
Development of a control and monitoring system for an
ultra-short pulse autocorrelator.

Thesis submitted in partial fulfillment of the

Bachelor’s degree in Engineering Physics

by

Quim Guerrero Casado

Under the supervision of

Crina Cojocaru i Jose Francisco Trull
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ABSTRACT

This project, entitled “Development of a control and monitoring system for an auto-
correlator of ultrashort light pulses” is devoted to the study and implementation
of single-shot characterization method of ultrashort laser pulses using second-
harmonic generation in nonlinear ferroelectric crystals. The main objective is the
development of a program that uses the experimental measurement of the auto-
correlation trace and measures the duration and other parameters of the Gaussian
pulse by image processing. The basic principle of operation is related to the second
harmonic signal emitted by two crossing light pulses in a non-linear (NL) crystal,
constituting the autocorrelation trace. As NL crystal, we use a ferroelectric crystal
with random size and distribution of the NL domains, which allows the second
harmonic generation in the transverse direction with respect to the beam propaga-
tion direction. This method had been implemented for pulses from a few tens to
a few hundreds of femtoseconds. In this project, the method will be automatized
and applied in the femtosecond regime. This technique presents different improve-
ments against other traditional methods. Furthermore, it allows getting automatic
phase matching without temperature control or angular alignment over a very wide
spectrum.

The program will be initially built in the original setup (which works in the
femtosecond regime), and it will consist of a Matlab program that reads the images
taken by a camera and makes the calculations of the pulse duration, chirp parameter
etc. and a LabVIEW program that allows to take the images and obtain the results in
a user-friendly software. Once the program is complete, different experiments will
be realized to observe how the program responds to different set-ups and lasers.
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Chapter 1

Introduction

Nowadays, ultrashort laser pulses are becoming an important tool in numerous

technological and scienti�c applications, such as materials processing, the measure-

ments of the dynamics of complex molecules or optical communications. All these

applications need a precise knowledge of the laser pulses properties, like the dura-

tion of the pulse, but a precise characterization of an ultrashort pulse properties is

not easy to obtain since electronic measurements are limited to the ps scale.Shorter

pulse duration, in the range of ps and fs domain, need top be measured by indirect

methods. The pulses we will use in the experiments of this project, can be repre-

sented either in temporal or spectral domain, and since both domains are related by

the Fourier transform, by only measuring the pulse intensity and phase in either

temporal or spectral domain, we obtain the complete characterization of the pulse.

When working with pulses longer than 1 nanosecond, there are many electronic

devices that measure different pulse properties. For example, an energy detector

detects pulse energy, and a photodiode measures the pulse duration. Anyway,

pulses with a duration lower than 100ps can not be measured by any electronic

detector, which makes it impossible to make a direct measurement. The existing

techniques of ultrashort pulse measurements usually rely on optical gating between

the pulse and its replica that is typically realized through a nonlinear optical process,

like the second harmonic generation [1].

The objective of this project is then, �rst, to analyse and understand the measure-

ment methods for ultrashort laser pulses, implementing an image recording system

on an already existing measurement system in the laboratory. And �nally, build

a program able to measure the pulse duration from the obtained measures and a

visual environment that allows observing the signal, and analyse the obtained data
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results in real time.

Before explaining this concepts in detail, a brief introduction to light pulses propa-

gation in linear media must be taken.

1.1 Mathematical description of light pulses

The electric �eld of a light pulse can be expressed as a temporal-dependent function.

Using the quasi-monochromatic approximation, it looks like:

~E(z, t) = ~E+
0 (z, t)e� iw0t

Where ~E+
0 (z, t) is known as the complex pulse envelope and w0 is the carrier

frequency.

