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Abstract

Nowadays, cloud services rely extensively on the use of virtual machines
to enforce security by isolation. However, hardware trojan attacks
break this assumption. Within these attacks, cache side-channel attacks
such as Spectre and Meltdown are the focus of this work. In this
project, we develop (1) a set of tools to generate a dataset; and (2)
a dataset that will allow the use of Machine Learning techniques to
detect Spectre and Meltdown attacks (i.e. using a cache side-channel).
When released, this dataset will enable researchers to compare their
ML-based detection proposals based on the same dataset (which is not
currently the case). Also, it eliminates the need of an infected
computer to generate the attacks and the corresponding dataset for
subsequent research studies.
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Chapter 1

Introduction

This project has the goal of providing a better solution to the
current problem of modern processor security, specifically of processor
vulnerability exploitation.

One of the most dangerous kinds of security attacks in modern CPUs
are side-channel attacks such as Spectre and Meltdown[1]. These attacks
take advantage of modern CPU speculative execution plus cache-timing
side-channel. A side channel attack is a way to extract sensitive
information from a system by some means other than the intended input
and output channels. On a computing system, there are well-known
side-channels that may be exploited: electrical magnetic waves, power
consumption, timing clues (i.e. memory access timing).

In order to understand the problem, we must first understand how
modern processor architectures execute instructions. CPUs make use
of what is known as a pipeline, a series of sequential blocks that
take care of each of the sub-steps for instruction execution (see
Figure 1.1). The main point of interest in this figure is that while
the execution block is executing the current instruction, the dispatch
block is decoding the next instruction simultaneously, and the fetch
block is fetching two instructions after the current one. The problem
arises when the instruction executed is a branch instruction (it can
have two possible next instructions, like for instance a conditional
jump instruction). In this case, the fetch and dispatch blocks have a
Branch Prediction Unit that takes an informed guess as which instruction
will be next in line. Moreover, even if we are not going to go into
much detail, the processor can execute instructions out of order to
maximize throughput.

Another relevant element of modern CPU architectures is the usage
of cache memories. Modern CPUs can process beyond a terabyte of data
per second, however modern volatile memories (i.e. DRAM) operate up to
the gigabit scale. For this reason, most CPUs would be bottlenecked by
memory. Cache is a volatile memory with a higher throughput (placed in
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+-------+ +----------+ +---------+ +----------+
| Fetch | ---> | Dispatch | ---> | Execute | ---> | Complete |
+-------+ +----------+ +---------+ +----------+

Figure 1.1: Modern processor simplified pipeline

the CPU itself), it prevents the CPU from accessing the main memory.
There usually are several layers of cache as seen in Figure 1.2. Each
of these layers stores a copy of a portion of the contents of main
memory. With each increasing layer of cache, the speed gets slower but
the size increases.

+-------------+
| Main Memory |
+-------------+

|
+-------------+
| L3 cache |
+-------------+
| L2 cache |
+-------------+
| L1 cache |
+-------------+
| CPU |
+-------------+

Figure 1.2: Simplified cache architecture

The instructions executed out of order can have side effects without
the operating system checks restricting them. These side-effects are
not committed to main memory, they take place in the cache. This allows
an attacker to take advantage of these side effects of speculative
execution to ex-filtrate data from one process to another by using the
cache as a side-channel.

As it is a hardware level exploit, it could be dismissed as
minor, however it breaks one of the most fundamental assumptions in
cybersecurity. This exploit breaks userspace and kernel space memory
isolation and virtual machine isolation. It allows to read the memory
content from one guest virtual machine to the host or another virtual
machine (see Figure 1.3).

This is specially relevant in today’s world where most companies
infrastructure is running on virtual machines in a cloud provider and
not in exclusive owned servers. This means that essentially a corporate
infrastructure is running in a virtual machine in a data center. If an
attacker is able to buy another instance that runs in the same physical
machine, it is able to ex-filtrate data from the legitimate company’s
instance. The attacker could even ex-filtrate cryptographic material
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+--------------+ +------+
+---| Malicious VM |---->| VM 1 |
| +--------------+-----+------+
+-->| Host |

+---------------------------+

Figure 1.3: Virtual machine isolation breaking

from a running program as it can access any arbitrary memory location.
Patches for this vulnerabilities exist in numerous forms, the most

straight forward is to upgrade the hardware which is often discarded due
to its high cost. The other option available to users is to patch the
software to disallow the conditions that can cause such vulnerability.
For example, in the case of Linux, through a kernel patch. The main
drawback of this approach is the hit to performance that it supposes.
For some AMD processors the impact of this patch is only of 3% while
on Intel processors the impact can reach values as high as 24.8% for
the 8700k series processors [2].

