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Abstract
Composite materials are gaining popularity as an alternative to classical materials in many different applications. Moreover,
their design is even more flexible due to the potential of additive manufacturing. Thus, one can produce a tailored composite
laminate with the optimal values of some design parameters providing the desired mechanical performance. In this context,
having a parametric numerical model for the mechanical response of the composite laminate is essential to compute the
optimal parameters. In the present paper, the design parameters under consideration are the angles describing the orientation
of the reinforcement fibers in different layers or patches of the composite laminates. We obtain a generalized solution using
Proper Generalized Decomposition (PGD) which is adopted to provide solutions with explicit parametric dependence. The
Tsai-Wu failure criterion is used to estimate first ply failure. In this context, Tsai-Wu criterion is used as the objective function
for the optimization of the fibre orientations in the laminate. The PGD solution provides also sensitivities for a gradient-based
optimization algorithm. The potentiality and efficiency of the presented approach is demonstrated through some numerical
tests.
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1 Introduction

The progress of additivemanufacturing allows producing tai-
lored composite laminates, for instance with different fiber
orientations in each layer or patch. Thus, the designer of the
laminate has the freedom of selecting a number of param-
eters, e.g., angles describing the fiber orientation in each
zone. In order to properly determine the optimal choice for
these parameters, there is a need for modeling the mechani-
cal behavior of a given composite laminate for any possible
value of the parameters. To achieve such model, the selected
parameters are considered as independent variables (extra-
coordinates or extra-dimension) in the problem formulation
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resulting in a multidimensional problem. Generally, solving
a mechanical model using mesh based techniques in 3D is
computationally expensive and at some point it could become
infeasible when the problem is multidimensional. In spite of
the existence of very well established theories that simplify
the analysis of 3D composite laminate bodies through 2D
or even into 1D structural theories, a 3D analysis is often
compulsory to capture all the physics through the thickness
and around the boundaries [1]. Furthermore, if the prob-
lem under consideration is an application requiring multiple
queries such as optimization, inverse problems, or uncer-
tainty quantification, the direct problem is solved numerous
times increasing drastically the computational burden.

In the present work, the design parameters under con-
sideration are the angles describing the orientation of the
reinforcement fibers in different layers or patches of the
composite laminates. Classical engineering approaches to
the optimization of fibre orientations in composite lami-
nates have been addressed in many different studies. The
approaches could be divided into six main parts: buck-
ling loadmaximization (eg. [2,3]), vibrational characteristics
enhancement (eg. [4,5]), weight minimization (eg. [6,7]),
strength and stiffness maximization (eg. [8,9]), deflection
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minimization (eg. [10]), and stress minimization (eg. [11,
12]).

The approach adopted in the current study is the max-
imization of the strength of the composite structure. Early
work by Pedersen has been dedicated to solve the opti-
mization problem of the orientation of orthotropic material
analytically using a strain based objective function [13].
Pedersen continued his work and devised a FEM and opti-
mization procedure to solve the aforementioned problem and
also to solve the thickness-orientation optimization problem
[14,15]. Recent work by Huang et al. on the optimiza-
tion of fibre orientation, using a load bearing approach,
used the Tsai-Wu criterion as the objective function [16].
It was followed by the work of Groenwold and Haftka on
the optimization of different failure criteria [8]. The work
by Bruynmeel consisted in optimizing the fibre orientation
using strength based criteria, such as Tsai-Hill and Tsai-Wu,
showing that a direct parameterization of the problem in the
design variables is favorable over the parameterization using
lamination parameters where the space is not completely
known [17]. Bruynmeel extended his work and argued that
the optimization of the fibres in a non-homogeneous domain
is very sensitive to the initial guess of gradient basedmethods
and that one could end up with a local solution. Bruynmeel
also reported that the more the number of design variables
increases themore the optimization problembecomes expen-
sive, especially if the optimization method employed is a
non-deterministic method to obtain global solutions [18].

In the current study, we aim to investigate the effect of the
fibre configuration on the Tsai-Wu failure index that is pre-
sented as the objective function of the optimization problem.
Note that here we are not predicting final failure of the lam-
inates, which would require a progressive damage model,
but rather first ply failure. While the Tsai-Wu criterion is
not the most accurate failure criterion available (invariant-
based failure criteria are more accurate, especially for the
fiber-kinking failure mode), it’s mathematical representation
makes it suitable to be used in combination with the Proper
GeneralizedDecomposition technique.Accordingly, an opti-
mization technique should be applied to efficiently find the
best fibre orientation in the laminate. The fibre orientation
in a laminate is one of many design parameters affecting
the structural performance. For example, the variation of the
stacking sequence, material density and layer thickness has
a direct effect on the mechanical performance of composite
laminates. For this reason, it is of paramount importance to
consider their optimization either individually or simultane-
ously [19] to achieve better designs.

In terms of optimization techniques, recent work done by
Hwang et al. addressing the optimization of fibre orientation
in each layer using the Genetic Algorithm (GA) and it was

reported that the optimization algorithm behaves well in such
problems [5]. Itwas shownbyLi et al. in a recent research that
a hybrid optimization method consisting in the genetic algo-
rithm and the particle swarm optimization efficiently finds
the optimal solution [20]. Another recent work combining
topology optimization with fibre orientation optimization by
minimizing the compliance. They use gradient-basedmethod
which leads to local solutions. Moreover, solving the system
and the computation of the sensitivities every iteration could
lead to a computationally expensive problem depending on
the size of the system and the number of design variables
[21]. A recent study by Diniz et al. focuses on the design
optimization using the Tsai-Wu failure criterion as the objec-
tive function coupledwithArtificial NeuralNetworks (ANN)
[22]. The work done by Shen et al. is competitive and it
shows the optimization of fibre orientation using the compli-
ance as the objective function. However, it is reported that
the solution is easily affected by the initial guess since the
work employs a gradient-based method to obtain the optimal
fibre orientation. They overcome this issue by providing the
gradient-based method with the principle directions as ini-
tial guess.Moreover, in each iteration they solve the complete
system, which could become computationally challenging if
the system is large [23]. There is a vast literature on method-
ologies and different approaches for the optimization of the
design of composite laminates; and for deeper insight the
reader is referred to the review paper by Nikbakt et al. [24]
and the references therein.

The present paper focuses on composite laminates and it
aims to ultimately find the best fibre orientations to mini-
mize the Tsai-Wu failure index. These aims naturally lead
us to an optimization problem that has to be solved a large
number of times, corresponding to different choices of the
design parameters. Thus, the computational complexity of
this procedure blows up with the number of design parame-
ters, resulting in the so-called curse of the dimensionality
[25]. The use of a Model Order Reduction (MOR) tech-
nique is advocated to alleviate the mentioned computational
burden. Particularly, the Proper Generalized Decomposition
(PGD) method is selected as a MOR technique because it
provides a solution with explicit dependence on the parame-
ters of the problem.

