to say that at the beginning of this project the idea was to use this
program both in the femtosecond and picosecond regime lasers, but unfortunately,
the picosecond laser broke so all the measures are done with the same femtosecond
laser. Anyway, the 3 pulses will be different from each other, since the initial pulse
is modified using different techniques in order to obtain measures of pulses with
different behaviours.

3.1 140fs pulse

This pulse is the common pulse emitted by this laser, it is emitted and sent directly
to the measurement set-up described in 1.6.2. The pulse was measured with the
program and the obtained results were the following:
The measured ∆z(0) = 0.3519mm, and with that, the obtained duration of the pulse
was 108.4371fs, thus meaning that the obtained τ is 127.6749fs. From 3.1 one can
observe that the chirp coefficient is between 0.1 and 0.3. The obtained values are
correct enough. Although the laser is theoretically emitting at 140fs, this can not be
exact, as this ultrafast lasers require very precise conditions to work properly, and
they can be bad aligned, so we can conclude that this result is valid.
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Figure 3.1: Obtained T with different Tth for different chirp coefficient values

3.2 Bad calibrated pulse

Now we aligned the used laser badly on purpose in order to observe how the
program observes this bad behaviour and that the results are not the same as the
previous experiment. Before using the program and observe the results, we expect
this pulse tu be wider at the beginning of the crystal.
The measured ∆z(0) = 0.3462mm which leads to a pulse duration of T = 142.2516 f s
and a τ = 167.4885 f s. Here it is so hard to say which is the chirp coefficient, since
the fact that the laser is bad aligned makes that it starts to decrease its duration
before going out of the crystal, as can be observed in 3.2. This is due to the fact that
here the chirp coefficient is increased at the entrance of the crystal, thus making that
the pulse gets wider faster and the overlap between the two incoming beams is not
maintained during all the crystal length. The part of the graph starting when the
beam width starts decreasing is not representative. Obviously, this result is different
from the previous one. Furthermore, the pulse is wider than the original one, as we
expected before making the experiment, and the fact that it decreases its temporal
duration from a certain point of the crystal fits also with the expected results.
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Figure 3.2: Obtained T with different Tth for the laser bad aligned

Figure 3.3: Obtained results from the program for the bad signal

3.3 3 peak pulse

In order to test further the set-up, we designed and mounted a setup to obtain
a more complex pulse consisting of a two-pulse train with a selected separation
between them. To achieve this goal, we constructed a Michelson interferometer
to generate two replicas from the incident pulse. By controlling the delay of one
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interferometer arm, we can change the separation between the replicas, obtaining
a two-peak pulse which was sent to the autocorrelator for its measurement. The
profile of that interaction shows one central Gaussian profile with two little Gaussian
at each side of the central peak, as is shown in 3.4.

Figure 3.4: Image and profile of two pulses forming a 3 peak profile

This pulse should not be measured correctly, as the program assumes that the
lasers are Gaussian-shaped and the resulting pulse of this interaction is definitely
non-Gaussian. In fact, we are working with 2 pulses here, and the program is not
ready to expect more than a pulse at the same time. The obtained results are the
following.
The measured ∆z(0) = 0.6721mm which leads to a pulse duration of T = 276.1355 f s
and a τ = 325.1247 f s. The program here reads the incoming signal as a unique
pulse, but as it is in fact a 3 peak pulse due to the interaction of the 2 original pulses,
the pulse duration is higher than the original pulse.
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Figure 3.5: Obtained results from the program for 3 peak signal

Again we can say that the program responds correctly, as it is not programmed
to read 2 pulses at the same time, but it does a logical interpretation of this incident
signal.
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Chapter 4

Discussion and Future Perspectives

The results obtained and presented in this work show that it is possible to build
a program that allows to automatize the pulse duration measurement process for
femtosecond lasers. Despite the program present some limitations, the femtosecond
pulses emitted by the laser can be correctly measured and analysed. The program
is able to show in real time the image captured by the camera, plot the evolution of
the desired parameters, like the pulse duration and the chirp coefficient, along the
crystal, show the Gaussian profile at a selected by the user point of the image, etc.
Other parameters or graphs can be obtained, but these were the selected following
the requirements of the lab team. The program is easy to read and modify, what
means that it can be used by different people for different lasers in the future.

