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Abstract. Manifolds with boundary, with corners, b-manifolds and foliations model configuration
spaces for particles moving under constraints and can be described as E-manifolds. E-manifolds
were introduced in [NT01] and investigated in depth in [MS21]. In this article we explore their
physical facets by extending gauge theories to the E-category. Singularities in the configuration
space of a classical particle can be described in several new scenarios unveiling their Hamiltonian
aspects on an E-symplectic manifold. Following the scheme inaugurated in [Wei78], we show
the existence of a universal model for a particle interacting with an E-gauge field. In addition,
we generalize the description of phase spaces in Yang-Mills theory as Poisson manifolds and their
minimal coupling procedure, as shown in [Mon86], for base manifolds endowed with an E-structure.
In particular, the reduction at coadjoint orbits and the shifting trick are extended to this framework.
We show that Wong’s equations, which describe the interaction of a particle with a Yang-Mills field,
become Hamiltonian in the E-setting. We formulate the electromagnetic gauge in a Minkowski space
relating it to the proper time foliation and we see that our main theorem describes the minimal
coupling in physical models such as the compactified black hole.

1. Introduction

Melrose revolutionized the calculus on manifolds with boundary with a proof of the celebrated
Atiyah-Patodi-Singer theorem for manifolds with boundary. In [Mel92] the classical proof of Atiyah-
Singer theorem was twisted with a new complex of forms, and the ideas introduced there by Melrose
inaugurated the theory of b-calculus in the nineties.

Several applications of this discovery yielded a deep understanding of deformation quantization
of symplectic manifolds with boundary. Nest and Tsygan, for instance, developed in [NT96] their
deformation quantization à la Fedosov, which is controlled by a second cohomology group like in
the symplectic case. This cohomology group with coefficients in the formal series of the Planck
constant ~ is nothing but the celebrated b-cohomology of Melrose.

This modern approach to manifolds with boundary or b-manifolds allows us to visualize them
as manifolds with “augmented reality”, encoded in b-calculus and with topology deciphered by
b-cohomology.

In this new scenario, the standard cotangent bundle is replaced by the b-cotangent bundle,
which encodes information about the boundary. This divertissement can be taken to higher levels
of complexity and the tangent bundle can be rapidly replaced by other Lie algebroids. Nest and
Tsygan explore this idea in [NT01] by introducing E-manifolds and determine the deformation
quantization of such manifolds in terms of E-cohomology. This cohomology is also at the core
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of classification theorems on E-manifolds and in [MS21] it is provided a Moser theorem where
deformations of the geometry are measured by the second cohomology class of the E-complex.

Nevertheless, those advances on the geometry of E-manifolds have been not been encompassed
with physical interpretations of this E-mirror. The purpose of this article is precisely to fill in
this gap in the literature and give new physical applications to the progress in the investigation on
E-manifolds.

In this paper we develop gauge theories on E-manifolds by broadening the principal bundles
machinery to the E-category. Principal connections on a principal bundle associated to a Lie group
are the tool that makes it possible to model minimal coupling, the interaction between particles and
gauge fields, which is the main object of study of quantum field theory. Techniques of symplectic
geometry were already used by Sternberg in [Ste77] to write the equations of motion of a “classical
particle” in the presence of a Yang-Mills field, a special type of gauge field. These techniques, which
have had a prominent role in classical gauge theories, are extended to E-symplectic geometry.

The extension of gauge theories to E-manifolds opens the study of dynamics near infinity using
compactification techniques (see [MO21] and [MOPS22]), that enables to identify escape orbits at
infinity as singular periodic orbits. Other applications to dynamics and PDEs can be found in
[Jaq22] and [JLT22]. By considering gauge theories over E-manifolds, similar techniques can be
applied to situations where the forces inducing the dynamics arise from the interaction of particles
with gauge fields. In this new scenario, instead of the McGehee change of coordinates used in
[MO21], we introduce a compactification of a stationary black hole following the line inaugurated
by Penrose [Pen11] (see example 6.20), which is not conformal. We also compute the Hamiltonian
version of the equations of motion of a charged particle under the interaction with an electro-
magnetic field in a model which incorporates the action of gravity and electromagnetic fields in
a relativistic setting. Although the physical momenta are not preserved due to coupling with the
electric charges, trajectories at infinity always stay at infinity.

This procedure opens a new path for applying similar techniques as in [MO21] and [MOPS22]
to prove existence of escape orbits in the relativistic scenario. However, the purpose of this article
is to set up the theory as a gauge theory over E-manifolds and investigate its Hamiltonian facets.
Hence, applications of the model to the investigation of escape orbits mimicking [MOPS22] will be
considered in a future work.

Similar compactification methods have also found application in other very different contexts
such as in the study of statistical quantities for SU(2)-Yang-Mills theories. For instance, in [CGM19]
compactifications are used to model two systems in a (3 + 1) dimensional Minkowski spacetime.
The models are shown to exhibit two phase transitions related to the breaking of center symmetries
along the compactified directions.

E-manifolds include projective foliations (regular and singular). Our framework is appropri-
ate for them since many examples admit a description in terms of singularities (for instance the
foliation described in example 2.4, known as proper time foliation). Another instance is given in
[KLCR22], where the SO(1, 3) symmetry is used to characterize singularities of the E-structures
to find solutions for the Yang-Mills equations in a SO(1, 3) theory. This is an example where the
coupling of symmetries and singularities of the theory provides a constraint on the theory strong
enough to completely determine the outcome.

Classically, the minimal coupling was worked out for any gauge group over any manifold. For
the particular case of the Lie group U(1) and the Minkowski space, this procedure yielded Lorentz
equations for a charged particle in an electromagnetic field [Fra11]. In this paper, we extend this
construction to a classical particle moving on a manifold with constraints (such as boundaries,
corners or foliations) and formally incarnated as an E-manifold. In particular, we enlarge the
construction of Sternberg to this new framework.
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The minimal coupling procedure makes us revisit the Marsden-Weinstein reduction in this new
scenario. The first main theorem is an extension of the shifting trick to consider reduction of
coadjoint orbits for Hamiltonian actions on E-manifolds (Theorem 5.20). This result allows us to
visualize the classical theorem of Weinstein (confer Theorem 6.12) as a reduction at a coadjoint
orbit of the dual of the Lie algebra of the associated bundle.

In classical Yang-Mills theories, the fibres of the associated bundle P ×G g∗ ' T∗P/G are the
dual Lie algebra g∗ and the elements of these vector spaces model the charges of the theory. For
instance, in a U(1)-Yang-Mills theory we have u∗(1) ' R and we recover the notion of electric
charge. For more exotic Lie groups like SU(3), elements of su∗(3) are called color charges and
model the interactions with strong nuclear forces. On the other hand, the sections of P ×G g∗

are called matter fields because they assign a charge (an element of g∗) to every point in the base
manifold M .

For a general principal bundle P with group G, the manifold T∗P/G has a Poisson structure.
Indeed, as observed by Montgomery [Mon86], its symplectic leaves are the spaces investigated by
Weinstein in [Wei78]. In this article we materialize it in the E-set-up and the associated bundle
ET∗P/G becomes a vector bundle over the E-manifold. We show that the singular dynamics
are constrained by the pullback E-structure in the reduction of the associated bundle ET∗P/G.
The singularities in the base manifold are, in this sense, extended naturally to singularities in
the enlarged phase space. For the particular case of b-manifolds, this vector bundle was already
completely described for the principal bundle G −! G/H (when H is a closed Lie subgroup of G)
in [BKM22].