The layout of the present paper is as follows. Section 2
presents the problem statement of the full 3D linear elas-
ticity problem, showing the parametric dependence, and a
brief introduction to the failure criterion used along with the
optimization problem to be solved. Section 3 introduces the
encapsulated PGD concept and shows how the problem in
hand is adapted to it. Section 4 shows some numerical exam-
ples to demonstrate the potentiality of the methodology and
finally in Sect. 5 we address some concluding remarks.
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2 Problem statement

2.1 Equilibrium equations and constitutive law

Given a 3D domain Ω ⊂ IR3, the linear elasticity problem
consists in finding the displacement u satisfying,

⎧
⎪⎨

⎪⎩

∇T
Sσ + b = 0 in Ω

u = uD on ΓD

nTσ = tN on ΓN

(1)

with σ = Cε and ε = ∇Su,
where ∇S is a 6 × 3 symmetric gradient matrix operator

(see for example [26]), σ is the stress field, b is the body
forces vector; uD is the displacement field prescribed on the
Dirichlet boundary, tN is the prescribed the traction applied
on theNeumannboundary,n is the 6×3matrix representation
of the normal (in analogy with the ∇S operator); C is the
elasticity tensor, and ε is the strain field. The stresses and
strains are expressed in the engineering Voigt’s notation; and
therefore the elasticity tensor is expressed as a 6× 6 matrix.
For orthotropic materials the constitutive relation reads

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σxx
σyy

σzz
τyz
τxz
τxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
Sym. C44 0 0

C55 0
C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

εxx
εyy
εzz
γyz
γxz
γxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

The weak form of the elastic problem (1) reads, find u ∈ U
such that,

∫

Ω

(∇Sw)TC∇Su dΩ

=
∫

ΓN

wT tN dΓ +
∫

Ω

wTb dΩ ∀w ∈ Uo

(3)

where the spaces are defined asU = {u|u ∈ (
H1(Ω)

)3
, u =

uD on ΓD} and U0 = {w|w ∈ (
H1(Ω)

)3
, w =

0 on ΓD}. The discrete approximation uh to u is associated
with a tessellation ofΩ in elementsΩe, e = 1, . . . ,nel. The
number of degrees of freedomwithin each element is denoted
by nedof. For any point x in element Ωe, the restriction of
uh to the e-th element reads

ueh(x) = Ne(x)de (4)

where Ne(x) is a 3× nedof element shape function matrix,
and de is a nedof×1 vector of element nodal displacements.

Following the derivations in [26], the corresponding ele-
ment stiffness matrix K e and force vector f e read,

K e =
∫

Ωe
BeTCBe dΩ (5)

f e =
∫

Ωe
NeTb dΩ +

∫

ΓN
⋂

Ω̄e
NeT t dΓ (6)

where Be is the strain-displacement matrix containing the
symmetric gradient of the shape functions.

The global number of degrees of freedom is denoted by
nd. The global stiffness matrix K is obtained assembling
the element matrices K e, e = 1, . . . ,nel. Here, the assem-
bly operator is represented by nedof ×nd Boolean matrices
Le, containing only ones and zeros, such that they restrict a
global vector into a local one defined within each element;
for example de = Led for the global and local nodal dis-
placement vectors. The force vectors are treated similarly
and, therefore, the global system of equations reads

Kd = f (7)

where

K :=
nel∑

e=1

LeTK eLe and f :=
nel∑

e=1

LeT f e (8)

2.2 Parameterization of the problem

It is assumed in the following that fibres always lie in planes
parallel to the 1−2 plane in a {O, 1, 2, 3}material coordinate
system (see Fig. 1), where direction 1 is always the fibres’
longitudinal direction. The existence of the fibres is mod-
elled using a transversely isotropic material assumption. The
reference coordinate system (or global axes) is denoted by
{O, x, y, z} and axis z coincides with axis 3, consequently,
plane {O, x, y} coincides with plane {O, 1, 2}, as shown in
Fig. 1.

The angle θ is the orientation of the family of fibres
belonging to the material coordinate system with respect to
the global coordinate system. Note that, the domain could be
divided into many subdomains (layers or patches), hence, θ
could take a specific value for each specific subdomain with
respect to the global coordinate system.

The elasticity tensorC in (??) when expressed in themate-
rial axes {O, 1, 2, 3} in terms of the Young’s moduli, shear
moduli, and Poisson’s ratios, is denoted as C0. Since our
problem is definedwith respect to the global axes {O, x, y, z}
and we aim at having different fiber orientations in different
parts of the domain, C0 has to be also expressed in the global
reference. Thus, the question is how to represent C(θ) as a
function of C0 and θ .
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Fig. 1 Global coordinate system {O, x, y, z} and material coordinate
system {O, 1, 2, 3}

The transformation ofC0 toC(θ) is a result of the transfor-
mation of stresses and strains from material to global axes.
These transformations are well established in the literature
[27,28] and make use of a transformation matrix T (θ). The
matrix T is applied to stresses and strains as follows

σ 123 = T (θ)σ xyz

ε123 = T−T(θ)εxyz
(9)

where the subscript “123" refers to the material axes and
“xyz" refers to the global axes. Given that c := cos(θ) and
s := sin(θ), we could then define the matrix T as

T (θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2 s2 0 0 0 2cs
s2 c2 0 0 0 −2cs
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−cs cs 0 0 0 c2 − s2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

The inverse transpose of T (θ) is explicitly given by the
following expression

T−T(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2 s2 0 0 0 cs
s2 c2 0 0 0 −cs
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0

−2cs 2cs 0 0 0 c2 − s2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

Given the following relation,

σ 123 =C0ε123 (12)

The elasticity tensor C(θ) could be derived by substituting
the stress and strain tensors in (12) by the ones in (9) which
results in the following,

T (θ)σ xyz =C0T−T(θ)εxyz (13)

Multiplying both sides by T−1(θ) yields,

σ xyz =T−1(θ)C0T−T(θ)εxyz (14)

Thus, the relation between the elasticity tensor in the global
axes and in the one in the material axes reads,

C(θ) = T−1(θ)C0T−T(θ) (15)

In the remainder of the paper, we divide the domain
into several different subdomains (layers or patches) and, as
parameters to be optimized, we assume the fibre orientation
angle in each single subdomain (layer or patch). Thus, the
number of layers (or patches) np is the number of param-
eters characterizing the domain denoted by θi , such that
i = 1, . . . ,np. Each parameter θi ranges in a real interval
Ii ⊂ IR and describes the fiber orientation in a subdomain
Ωi ⊂ Ω (note that the notation for the finite elements is Ωe,
e = 1, . . . ,nel, and typically many elements Ωe are inside
a subdomain Ωi ).

The np parameters are gathered in the vector θ =
[θ1, θ2, ..., θnp ]T. Note that θ ranges in the multidimensional
parametric domain Iθ = I1 × I2 × ... × Inp ⊂ IRnp .