By looking at 2.4 and 2.6 one may notice that different calibration processes need
to be done before showing the results if one wants to obtain a proper solution that
does not contain too much distortion or error on it. Thus, as the computational cost
is limited since the program needs to be fast in order to be useful in the laboratory,
it is extremely important for the algorithm to be optimized as possible. Besides
these limitations, the final program is fast enough and is able to obtain the results
with the desired precision and without much distortion, as can be seen in 2.7.
As shown in 2.1, the calibration process lead also to some debate. The original
idea was to use the autocorrelation process to change the units of the system to
measurable units instead of pixels, but we had found with the same problem as
when trying to select the important part of the image. Non image recognition was
implemented in this work as it did not seem feasible, thus meaning that there is
no way left to count the pixels between the different lines from 2.6 that by looking
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directly at the image. Anyhow, this was not a problem since using the length of a
crystal as a reference leads to the same results.

Another of the biggest limitations in this program is the LabVIEW itself and its
bad compatibility with external program’s libraries. One of the toughest works in
this project was to open the BeamGage inside the LabVIEW program in the correct
version using the correct libraries and been able to take a photo in the correct format.
Furthermore, although first one may think that it is so easy to implement Matlab
code inside the LabVIEW script, this problem is harder than it seems. The reason is
not clear yet, but sometimes LabVIEW is not able to send an input value or take an
output value from the Matlab script. This problem seems to be common for many
LabVIEW users, but after many versions the final program does not present this
problem any more.

In the future, one of the first objectives is translating this program to a free-source
software. Besides that, this program could be tested in other laser regimes, specially
in the picoseconds’ regime, where it should work also perfectly. Implementing the
image processing would be also a great add, since it would allow working with
different set-ups and moving the camera without need of changing manually the
image selection part of the Matlab code.
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Chapter 5

Conclusion

The thesis has turned in a successful implementation of the theoretical photonics
measurements methods in a user-friendly program. A program that is able to
calculate some important parameters of the pulse, specially the pulse duration has
being created and modified in such a way that it results easy for the user to work
with and interpret the results. This program has been designed for a particular
set-up from the laboratory that implements 1.6.2. The set-up was also correctly
understood theoretically and some modifications and manual measurements have
been also realized in order to understand how much effort working in an experi-
mental physics laboratory means.

After the initial theoretical study of non-linear optics and the different Second
harmonic generation measurement methods for ultrashort laser pulses, the prob-
lems that the desired program needed to solve were presented. After importing the
image in the correct format and do the so-needed image processing to the obtained
matrices, a numerical knife-edge method have been implemented in order to cal-
culate the D16−84 profile of the incident pulse. After that this profile is translated
to mm and fs, and the different desired profiles and values are obtained using the
corresponding mathematical formulas described in 1.
This Matlab code is integrated in a LabVIEW script that allows the user to cap-
ture the image from the camera and obtain the results easily all in the same program.

Although, as written in the discussion and further perspectives section, further tests
and experiments can be realized with the program, it seems safe to say that the
main goal of this thesis has been achieved.
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Politècnica de Catalunya, Spain, 2017.

[5] Fejer M. M., Magel G. A., Jundt D. H., et al. Quasi-phase-matched second har-
monic generation: tuning and tolerances[j]. IEEE Journal of Quantum Electronics,
28(11):2631–2654, 1992.

[6] Roppo V, Dumay D, Jose Trull, Crina Cojocaru, et al. Planar second-harmonic
generation with noncollinear pumps in disordered media[j]. Optics express,
16(18), 2008.

[7] R. Fischer, D.N. Neshev, S.M. Saltiel, W. Krolikowski, and Y.S. Kivshar. Broad-
band femtosecond frequency doubling in random media. Appl. Phys. Lett.,
2006.