This is why a new approach is arising in popularity. This approach
consists in a more passive approach where we monitor for footprints of
the attack and take appropriated measures to kill the attacking process.
It is really similar to a host monitoring software (e.g. Sysmon and
Prometheus) but instead of monitoring system events like calls to the
cryptographic library, they monitor hardware counters. This approach
is more effective than current ones because the performance hit is
minimal, as the counting is performed by dedicated hardware that CPUs
have already integrated and the overhead of analysing these counters
is minimal.

In order to perform such detection, many papers are making use
of Machine Learning. However, there is a lack of publicly available
datasets to train the models. All the literature develops its own
dataset to be trained with their own model. This makes the task to
compare several methods impossible as they are each working under a
different set of rules.

1.1 Related work

As previously mentioned, there are multiple articles attempting to
perform similar approaches to ours. In this section, we are going to
attempt to provide a view into their methodology, that will aid in
guiding the project.

The first of such article is Mushtaq et al.[3] In this article the
authors are interested in providing an overview of different Machine
Leaning approaches and their performance. The algorithms tested are
shown in Table 1.1. As shown in the table, the proposal tests both

4



+---------------------------------------+------------+
| Machine Learning Model | Category |
+---------------------------------------+------------+
| Linear Regression (LR) | Linear |
| Linear Discriminant Analysis (LDA) | Linear |
| Support Vector Machine (SVM) | Linear |
| Quadratic Discriminant Analysis (QDA) | Non-linear |
| Random Forest (RF) | Non-linear |
| K-Nearest Neighbors (KNN) | Non-linear |
| Nearest Centroid | Linear |
| Naive Bayes | Linear |
| Perceptron | Linear |
| Decision Tree | Non-linear |
| Dummy | Non-linear |
| Neural Networks | Non-linear |
+---------------------------------------+------------+

Table 1.1: Mustaq et al. tested algorithms

linear and non-linear algorithms.
However, the main item of interest from the article is how they

generate the dataset. In their case, they use an AES and RSA encryption
routine as the victim process. During their attack they record the
events shown in Table 1.2, as we can see the events recorded mainly
focus on cache metrics. An interesting distinguishing factor about this
article is the recording of the attack under several load conditions
of the machine (Zero Load, Medium Load and Heavy Load). To set the
load, some memory intensive benchmarks are used such as: gobmk, mcf,
omnetpp, and xalancbmk.

The main issue with this paper is that for creating the load it uses
none standard ways. Meaning that, while using memory heavy programs,
the workload can vary a lot depending on the machine and how the program
is used. This is one of the ways our project will attempt to improve.
Furthermore, only memory load is used. Even if it is reasonable to
consider that memory load will have a bigger impact on the program, it
is important to consider other types of workloads and how they affect
performance of the attack and recording.

The second issue with this article is the wide range of metrics used.
Many vulnerable processors do not have access to as many counters. This
means that, even if the accuracy obtain is very high, it is not widely
applicable.

The second representative article is Depoix et al.[4] where the
authors concentrate in Deep Learning. They solve the issues previously
presented by only recording 3 events: total instructions, total cache
misses for L3 and total cache accesses for L3. They use a proper
profiling tool to generate load. This tool allows them not only to
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+----------------+----------------------------+
| Scope of Event | Hardware event |
+----------------+----------------------------+
| | Data cache misses |
| L1 Caches | Instruction Cache Misses |
| | Total Cache Misses |
+----------------+----------------------------+
| | Instruction Cache Accesses |
| L2 Caches | Instruction Cache Misses |
| | Total Cache Accesses |
| | Total Cache Misses |
+----------------+----------------------------+
| | Instruction Cache Accesses |
| L3 Caches | Total Cache Accesses |
| | Total Cache Misses |
+----------------+----------------------------+
| System wide | Total CPU Cycles |
| | Branch Miss-Predictions |
+----------------+----------------------------+

Table 1.2: Mustaq et al. recorded events

generate memory load but also CPU load and other kinds of loads like
a process spinning on sync().