For the moment, we are assuming no transverse dependence of the light pulses,

and we are not considering polarization effects (we can omit the vector character of

the �elds). Later in this chapter we will consider them both beside other additional

effects. The expression of the pulse can also be written in terms of its real amplitude

and temporal phase like:

E+ (t) = jE+
0 (t)jei f (t)e� iw0t (1.1a)

The real electric �eld is given by:

E(t) = Re[E+ (t)]

The temporal intensity of the pulse is proportional to the modulus squared of

the real amplitude, and it can be used to describe the light pulse:

I (t) µ jE+
0 j2

U+ (t) =
q

I (t)ei f (t)e� iw0t (1.1b)

We can also de�ne these equations in the frequency space by using the Fourier

transform:

Ẽ(w) =
Z + ¥

� ¥
E(t)eiwtdt , E(t) =

1
2p

Z + ¥

� ¥
Ẽ(w)e� iwtdw (1.2)
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These mathematical expressions can be physically interpreted as the fact that a

pulse is obtained as a superposition of different frequencies.

We can also factor out an oscillatory term proportional to the carrier frequency,

de�ne W = w � w0 and some other mathematical changes in order to obtain the

spectral representation of 1.1a:

Ẽ+ (w0 + W) = jẼ+
0 (W)jeiY (W) ) S(W) µ jẼ+

0 (W)j2 (1.3)

Where jẼ+
0 (W)j is the spectral pulse envelope, Y (W) is the spectral phase, and

S(W) is the pulse spectrum.

1.2 Pulse duration and bandwidth

The main goal of this project is to measure the temporal pulse duration. In general,

pulse durations down to roughly 10 ps can be measured with the fastest available

photodiodes in combination with fast sampling oscilloscopes. We will work with

lasers with a Gaussian pro�le, which have different expressions to de�ne the pulse

duration or the spectral width. We can de�ne full-width-half-maximum (FWHM),

half-width-l/e (HW1/e), half-width-1 / e2 (HW1/ e2), root-mean-squared (RMS)

width and equivalent pulse width. [2]

In this project, we will work with ( HW1/ e2), de�ning T as the distance between the

two points whose intensities are 1 / e2 = 0.135 times the maximum value. Although

we work with HW1/ e2, it is good to make some other explanations about FWHM.

FWHM de�nes the pulse duration T as the time between the most- separated points

that have half of the pulse's peak intensity.
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Figure 1.1: De�nition of T working with HW1/ e2

In the same way, the spectral FWHM Dw can be de�ned. And due to the fact

that T and Dw are related by Fourier transforms, they are dependent of each other.

The product of temporal duration T and spectral width Dw of a pulse is known as

the Time-Bandwidth product, and it has a minimum value [3]:

Dw � T = 2p � Dn � T � K (1.4)

Where K is a constant that depends on the pulse temporal shape and can be

derived analytically in each case. The smaller the TBP, the cleaner the pulse. The

minimum possible value of the TBP comes when the spectral components are

perfectly phase-locked, in other words, that is, when all the frequencies forming the

pulse are added in phase. This case is named Fourier Transform Limited (FTL), and

it represents the minimum pulse duration that can be attained for a given frequency

spectrum.

For the phase-locked Gaussian pulse:

E(t) = exp(� (
t

T/4
p

ln2
)) 2 (1.5)

Which leads to:

S(w) = exp(� (
w

2
p

ln2/ T
)) 2 (1.6)

where Dw = ( 2
p

ln2)2/ T and then:

TBP = Dn � T = 0.441= K (1.7)
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In a more general case, the different frequencies forming the pulse are not

added in phase because the spectral phase is temporal-dependent. This leads to a

broadening of the pulse, and consequently the time-bandwidth product is larger

than from the FTL pulse.

1.3 Instantaneous frequency and chirp

Sometimes, in propagation of ultrashort pulses, it is relevant to make a general

treatment with spatio-temporal coupling. In this project, spatial and temporal

evolution of the �elds can be decoupled, simplifying the problem. The expression

for an optical pulse is then 1.1a, where we can omit the amplitude since we only

care about the temporal pulse shape and duration. This expression can also be

expressed as:

E+
0 (t) = e� i(w0t � f (t)) = e� iF (t)

The instantaneous frequency can then be de�ned as:

winst(t) =
dF (t)

dt
= w0 �

df (t)
dt

(1.8)

From this de�nition, one can see that if f (t) is constant, winst is constant across

the pulse. When this happens, winst = w0 which is the Fourier-transform-limited

case. But, as explained before, in a more general case,f (t) will be time-dependent.