41



Appendices

42



Appendix A

Appendix 0

1 clc

2 clear all

3 %

4 b= ’C:\ Users\Usuario\Documents\TFG\ac2pulsosbackground.txt ’;

5 [Back]= importdata(b);

6 g= ’C:\ Users\Usuario\Documents\TFG\ac2pulsossignal.txt ’;

7 [Gaus]= importdata(g);

8 Gaus=Gaus -Back; %resto el background

9 Gaus=Gaus (330:820 ,375:1310); %Obtengo la parte de

10 % i n t e r s de la imagen40

11
12 for i=1:3

13 Gaus=imgaussfilt(Gaus);

14 end

15 D1684=zeros(size(Gaus ,2) ,1);

16 T=zeros(size(Gaus ,2) ,1);

17 xo=zeros(size(Gaus ,2) ,1);

18 for i=1: size(Gaus ,2)

19 AT=trapz(Gaus(:,i)); %Area total

20 b1=1;

21 A=0;

22 while(A <=0.16* AT) %Calculo posicion Area =0.16* Area Total

23 b1=b1+1;

24 A=trapz(Gaus (1:b1,i));

25 end

26 b2=b1;

27 while(A <=0.84* AT) %Calculo posicion Area =0.84* Area Total

28 if(A >=0.48* AT && A <=0.52* AT)

29 xo(i)=b2;

30 end

31 b2=b2+1;
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32 A=trapz(Gaus (1:b2,i));

33 end

34 D1684(i)=b2 -b1;

35 Gaus(:,i)=Gaus(:,i)/max(Gaus(:,i));

36 end

37
38
39
40 %%Paso D1684 a mm

41
42 xx=linspace (0,10,size(Gaus ,2));

43 D1684=D1684 *(5/ size(Gaus ,1));

44
45 for ii =1:10

46 D1684=smooth(D1684 );

47 end

48
49 %Calculo el p e r o d o del laser

50 aext =5;

51 c=3e8;

52 T=sqrt (2)* sind(aext)*D1684 /(1000*c);

53 T=(10^15)*T;

54 %

55 % figure (1)

56 % plot(xx ,D1684 );

57 % title(’wo(z)’)

58 % hold on

59
60 pos =100;

61
62
63 Io= (Gaus(xo(pos)-2,pos) + Gaus(xo(pos)-1,pos) + Gaus(xo(pos),pos ));

64 Io=Io+ (Gaus(xo(pos)+1,pos) + Gaus(xo(pos)+2,pos ))/5;

65 xx=linspace (0,5,size(Gaus ,1));

66 xo=xo*(5/ size(Gaus ,1));

67 thgaus =Io*exp(-2*(xx -xo(pos )).^2./(( D1684(pos ,1))^2));

68 %Calculo una gausiana t e r i c a

69
70
71
72 %Comparo la gausiana t e r i c a con la obtenida de la imagen

73 figure (2)

74 title(’Theoretical vs Obtained measure ’)

75 plot (10^(15)* xx*sqrt (2)* sind(aext )/(1000*c),Gaus(:,pos ));

76 hold on
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77 plot (10^(15)* xx*sqrt (2)* sind(aext )/(1000*c),thgaus );

78 xlabel(’fs ’)

79 xlim ([0 ,2000])

80
81 legend(’experimental Gaussian ’,’theoretical Gaussian ’)

82
83
84 figure (3)

85 imagesc(linspace (0,10,size(Gaus ,2)),xx ,Gaus)

86 hold on

87 xline(pos *10/ size(Gaus ,2));

88 xlabel(’Propagation distance (mm)’)

89 ylabel(’Propagation distance (mm)’)

90
91
92 figure (4)

93 xx=linspace (0,10,size(Gaus ,2));

94 plot(xx,T);

95 title(’T(z)’)

96 xlabel(’Propagation distance (mm)’)

97 ylabel(’fs ’)

98 ylim ([100 ,200])

99
100
101 %% Calculo les corves de tau en f u n c i de alpha

102 tau=T*sqrt (2*log (2));

103 g=466;% fs/mm

104 Ld=(T(1)^2)/(2*g);

105 To=0;

106 for j=1:10

107 To=To+T(j);

108 end

109 To=To/10;

110 figure (5)

111 plot(xx,T,’DisplayName ’,[’Measured T’])

112 xlabel(’Propagation distance (mm)’)

113 ylabel(’fs ’)

114 title(’Th for different alpha values vs measured T’)

115 hold on

116 grid on

117 for alpha =0:0.1:0.5

118 Tth=To*sqrt (1+(2* alpha*xx/Ld)+(xx .^2.*(1+ alpha ^2)/(Ld ^2)));

119 plot(xx,Tth ,’DisplayName ’,[’alpha= ’,num2str(alpha )])

120 end

121 legend show
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122 beta =466;

123
124 T(1)

125 tau(1)
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