1.2 Goals

The main goal of this project is to generate a dataset that serves as a
common testing ground for future work in detecting cache side-channel
attacks. For this reason, we want to focus beyond the generated
dataset, we want to create an extensible tooling that allows for
reproducible steps in dataset generation. Therefore, we are more
interested into how to properly generate the dataset, than the generated
dataset characteristics.

This approach is a direct consequence of the strict hardware limitations.
As we only have one working computer available for performing the
experiments, we will not be able to recreate the variety of contexts
and hardware the attack will be performed.

The result of the project will be the dataset plus the tooling
needed to perform the recording of hardware events as a trace. This
means that the generated dataset will be a set of timestamps with the
number of each event occurrences since the last timestamp and with a
label indicating weather or not an event had place during this window.
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1.3 Planning

The project can be separated into three main components, the first
one is developing the recording software, the second is finding one or
multiple attacks to be recorded and the final is to create the tools
to run the experiments and analyse the results.

The first stage of the project will be concentrated into accessing
the hardware counters. This counters can be configured to count several
of the events taking place in the CPU. They will increment every
time a particular event takes place in the CPU. An event can be
any of the actions performed by the CPU from a clock cycle to an
instruction successfully executing. Accessing this counters is very
platform dependant as it is closely related to the hardware used.

The second stage consists in finding the processes that will run
while the previous stage is recording. We could implement our own
attack, but we deemed it unnecessary. Many publicly available implementations
exist, using a well tested implementation removes the added complexity
of working with our own attack. As a side effect, it allows the project
to be as independent as possible of the attack so when a new variant
is found it can be added to the dataset.

The third stage is creating and environment for running the previously
generated software. This script will be in charge of ensuring that the
recording process is running during the attack execution and it will be
in charge of labeling the dataset generated by the recording process.
Additionally, a tool to visualize the results should be available for
the user in order to ensure through visual inspection that the results
are coherent.

+---------+---------+---------+---------+---------+
| Jan | Feb | Mar | Apr | Jun |
+---------+---------+---------+---------+---------+
| (1) | |
+-------------------------------------------------+
| | (2) | |
+-------------------------------------------------+
| | (3) | |
+-------------------------------------------------+
| | (4) | |
+-------------------------------------------------+
| | (5) |
+-------------------------------------------------+
(1) Planning (2) Recording software
(3) Attack selection (4) Tooling
(5) Reporting

Figure 1.4: Gantt diagram
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Chapter 2

Project development

2.1 Architecture

Figure 2.1 shows the monitoring stack in a system. This can seem not
intuitive as the monitoring does not interact with the hardware. This
relies in the kernel providing the access to the hardware counters.
For performance monitoring it is often enough with this approach as it
provides fullfils all the needs for this problem.

The main issue with this approach is that in our scenario, the
attack is performed from an external process reading the contents
of the critical process. Therefore the anomalies with the hardware
counters will probably be located within the malicious process that is
unknown to the victim. For this reason our monitoring system has to
provide a system wide monitoring. Therefore it is a process that runs
alongside all other processes in the machine. The process architecture
ends up looking like Figure 2.2. We can clearly see that the monitoring
process is just another process alongside the others that periodically
polls the hardware counters.

The system library PAPI provides two APIs: a high level API and

+------------------+
| critical process |

+-----------+-----------+------------------+
| process 1 | process 2 | monitoring |
+-----------+-----------+------------------+
| kernel |
+------------------------------------------+
| hardware |
+------------------------------------------+

Figure 2.1: Classical hardware monitoring stack
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+-----------+-----------+------------------+------------+
| process 1 | process 2 | critical process | monitoring | ---+
+-----------+-----------+------------------+------------+ |
| kernel | |
+-------------------------------------------------------+ |
| hardware | <--+
+-------------------------------------------------------+

Figure 2.2: System wide hardware monitoring

a low level API. The high level API is designed for recording events
inside instrumented regions. It is designed for simplicity not for
flexibility. We can not use this API for our goals as it does not
provide system wide counters. For this reason, we are forced to use
the other API, the low level API. This API requires a lot more work
for recording events, for example it requires manual initialization of
the library and manual error checking. However, it allows the user a
fine-grained control over the events recorded and the counters.