Recalling (5), for every element e such that Ωe ⊂ Ωi , the
element stiffness matrix reads

K e(θi ) =
∫

Ωe
BeTC(θi )BedΩ (16)

The parametric linear system of equations is derived using
the parametric expression of the element stiffnessmatrix (16)
in the assembly described in (8) resulting in

K (θ)d(θ) = f (17)

It is worth noting that in this particular problem statement
the force term f does not depend on the parameters.

2.3 Failure criterion and optimization

The design analysis of a composite laminate is performed
by comparing the stresses due to the applied loads with an
allowable strength of the material [28,29]. To achieve this
comparison, many failure criteria were proposed for differ-
ent types of materials. For example, the classical Von Mises
stress invariant is very popular for isotropic materials, such
as steel and aluminium alloys. Anisotropic materials require
more sophisticated criteria, such as the maximum stress
and strain criteria, the Tsai-Hill criterion, and the Tsai-Wu
criterion, see [27–30] and references therein for a deeper dis-
cussion on the comparison of the different approaches. The
Tsai-Wu criterion accounts for all the interactions between
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different stress states, in particular tensile and compressive
states, and it has been proven to fit the experimental data
best. Consequently, in the following, the Tsai-Wu criterion
is chosen as the objective function for our optimization prob-
lem with the goal of finding the best fibre orientation in the
laminate.

2.3.1 Tsai-Wu criterion

In our context, the Tsai-Wu criterion is intended to be
a descriptive tool for us to have a general notion of the
load-bearing capacity of structures for design purposes. The
criterion has beenwidely applied as an optimization objective
function for different applications [8,16,31–35]. The failure
criterion was first proposed by Tsai and Wu [36] and it is
based on the scalar failure index If defined as function of
the stress σ as follows:

If
(
σ
) = σ TFσ + σ TF (18)

In particular, the criterion states that the material at point x
is not at failure if and only if If(σ ) ≤ 1. The dependency of
the failure index on the position x is through the stress state
σ (x). The strength tensors F and F are fourth and second
order tensors respectively (expressed as amatrix and a vector,
when using the engineering Voigt’s notation). In the case of
transversal isotropy, the forms of F and F with respect to
the material axes, denoted by F0 and F0, are

F0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F11 F12 F12 0 0 0
F22 F23 0 0 0

F22 0 0 0
Sym. 2(F22 − F23) 0 0

1

τ 2y
0

1

τ 2y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)

F0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1
F2
F2
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

Remark 1 Tensors F0 and F0 are material characteristics
that have to be determined in the laboratory. This is achieved
by applying uni-axial and bi-axial stresses in tension and
compression andmeasuring the failure strengths [36]. In par-
ticular

F11 = 1

σ Lt
y σ Lc

y
, F1 = 1

σ Lt
y

− 1

σ Lc
y

(21)

F22 = 1

σ T t
y σ T c

y
, F2 = 1

σ T t
y

− 1

σ T c
y

(22)

F12 = −1

2

√
F11F22, F23 = −1

2

√
F22F33 (23)

where, σ Lt
y , σ Lc

y , σ T t
y , σ T c

y and τy are the longitudinal
tensile, longitudinal compressive, transverse tensile, trans-
verse compressive and shear yielding strength of the material
respectively, and the subscript “y" stands for yield state of
the strength.

The criterion in (18) is non-homogeneous,meaning that it has
a quadratic term and a linear term, where the latter takes into
account the internal stresses that differentiate between ten-
sile and compressive stress states [36]. It was demonstrated in
[8] that sometimes the Tsai-Wu criterion is load dependent.
This means that for applied loads under a certain threshold
the criterion in (18) is dominated by the linear term, and thus,
leading to inaccurate counter-intuitive optimization results.
To alleviate this problem, the failure criterion may be alter-
natively expressed in terms of a scalar load multiplier λ. The
load multiplier (or safety factor) λ produces a stress state
σ = λσ , such that, the applied stress scales by a factor λ to
match the yielding state of the material at the onset of failure
(see [8] for details). Consequently, the goal now is to find
the best fibre orientation that maximizes the safety factor λ,
and therefore, design the laminate based on the maximum
load capacity of the structure just before failure. Thus, the
corresponding failure index reads

If
(
σ
) = If

(
λσ

) = λ2σ TFσ + λσ TF (24)

At each point x, the critical value of λ corresponds to the
onset of failure If

(
σ
) = 1. This results in a polynomial

equation of the second degree for λwhere its explicit solution
is available. Assuming that F is symmetric positive definite,
σ TFσ ≥ 0, there is a unique positive root of the equation
If

(
σ
) = 1. The smallest positive root is the safety factor,

denoted by λs and reads

λs = 1

2σ TFσ

(√
(σ TF)2 + 4 σ TFσ − σ TF

)
(25)

Note that the safety factor depends on the choice of the
parameters θ and the point x where the stress is evaluated;
and thus the notation λs(x, θ) is adopted in the following. To
emphasize the dependence of the failure criterion in (18) on
the fibre orientation (our parameters), we explicitly express
the strength tensors in (19) and (20) with respect to the global
axes. Thus, in an arbitrary point x ∈ Ωi where the fiber
orientation angle is θi , or in any element Ωe ⊂ Ωi , the
expressions of F and F with respect to the global axes are
obtained using the transformationmatrices introduced in (10)
and (11), namely
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F(θi ) = T T(θi )F0T (θi )

F(θi ) = T T(θi )F0
(26)

It is worth noting that the dependence of If(σ ) on θ does not
only come fromσ (x, θ) but also fromF(θi ) and F(θi )where
they depend only on the local θi because they are material
properties. Marking explicitly the parametric dependence,
for x ∈ Ωi , Eq. (18) is rewritten as

If
(
σ (x, θ)

)

= σ (x, θ)TF(θi )σ (x, θ) + σ (x, θ)TF(θi ).
(27)

2.3.2 Optimization problem

Following [8], two alternative optimization problems are
considered to find the optimal values of the parameters θ .
The first choice is to find θ that minimizes the maximum
value of If

(
σ (x, θ)

)
evaluated at all points x in Ω . Thus,

the optimization problem reads

θ
Opt
f = argmin

θ
max
x

If
(
σ (x, θ)

)
(28)

where superscript “Opt" is used to indicate the optimal
choice and subscript “f" is a label to indicate that the objec-
tive function is based on the failure index.