Finally, we visualize the E-cotangent bundle as a universal space to represent Hamiltonian
spaces by showing the existence of a universal model for the phase space of a particle interacting
with an E-gauge field. This picture is completed using the minimal coupling as a way to exhibit
these spaces as symplectic leaves of the ambient Poisson space, as done by Montgomery [Mon86].

Organization of this paper. In section 2 we expose a series of problems arising from physics
which naturally fit into the framework of E-manifolds. We associate an E-structure to each of
them, which encodes the presence of singular or constrained dynamics.

In section 3 we rigorously define the notion of E-manifold and realize different examples from
the literature, as b-manifolds, c-manifolds and regular foliations, as specific instances of E-manifolds.
These examples also cover the motivating examples arising from physics introduced in section 2.
We also review some problems where gauge theory appears in manifolds with singularities.

In section 4 we study the algebroid structure of E-manifolds and contextualize it within the
more general setting of foliation theory. We review basic concepts in Lie algebroids theory, such as
Lie algebroid cohomology, their local description and their morphisms. We also introduce prolon-
gations or pullbacks of Lie algebroids by submersions and recall the existence of products.

In section 5 we present the symplectic geometry of E-manifolds, which is inherited from the
symplectic geometry of Lie algebroids. In subsection 5.1 we introduce the canonical symplectic form
in the E-cotangent bundle, which generalizes the Liouville b-symplectic form of the b-cotangent
bundle (see for instance [GMP14]). We also show that, unlike for general Lie algebroids, cotangent
lifts of E-diffeomorphisms are always defined and unique. Moreover, they preserve the canonical
Liouville form and, consequently, lead to Hamiltonian group actions. We conclude the section with
a review of the Marsden-Weinstein reduction introduced in [MPRO12] and we prove a version of
the shifting trick over E-manifolds (Theorem 5.20).

We end up this article with section 6, where we extend the fundamental results in gauge
theories over the prolongation of E-structures to fibre bundles. We extend the classical theorem of
Weinstein [Wei78] as well as the isomorphism with Sternberg’s phase space to gauge theories over
E-manifolds. The results in the framework of “cotangent bundle reduction” as coined in [MP00]
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also extend to our setting through the E-shifting trick. We also show that the Poisson formulation
of Wong’s equations done by Montgomery in [Mon86] and the minimal coupling procedure extend
to the E-category (Theorem 6.17). We conclude the section presenting applications of the theorems
to examples in physics.

2. Motivating examples from Physics

In the this section we describe several motivating examples where there is a natural stratification
associated to the physical problem. This natural stratification often leads to a Stefan foliation. A
natural framework to describe these systems is the language of E-manifolds. Let us start giving
some motivating examples:

Example 2.1 (Space of geodesics on the Lorentz plane). Given a general pseudo-Riemannian
manifold (M, g) and consider L the space of all oriented non-parametrized geodesics. The space L
splits as L±, the space of space-like geodesics (g(γ̇, γ̇) > 0) and time-like geodesics (g(γ̇, γ̇) < 0),
and L0, the space of light-like geodesics so that g(γ̇, γ̇) = 0. Khesin and Tabachnikov completely
described the geometry of this problem in [KT09]: the sets L± are even dimensional and symplectic.
L0 can be seen as the common boundary of L± and has an induced contact structure.

In dimension 2 (Lorentz plane) the set of light-time geodesics is one-dimensional and L inherits
a global Poisson structure. As we will see below in an explicit manner this structure is a b-Poisson
structure.

Following [KT09] we can easily describe the space of geodesics. For the metric ds2 = dx dy
the light-like lines are the horizontal and vertical lines. The space-like lines have positive slope and
the time-like have negative slopes so each space L± has two components. By taking coordinates
on each quadrant we can get explicit expressions. Consider for instance space-like lines having the
direction in the first quadrant. Write the unit directing vector of a line as (e−u, eu), with u ∈ R
then the perpendicular to the line from the origin is (e−u,−eu). These coordinates (u, r) provide
local charts of L+. In the same way coordinates can be chose in L−. By equating the slope of
the line (e−u, eu) to (1, ε) we obtain the relation ε = e2u. Thus, in these (singular) coordinates the
symplectic structure blows up and reads 1

ε dε ∧ du with u = 1
2 log(ε) (see remark 2.8 in [KT09]).

This structure with singularities is an example of b-symplectic manifold. J

Example 2.2 (Compactifying the restricted three-body problem). Consider the circular
planar restricted three body problem where three bodies move attracted to each other, one of them
being of negligible mass as described in [DKdlRS19]. As it was observed in [KMS16], it is possible
to associate a singular structure to this problem. Consider the symplectic form on T∗R2 in polar
coordinates,

ω = dr ∧ dPr + dα ∧ dPα,

and apply to it the non-canonical McGehee change of coordinates, given by r = 2
x2

, without altering
the momentum associated to r.

Recall that, after the change to polar coordinates, the Hamiltonian associated to the restricted
circular three body problem is

H(r, α, Pr, Pα) =
P 2
r

2
+
P 2
α

2r2
− U(r cosα, r sinα).

In the new coordinates, the Hamiltonian has the expression:

H(x, α, Pr, Pα) =
P 2
r

2
+
x4Pα

8
− U

(
2 cosα

x2
,
2 sinα

x2

)
.
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Furthermore, if we consider the change r = 2
x2

, then dr = − 4
x3

dx, and this means that

ω = − 4

x3
dx ∧ dPr + dα ∧ dPα.

Thus, the non-canonical change of coordinates transforms the symplectic form into a symplectic
form that blows-up close to the line at infinity. As proved in [KMS16] it is a b3-symplectic form.
The resulting dynamical system is nevertheless well-defined, and provides information about the
original problem.

Compactifying this system with the line at infinity has the added benefit of providing a de-
scription of the dynamics within the critical set Z = {x = 0}. The dynamics within Z does not
have a physical meaning, but its interplay with the dynamics close to them is a way to study the
behaviour of the escape orbits in this context (see also [MO18]). J

Besides configuration spaces with natural singularities, there are other physical systems which
can be described in terms of appropriate E-manifolds.

Example 2.3 (A compactification following Penrose). The metric of Schwarzschild arises as
the most general solution to Einstein’s equations of motion with spherical symmetry and in the
vacuum. In spherical coordinates (t, r, θ, ϕ), the metric is written as,

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2,

where we have written dΩ2 = dϕ2 + sin2 ϕdθ2. The coordinate r is only valid in the range
2M < r < +∞, and this parametrization only describes the exterior of spherically symmetric
objects. Our considerations are concerned with the coordinates t and r. We consider the metric
g⊥, where the term containing dΩ2 is dropped. For convenience, we consider the auxiliary function
h(r) = 1− 2M

r .

After performing the change of coordinates v = t+ r and w = t− r, the metric reads:

g =
1

4

(1

h
− h
)

dv2 − 1

2

(1

h
+ h
)

dv dw +
1

4

(1

h
− h
)

dv2.

Moreover, the condition r > 0 is equivalent to v > w + 4M .