The library by default is not configured for monitoring events in the
system but in a particular thread. In order to monitor system metrics
we have to change the granularity and domain. The granularity can be
set to thread, process, CPU or system. The domain allows to monitor
only events in user-mode or to also include events in kernel-mode. An
example of doing so can be found in the PAPI repository in the file:

src/components/perf_event/tests/perf_event_system_wide.c

In order to use PAPI, the kernel needs to be patched. The Linux
kernel 2.6.32 and newer already include the patch so no kernel patching
is required. If using the latest releases for most Linux distributions
the patch will be included.

2.2 Monitoring facilities

As we want to fabricate a dataset, we want to define what will be
the features that will later be used by Machine Learning models. The
attack we wish to detect is a cache side-channel attack. As this kind
of attacks use the cache to ex-filtrate data, if we wish to detect
them, we must monitor the cache to detect them. Therefore for these
reasons the metrics provided as feature in our dataset will be related
to cache metrics. In order to access this metrics we must use some
facilities provided by the processor. This facilities are hardware
counters in the machine. This hardware counters count certain hardware
events such as cache misses or number of instructions executed.
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2.2.1 Performance API

As creating facilities to access the counter is beyond the scope of the
project as it would require to patch the kernel. For this reason we
use the very mature library called Performance Application Programming
Interface (PAPI) [5]. PAPI provides an interface for low hardware level
counters. It is so widely use with this goal that its kernel patch has
been integrated into the Linux kernel.

One of the main problems that will be encountered during the
development of the project is that PAPI was designed as an application
that monitors performance. For this reason, most its facilities are
built around accessing the hardware counters to monitor a particular
section of code and not monitoring system wide.

Installation

The installation of the library is very modular as it provides facilities
for not only recording events in the CPU but also in GPU through CUDA,
and a variety of specialized processors. As our application is oriented
to regular CPUs we can stick to the default configuration.

For the default configuration, many distributions already have
prepared packages. In the project case, it was compiled from source
for one main reason, when installing with the package manager we where
unable to get CMAKE to locate the package and link it with the project
executable.

Granularity

The events monitored are restricted to events that run in the thread
that initialized the library and create the Event Set. In order to
change this behaviour from the default, we must use what the library
defines as Granularity.

Granularity has 4 stages, the first one and default is thread. The
Event Set only records the events that happen when the kernel switches
to the specified thread, when the execution changes thread the counters
do not increment. An important note is that an Event Set can be attached
to an external thread other than the creator in order to do remote
monitoring of another thread. The second granularity is process, that
behaves really similarly to the thread granularity but at a process
level. Similarly it can also be attached to another process. The third
granularity is CPU, as its name implies the counters count the events
happening in a single CPU. If the library can attach to another CPU is
depending on the chip used. The last granularity is system, where the
counters aggregate all the different CPU’s in the system.
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Constant Granularity
PAPI_GRN_THR PAPI counters for each individual thread
PAPI_GRN_PROC PAPI counters for each individual process
PAPI_GRN_PROCG PAPI counters for each individual process group
PAPI_GRN_SYS PAPI counters for the current CPU, are you bound?
PAPI_GRN_SYS_CPU PAPI counters for all CPUs individually

Table 2.1: Granularity constants extracted from the PAPI documentation

Choosing the proper granularity is therefore important for the
relevance of the extracted features. Intuition would have us directly
discard the first two granularity’s as they are bound to a process
and the cache side-channel attacks are usually performed in a cross
process context. However, the attacking process must performed some
cache artifacts in order to induce the victim process to leak its data.
Therefore, by monitoring only suspicious processes we could detect the
attacks.

This approach however has one main flaw. As stated previously one
of the places where these attacks have special impact is in cloud
computing. A monitoring of this kind would imply that a user not
making a security mistake by executing the attackers software without
our monitoring could expose the data of another user. For this reason,
the recorded features will be at a CPU level and manually aggregated
or directly at a system level.

An additional benefit of this approach is that the monitoring
facility can be maintained and run by the cloud provider without the
users worrying. This is especially important, as some permissions are
required to access the hardware counters.