Alternatively, the second choice is to find θ thatmaximizes
the minimum value of λs(x, θ) evaluated at all points x in
Ω . The corresponding optimal choice (labeled by subscript
“s" for safety) is

θOpts = argmax
θ

min
x

λs(x, θ) (29)

These objective functions as defined in the parametric
space Iθ are not necessarily smooth or regular, and they are
not expected to have nice convexity properties. Thus, the
optimization algorithm has to be carefully selected to avoid
stalling at local extrema which often happens to gradient-
based methods if the initial guess is not accurate enough.
On the other hand, having an accurate solution is also desir-
able and is achieved by using global methods (such as the
Genetic Algorithm), however, they are often exhibiting a
slow convergence rate. Thus, a smart combination of dif-
ferent methodologies is probably the best strategy.

3 Proper generalized decomposition

This section brieflydescribes theProperGeneralizedDecom-
position (PGD) as a tool to obtain a parametric solution of
the problem described in Sect. 2 that depends explicitly on
the fibre orientation. This explicit parametric solution allows
expressing in a compact form the solutions corresponding to

all possible values of parameters θ . In a nutshell, the main
concepts behind the PGD approach are summarized in three
steps as follows [25,37]:

– First, the parameters are taken as extra coordinates, stat-
ing the problem in a multidimensional framework; this
means finding an approximation to d(θ) in IRnd × Iθ

solution of (17). Consequently, the multidimensional
character of the problem drastically increases its com-
putational complexity.
Standard discretization techniques have severe computa-
tional difficulties dealing with the number of degrees of
freedom produced by the discretization of the multidi-
mensional domain (the number of degrees of freedom is
the product of the number of degrees of freedom in each
parametric dimension). This happens even for a small
number of parameters (1 or 2).

– Second, in order to reduce the computational complex-
ity, the solution is sought in a separable format. This
means that the solution is written as a sum of products
of sectional functions each depending only on one of the
parameters; each term is referred to as a rank-one term.
Thus, the actual number of degrees of freedom reduces
to the sum of the number of degrees of freedom in each
parametric dimension,multiplied by the number of terms.
Although, the number of terms is usually small and it does
not grow exponentially with the number of dimensions.

– Third, the algorithm to solve this problem is based on a
greedy strategy (computing one rank-one term at a time)
and an alternating directions methods to solve the non-
linear rank-one problems.

The PGD-solution is typically computed in an offline
phase that may take important computational resources. The
interesting aspect of the PGD is that once the explicit para-
metric solution is available, exploring the parametric space
(e.g. for an optimization problem) is a simple postprocess,
which is extremely fast, and it can be conducted online in real
time. In the following we show the encapsulated concept,
presented in [38,39], where a set of algebraic tools operate
with multidimensional tensors in a separable format. Subse-
quently, we present the process of separation of input for the
encapsulated PGDand, finally, we introduce the post-process
steps to compute the failure index and the optimization prob-
lem.

3.1 Encapsulated PGD

The PGD approach is presented here following the encapsu-
lated concept presented in [38,39], where it provides tools
that directly produce the generalized solution for the high-
dimensional tensor data. The encapsulated PGD concept
allows to define PGD objects, which are quantities defined
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in a multidimensional setting representing multiparametric
functions, and it provides a toolbox1 of algebraic routines to
directly operatewith these objects. Thus, the generalmethod-
ology permits the performance of non-trivial operations (e.g.
solving linear systems of equations, compression, etc...) for
multidimensional tensors, see [39]. For example, the input
parametric matrix K (θ) in (17) has to be provided in (or
approximated by) a separated form, that is

K (θ) ≈ Ksep(θ) =
nk∑

k=1

K k
np∏

j=1

ϕk
j (θ j ) (30)

where superscript “sep" indicates that the quantity (in this
case the matrix) is stored in a separated form. For each
term k = 1, . . . ,nk, matrices K k and functions ϕk

j , for
j = 1, . . . ,np are the spatial and the parametric modes,
respectively, describing the parametric dependence of the
global stiffness matrix using an affine decomposition with
nk terms.

One of the routines in the toolbox is the linear solver, hav-
ing as input Ksep(θ) and f (possibly f sep(θ)) and yielding
as output a separable approximation to the unknown vector
of generalized displacements d(θ), namely

d(θ) ≈ dnPGD(θ) =
n∑

m=1

βmdm
np∏

j=1

Gm
j (θ j )

= dn−1
PGD(θ) + βndnGn

1(θ1)G
n
2(θ2)...G

n
np(θnp)

(31)

where, dnPGD is a separated approximation with n terms; dm

is the spatial mode, and Gm
j are the parametric modes where

m = 1, . . . , n and j = 1, . . . ,np. Modes dm and Gm
j

are normalized and βm collects the amplitude of each term.
Amplitude βm accounts for the importance of term m and is
also used to decide when to stop the greedy algorithm (one
stops computing new terms once βm is small enough, with
respect to β1). Despite this stopping criterion is only strictly
valid for elliptic problems [40], it is used in practice for any
equation with good results.

Often, the PGD solution has redundant information as
orthogonality between successive terms is not enforced;
whereas it is enforced, for instance, in the Singular Value
Decomposition (SVD can be seen as a particular case of
PGD). The PGD compression is a methodology that post-
processes any PGD object, aiming to alleviate the excess of
PGD terms associated with this redundancy (reduce a too
large value of n in (31)). It consists in least-squares approxi-
mation following the same PGD philosophy, see [38,41,42].
In a nutshell, for any solution provided by the PGD solver

1 Publicly available at https://git.lacan.upc.edu/zlotnik/
algebraicPGDtools

like dnPGD (as solution of (31)) the goal is to find a PGD-type
approximation dnccom such that the following discrepancy is
minimized

‖dnccom − dnPGD‖L2(Iθ )

=
∫

I1
. . .

∫

Inp

(dnccom − dnPGD)
2 dθnp . . . dθ1.

(32)

Note that the number of terms,nc, in the compressed solution
dnccom is expected to be significantly lower than the original
one (nc 	 n).

3.2 Separated input for encapsulated PGD

As indicated above, the input of the encapsulated PGD rou-
tines is made of separated PGD objects, as the stiffness
matrix described in (30). In the present case, the paramet-
ric dependence of the input matrix K (θ) on the parameters
θi , i = 1, . . . ,np arises from the parametric dependence of
the elasticity tensor C(⊆); which depends on the value of the
fiber orientation at the material point where it is evaluated.
A separated representation of C(⊆) is required in order to
build up a separated representation of matrix K (θ) as in (30).

Recalling Sect. 2.2, it is assumed that the subdomains Ωi ,
i = 1, . . . ,np, where the angle of the fiber orientation is θi ,

do cover the whole domain Ω; that is Ω̄ =
np⋃

i=1
Ω̄i . Thus,

the elasticity tensor depends at each point x ∈ Ωi on the
parameter θi , and it is expressed in a separable format as

C(θi ) =
nt∑

�=1

C�

np∏

j=1

φ
�,i
j (θ j ) (33)

where the fact that C(θi ) depends only on θi results in the
condition φ

�,i
j (θ j ) ≡ 1 for j �= i , see Appendix A for details.