The compactification of the configuration space is achieved by defining α = arctan v y β =
arctanw. The range of both coordinates is −π/2 6 α 6 π/2 and −π/2 6 β 6 π/2 and equality
can be attained. The compactified space is a manifold with corners. The condition v > w + 4M is
equivalent to tanα > tanβ + 4M .

The region spanned by the coordinates α, β will be denoted by N . In these new coordinates,
the metric reads

g⊥ = g =
1

4

(1

h
− h
)

sec4 α dα2 − 1

2

(1

h
+ h
)

sec2 α sec2 β dα dβ +
1

4

(1

h
− h
)

sec4 β dβ2.

The secant function blows up quadratically at α, β = π/2. This observation motivates us to
consider the set of vector fields which vanish quadratically at the boundary, described locally by
values neighbouring α = π/2. J

Example 2.4 (The Minkowski space). Consider a Minkowski space (M, g) of dimension n+ 1
and signature (−,+, · · · ,+). Consider an orthonormal basis {E0, . . . , En} and extend it to a global
chart in M , giving a global inertial frame of reference. Without loss of generality, assume that E0

is time-like (in our convention, g(E0, E0) = −1). We can consider now the singular foliation of TM
given by level sets of the kinetic energy, Fk = {X ∈ TM | g(X,X) = k}. As the norm of a geodesic
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u

v

r = 0 r = +∞

t = −∞

t = +∞

+π/2

−π/2

+π/2

Figure 1. The classical Penrose diagram for radius between 0 and +∞. It repre-
sents the conformal compactification of the space-time.

is preserved, the geodesic spray is tangent to the leaves of the foliation F . This implies that we
can regard the natural phase space of the physical system (M, g) as the tangent to the leaves TF ,
instead of TM .

The particular case of M = R4 with a Minkowski metric g is the framework of special relativity.
Given an orthonormal basis {E0, E1, E2, E3} in which the matrix of g is

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

one can construct a global coordinate system (t, x1, x2, x3) of R4 satisfying

∂

∂t
= E0,

∂

∂xi
= Ei, i = 1, 2, 3.

In these space-time coordinates, the metric g can be expressed as the 2-form

g = −(dt)2 + (dx1)2 + (dx2)2 + (dx3)2.

The geodesics of the Minkowski space are straight lines with respect to the space-time coordinates.

At any point p ∈ R4, a vector X ∈ TpR
4 can be:

(1) time-like, if g(X,X) < 0,

(2) null, if g(X,X) = 0,

(3) space-like, if g(X,X) > 0.

The foliation H of TR4 ∼= R8 given by the level sets Hk = {X ∈ TR4 | g(X,X) = k} is singular.
In detail, the leaves Hk are divided into three different types of hyper-surfaces:

(1) time-like hyper-surfaces, the two-sheet hyperboloids corresponding to Hk for any k > 0.

(2) null hyper-surface, the (singular) double cone H0.

(3) space-like hyper-surfaces, the one-sheet hyperboloids corresponding to Hk for any k < 0.

The physical implications of the postulates of special relativity (no absolute time and no travel
faster than the speed of light) are encoded in the foliation H. Any curve α : I ! R4 is called



HAMILTONIAN FACETS OF CLASSICAL GAUGE THEORIES ON E-MANIFOLDS 7

time-like if α̇(t) is a time-like vector at α(t) for all t. Then, the world-line of any observer is a
time-like curve (see Figure 2 and the motion of an inertial (non-accelerating) observer follows a
time-like geodesic. Light, on the other hand, moves on null geodesics, i.e., on the cone. J

Time

Space

H0

α(t)

Present

Future

Past

Figure 2. The postulates of special relativity induce a foliation H in the space-
time coordinates of the Minkowski space (R4, g). The natural phase space of the
physical system is TH, an E-manifold. The blue trajectory α(t) in the interior of
the light cone represents the world-line of an observer.

Example 2.5. Spin Calogero-Moser systems are formulated on the cotangent bundle of a Lie group
G, T∗G. The natural phase space of a spin Calogero-Moser system is a symplectic leaf of the Poisson
space T∗G/G. The cotangent bundle can be trivialized as T∗G ' g∗ using right-invariant vector
fields. The Poisson space T∗G/G can be identified with g∗ ×G G ' g∗, and the natural projection
π : g∗×G −! g∗ is a Poisson map, where the Poisson structure in Π is the linear Poisson structure.
Assume now that g is semisimple, so that we have an identification g ' g∗ by means of the Killing
form κ. Take now the adjoint representation of g in g∗. The Hamiltonian function for the spin
Calogero-Moser system is given by H = tr(x2), where x ∈ g∗.

We will now give an explicit computation of the Hamiltonian structure of spin Calogero-Moser
systems for the Lie group G = su∗(n). Under the identification with the Killing form, we can
take elements A ∈ su(n) as traceless and Hermitian matrices. We may trivialize T∗su∗(n) '
su∗(n)× su∗(n), for which the moment map becomes µ(A,X) = [A,X]. In parametrizing the space
su∗(n)× su∗(n), we may assume that A is always diagonal by conjugation with a matrix in SU(n).
Assuming that A = diag(ai) and X = (xij), fixing an image of the moment map [A,X] = µ = (µij)
amounts to the condition xij(ai − aj) = µij . Therefore, the Hamiltonian function is

tr(X2) =

n∑
i,j

xijxji =

n∑
i=1

x2
ii +

n∑
i,j=1
i 6=j

xijxji =

n∑
i=1

x2
ii +

n∑
i,j=1

µijµji
(ai − aj)2

,

where, for convenience, we have taken µii = 0. This expression can be further simplified as µijµji =
µ2
ij = µ2

ji from µ being Hermitian. The first term accounts for the kinetic energy of a system with
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n different particles in a straight line, while the second term is an interaction potential dependent
on the inverse square of the distance. Notice that this expression cannot be derived if ai = aj for
some 1 6 i, j 6 n; this remark is related to the Sjamaar-Lerman symplectic stratification.

For a survey on spin Calogero-Moser systems, consult [Res21]. J

The previous examples show physical problems in which E-manifolds can be identified. The
last couple of examples are specific realizations of more general phenomena.

• The proper-time foliation introduced in example 2.4 agrees with the Hamiltonian level sets
H−1(k), for k ∈ R. This is due to the fact that the Hamiltonian of the geodesic flow in
a Riemannian manifold (M, g) is the kinetic energy K. In general, the level set H−1(k)
might not be a smooth manifold; however, we can define a regular foliation on a subset of
M by considering only the pre-images of regular values of H. This regular foliation has a
naturally associated E-structure as we will see in example 3.7.

• The stratification of spin Calogero-Moser systems is a special case of the stratification of
any Hamiltonian G-space (see, for instance, [SL91]). Assume that (M,ω) is a symplectic
manifold and that ρ : G ×M −! M is a proper Hamiltonian action with moment map µ.
Sjamaar and Lerman proved in [SL91] that the reduced space M0 is a stratified manifold
with strata

(1) M0 =
⊔
H<G

(M(H) ∩ µ−1(0))/G.

Here, the manifolds M(H) are the orbit types of the group action ρ, that is, the set of all
points p ∈M with stabilizer Gp conjugated to H.

3. Preliminaries

We start recalling the basic definitions of E-manifolds. We refer the reader to [NT01] and
[MS21] for details.