Domain

Constant Domain
PAPI_DOM_USER User context counted
PAPI_DOM_KERNEL Kernel/OS context counted
PAPI_DOM_OTHER Exception/transient mode (like user TLB misses)
PAPI_DOM_SUPERVISOR Supervisor/hypervisor context counted

Table 2.2: Domain constants extracted from the PAPI documentation

Events

Another important decision to make is which events to record. The
PAPI library provides a facility to list the events in any particular
processor. The events can be listed in several ways native (events
defined by the processor) and preset (events available for most processor
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that can be derived defined by the library). In our case we will stay
to preset events as they are available in most of the processors. The
result of listing the events can be seen in Appendix ??.

As we want the dataset to be as complete as possible the better
approach would be to record all events a let up to the user of the
dataset to select which fields are important for performance of their
particular application. However it is not possible to record all
events. As for recording the events we rely in hardware counters,
those are not numerous. The amount of counters varies depending on the
particular processor but the amount of counters usually is between 4
and 8. More events can however be recorded through multiplexing [5, 6],
by worsening the quality of the measurements.

2.3 Attacking

Once the monitoring facilities are in place, we need some attacks
to record. One of the issues is that very few actual viruses have
been detected. Therefore executing malware in order to record samples
is not possible. Furthermore, by using malware we could bias the
dataset. The detectors trained with our virus could learn to detect the
malicious actions of the virus (the encryption routine for ransomware,
backdoor, ...) instead of the vulnerability exploitation we want this
detectors to work with.

By looking at the literature we can see that most of it works on the
problem use their own implementation of the attack. This implementation
is then used to get hardware counter measures. This measure are then
used as the dataset to train ML models. We can proceed in a similar
way they did, and use an open implementation.

In our case we will use publicly available implementations. This has
two main advantages, it first of all allows the final dataset to have a
wider variety of implementations. This will make the tools built with
this dataset more generic and applicable. The second advantage, is that
it allows the project to focus on other areas by saving implementation
time.

We could attempt to attack different cryptographic libraries and
various programs using cryptographic material. Due to the nature of
the attack, we can see that the data inside the stolen memory makes
no difference. For this reason, we steal a random string that can be
verified of the attacker’s side.

Where the attacks can find some variation is in where the stolen
information is. For example, to read memory from the same process is
very different to reading memory from another VM because for the second
attack we would need to brake Kernel Address Space Layout Randomization.
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2.3.1 IAIK implementation

The selected implementation for the attack was the one publicly available
on Github by the Institute of Applied Information Processing and
Communications. In it they provide the implementation of several attack
with different memory scopes. From a simple attack that reads memory
inside a same process to a kernel address space randomization breaking
program.

2.4 CPU affinity

One of the problems with the attack in particular is that it requires
both the target and the attacked program to be on the same CPU. All
the processors used have more than one CPU therefore we need a way to
bind the processes to a particular CPU.

The solution to this problem is to use the taskset program included
with GNU/Linux this program allow the user to give to the linux scheduler
a particular CPU affinity por a program and the scheduler will have to
honor the given affinity.

It is not unreasonable that an attacker would perform such actions
as in order to perform the attack it is required that the CPU executing
both tasks is the same.

2.5 Implementation

The code implementation of the project starts from the earliest stages
as some of the information necessary for design decisions must be
obtained from the device. The first module implemented therefore allows
the user to list all available preset events in the machine. This action
can be performed in user space without any elevated privileges.

2.5.1 Event listing

To perform the event listing we use the following function of the
PAPI library. This function will provide both the ability to get
the first valid code for an event and get the following elements.
To obtain the first element the first argument must be the table we
want to look at, it can be the preset table or the native table.
In our case we are interested in the preset table therefore we pass
the value PAPI_PRESET_MASK. To obtain the first element we just pass
PAPI_ENUM_FIRST to the second parameter.