Using the Taylor expansion, it can be written like:

f (t) = f 0 + f 1t +
1
2

f 2t2 +
1
3!

f 3t3 + ...

Introducing this expression in 1.8:

winst(t) = w0 � f 1 � f 2t �
1
2

f 3t2 � ...

Where only the �rst few terms are needed to describe the pulses we will work

with. When the instantaneous frequency is time dependent, we can say that the

pulse is chirped. The second order term f 2 is called the linear chirp coef�cient,

and if it is the only temporal phase term ( f 2 >> f 3, f 4...), we say that the pulse is

linearly chirped. If the chirp coef�cient is positive ( f 2 > 0) the pulse is up-chirped

and if it is negative ( f 2 < 0) it is down-chirped. Any other higher terms of the

temporal phase different from 0 lead to pulse distortions.
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Figure 1.2: Up-chirped pulse on the left and down-chirped pulse on the right

1.4 Pulse Propagation in dispersive media

A dispersive medium is characterized by a frequency-dependent refractive index

n(w) and absorption coef�cient. As it is known that any pulse is composed by a

superposition of different frequencies added coherently. A change in refractive

index also means a change in phase velocity, thus meaning that any different

monochromatic wave composing the pulse will travel through the medium with

different velocity and undergo different attenuations. Hence, the different spectral

components will change their relative phases upon propagation. As a result, the

pulse is broadened and chirped.

In this project, we will work with ultrashort pulses. The properties of ultrashort

pulses can undergo complicated changes when propagating in transparent optical

media, but if we consider an ultrashort pulse with low power propagation in a

dispersive media, the only effect that must be taken into account is the chromatic

dispersion.

This effect will be predominant in our experiment, since we will measure the chirp

parameter evolution through our crystal. In order to describe this phenomenon,

our goal will be to trace the evolution of the pulse with initial envelope E+ (0,t)
along the propagation distance z: E+ (z, t). We consider that this pulse has a �nite

bandwidth Dw centred at frequency w0. Since the ultrashort pulses we will be

working with have durations of pico or femtoseconds, the relation Dw << w0

holds, and we can de�ne W = w � w0 like we did for 1.3. The chromatic dispersion

6



can be de�ned via the Taylor expansion of the wave number k as a function of w:

k(w) =
n(w)w

c
(1.9a)

Using now the relation DW << w0:

k(w) = k(w0) +
�

¶k
¶w

�

w0

(w � w0) +
1
2

�
¶2k
¶w2

�

w0

(w � w0)2 + ... (1.9b)

Expressed in terms of W:

k(W) = k(0) +
�

¶k
¶w

�

w0

W+
1
2

�
¶2k
¶w2

�

w0

W2 + ...

= k(w0) +
W
u

+
1
2

W2g +
1
6

W3b3... (1.9c)

Where we de�ned some terms: the group velocity u(w) =
h

¶k
¶w

i � 1
, the group-

velocity dispersion coef�cient (GVD) g(w) =
h

¶2k
¶w2

i
, and the third order dispersion

(TOD) coef�cient: b3(w) =
h

¶3k
¶w3

i
. Since the �rst two are the most important, let's

describe them in more detail below:

1.4.1 Group velocity

The group velocity can also be de�ned as:

u(w) =
�

¶k
¶w

� � 1

=
�

wdn(w)/ dw
c

+
n(w)

c

� � 1

u(w) =
c

n(w) + dn(w)
dw w

Which can be rewritten in terms of the wavelength using the relation:

w =
2p c
l

)
dw
dl

= �
2p c
l 2 dl =

� w
l

dl )
w
dw

= �
l
dl

u( l ) =
c

n( l ) � dn( l )
dl l

(1.10)
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1.4.2 Group-velocity dispersion

The group-velocity dispersion (GVD) is the phenomenon because of which the

different frequency components from the pulse suffer different delays due to the

fact that the group velocity itself is frequency dependent. As a result, the pulse

spreads in time.