Definition 3.1. An E-manifold is a pair (M,E), whereM is a smooth manifold and E ⊆ Vec(M) is
an involutive and locally finitely generated free C∞(M)-submodule. We will call any such submodule
an E-structure on M . J

Notation 3.2. In some cases, we will deal with several E-manifolds at the same time. To avoid
any possible confusion we will commonly denote the E-structure of a manifold M by EM . J

Example 3.3 (Manifolds with boundary, b-manifolds and bm-manifolds). One of the first
generalizations of smooth manifolds are manifolds with boundary. Their differential calculus, called
b-calculus, was developed by Melrose [Mel92] with the aim of generalizing the Atiyah-Patodi-Singer
theorem to manifolds with boundary. The differential structure of b-manifolds allows for a rich
generalization of symplectic geometry to manifolds with boundary (see [NT96], for example). This
realm is closer to the setting of classical symplectic geometry than to Poisson geometry; Guillemin,
Miranda, and Pires proved that well-known results, like Moser’s path method, also hold for mani-
folds with boundary [GMP14].

The differential geometry of manifolds with boundary can be recovered from that of another
similar structures, called b-manifolds, by a process of gluing [FTM17]. A b-manifold is a pair
(M,Z), where M is a smooth manifold and Z ⊂M is an embedded hypersurface. Any b-manifold
has a natural E-structure associated; the submodule of tangent vector fields to the submanifold
Z. Such vectors are called b-vector fields, and the set of all b-vector fields is denoted by bVec(M).
To see that bVec(M) is an E-structure in M take a point p ∈ M and a coordinate chart (U,ϕ)
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bS2

Z

Z
bT 2

Figure 3. The b-symplectic sphere (bS2, Z = {h = 0}, ω = dh
h ∧ dθ) and the

b-symplectic torus (bT 2, Z = {θ1 = 0, π}, ω = dθ1
sin(θ1) ∧ dθ2) are examples of 2-

dimensional b-symplectic manifolds. They were studied by Olga Radko in [Rad02]
as compact oriented surfaces admitting a topologically stable Poisson structure.

with coordinates q1, . . . , qn adapted to Z, that is, fulfilling ϕ(U ∩ Z) = {q1 = 0}. Under these
assumptions, the local sections

q1
∂

∂q1
,
∂

∂q2
, . . . ,

∂

∂qn

are generators of the module bVec(U). This shows that bVec(M) is locally free and involutive,
proving that it is an E-structure.

In the same way, having a smooth manifold M and an embedded hypersurface Z ⊂M we may
consider as elements of E the vector fields which are tangent to Z at order m; the set of all these
fields is called the space of bm-vector fields. In a chart (U,ϕ) with coordinates q adapted to Z, a
set of local generators is

(2) qm1
∂

∂q1
,
∂

∂q2
, . . . ,

∂

∂qn
.

This shows that bm-vector fields give rise to different E-structures in b-manifolds. J

Example 3.4 (Manifolds with corners and c-manifolds). The previous example can be gen-
eralized to manifolds with intersections of higher order. We define a c-manifold as a pair (M,Z),
where M is a smooth manifold M and i : Z −!M is an immersed hypersurface with self-transverse
intersections (see Miranda and Scott [MS21] for a more detailed description of the construction).

By analogy with the idea that Z accounts for the boundary of a manifold, self-transverse
intersections can be understood as corners (hence the name c-manifolds). We consider the set of
vector fields of M which are tangent to i(Z) and call them c-vector fields. We can prove that the set
of c-vector fields is an E-structure in M . For every point p ∈ i(Zk)\ i(Zk+1) there exist coordinates
q such that i(Z) = ∪i6k{qi = 0}. In these coordinates, we have the local generators

q1
∂

∂q1
, . . . , qk

∂

∂qk
,

∂

∂qk+1
, . . . ,

∂

∂qn
.

From this expression we trivially have that c-vector fields give rise to an E-structure in M . J

Example 3.5 (Spherical cotangent bundle compactification [NT01]). Let M be a smooth
manifold and consider its cotangent bundle T∗M . Over a local trivializing set U ⊂M , we have that
T∗M |U ' U ×Rn. After a radial compactification of the fibre Rn, we obtain a local description
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given by U ×Dn. This process, which is a compactification of the cotangent bundle T∗M by the
cosphere bundle S∗M , gives as a result the closed ball bundle B

∗
M .

B
∗
M is a manifold with boundary ∂(B

∗
M) = S∗M . Accordingly, we may consider the E-

structure given by the set of vector fields tangent to the boundary (in this case, a b-manifold
structure). One can show that the standard symplectic form on T∗M is naturally extended to an

E-symplectic form over the compactification B
∗
M . J

Figure 4. Different E-structures on the cylinder M = R × S1. On the left, a b-
manifold structure taking an embedded circle Z = S1. On the center, a c-manifold
structure with the strata Z1, Z2. Notice that the condition Z2 ⊂ Z1 is satisfied. On
the right, some leaves of a regular foliation.

Example 3.6. Consider the free submodule E ⊂ Vec(R2) of vector fields generated by the fields

(3) V = x
∂

∂x
+ y

∂

∂y
and W = −y ∂

∂x
+ x

∂

∂y
.

As observed in [MS21] E is an E-structure on R2 modelling an elliptic singularity at (x, y) = 0.
More generally, singularities of elliptic type on an arbitrary smooth manifold M are codimension
2 submanifolds with an E-structure on their normal bundle. These structures have been used in
[CG17] to study stable generalized complex structures. J

3.1. And what about singular foliations? Observe that the definition of E-manifold 3.1 is
really similar to that of smooth singular foliation given by Androulidakis and Skandalis [AS09]. It
is natural to wonder to which extent both definitions agree and disagree. The following example
shows that, in the case of regular foliations, both are the same.

Example 3.7 (Regular foliations). Consider a smooth manifold M and a regular, smooth and
involutive distribution D of rank k. By Frobenius’ theorem, there exists a foliation F such that any
element of D is tangent to a leaf of F . The distribution D defines an E-structure by the involutivity
condition. A choice of local coordinates q in an open set U ⊂ M adapted to the foliation F gives
a local basis

∂

∂q1
, . . . ,

∂

∂qp
. J

The Minkowski space (example 2.4 in the list of motivating examples) provides a physical
situation in which it is convenient to consider foliations. These foliations are often extended to
consider singular foliations.
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It is clear, therefore, that the differences between both concepts should appear in the presence
of singularities. Both definitions only differ in the fact that singular foliations are locally finitely
generated, while E-structures are locally free. The following example shows that a locally finitely
generated submodule does not need to be locally free.

Example 3.8. Let M = R2 and consider F ⊂ Vecc(M) as the set of vector fields vanishing at 0.
At a neighbourhood containing 0 ∈ U we have a set of generators x ∂

∂x , y
∂
∂x , x

∂
∂y , y

∂
∂y . On the other

hand, in a neighbourhood Up with Up ∩ {0} = ∅ we have generators ∂
∂x ,

∂
∂y . This shows that the

foliation F , although locally finitely generated, is not free. J

On the other hand, E-Manifolds are particular instances of singular foliations, which are also
denominated in the literature as projective foliations [Gar21] or almost regular foliations [Deb00].
We shall give a more detailed characterization of their properties in section 4.