To iterate over the elements we pass the current event as the first
argument and pass PAPI_ENUM_EVENTS to the second argument. This will
return the next entry in the table. As the first element obtained was
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from the preset table all subsequent elements will pertain to this
table.

int PAPI_enum_event(int *EventCode,int modifer)

This would simply yield a list of integers that gives us no information
about what the event represents. To access the details of each event
the library provides the following function.

int PAPI_get_event_info(int EventCode, PAPI_event_info_t *info)

If we take a look at the header providing the event information
structure, we can see that it contains the following information. From
this fields, we have interest in the symbol. This is a short string
representing an abbreviation of the event, most of the literature uses
this strings to refer to particular events. For simplicity reason the
program user will use this instead of the codes to refer to the events.
The next fields of interest are the descriptions that can be used to
better understand what the event records.

typedef struct event_info {
unsigned int event_code;
char symbol[PAPI_HUGE_STR_LEN];
char short_descr[PAPI_MIN_STR_LEN];
char long_descr[PAPI_HUGE_STR_LEN];
int component_index;
char units[PAPI_MIN_STR_LEN];
int location;
int data_type;
int value_type;
int timescope;
int update_type;
int update_freq;
/* PRESET SPECIFIC FIELDS FOLLOW */

unsigned int count;
unsigned int event_type;
char derived[PAPI_MIN_STR_LEN];
char postfix[PAPI_2MAX_STR_LEN];
unsigned int code[PAPI_MAX_INFO_TERMS];
char name[PAPI_MAX_INFO_TERMS]

[PAPI_2MAX_STR_LEN];
char note[PAPI_HUGE_STR_LEN];

} PAPI_event_info_t;
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2.5.2 Event recording

The next component that needs to be implemented is the module allowing
for recording the events. For this have to make use of another component
of the PAPI library. This time we will need to create an event set.
This abstractraction groups events in order to later be recorded. An
event set can be created with the following function. The events can
also be added to the set.

int PAPI_create_eventset (int *EventSet)
int PAPI_add_event(int EventSet, int EventCode)
int PAPI_add_events(int EventSet, int *EventCodes, int number)

As its typing implies an event set is an opaque data structure not
meant for direct manipulation by the user. The structure provides some
interfaces that allow us to access the counters. We have a function for
starting the counter, a function for reading its state and a function
for stoping the counters.

int PAPI_start(int EventSet)
int PAPI_read(int EventSet, long_long *values)
int PAPI_accum(int EventSet, long_long *values)
int PAPI_stop(int EventSet, long_long *values)

2.5.3 Output

After recording the events the program generates an output in the
form of a CSV file. This file can then be parsed and plotted with
many standard data processing libraries. An example is presented in
Figure 2.3 where the data is read in Python using Pandas and plotted
using Matplotlib.

As seen in Figure 2.3 the x axis does not have any meaningful unit,
right now an index is used. However, this axis will be required in
order to label the dataset. As it represents time, we will use a Unix
timestamp in milliseconds to store its value. This way each sample can
be identified in time.

2.6 Results

Now that all the necessary tools are developed we only need to execute
the created software. A script is created with this purpose. Before
running the script the programs need to be compiled. The attacks are
added to the project by using git submodules in the project repository.
So if we wish to run it we will first need to pull the repository. Then
after pulling the repository we enter the project directory and pull
the submodules.
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Figure 2.3: Example recording of the PAPI metric PAPI_L1_TCM

git pull https://github.com/musergi/tfm.git
cd tfm
git submodule init
git submodule update

We then need to build the attacks, the selected project uses a
simple make file so we only need to enter the attack project folder
and run make.

cd deps/meltdown
make

The next step in order to generate the dataset is to build the
recording software. In our case, as a build system we used cmake
which does not come preinstalled with many of the linux distribution
it will therefore need installation. After installing cmake building
the project is as simple as the following commands.

mkdir build
cd build
cmake ..
make

After having all programs built we can already run the dataset
generation. However, it is recomended to first run the event listing
program in order to list all available hardware counters. This can be
done by running the built script named "list".
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./build/src/list

Once we have selected the desired events to record we can run the
script to record a single attack dataset. For example to record a
dataset that records three events the total number of instructions,
the L2 cache accesses and the L2 cache misses we run the following
command.

python scripts/run_tests.py --vuln ./deps/meltdown/test \
--events PAPI_TOT_INS PAPI_L2_TCA PAPI_L2_TCM

The result of running this command will be 2 files in CSV format.
First, an intermediary file named "out.csv" that contains the output of
the dataset recording software. Then, a file named "out_labeled.csv"
contains the dataset itself comprised by the columns representing the
event counts, the timestamp column and the label column.

2.6.1 Format

The dataset takes the form of a table with a variable number of columns
and a more or less set number of rows. The number of rows is bound by
the recording software that records 500 samples spaced more or less
10 milliseconds apart. The number of columns has a minimum of 3 and a
maximum only bound by the specific CPU used.