The GVD can be expressed in terms of the group velocity:

g(w) =
�

¶2k
¶w2

�
= �

1
u(w2)

du(w)
dw

We call normal group velocity dispersion, the regime in which the group velocity

decreases with frequency, and anomalous group dispersion when the group velocity

increases with frequency. In the �rst regime, low frequency components travel faster

and in the second one high frequency components travel faster.

The GVD coef�cient is a measure of the pulse-time broadening per unit distance

per unit spectral width. And, in the same way as for the group velocity, it is usually

expressed in terms of the wave length:

g( l ) =
l 3

2p c2

�
d2n( l
dl 2

�
(1.11)

1.4.3 Propagation equation

The general propagation equation can be quite complex. However, a simpli�ed

version of the propagation equation can be derived from the general wave equation

by truncating the dispersion effects up to the second order:

~r � (~r � ~E) + m0
¶2~D
¶t2

And the resulting simpli�ed propagation equation is:

¶A(t, z)
¶z

+
ig
2

¶2A(t, z)
¶t2 = 0 (1.12)

Where A is the complex amplitude of the pulse, coming from:

E(t, z) = A(t, z)ei(k0z� w0t) (1.13)

The solution of this equation can be easily obtained, and is:
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A(w, z) = A(W+ w0, z) = A(w, 0)ei 1
2 gW2z (1.14)

If TOD were also considered, the solution would be quite similar:

A(w, z) = A(W+ w0, z) = A(w, 0)ei 1
2 gW2z+ i 1

6 b3W3z (1.15)

From these results, one can observe thatS(0,w) = S(z, w), or, in other words,

that the spectrum remains constant during the pulse propagation. It is also impor-

tant to see that when GVD dominates the dispersion the pulse acquires a quadratic

phase, while if the TOD does dominate the dispersion, the pulse acquires a cubic

phase. Finally, the electric �eld of the pulse in the temporal domain can be obtained

straight forward using the Fourier transform:

E(t, z) =
1

2p

Z + ¥

� ¥
E(w, z)eiwtdw (1.16)

1.5 Second harmonic generation and Phase-matching

The main goal of this project is to measure the duration of ultrashort pulses. This

process is not direct, since today's oscilloscopes and other measurement instruments

can deal and measure pulses up to the nanosecond's regime. When dealing with

shorter pulses, it is necessary to use non-direct measurement methods. The existing

techniques of ultrashort pulse measurements usually rely on optical gating between

the pulse and its replica that is realized through generation of the second harmonics.

[1] Noncollinear second-harmonic generation (SHG) is one of the best methods to

measure ultrashort pulses. Two beams cross inside a nonlinear crystal with a small

angle, and a second harmonic beam is generated in the forward direction if the

phase matching conditions are ful�lled. Since these conditions are not trivial, but

they must be ful�lled, let's make a brief explanation.
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After some manipulations with the Maxwell equations in nonlinear media and

doing some reasonable assumptions [4], one can obtain the equation of the SHG

intensity:

I2(L) = 2e0cnjE2(L)j2 = 2
r

m0

e2
w2

2d2
e f fjE

2
1j2L2sin2(DkL/2 )

(DkL/2 )2 (1.17)

Which allows us to obtain the conversion ef�ciency h as:

h(L) �
I2(L)

I1
µ

d2
e f f I1L2

n3
sin2(DkL/2 )

(DkL/2 )2 (1.18)

Where e1 � e2 � e0n2. This expression gives us the ef�ciency with which

the original fundamental beam generates the second-harmonic. In this expression

appears Dk which is the phase mismatch factor Dk = K2 � 2k1. When Dk = 0

the phase-matching condition is ful�lled, sinc(DkL/ 2) = 1, and the conversion

ef�ciency is proportional to some parameters and to the total intensity of the initial

propagation beam. But Dk = 0 is not an easy condition to ful�l in the laboratory,

and when Dk 6= 0 the conversion ef�ciency decrease drastically. This means that

when the SH wave generated in a point z1 arrives to a point z2,it will not be in phase

with the SH generated in z2. This interference is described by the sinc function,

which means that the ef�ciency and the intensity will both have an oscillatory

behaviour. Furthermore, as the sinc function has a maximum at the phase p , the

propagation distance that makes the accumulated phase difference p is known as

the coherent length Lc, and when L = Lc the nonlinear parametric process reverse

its direction transferring energy back from SH to fundamental wave. From this

distance, the intensity of the SH starts decreasing.