Moreover, any point x belonging to some element Ωe ⊂
Ωi , such that the element index, e, e = 1, . . . ,nel, is in
relation with subdomain index i .

This formal convention identifying element e with mate-
rial subdomain i allows replacing (33) in the expression for
K e(θi ) provided by (16), and this results in

K e(θi ) =
nt∑

�=1

[ ∫

Ωe

BeTC�BedΩ
] np∏

j=1

φ
�,i
j (θ j ) (34)
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Then, assembling the local matrices as indicated in (4),
one gets

K (θ1, θ2, ..., θnp)

=
nel∑

e=1

LeTK e(θi )Le

=
nel∑

e=1

nt∑

�=1

[ ∫

Ωe

LeTBeTC�BeLe dΩ
] np∏

j=1

φ
�,i
j (θ j )

(35)

which provides a separable expression for K (θ) that is used
as input for the encapsulated PGD routines. In particular,
the linear solver for algebraic equations provides as output
dnPGD(θ).

3.3 Post-process and sensitivities

Once the parametric solution dnPGD(θ) is obtained in the form
of a generalized solution (31), it has to be used to compute the
parametric expressions of the failure index If, see (18), and
the safety factor, λs , see (25). In order to solve the optimiza-
tion problems (28) and (29) with gradient-based methods,
the sensitivities (gradients and Hessian matrices with respect
to the parameters) need to be computed.

In a first step, the strain tensor has to be computed as
a postprocess of the parametric displacements dnPGD(θ). In
practice, the strain field is computed in a set of ng points
in domain Ω , typically the integration points of the finite
elementmeshwhich are indexedwith g = 1, . . . ,ng.At each
of these points, the strain tensor is a vector of 6 components
(using Voigt’s notation), which is a linear function of the
displacement field. Thus, globally the strain field is described
by a 6×ng matrix depending on the parameters, ε(θ). Each
column of this matrix is a 6 × 1 vector denoted εg(θ) and
represents the strain tensor at point g.

Assuming that point g is in elementΩe, the strain at point
g is a linear output of the overall displacements d, namely

εg = Be
gL

ed

where Be
g is matrix Be (same as in Eq. (5)) evaluated at point

g and Le is the Boolean operator localizing global displace-
ments to element d.o.f. Consequently, using the parametric
expression of the displacements in (31) results in the follow-
ing expression for the parametric strains at point g:

εg(θ) =
n∑

m=1

βmεmg

np∏

j=1

Gm
j (θ j ) (36)

where εmg = Be
gL

edm .
The format of the strain field ε(θ), that is a 6×ng matrix,

with columns εg(θ) representing strains at point g, is repli-

cated to describe the stresses. Thus, stresses are stored in a
6×ng, σ (θ), such that each column of this matrix is a 6× 1
vector σ g(θ) representing the stress tensor at point g.

The relation between strains and stresses at point g is given
by the corresponding elasticity tensor C. Thus, the stresses at
point g, σ g(θ) = C(θi )εg(θ) become, using (33) and (36),

σ g(θ) =
n∑

m=1

nt∑

�=1

βmC�εmg

np∏

j=1

φ
�,i
j (θ j )G

m
j (θ j ) (37)

where it is worth noting that, similarly as in the previous
equations, index i is associated with index g, in the sense
that it is assumed that point g is in subdomain Ωi . Sorting
the terms with a single index q = 1, . . . , n ·nt instead of the
two indices m and �, (37) is rewritten as

σ g(θ) =
n·nt∑

q=1

β̄qσ
q
g

np∏

j=1

Qq
j (θ j ) (38)

where it is assumed that there is an explicit association
between a pair (m, �) and index q (for instance q = m +
(�−1) ·n); σ q

g is equal to C�εmg divided by its norm, Qq
j (θ j )

is the product φ
�,i
j (θ j )Gm

j (θ j ) also normalized; and β̄q col-
lects the product of βm and the normalization factors.

In the remainder, a similar strategy is employed to com-
pute the parametric dependence of If

(
σ g(θ)

)
, see (18) in

Sect. 2.3.1. A parametric separated expression of the trans-
formation matrix T (θi ) is needed as a first step to compute
the parametric expression for the strength tensor and vector,
F and F, see (26), namely

T (θi ) =
nr∑

r=1

T r
np∏

j=1

Zr ,i
j (θ j ) (39)

where nr is the number of terms required to express the
transformation matrix in a separated fashion, and similar to
the definition of φ

�,i
j in (33), Zr ,i

j (θ j ) ≡ 1 for i �= j . The
explicit expressions of all the terms are given in Appendix
A. Using (39) in (26), results in

F(θi ) =
nr∑

s=1

nr∑

r=1

(T r TF0T s)

np∏

j=1

Zr ,i
j (θ j )Z

s,i
j (θ j ) (40)

Analogously aswith σ g , (40) is rewritten using a single index
notation (index pair (r , s) is mapped into a single index p,
p = 1, . . . ,n2

r), that is

F(θi ) =
n2r∑

p=1

ᾱ pF p
np∏

j=1

P p,i
j (θ j ) (41)
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The same is carried out for F and results in

F(θi ) = T T(θi )F0 =
nr∑

r=1

α̃r (T r TF0)

np∏

j=1

Zr ,i
j (θ j ) (42)

The failure index given in (18) is divided in two terms,
one linear and one quadratic, namely

IL
(
σ g(θ)

) =σ T
gF(θi )

IQ
(
σ g(θ)

) =σ T
gF(θi )σ g

(43)

The expression for σ g and F in (38) and (41) are used in
(43) to obtain the following expression for IQ

IQ
(
σ g(θ)

) =
n2r∑

p=1

n·nt∑

w=1

n·nt∑

q=1

ᾱ pβ̄wβ̄q(σ
q T
g F pσw

g )

· · ·
np∏

j=1

P p,i
j (θ j )Q

w,i
j (θ j )Q

q,i
j (θ j )

(44)

Again, transforming the three indices (p, w, q) into one
index b, b = 1, . . . ,n2

rn
2n2t, the following expression is

obtained

IQ
(
σ g(θ)

) =
n2rn

2n2t∑

b=1

γ̃ b Ãb
g

np∏

j=1

H̃b,i
j (θ j ) (45)

where Ãb
g and H̃b,i

j (θ j ) are the normalized versions of

σ
q T
g F pσw

g and P p,i
j (θ j )Q

w,i
j (θ j )Q

q,i
j (θ j ) respectively, and

γ̃ b collects the amplitude ᾱ pβ̄wβ̄q and all the normalization
factors.