3.2. Gauge theories on E-manifolds. We have seen that E-manifolds model degenerate or con-
strained physical systems. Gauge theories are ubiquitous in theoretical physics and in particular are
used to formulate electromagnetic, electroweak and strong nuclear forces. The following examples
show partial results in this direction.

Example 3.9 (Geodesics in b-manifolds and bm-manifolds). In [MO18] the authors generalize
geodesic flows to b-manifolds and bm-manifolds. The geodesic equations of motion can be framed
under a gauge theory, where the principal bundle is taken to be the orthonormal bundle O(M).
Any principal connection induces an affine connection in TM , which gives the equations for the
geodesic flow. We will generalize this construction to any E-manifold in section 6, and show that
geodesic flows are Hamiltonian. The Hamiltonian function, as in classical mechanics, is the kinetic
energy. J

Example 3.10 (Minimal coupling in b-Lie groups). In [BKM22] the authors study the mini-
mal coupling procedure of Montgomery for b-Lie groups. Such groups are pairs (G,H), where G is a
Lie group and H is a closed codimension one subgroup. This structure is an example of a b-manifold
in the sense of example 3.3; here, the natural projection π : G −! G/H is an H-principal bundle.
The quotient group is induced a b-structure taking as singular hypersurface the class ZH = [1],
which has codimension 1 given that dim(G/H) = 1. Additionally, with this definition the map π
is a b-map. Some highlighted examples of b-Lie groups are the Galilean group or the Heisenberg
group, where the subgroup H is identified with the set of time-preserving transformations. The
minimal coupling procedure in this article is a particular case of the one exhibited in theorem
6.17. J

4. The geometry of E-manifolds and associated bundles

After having described examples where E-manifolds naturally appear, we review the basic
definitions and results in the theory of E-manifolds. The main definitions are present in [MS21],
and many constructions are borrowed from the literature of Lie algebroids (see, for instance part
VII in [CdSW99]).

4.1. Local structure, exterior differential and cohomology. We begin by showing that the
information of an E-structure can be encoded in a Lie algebroid, called the E-tangent bundle. This
characterization allows us to apply geometric arguments similar to those in classical mechanics on
the standard tangent bundle TM .

The key ingredient of this construction is the following:
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Theorem 4.1 (Serre-Swan theorem [Swa62]). A C∞(M)-module P is isomorphic to the module
of sections of a vector bundle E (denoted as Γ(E)) if and only if P is finitely generated and
projective. J

The main idea is that projective modules over commutative rings are like vector bundles on
compact spaces. For practical reasons, we will focus on free modules. The condition of E being
locally free implies that theorem 4.1 holds and elements of E ⊂ Vec(M) are in bijection with sections
of a vector bundle ETM , called the E-tangent bundle. Localizing this equivalence of sections, we
can define a vector bundle map ρE : ETM −! TM . The anchor map ρE : ETM −! TM is defined
by inclusion of the set of sheaf of local sections. Moreover, as the distribution E is involutive, the Lie
bracket of vector fields can be restricted to sections of ETM . In this way, the triple (ETM,ρ, [·, ·])
becomes a Lie algebroid.

We present now some additional properties satisfied by the anchor map ρ that are useful to
give pictorial examples. This result was already noticed in [Gar21] and dates back to [Deb00].

Lemma 4.2. The anchor map of the Lie algebroid ETM , ρE : ETM −! TM is generically injec-
tive. J

Proof. For the sake of clarity, we shall review the construction of the anchor map ρE pointwise.
By Serre-Swan theorem 4.1, for every point p ∈ M there exists an open set Up ⊂ M and a ring
isomorphism ρ̃E : ΓUp(

ETM) −! EUp . We define Ip = {f ∈ C∞(M) | f(p) = 0}, the ideal of
vanishing smooth functions at p. The evaluation map evp : EUp −! TpM is well defined in the
quotient ring EUp/IpEUp , giving a map ẽvp : EUp/IpEUp −! TpM . The ring isomorphism ρ̃E
induces now a ring isomorphism ΓUp(

ETM)/IpΓUp(ETM) ' EUp/IpEUp which, by precomposi-

tion, defines a map α : ΓUp(
ETM)/IpΓUp(ETM) −! TpM . Taking the canonical identification

ΓUp(
ETM)/IpΓUp(ETM) ' ETpM we finally have ρE |p := α : ETpM −! TpM . Notice that, by

construction, ρ̃E = Γ(ρE).

Let K ⊂ M be the set of points p ∈ M for which ker ρp 6= ∅. As both bundles have the same
rank, this set is the set of points p ∈ M such that det ρp 6= 0. Assume now that M \K were not
dense (i.e., intK 6= ∅). Take an open set U ⊂ K contained in the kernel. By smoothness, there
exists a point p ∈ U and an open neighbourhood Vp ⊂ U such that the rank of ρE is constant;
therefore, ker ρE is a vector bundle over Vp and, by shrinking the domain if necessary, we may
assume that it is trivial and that the Serre-Swan property in theorem 4.1 is satisfied. But now,
a basis F1, . . . , Fl of ΓVp(ker ρE) can be extended to a set of generators F1, . . . , Fl, El+1, . . . , Ek of

ΓVp(
ETM) and, as ρ̃E = Γ(ρE), we have ρ̃E(Fi) = 0. This would contradict theorem 4.1. Thus,

the map ρ : ETM −! TM is generically injective. �

This characterization implies that the Stefan foliation associated to the anchor map of the
algebroid ETM is an instance of an almost regular foliation as coined by Debord [Deb00]. As an
application of theorem 1 in [Deb00], the algebroid ETM can be integrated to a Lie groupoid. It is
certainly not the case that any singular foliation can be recovered by the anchor of a Lie algebroid
(confer lemma 1.3 in [AZ13]). We discuss now an explicit construction of the E-tangent bundle
over b-manifolds and its anchor, together with an example over regular foliations.

Example 4.3. Let us consider a b-manifold (M,Z) following the notation of example 3.3. In a
local chart U around a point p ∈ Z compatible with Z we have taken as generators of the b-tangent
bundle the local fields

q1
∂

∂q1
,
∂

∂q2
, . . . ,

∂

∂qn
.
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The identification of the elements of bVec(M) with sections of bTM implicitly uses ρ̃E . Under this
local description of ρ̃E , for a point q ∈ Up with coordinates q, the anchor ρE |q applied to an element

X =
∑n

i=1 αiEi(q) ∈ bTqM can be computed as

ρE |q(X) = α1q1
∂

∂q1
(q) +

n∑
i=2

αi
∂

∂qi
(q).

In particular, if q1 = 0 (that is, if q ∈ Z) then ρE |q fails to be injective. The reason is that, although
we are identifying sections of the b-tangent bundle with b-vector fields in M , the rank of the set of
b-vector fields as sections of the tangent bundle, evaluated at points of the critical hypersurface is
n− 1. The rank of the distribution generated by b-vector fields as sections of the b-tangent bundle
is constant at all points and equal to n.