Lc �
p
Dk

=
p

k2 � 2k1
=

l
4jn2 � n1j

(1.19)

Another possible de�nition from the coherence length is the maximum crystal

length that is useful producing the SH power. From the �gure below, one can

observe how the intensity always decrease asDk increases, and how the intensity

has a maximum at the coherence length for a given Dk

As stated before, it is really complicated to reach the perfect phase matching

condition, and it has been also shown that the ef�ciency decrease really fast if it is

not reached. Anyway, there are some phase-matching techniques and also quasi
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Figure 1.3: Normalized SHG intensity versus propagation distance for different Dk

phase-matching techniques that allow to work in proper conditions.

One of the most famous PM techniques is the birefringent phase-matching,

which is based on the properties of the birefringent crystals. In those crystals, the

electrons do not move in the same direction of the applied �eld, but they will

follow a path imposed by the crystalline structure, thus resulting in a polarization

vector that is not parallel to the electric �eld. Without entering any more detail, this

technique is not useful for our thesis due to few reasons:

• PM condition is highly dependent on the incident angle, the polarization state

of the beam and the wavelength. Since ultrashort pulses span over a broad

frequency bandwidth, it is a big issue trying to achieve PM (or approximate

PM) condition for all the frequencies.

• The range of frequencies that can reach the PM condition (known as PM

bandwidth) increases as the thickness of the crystal decreases, and since we

will work with ultrashort pulses, very thin crystals will always be needed.
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1.5.1 Quasi-phase-matching

Another important phase-matching technique is the one dimensional quasi-phase-

matching (QPM) technique, which was experimentally proved in 1992 [ 5]. This

technique is based on the oscillatory behaviour of the SHG intensity when the PM

conditions are not satis�ed, specially, in the �rst and biggest intensity peak at Lc.

As stated before, when the propagation length is equal to Lc the phase difference

is equal to p and the SHG reverses its direction transferring energy back to the

fundamental beam. The QPM technique consists in adding periodically a phase

shift of p , with that the intensity will keep increasing monotonically instead of

decaying from Lc. In the �gure below, it is illustrated the difference between the

complex amplitude contributions from the nonlinear crystal to the SH wave when

working with or without PM. It can be observed how with QPM the sign of the

contributions is reversed every coherence length and the total amplitude keeps

increasing. The realization process with which the p phase shift is applied consists

(a) Addition of amplitude contributions
from different parts of the crystal

(b) SH intensity under different condi-
tions.

in periodically invert the sign of second-order NL susceptibility c (2) of the material

every coherent length. A strong �eld is applied to the ferroelectric nonlinear crystal

for some time, so that the crystal orientation and thus the sign of the nonlinear

coef�cient are permanently reversed. The periodically spatial distribution creates a

constant reciprocal lattice vector G = 2p m/ L . With that, the phase-mismatch can

be compensated through this G that applies directly in the momentum conservation

relation as:

~k2 � 2~k1 = D~k � ~G = 0 (1.20)
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This technique has some bene�ts over the birefringent PM, for example, it can

be implemented in non-birefringent crystals, thus solving the need for it to be thin.

The problem is that this one dimensional quasi-phase-matching is still not useful

to our experiments, because it still has the SHG bandwidth problem. The �nal

QPM technique that solves this problem and consequently, the one we will use

in the experiments of this thesis, is the QPM in 2D random ferroelectric crystals.

Without entering much detail, in these crystals (such the Strontium Barium Niobate

(SBN), which is the one used in this project) the linear susceptibility is constant,

while the second order nonlinear susceptibility is spatially random modulated by

the disordered ferroelectric domains [ 4]. The random c (2) distribution creates a

continuous set of lattice vectors G, thus yielding t he SHG in the xy plane

1.6 Ultrashort pulse duration measurement techniques

Here, two different methods of measurement of ultrashort pulses using SHG will

be explained. The �rst one is the most common one, and the second is a different

faster method which we will use in this project.