Analogously, for the linear part of the failure index, IL,
we have

IL
(
σ g(θ)

)

=
n·nt∑

q=1

nr∑

r=1

β̄q α̃r (σ
q
g
TFr )

np∏

j=1

Qq,i
j (θ j )Z

r ,i
j (θ j )

(46)

that in a single index format (associating (q, r) to v, v =
1, . . . , n · nt · nr) results in

IL
(
σ g(θ)

) =
n·nt·nr∑

v=1

γ̂ v Âv
g

np∏

j=1

Ĥv,i
j (θ j ) (47)

where we define nL := nr · n · nt to ease the notation.
The expression for the failure index If is readily recovered
by summing up (45) and (47), that is

If
(
σ g(θ)

) = IQ
(
σ g(θ)

) + IL
(
σ g(θ)

)

=
nQ+nL∑

f =1

γ f A f
g

np∏

j=1

H f ,i
j (θ j )

(48)

where the quantities γ f , A f
g and H f ,i

j (θ j ) are equal to the
ones in (45) or (47) depending on the index f ,

γ f , A f
g , H f

g =
{

γ̃ f , Ã f
g , H̃ f

g if f ≤ nQ

γ̂ f−nQ , Â
f−nQ
g , Ĥ

f−nQ
g if f > nQ

and, for the sake of shortening the writing, the number of
PGD terms needed to express IQ is introduced as nQ :=
n2rn

2n2t.
Once If

(
σ g(θ)

)
is obtained in the form of (48), the

multiple queries required to solve the optimization problem
defined in (28) (or in (29)) may be performed very fast, as a
simple post-processing.

Moreover, an additional advantage of the PGD solutions
is that it is possible computing the derivatives of the explicit
parametric dependence of the objective function provided by
(48). That is, the sensitivities needed in the implementation
of the gradient-based optimization methods.

At any sampling point g, the gradient of the failure index is
denoted as ∇θIf(θ) and contains all partial derivatives of If
with respect to θk , for k = 1, . . . ,np. Using the expression
(48), these derivatives read

∂If(θ)

∂θk
=

nQ+nL∑

f=1

γ f A f
g

[
dH f ,i

k

dθk
(θk)

] np∏

j �=k

H f ,i
j (θ j ) (49)

∂2If(θ)

∂θk∂θk̃
=

nQ+nL∑

f=1

γ f A f
g

⎡

⎣
dH f ,i

k

dθk
(θk)

dH f ,i

k̃

dθk̃
(θk̃)

⎤

⎦

· · ·
np∏

j �=k,k̃

H f ,i
j (θ j ) (50)

∂2If(θ)

∂θk
2 =

nQ+nL∑

f=1

γ f A f
g

[
d2H f ,i

k

dθk
2 (θk)

] np∏

j �=k

H f ,i
j (θ j ) (51)

Moreover, for the strategies requiring the Hessian matrix,
all its components consist in second order derivatives, which
are readily computed in a similar fashion.

The derivatives of the parametric modes H f ,i
k in Eq. (49)

are performed numerically. Typically, the modes are stored
in terms of vectors of nodal variables, following the Finite
Elements philosophy. Thus, assuming that the nodal values
of function H f ,i

k (θk) are collected in vector h, the question
is how to compute the derivatives. In other words, assum-

ing that
dH f ,i

k

dθk
is stored in the same fashion in the vector

of nodal values g, how to compute g from h? Note that

123



Computational Mechanics

the parametric range for θk , Ik , is typically 1D (a subset of
IR) and therefore explicit numerical differentiationnode-wise
is straightforward. A more consistent approach is based on
the least-squares projection on the initial discrete functional
space of the sectional approximation. Recall that the adjec-
tive sectional is used in this context to refer to operations in
a single parametric dimension. In summary, the derivation
of the function described by h consists in computing g such
that

Mg = Dh (52)

where M is the sectional mass matrix and D is the sectional
gradient matrix. Both M and D are very simple matrices (in
the usual case of being Ik a 1D sectional domain discretized
with linear finite elements, they are tridiagonal matrices).
In a more general case, they result of assembling element
matrices having the form

Me =
∫

Ik
Ñ

e T
Ñ

e
dθ

De =
∫

Ik
Ñ

e d Ñ
e

dθ
dθ

where Ñ
e
is the vector of element shape functions in each

element discretizing Ik , that is the parametric counterpart
of the shape functions introduced in Eq. (4) for the space
approximation.

The sensitivities provided by Eqs. (49) and (51) are
extremely useful for gradient-based methods. However, the
optimization problem defined in (28) is in general non-
convex and therefore gradient-based methods are extremely
sensitive to initial guesses, and the iterative procedure is
often non-convergent. In order to carry out a first global
inspection of the parametric domain providing a proper ini-
tial guess, it is interesting to consider some evolutionary
strategies asGenetic Algorithms (GA), or SimulatedAnneal-
ing (SA). In a second phase, and starting from a fair initial
guess, a gradient-based algorithm is a robust complementary
approach converging fast to an accurate solution. This com-
bination of algorithms is very efficient as the evolutionary
(genetic) algorithm is used to identify the region were the
optimum lies and then the gradient-based one is intended to
gain accuracy.

4 Numerical examples

Two examples are presented next to show the capabilities of
the techniques described in previous sections. Both are based
on composite laminates parameterized with the orientation
of the fibers in different subdomains. The first example (Sect.

4.1) has only two parameters and therefore it is affordable to
compute its parametric solution using Finite Elements (FE)
for eachpoint in theparametric space.Whereas the evaluation
of thePGDsolution is extremely fast, theFE solution requires
a full solve for each parametric value. This first example is
used to quantify the accuracy of PGD with respect to FE.

The second example (Sect. 4.2) involves a problem with
4 parameters. While PGD provides a solution in ∼ 6 hours,
the cost of computing FE at every parametric point would be
approximately ∼ 106 hours and thus becomes impractical.

4.1 Plate under tensile load

This example considers a two-layered composite parame-
terized by the fibre orientation at each layer. The domain
corresponds to a square plate subjected to a tensile load as
shown in Fig. 2. Parameters are independent and therefore
the material properties at each layer has the form (15) and
the final separated expression of the operator is that in (33).

Parameters θ1 and θ2 determine the fibre orientation of
layers 1 and 2 respectively as shown in Fig. 2. The parameters
take values in the range θ1 ∈ I1 = [−90◦, 90◦] and θ2 ∈ I2 =
[−90◦, 90◦].

This particular parameterization is symmetric in the sense
that the first and second parameters can be interchangedwith-
out modifying the solution, as shown in Figs. 3c and 3d.
This allow to validate the solution and, also to keep a similar
parameterization in the two examples; PGD requires cou-
pling the dimensions when the parametric domain is not a
cartesian product of the individual parameters domains.

The discretization of space involves 800 hexahedral
Serendipity elements (4725 nodes) and discretization of both
parameters is done with a uniform 1◦ spaced grid (181
points). Note that, despite the parametric space is two dimen-
sional, because of the separated structure of the problem,
each parameter dimension is discretized independently as
one dimensional grid.

The mechanical properties of the materials are relative
to carbon fibre reinforced ABS [43] and are reported in
AppendixB. The plate is under a 45◦ tensile loadwith respect
to the x-axis.