In the setting of b-symplectic geometry, the critical hypersurface Z is defined as the zero section
of the map Πn. In this case, there are two different algebroid structures. On one hand, the E-
manifold structure ρE : bTM −! TM constructed using Theorem 4.1 in example 3.3. On the other
hand, the Lie algebroid structure whose anchor is given by the Poisson tensor Π] : T∗M −! TM .
We can easily argue that both structures are different by looking at their characteristic foliations
on M . For the b-tangent bundle bTM , the only leaves of its characteristic foliation are Z and the
connected components of M \ Z. Observe that Z has to be odd-dimensional. The characteristic
foliation of Π] : T∗M −! TM is the symplectic foliation of (M,Π) and, as a consequence, its leaves
are even-dimensional. This symplectic foliation can be restricted to the leaf Z, where it induces
a codimension 1 foliation (for more details, refer to [GMP14]). This shows that the characteristic
foliations do not agree and that the algebroid structures are consequently not isomorphic. J

Example 4.4. Regular foliations can be naturally endowed with an E-manifold structure following
example 3.7. In a foliated chart U with coordinates q, the local fields

∂

∂q1
, . . . ,

∂

∂qp

can be identified with generators E1, . . . , Ep of the E-tangent bundle ETM under the ring isomor-
phism ρ̃E . Following the previous computations in the setting of a b-manifold, for a point q ∈ U
with coordinates q anchor map ρE |q can be computed in an element X =

∑p
i=1 αiEi(q) ∈ ETqM

as

ρE |q(X) =

p∑
i=1

αi
∂

∂qi
(q).

Notice that, in this case, the anchor map is injective for every q ∈ U and, as there exists a covering
of M by foliated charts, it is also injective for any q ∈ M . This example shows that the failure
of injectiveness is closely related to the change of dimensions in the leaves of the characteristic
foliation of the E-structure. J

We present now a description of the local structure of E-manifolds. The following concepts are
directly inherited from the literature of Lie algebroids.

Definition 4.5 (Structure functions). Consider an E-manifold (M,EM ) and a coordinate set
U ⊂M with coordinates q1, . . . , qn. Let E1, . . . , Ep be a set of generators of EVec(U). The structure

functions are the smooth functions ρij ∈ C∞(U) and Ckij ∈ C∞(U) satisfying

(4) Ei =

n∑
j=1

ρij
∂

∂qj
, [Ei, Ej ] =

p∑
k=1

CkijEk,
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where i, j, k = 1, . . . , p. J

Remark 4.6. The structure functions are well-defined by the involutivity of the E-structure,
[E,E] ⊂ E. Moreover, they are skew-symmetric, Ckij = −Ckji, by the skew-symmetry of the Lie
bracket. J

The E-cotangent bundle (denoted by ET∗M) is defined as the dual bundle of ETM . The global
sections of

∧p ET∗M are called E-forms of degree p and are denoted by EΩp(M). We can define a
differential d : EΩp(M) −! EΩp+1(M) explicitly as

dω(X0, . . . , Xp) =

p∑
i=0

(−1)iLi(Xi)ω
(
X0, . . . , X̂i, . . . , Xp

)
(5)

+
∑

06i<j6p

(−1)i+jω
(

[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp

)
.

The Lie derivative of a form ω ∈ EΩp(M) along a section X ∈ E is defined using Cartan’s formula

(6) LXω = dιXω + ιX dω.

As E is an involutive submodule of Vec(M), the Lie bracket is the restriction of the Lie bracket for
vector fields of the tangent bundle TM .

The differential (5) satisfies the cochain condition d2 = 0, giving EΩ•(M) a cochain complex
structure. The cohomology of this complex is called the E-cohomology EH•(M). This cohomology
can be easily identified in many of the provided examples. For b-manifolds, the corresponding
b-cohomology has been largely studied in the literature. For regular foliations, this cohomology is
yet another reincarnation of foliated cohomology.

4.2. E-Maps and flows of E-fields. Having defined E-manifolds, we are interested in morphisms
between them. This leads us to the following definition.

Definition 4.7. Let (M,EM ) and (N,EN ) be E-manifolds. An E-manifold map between M and
N is a Lie algebroid map between ETM and ETN ; that is, it is a pair (f, F ) with f : M −! N
and F : ETM −! ETN smooth maps such that the following diagrams are commutative

(7)

ETM ETN ETM ETN

M N TM TN
f df

F

ρM ρN

F

τETM
τETN

and satisfying dF ∗ = F ∗ d. J

Remark 4.8. As a consequence of the definition of a Lie algebroid map, we have the condition
dpf(EM (p)) ⊂ EN (f(p)). This is a result of commutative diagram 7. J

So far, we have visualized the E-tangent bundle as a replacement of the standard tangent bundle
TM , yielding constrained or singular dynamics. The equations of motion in classical mechanics are
specified in the form of vector fields, and their flow gives the dynamical evolution of the system.
It is a surprisingly non-trivial fact that flows of E-fields preserve the submodule of vector fields by
pushforward (confer [AS09, proposition 1.6]).
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Proposition 4.9. If (M,E) is an E-manifold, the flow ϕt of any section X ∈ E is an E-map,
that is, dϕt(E) ⊂ E. J

This result shows that the mechanics induced by an E-field restrict to the E-tangent bundle.
A more general result concerning the lift of a vector field to an arbitrary Lie algebroid can be found
in [Loj02]. Consequently, sections of Lie algebroids can be integrated to produce one-parameter
groups of transformations. This construction is vacuous over E-manifolds given that, by definition,
sections of the E-tangent bundle are in correspondence with E-vector fields on M .

4.3. Pullbacks, local structure and products. Given an E-manifold, which we assume to
be the natural phase space of a degenerate physical system, we expect to describe Hamiltonian
mechanics in the dual bundle ET∗M . In order to reflect the degeneracy of E in the dynamics
on ET∗M , it is necessary to introduce the notion of prolongation. This procedure induces an E-
manifold structure in the E-cotangent bundle ET∗M . More importantly, this idea will be used in
section 6 for a similar purpose on a principal G-bundle.

Definition 4.10. Let ETM be an E-manifold and consider a fibre bundle τ : B −! M . The
pullback of ETM to B is the E-manifold defined as

J(8) ETB = {(u, v) ∈ TB × ETM | dτ(u) = ρE(v)}.

Notice that the pullback E-manifold is well-defined because τ : B −! M is a surjective map,
and therefore it is transversal to the anchor ρE . The following proposition shows that ETB is
indeed an E-manifold by explicitly describing the corresponding E-structure.

Proposition 4.11. Let (M,EM ) be an E-manifold, let τ : B −!M be a fibre bundle and consider
the pullback E-manifold ETB. Then, ETB is isomorphic to the E-tangent bundle generated by the
E-structure

J(9) EB = 〈(dτ)−1(EM )〉.

Proof. The idea of the proof is to give a local description of the set of sections of ETB. To do
this, first we choose a connection TB ' VB ⊕ HB; under this trivialization the map dτ becomes
the projection onto the second component. Therefore, TB × ETM ' (VB ⊕HB)× ETM and the
condition dτ(u) = ρE(v) completely determines the horizontal component of u. As a consequence,
ETB ' VB × ETM .

Let us consider a point m ∈ M and a trivializing coordinate chart U ⊂ M centered around
m with coordinates q. Considering the isomorphism τ−1(U) ' U × Q, a local chart V ⊂ Q
with coordinates r gives a local chart U × V around B. Notice that the tangent space to V
becomes a local chart of VB. If E1, . . . , Ep is a local set of generators of EM (U) and V1, . . . , Vq is
a local basis of sections of VB around V , then E1, . . . , Ep, V1, . . . , Vq is a local set of generators of
VB × ETM ' ETB. One can observe now that, with our definitions,

〈(dτ)−1(EM )〉 = 〈E1, . . . , Ep, V1, . . . , Vq〉.