1.6.1 Intensity autocorrelation method

The most common technique in ultrashort pulse measurement is the intensity

autocorrelation (AC). This technique provides quantitative information about the

temporal structure of an unknown signal. The unknown signal is split in two parts

of equal intensity, and one of the pulses is delayed by t . The two pulses are focussed

into a nonlinear optical crystal, which is designed for ef�cient second harmonic

generation over the full bandwidth of the pulse, what requires suf�cient intensity

and that the phase-matching conditions are ful�lled, either by crystal birefringence,

QPM etc. With that, the two signals recombine inside the crystal and a SH signal is

generated. This new SH signal is separated in the collinear and the noncollinear

part thanks to the nonlinear crystal and its noncollinear geometry. The energy of

this new signal is measured with the form IAC(t ). By doing so, the same experiment

needs to be repeated applying different delays and measuring the intensity of the

new signal with an integrating detector, obtaining a relation between the delay t

13



and the intensity of the noncollinear SH signal. The relation between this function

and the original signal is given by:

IAC(t ) =
Z + ¥

� ¥
jE(t)E(t � t )j2dt =

Z + ¥

� ¥
I (t) I (t � t )dt (1.21)

Figure 1.5: Intensity autocorrelator

The fact that the obtained function is symmetric means that this technique only

provides information about the pulse duration, and although the intensity AC do

not give information about the pulse shape, it depends on the assumed signal shape.

Assuming a Gaussian-shaped signal, one obtains that the relation between the AC

pulse and the original is
p

2T = TAC.

Although this technique is the most used due to its simplicity, it has several limita-

tions:

• It requires multiple measurements. This technique relies on measure the SHG

for different delays in order to obtain the complete AC trace. This means

that one has to repeat the same experiment many times, which makes this

measurement process slow.

• Because the pulse duration can only be measured at the output of the crystal,

one can never get rid of the pulse distortion acquired during the propagation

inside the crystal.
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• The PM conditions. In this case, it is highly dependent on the angle and

wavelength, and as stated in 1, PM problems have to be �xed to obtain a

proper ef�ciency. To do so, different nonlinear crystals are needed to work

with pulses with different central wavelengths. Furthermore, thin crystals are

also required in order to get a proper PM bandwidth, and the SHG ef�ciency

is proportional to the square of crystal length, which makes it complicated to

�nd a proper crystal length.

1.6.2 Transverse second-harmonic generation in SBN crystal

For these reasons, in this project we will use another autocorrelation technique,

using a parametric conversion process in SBN crystals. These crystals consist of

antiparallel nonlinear ferroelectric domains with random sizes and spatial distribu-

tion. In this media, the PM condition is relaxed and SHG has a similar ef�ciency

over the full transparency range of the crystal, since the phase matching conditions

are ful�lled over a broad frequency bandwidth. The thickness of the crystal is no

longer a problem either, since the only limitation is the transparency region of the

crystal.

Inside these crystals, depending on the direction of propagation of the original

incident beam, the SHG can take the form of a plane (when the beam propagates

perpendicular to the z axis) or a cone if it propagates in any other direction[ 6]. In

this project, we will focus on the planar noncollinear SHG, that is emitted in the

plane perpendicular to the two beams propagation direction, like can be observed

in 1.6.

This planar SHG is formed by doing a similar procedure of the AC technique,

when two replicas of the pulse overlap inside the SBN crystal, and it represents the

autocorrelation of the pulse. Different pulse overlap regions are directly formed

at different positions of the planar SHG plane, thus meaning that in a single shot

one can not only obtain the pulse duration and the initial chirp parameter of the

original pulse, but also the evolution of the interaction between the two replicas of

the beam inside the crystal.