Results of the PGD parametric solution show an excellent
agreement with those obtained by Finite Elements (FE) hav-
ing a global error around 0.1% with 87 modes in the PGD
solution (shown by the blue curve in Fig. 3a). The compari-
son is done by measuring the norm of the difference between
the PGD and FE solutions, Δd = dPGD − dFE, integrated in
space and parameters as,

e =

∑

Si

∑

S j

ΔdT(θi , θ j )MΔd(θi , θ j )

∑

Si

∑

S j

dTFE(θi , θ j )MdFE(θi , θ j )
, (53)
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(a) Domain top plane

(b) Domain 3D view

Fig. 2 Plate under tensile load of 45◦

where the M matrix is a mass matrix for the space dimen-
sion. Note that the error is estimated based on subsets of the
parametric grids, Si ∈ I1 and S j ∈ I2. This is done to reduce
the number of FE problems that is required to solve. Here we
use subsets Si and S j with one value every 3◦ and therefore
the solutions are compared at 60 × 60 = 3600 parametric
points.
In Fig. 3a, the convergence curve of the displacements (blue
curve) reaches a plateau after ∼ 30 modes and the error

does not decrease when adding new modes. This minimum
error is usually controlled by the tolerances imposed in the
PGD algorithm (enrichment tolerance = 10−4). Stricter tol-
erances produce a plateau at smaller error values. Moreover,
we show in Fig. 3a the evolution of both the maximum error
and the error at the optimal solution of the goal function with
the number of modes. We could deduce that the more we
increase the number of modes, the more we get a smaller
error.

The amplitude of the terms in the PGD solution is shown
in Fig. 3b. There we can see how the importance of the terms
is reduced. Note that, the convergence curve Fig. 3a reaches
stagnation after 30 modes, while the amplitude curve Fig.
3b continues decreasing, therefore, implying that the ampli-
tude cannot be used as a direct estimator of the error. The
curve shown in Fig. 3b has undergone a post-process usually
called PGD-compression [39]. This is a standard procedure
that projects the solution into the same space using an L2

projection to remove redundant modes. The compression is
done once the PGD solution process has finished.

Panels (c) and (d) of Fig. 3 show maps of the maxi-
mum failure criterion (to be minimized) and the minimum
safety factor (to be maximized) in the structure introduced
in Sect. 2.3.1. Once the PGD solution has been obtained it
is extremely fast to evaluate it for any value of the param-
eters and, therefore, one can evaluate the criterion (or the
safety factor) at every parameter value of a fine grid and pro-
duce those plots easily. The optimization in this simple case
can be done by direct observation of the maps, where local
and global minimum/maximum are readily identified. In this
simple case, the critical point is located at the fibre orienta-
tions (θ1, θ2) = (45◦, 45◦) as expected. The failure indices
based on the PGD solution can be easily used in combination
with an optimization procedure, such as the Genetic Algo-
rithm or a gradient based method, to obtain the critical point
automatically.

Note that the computing time to obtain the PGD solution
is ∼ 2.5 hours and the map is generated in seconds. If one
aims at producing the same maps based on a FE solution,
this would require 181×181 = 32761 FE solves, that would
take ∼ 6.5 days using the same computer power as in the
PGD case.

It is alsoworth noting that if the accuracy used to obtain the
PGD solution is relaxed, the accuracy of the inverse solver is
deteriorated. This is interesting as it shows that the location
of the minimum of the function to be minimized is affected
by the accuracy of the surrogate.

4.2 Plate with circular hole under tensile load

The second example of the current section involves four
parameters. Theparameters in this case correspond to patches
in the material. The discretization of the four-dimensional
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(a) Convergence of error between PGD and FE
while adding modes to the PGD solution.

(b) Compressed amplitude of the PGD modes.

(c) Maximum failure index (If) map. (d) Minimum safety factor index (λs) map

Fig. 3 Plate under tensile load at 45◦: The labeled points correspond to the optimal values of the two objective functions

parametric space becomes impractically expensive if stan-
dard techniques are applied, because the number of points
increases exponentially with the number of dimensions. The
separable character of the PGD solution, on the other hand,
makes this problem tractable as every dimension is dis-
cretized independently.

This example involves a plate with a circular hole in the
middle subjected to tensile load oriented parallel to the x-
axis as shown in Fig. 4. Using the symmetry of the problem
we solve only for half of the domain. This symmetry condi-
tion brings the implicit assumption that the part not modeled
depends on the same four parameters with an angle with
opposite sign. This parameterization is reasonable when the
traction applied is parallel to the symmetry axis.

The plate is divided into four subdomains, each one with
its independent fibre orientation determined by the corre-
sponding parameter θi ∈ Ii with i = 1, . . . , 4. The range of
all parameters θi , is Ii = [−90◦, 90◦], for i = 1, . . . , 4. The
material properties are the same as in the previous exam-

ple in Sect. 4.1. Space discretization has 390 hexahedral
Serendipity elements and the discretization of each paramet-
ric dimension is the sameas in the previous example, that is, Ii
is represented using a uniformgrid of 1◦ spacing (181 points).
Note that the discretization of the coupled four-dimensional
parametric space would require 1814 > 109 points, whereas
the separated representation requires 181×4. The parametric
part of the solution is stored in 181× 4×m points, being m
the number of terms used in the solution (170 terms for this
example).

The parametric PGD solution has been computed with
the same tolerances as in the previous example and, after
compression, the solution has 170 modes. Amplitudes of the
modes are shown in Fig. 5a. In this case integrating the error
in the parametric domain is too expensive as the number
of FE solves is enormous. As a reference, in Fig. 5b we
provide a convergence curve of the error in space for one
given point in the parametric space, θOpt, that happens to
be the optimal solution found as described next. In this four-

123



Computational Mechanics

Fig. 4 Symmetric half of a square plate with a circular hole

(a) Amplitude of the PGD modes.

(b) Convergence of the error in space measured in one
parametric point, θOpt, defined in 1.

Fig. 5 Amplitudes and convergence curves of plate with hole

Fig. 6 Optimal fibre orientations on the deformed domain obtained by
a global maximization of the safety factor (λs ) using first a Genetic
Algorithm and then a gradient based method starting from the first
solution

Table 1 Optimized angles for square plate with circular hole

Optimized Angles
GA function fmincon function

θ1 43◦ 43.0155◦

θ2 2◦ 1.9597◦

θ3 −27◦ −26.9970◦

θ4 −82◦ −81.9432◦

λs 0.2011 0.2011

CPU time 5 min 1 min

dimensional case it is not possible to find the critical point
of the objective functions by inspection, and thus some opti-
mization algorithm must be employed. As we have seen in
the previous example, the objective functions defined by the
failure criterion are not convex and local minima/maxima
are present. Therefore we obtain the critical point in two
steps, first we use the Genetic Algorithm to perform a global
minimization/maximization without large accuracy. Second,
we use a gradient method to reach the minimum/maximum
starting from the solution of the first step. Both optimization
methods where implemented using general built-in Matlab
functions (ga and fmincon). The optimal fibre orientations
are shown in Fig. 6 and presented in Table 1.