The first mandatory column of the dataset that is the "timestamp"
column. This column should not be used when training a model. The main
reason we advise against using it is that this column does not contain
any information that relates with the attack. This column is however
very useful when plotting the dataset as it can be used as the X-axis
in the plot. This column data is the UNIX timestamp in milliseconds.

The second mandatory column is the column containing the label. This
column is binary in nature as it contains a 0 if no attack was present
and 1 if the attack program was running. This column is created by
using the previously described column. When the attack is launched the
starting timestamp is recorded, after that we wait for the attack to
end and get the end timestamp. With the start and end timestamps we
can then label a record in the dataset as 1 if its timestamp is between
the two.

The rest of the columns are comprised of the recorded events. They
contains the number of times a particular event took place since the
last timestamp. For the dataset to be useful it is recommended to use
at least two columns. One of them as a baseline metric (e.g. total
number of instruction) and a metric that is affected by the attack
(e.g. total cache misses).
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2.6.2 Plots

If we plot the first dataset, generated by running the test program with
the recording software running in the background we obtain what is shown
in Figure 2.4. This plots show all the non timestampt columns against
the timestamp column. If we take a look at both Figures 2.4a and 2.4b
we can see that they clearly spike when the attack is being performed.
This is reasonable as the attack uses the cache as a side channel. In
order to use as a baseline we selected the total number of instructions
executed, as shown in Figure 2.4c its value remains stable during the
attack except for a spike at the end.

(a) Total L2 Cache Misses (b) Total L2 Cache Accesses

(c) Total executed instructions (d) Label

Figure 2.4: Columns of the generated dataset for the test attack

The previous data however was generated under ideal conditions. In
that case the detection is trivial as a simple trigger algorithm would
detect it. In order, to clearly expose the limits of this approach
we performed the same exact test with on key difference. This time a
memory stress program was also running during the attack. The generated
dataset in this context can be seen in Figure 2.5.

By taking a closer look at Figure 2.5d, we can see that the stress

18



software does not only take an effect on the metrics obtained but also
slows down the attack. In the Figure this can be see by the time
where the label has value 1 being larger. Even under stress conditions
the attack can be clearly detected in Figure 2.5a. This time however
automated detection is more difficult as a trigger algorithm would
fail. We speculate that a more sophisticated detection approach like
Deep Learning could succeed.

(a) Total L2 Cache Misses (b) Total L2 Cache Accesses

(c) Total executed instructions (d) Label

Figure 2.5: Columns of the generated dataset for the test attack under
stress

In order to further provide proof that the methodology works we
provide a dataset with a more covert version of the attack. This
attack slowly steals physical memory. In Figure 2.6 we can see the
result of such dataset generation. In Figure 2.6a, we can see that the
footprint of the attack in the amount of cache misses is smaller making
detection harder. However, it still seams to have a particular patter
that would allow detection. With this stealthier attack detection with
only the cache accesses (Figure 2.6b and total instruction (Figure 2.6c
is unfeasible.
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(a) Total L2 Cache Misses (b) Total L2 Cache Accesses

(c) Total executed instructions (d) Label

Figure 2.6: Columns of the generated dataset for the memory dump attack

Once again, we are interested on how a considerable load on the
system, spetially the memory would affect the attack and the generated
dataset. For this reason we follow the same exact procedure as
previously. We add a stress process to the execution.

The resulting dataset of this last approach can be seen in Figure 2.7.
In this case no comment can be made about the duration of the attack as
the attack would dump the entire memory cyclicly if allowed two. The
attacking process is killed in order to fit in the capturing window.