By Serre-Swan theorem 4.1, we conclude that ETB is the E-tangent bundle generated by EB. �

In the proof of the previous result we have introduced a set of local coordinates to describe
the E-structure in B which have been, in a sense, induced from a choice of coordinates in M and
in a fibre of B. We will give a complete description of this procedure in the following proposition,
which can be regarded as a natural generalization of the introduction of natural coordinates in the
cotangent bundle.
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Proposition 4.12. Let (M,EM ) be an E-manifold and let τ : B −!M be a principal bundle with
typical fibre Q endowed with the pullback structure EB. Let U ⊂ M be a local chart satisfying the
trivialization property τ−1(U) ' U×Q with coordinates q, let E1, . . . , Ep be local generators of ETU

with structure functions ρij and Ckij and consider a local chart V ⊂ Q with coordinates r. If p are
the coordinates induced by the sections E1, . . . , Ep and s are the natural coordinates from r, then
the open set U × V with coordinates q,p, r, s is a chart of ET(U × V ) and E1, . . . , Ep, V1, . . . , Vq
are the local sections associated to p and s, respectively. Moreover, we have

(10) df =
k∑
i=1

n∑
j=1

ρij
∂f

∂qj
E∗i +

q∑
i=1

∂f

∂ri
V ∗i

Additionally, the differential of the dual sections is given by

J(11) dE∗i = −1

2

k∑
j,l=1

CijlE
∗
j ∧ E∗k , dV ∗i = 0.

Proof. The product U×V is a local chart of B with coordinates q, r. In local coordinates, the bundle
projection τ : U × V −! U is expressed as τ(q, r) = q. From the definition of pullback structure,
EB(U × V ) = EM (U)×Vec(V ) and, as a consequence, we have locally ET(U × V ) ' ETU × TV .

Take now local generators 〈E1, . . . , Ep〉 of ETU , which induce coordinates q, p in ETU . Con-
sider now the local coordinates r, s in TV and let V1, . . . , Vq be a basis of sections associated to
these coordinates. As a consequence of the preceding discussion, the coordinates q, r,p, s are asso-
ciated to a local chart of ET(U ×V ) with local sections E1, . . . , Ep, V1, . . . , Vq. From this definition
we have

Ei =

n∑
j=1

ρij
∂

∂qj
, [Ei, Ej ] =

p∑
k=1

CkijEk, and Vi =
∂

∂ri
, [Vi, Vj ] = 0,

and the cross Lie brackets [Ei, Vj ] vanish. We compute the contraction of the differential df with
the local generators, obtaining

〈df,Ei〉 = L∑n
j=1 ρij∂qj

f =
n∑
j=1

ρij
∂f

∂qj
, 〈df, Vi〉 = L∂rif =

∂f

∂ri
.

Equation (10) is a direct consequence of these computations, as

df =

p∑
i=1

n∑
j=1

ρij
∂f

∂qj
E∗i +

q∑
i=1

∂f

∂ri
V ∗i .

To obtain equations (11) we have to compute the contraction of dE∗i following equation (5). A
direct computation shows

dE∗i (Ej , Ek) = LEj 〈E∗i , Ek〉 − LEj 〈E∗i , Ek〉 − 〈E∗i , [Ej , Ek]〉
= −Cijk,

dE∗i (Ej , Vk) = LEj 〈E∗i , Vk〉 − LVk〈E
∗
i , Ej〉 − 〈E∗i , [Ej , Vk]〉

= 0,

dE∗i (Vj , Vk) = LVj 〈E∗i , Vk〉 − LVk〈E
∗
i , Vj〉 − 〈E∗i , [Vj , Vk]〉

= 0.
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As a consequence, we have

(12) dE∗i = −1

2

p∑
j,k=1

CijkE
∗
j ∧ E∗k .

A similar computation shows that dV ∗i = 0. �

We will eventually have to consider the product of two E-manifolds. The following proposition
states that the obvious product structure fulfills the desired universal property.

Proposition 4.13. Let (M,EM ) and (N,EN ) be two E-manifolds. The product EM × EN is an
E-structure in M × N , and the E-manifold (M × N,EM × EN ) satisfies the product universal
property: for every E-manifold (L,EL) and every pair of E-maps f : L −! M and g : L −! N
there exists a unique E-map h : L −!M ×N making diagram (13) commute.

J(13)

M

L M ×N

N

h

p1

p2

f

g

5. Symplectic geometry on E-manifolds

Having introduced the essential tools in the differential geometry of E-manifolds, we are in
position to describe their symplectic geometry. Many definitions and results are straightforward
generalizations of their classical counterparts and have already been described in the literature. The
definition of symplectic form in an E-manifold can be traced back to [NT01]. The results concerning
the formulation of Hamiltonian geometry and Marsden-Weinstein reduction over E-manifolds have
been extracted from [dLMM05, IMMdD+07, MPRO12].

Definition 5.1. Let (M,E) be an E-manifold. An E-symplectic form is a two-form ω ∈ EΩ2(M)
which is non-degenerate and closed, that is, dω = 0. J

Remark 5.2. Here, non-degeneracy means that the vector bundle morphism

(14)
ω[ : ETM −! ET∗M

X 7−! ιXω

is a vector bundle isomorphism. The inverse map is denoted by ω] and, together, are called the
musical isomorphisms induced by ω. J

The non-degeneracy condition can be used to define the notion of Hamiltonian vector field of
a function in complete analogy with the smooth case.

Definition 5.3. Let (M,E) be an E-symplectic manifold. The Hamiltonian vector field of a
function H ∈ C∞(M), denoted by XH ∈ E, is the unique E-field which satisfies

J(15) ιXHω = −dH.
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5.1. The canonical symplectic form in ET∗M . The Hamiltonian formalism in classical mechan-
ics uses explicitly the Liouville one-form of the cotangent bundle T∗M . There exists an analogue
construction for the E-cotangent bundle.

Definition 4.10 of prolongation of a fibre bundle makes the natural projection τ : ET∗M −!M
an E-map. This condition is enough to define a Liouville form in the E-manifold ET∗M . This form
gives a natural framework for Hamiltonian mechanics in E-manifolds by means of the canonical
symplectic form, defined analogously to the smooth case. These constructions are particular cases
of the Hamiltonian formalism for Lie algebroids as in [dLMM05].

Definition 5.4. Let ETM be an E-manifold and consider the pullback manifold ETET∗M . The
one-form λ ∈ EΩ1(ET∗M), defined by its action on an element X ∈ ETα(ET∗M) as

(16) 〈λ,X〉 =
〈
τETET∗M (X),dατET∗M (X)

〉
,

is called the Liouville form of ET∗M J

Definition 5.5. Let ETM be an E-manifold and consider the prolongation ETET∗M . The canon-
ical symplectic form is defined in terms of the Liouville form as

J(17) ω = dλ.

We give now a local description of the Liouville form and the canonical symplectic form in
the induced coordinates (4.12). This result will be used to conclude that ω is non-degenerate and,
consequently, a symplectic form.