One big difference between this technique and the commercial AC, is that the SHG

signal is captured at 90º with respect to the propagation direction of the incident

beams.
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Figure 1.6: Representation of the transverse AC Setup [6]

Figure 1.7: Planar SHG in SBN crystal [6]

The experimental setup is quite similar to the AC technique. The fundamental

beam is split in two delayed replicas, that enter the SBN crystal with angles � a and

a to the x-axis (as shown in 1.7). Each one of the beams generates a SHG in the form

of a cone, and the interaction between the two beams inside the crystal gives rise

to the above-mentioned planar noncollinear SH emission [ 7]. This emission can

not only be measured in the transverse direction, but also in the forward direction,
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but it is easier to measure it from above because the desired signal is more isolated

from the two other cone-shape emissions. The SH signal can be then detected by a

CCD camera placed above the SBN crystal, imaging the xz-plane 1.7, and recording

the evolution of the SH signal through the crystal. We assume that the two incident

Figure 1.8: Interaction of two pulse replicas in SBN crystal [4]

beams have a Gaussian spatial and temporal pro�le, and that they cross at an angle

2a at the entrance of the crystal. Their amplitudes would be:

A1 = A10exp(�
z2

1

2r 2 )exp(
� (t � x1/ u)2

2T2 ), (1.22a)

A2 = A20exp(�
z2

2

2r 2 )exp(
� (t � x2/ u)2

2T2 ), (1.22b)

Where (x1, z1) and (x2, z2) are the coordinates in reference systems oriented

along the propagation direction of each one of the beams 1.8, u = c/ n is the light

speed inside the crystal, and r and T are half beam and pulse width at 1 / elevels in

intensity, respectively.

If we assume that the random QPM process ful�l the PM conditions [ 1], and

introducing a common coordinate system for both beams, we obtain:

B(x, y, z) µ P(2) (2w) µ d(2)
e f fA1A2 (1.23)
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Now, assuming that the SH signal recorded by the camera is actually a cross-

correlation function of the two incident pulses [ 7], the SH �eld generated by the

two Gaussian pulses is represented as:

B(x, z, t) = B0(x)exp(�
z2cos2a + x2sin2a

r 2 ) � exp(�
(tu � xcosa)2 + z2sin2a

u2T2
c (x)

)

(1.24)

Where a is the halph angle between the wave vectors of the two intersecting funda-

mental beams inside the SBN and B0 is an amplitude.

The generated signal emitted from the overlapping region of the fundamental

beams, as can be observed in 1.7 and 1.8. This region depends on the spatial extent

of the beam and the temporal duration of the pulses. When working with long

pulses T >> 2r tana/ u, the region is limited by the spatial dimensions of the beams,

while when working with short pulses T << 2r tana/ u it is limited by the pulse

lengths.

The resulting intensity of the SH generated is give by:

I2w(x, z) =
T4I2w(0)

T4
ch(x + L/2 )

exp(�
2z2sin2a

u2T2
ch(x + L/2 )

) � exp(�
2z2cos2a + 2x2sin2a

r 2 )

(1.25)

where

Tch(x) = T

" �
1 +

Cb2x
T2

� 2

+
�

b2x
T2

� #1/2

(1.26)

When a time delay between the two pulses is applied, the SH appears moving along

the Z-direction, and its thickness depends directly on the pulse duration.

Dz(x) =
uTch(x)
p

2sina
(1.27)

This thickness is the most important unit in this project, as it is the only one that

is measured directly from the obtained image of the SH trace. One example of the

images we have worked with in the laboratory is in 1.9. This D(z)( x) is directly

obtained measuring the thickness of the autocorrelation trace obtained directly from

a picture taken in the laboratory.

What will be very important in this work, because that implies that using a slow

enough pulse, a bigger crystal will be needed.

18




	Introduction
	Mathematical description of light pulses
	Pulse duration and bandwidth
	Instantaneous frequency and chirp
	Pulse Propagation in dispersive media
	Second harmonic generation and Phase-matching
	Ultrashort pulse duration measurement techniques

	Automation programs
	Matlab program
	LabVIEW program

	Results
	140fs pulse
	Bad calibrated pulse
	3 peak pulse 

	Discussion and Future Perspectives
	Conclusion
	Bibliography
	Appendices
	Appendix 0