The output angles of the optimization in Table 1 for the
Genetic Algorithm are integer numbers because the popula-
tion of the input are integers as well.

The number of evaluations of the objective function is
approximately 10,000 out of a total around 1× 109 possible
evaluations. Using this result as the initial guess for the gra-
dient method, we obtain a very robust and precise solution in
an efficient way. Once the parametric function is computed
by PGD, its evaluation for any parametric point is extremely
fast and, therefore, the feasible number of evaluations of the
objective function is very large.

The optimization problem is naturally evaluating the for-
ward problem numerous times. The great advantage of PGD
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Fig. 7 CPU time evolution of PGD vs standard FEM

is that, through the generalized solution, the whole paramet-
ric space is available and browsing it for any value of the set of
parameters is very fast. Generally speaking,mesh based tech-
niques are more accurate than PGD, however very expensive
in a multi-query application, like optimization, especially
when the number parameters is large. It is worth recalling
that the computational complexity scales linearly with the
increase of the number of parameters in PGD whereas it
varies exponentially when using standard mesh based tech-
niques such as FE. Fig. 7 shows the CPU time needed for the
PGD and standard FE to explore the whole parametric space;
and for standard FE to explore a reduced parametric space
(30% of the full parametric space). We could deduce from
the trend of the graph that the PGD is by far computation-
ally cheaper than standard FE when considering a number of
parameters more than two.

5 Conclusions

We presented a method based on the Proper Generalized
Decomposition that efficiently obtains solutions for the
deformation of composite laminates parameterizedwith fibre
orientations. This is relevant for the mechanical optimiza-
tion of 3D printed components. The proposed methodology
is able to handle cases where the application of standard
discretization techniques would be impractical due to its
computational burden. The optimality of the structure is
determined here using the Tsai-Wu criterion that acts as a
general indicator for the load-carrying capacity of the struc-
ture. In practice, the objective function of the optimization
problem is non-convex, and therefore, a global optimization
is costly and many evaluations of the objective functions are
required. The extremely fast evaluation of the parametrized
solution once it has been obtained by PGD, makes this opti-
mization possible and fast.
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AppendixA: separation termsof theelasticity
tensor and the transformationmatrix

The separation of C results in the following summation for a
given θi ⊂ Ωi

C(θi ) =
9∑

�=1

C�

np∏

j=1

φ
�,i
j (θ j )

with φ
�,i
j (θ j ) ≡ 1 for j �= i .

The separation process of C to obtain the spatial terms and
the parametric terms apart was carried out by hand with the
aid of the symbolic tool of Matlab®. The separation process
yielded 9 unique terms and they are as follows,

C1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 0 0 0 0
a22 0 0 0 0

0 0 0 0
Sym. 0 0 0

0 0
a66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
1,i
i (θi ) = cos4(θi )
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C2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11 b12 0 0 0 0
b22 0 0 0 0

0 0 0 0
Sym. 0 0 0

0 0
b66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
2,i
i (θi ) = sin4(θi )

C3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d11 d12 0 0 0 0
d22 0 0 0 0

0 0 0 0
Sym. 0 0 0

0 0
d66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
3,i
i (θi ) = cos2(θi ) sin

2(θi )

C4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 e13 0 0 0
0 e23 0 0 0

0 0 0 0
Sym. e44 0 0

e55 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
4,i
i = cos2(θi )

C5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 g13 0 0 0
0 g23 0 0 0

0 0 0 0
Sym. g44 0 0

g55 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
5,i
i (θi ) = sin2(θi )

C6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 h16
0 0 0 0 h26

0 0 0 0
Sym. 0 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
6,i
i (θi ) = cos3(θi ) sin(θi )

C7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 k16
0 0 0 0 k26

0 0 0 0
Sym. 0 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
7,i
i (θi ) = cos(θi ) sin

3(θi )

C8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0

0 0 0 l36
Sym. 0 l45 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
8,i
i (θi ) = cos(θi ) sin(θi )

C9 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0

q33 0 0 0
Sym. 0 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ
9,i
i (θi ) = 1

Note that the components a, b, d, e, g, h, k, l, q are func-
tion of thematerial characteristics, i.e. Young’smoduli, shear
moduli, and Poisson’s ratios, for transversely isotropic mate-
rial (Table 2).

Similarly, the separation of the transformation matrix T
results in the following summation for a given θi ⊂ Ωi

T (θi ) =
7∑

r=1

T r
np∏

j=1

Zr ,i
j (θ j )

taking Zr ,i
j (θ j ) ≡ 1 for j �= i . This separation process

outputs 7 unique terms that are as follows,

T1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
1 0 0 0 0

0 0 0 0
Sym. 0 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z1,i
i (θi ) = cos2(θi )

T2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 0 0 0 0

0 0 0 0
Sym. 0 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z2,i
i (θi ) = sin2(θi )

T3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0

1 0 0 0
Sym. 1 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z3,i
i (θi ) = cos(θi )

T4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z4,i
i (θi ) = sin(θi )

T5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 2
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z5,i
i (θi ) = cos(θi ) sin(θi )

Table 2 Carbon fibre reinforced ABS material characteristics

Material characteristics
E1 [MPa] E2 [MPa] ν12 ν23 G12 [MPa]

5.71481 × 103 2.74085 × 103 0.164 0.38 1106.85
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T6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
Sym. 0 0 0

0 0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z6,i
i (θi ) = cos2(θi ) − sin2(θi )

T7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0

1 0 0 0
Sym. 0 0 0

0 0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Z7,i
i (θi ) = 1

Appendix B: elasticity tensor characteristic
values

The elasticity tensor is described by characteristic values of
the material such as Young’s modulii, Poison’s ratios, and
shear modulii. The elasticity tensor has the following format
for orthotropic materials,

C0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν23ν32

E2E3Δ

ν21 − ν23ν31

E2E3Δ

ν31 − ν21ν32

E2E3Δ
0 0 0

1 − ν13ν31

E1E3Δ

ν32 − ν12ν31

E1E3Δ
0 0 0

1 − ν12ν21

E1E2Δ
0 0 0

Sym. G23 0 0
G13 0

G12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where,

Δ = 1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν31
E1E2E3

Note that, for transversely isotropic material with plane 2-3
as the plane of isotropy, the following relations hold

E2 = E3, ν12 = ν13, ν32 = ν23, ν21 = E2

E1
ν12

ν31 = ν21, G12 = G13, and G23 = E2

2(1 + ν23)

In this work, we used a material close to carbon fibre ABS
material in our simulations, and the characteristics have the
following values:
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