This time we can see that in the amount of cache misses of the attack
is overshadowed by the stress process in Figure 2.7a. However even if
the attack a much lower footprint we can see that the same pattern
seen in previous recordings still stands, as the attack is performed
in much of the same way. For this reason, once again it is reasonable
to speculate that a top of the line Neural Network would have not much
issue detecting an attack.
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(a) Total L2 Cache Misses (b) Total L2 Cache Accesses

(c) Total executed instructions (d) Label

Figure 2.7: Columns of the generated dataset for the memory dump attack
under stress
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Chapter 3

Business

3.1 Cost analysis

+------------------+----------+---------------+-----------+
| Item | Quantity | Unit cost | Cost |
+------------------+----------+---------------+-----------+
| Research | 60h | 12.5 eur/h | 750 eur |
| Programming | 180h | 12.5 eur/h | 2250 eur |
| Experimentation | 120h | 12.5 eur/h | 1500 eur |
| Reporting | 120h | 12.5 eur/h | 1500 eur |
| Hardware | 5 units | 800 eur/unit | 4000 eur |
+------------------+----------+---------------+-----------+
| Total | 10000 eur |
+------------------+--------------------------------------+

Table 3.1: Project costs

As expected from a Master’s project there where no available resources
to cover this costs. For this reason, the costs where taken care of
with alternative methodology.

The labor costs where taken care by the project developers without
the cost specified in Table 3.1. For this reason, the project could be
developed without the need of paying the salary.

The hardware was obtained by the project coordinator from older
unused hardware found at the university. It was a challenging task
as most of the hardware is in use. The added difficulty of the task
was that the hardware needed to be vulnerable to the exploit. The
main issue with this requirement is that it forced the hardware to be
reasonable new and therefore harder to get.
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3.2 Sustainability analysis

A sustainability analysis is an essential part of every project as it
allows us to asses and give precise quantification of the impact on
nature, society and economy of any project. With software project this
analysis is often skip as it is though that by not having a physical
component the project does not have much impact. This is a narrow
mindset, at the core of the sustainability revolution is software. For
this reason we think that it is essential to perform for any project
this analysis.

3.2.1 Environmental

One of the main motivations for this project is the environmental
impact that the current mitigation provide over the performance. We
previously stated that this impact can be as high as 20%. This impact in
performance is tightly coupled with the environmental cost of computing.
By cutting performance by 20% we require more assets in order to cover
this performance loss therefore causing an increase in the hardware
requirements and energy requirements. Increasing hardware has a very
high cost on the environment as the silicon industry has a very high
energetic cost.

Our project aims to up the efficiency of secure systems, and by
consequence, reducing the environmental footprint of computing centers
with vulnerable hardware. It also allows for the vulnerable hardware,
to not be discarded directly which will have an gigantic negative
impact on the environment.

3.2.2 Social

The social impact is twofold, in a big scale it allows companies to run
in cloud providers, in a smaller scale it allows end users to safely
use their vulnerable hardware.

On the one hand, most of the services developed by companies are
running in servers hosted by cloud providers as they allow easier and
seamless scaling. Many of this services are basic for our everyday
lives (e.g. online banking). Some allow us to more efficiently sustain
our most basic needs (e.g. social networks allow us to fulfil our need
to socialize). I believe that by making this industries more profitable
by reducing costs our project will positively impact society.

On the other hand, our project allows users that have vulnerable
hardware at home to keep using their hardware without being exposed to
the attacks. As for most users replacing the hardware is not an option,
having a security patch with as low performance hit as possible will
allow to safely continue to use their hardware for longer.
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3.2.3 Economic

It is a common saying in the cybersecurity space that security is not
investment, it is rather a cost for companies as it does not generate
value. However, in the case of cloud providers patching the studied
vulnerability is a must if they do not want to exclude a part of their
potential clients. For this reason, an alternative solution to the
currently applied one with higher efficiency would highly benefit the
cloud providers.
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Chapter 4

Conclusion

From the project results presented, we can conclude that the project
goals have been completed. We have built a solid framework that enables
the generation of a generic dataset of cache side-channel attacks.

To provide a proof of concept of how such a dataset is generated,
we provided four examples of datasets generated using our tools. Not
only that but we introduced a methodology on how to relevantly stress
the system during the recording in order to provide the worst case
conditions.

The tools developed have a very important role often overlooked in
the field of machine learning, they provide a common ground to test the
different proposed techniques. Without a common dataset the results
provided on a paper, even if reproducible can not be compared to the
ones obtained by another paper.

For this reason, this project is a necessary step that will allow
to further the research in the field of detection of cache side-channel
attacks through hardware counters to ensure a minimal (if any) performance
hit for users.

A proof that attacks like Meltdown and Spectre will not soon
disappear is that the new Apple M1 still suffers from a similar attack.

All the code for the generated tools alongside with the necessary
instructions to use them are publicly available at:

https://github.com/musergi/tfm
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