Lemma 5.6. Let (M,EM ) be an E-manifold and consider the E-cotangent bundle ET∗M with the
pullback E-structure. Take an open set U , let E1, . . . , Ep be a set of local generators of VecU (ETM)
and consider the dual basis F1, . . . , Fp in ET∗M . In natural coordinates 4.12, the Liouville one-form
(16) is expressed as

J(18) λ =
n∑
i=1

riE
∗
i .

Proof. In natural coordinates 4.12, the bundle projections are given by τETET∗M (q,p, r, s) = (q, r)
and dτET∗M (q,p, r, s) = (q,p). Moreover, as {Fi} is the dual basis of {Ei}, the natural pairing of
ETM and ET∗M in these coordinates reads as 〈r,p〉 =

∑p
i=1 ripi.

Consider now an element X ∈ ETα
ET∗M . By the definition of pullback bundle, there are

scalars pi and si such that

X =

p∑
i=1

piEi +

p∑
i=1

siVi.

As a consequence of the local expressions for τETET∗M and dτET∗M , we have that

〈λ,X〉 =
〈
τETET∗M (X), dτET∗M (X)

〉
= 〈r,p〉 =

p∑
i=1

ripi.

Equation (18) follows from this result. �

Lemma 5.7. Let (M,EM ) be an E-manifold and consider the E-cotangent bundle ET∗M with the
pullback structure. Take an open set U , let E1, . . . , Ep be a set of local generators of VecU (ETM)
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and consider the dual basis F1, . . . , Fp in ET∗M . In natural coordinates 4.12, the canonical sym-
plectic form (17) is expressed as

(19) ω =

p∑
i=1

V ∗i ∧ E∗i −
1

2

p∑
i,j,k=1

riC
i
jkE

∗
j ∧ E∗k .

As a consequence, the symplectic form ω is non-degenerate. J

Proof. Let us consider the natural coordinates 4.12. Applying equations (10) and (11) to the local
expression for the Liouville form (18) we have

ω =

p∑
i=1

dri ∧ E∗i +

p∑
i=1

ri dV ∗i =

p∑
i=1

V ∗i ∧ E∗i −
1

2

p∑
i,j,k=1

riC
i
jkE

∗
j ∧ E∗k .

This expression implies the non-degeneracy of ω. A straightforward computation shows that

ωp

p!
= V ∗1 ∧ · · · ∧ V ∗p ∧ E∗1 ∧ · · · ∧ E∗p

and, as a consequence, ωp is a volume form. �

We will describe now the canonical symplectic forms associated to the examples 3.3, 3.4 and
3.7.

Example 5.8. Consider a b-manifold (M,Z). In this setting, the E-tangent bundle ETM is
called the b-tangent bundle and is written bTM . Similarly, the E-cotangent bundle is called the
b-cotangent bundle, bT∗M . The pullback structure on bTM is equivalent to the b-structure of the
induced hypersurface ZbTM ⊂ bTM . This shows that definition 4.10 generalizes the b-manifold
structure in the b-cotangent bundle, which can be found in [GMP14].

Take now an adapted chart (U,ϕ) to Z with coordinates q; the set of sections

q1
∂

∂q1
,
∂

∂q2
, . . . ,

∂

∂qn
,
∂

∂p1
, . . . ,

∂

∂pn
.

is a basis of bTM . Notice that the structure functions Ckik vanish. In the natural coordinates 4.12,
the basis of sections E∗i , V

∗
i can be explicitly described as

dq1

q1
, . . . ,dqn, dp1, . . . ,dpn.

As a consequence of equation (17), the canonical symplectic form is

(20) ω = dp1 ∧
dq1

q1
+

n∑
i=2

dpi ∧ dqi.

This is the canonical b-symplectic form in the b-cotangent bundle of [GMP14]. J

Example 5.9. Consider now, in the setting of example 3.4, a c-manifold (M,Z). Following the
previous example, a set of local sections of a chart (U,ϕ) around a point p ∈ i(Zk) \ i(Zk+1) with
coordinates q adapted to the immersed hypersurface i(Z) induces the basis of local sections E∗i ,
V ∗i as

dq1

q1
, . . . ,

dqk
qk

, dqk+1, . . . ,dqn,dp1, . . . ,dpn.
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As before, the structure functions Ckij vanish. Equation (17) implies that the canonical Liouville
form is expressed as

(21) ω =

k∑
i=1

dpi ∧
dqi
qi

+
n∑

i=k+1

dpi ∧ dqi.

We remark that this construction is canonical in the sense that it can be canonically constructed
in the E-cotangent bundle ET∗M , in analogy with the smooth canonical symplectic form. Miranda
and Scott proved in [MS21] that there is no analogue of Darboux’s theorem for symplectic forms
over E-manifolds; rather, there are some cohomological obstructions to the existence of normal
forms. J

Example 5.10. In the setting of example 3.7, consider a foliated chart (U,ϕ) with coordinates q.
The basis of sections E∗i , V ∗i in 4.12 are locally described as dq1, . . . ,dqk, dp1, . . . ,dpk and, as the
structure functions vanish once again, equation (17) is read as

J(22) ω =
k∑
i=1

dpi ∧ dqi.

5.2. Lifting E-maps, cotangent lifts and symplectic properties. The definition of E-map
consists of two pieces of data; one is the map between the base manifolds, while the other is the
covering map between the corresponding E-manifolds (in fact, the covering map fully determines
the base map). We could wonder if, similar to the smooth situation, the base map completely
determines the covering map via a tangent functor. The answer is negative, as the following
example shows.

Example 5.11. Let us consider a b-manifold (M,Z) and p0 ∈ Z. Define the map f : M −! M
as f(p) = p0 for every p ∈ M . Obviously, dpf(bVec(p)) = 0 ⊂ bVec(p0), and the map admits a

restriction F : bTM −! ρE(bTM), but there is no unique way to lift this map to a map G : bTM −!
bTM . In fact, for any X ∈ bTp0M the map G : bTM −! bTM defined by G(Y ) = X for every

Y ∈ bTM makes diagrams (7) commutative. J

The key point of the previous counterexample is that the anchor ρ of an E-manifold only
identifies ETM with TM in an open and dense subset of TM . We are defining f such that df does
not intersect the isomorphism locus of ρE . However, there is a concrete instance where the map
f uniquely lifts to an E-map. This class of maps is remarkably important for us, because we can
define an analogous version of the cotangent lift.

Proposition 5.12. Let (M,EM ) and let f : M −! M be a smooth diffeomorphism such that
dpf(EM (p)) = EM (f(p)) for every p ∈ M . Then, there exists a unique E-map covering f , which
we denote by df and call the E-tangent lift of f . J

Proof. From the condition dpf(EM (p)) = EM (f(p)) for every p ∈ M we have that there exists a
well-defined map F : ETM −! ρE(ETM). Let U ⊆ M be the set of points for which ρE is an
isomorphism, which is open and dense from the construction of the E-tangent bundle. As f is
a diffeomorphism, f(U) is also open and dense and U ∩ f(U) is open and dense. Therefore, over
U∩f(U), F uniquely lifts to a map df : ETM −! ETM which, in fact, is a diffeomorphism because
ρE and F are diffeomorphisms as well. Finally, as U ∩ f(U) is open and dense, df can be smoothly
extended to a diffeomorphism d: ETM −! ETM over M . �
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As structure preserving diffeomorphisms in the base manifold uniquely lift to E-maps, it is
natural to consider lifts to the E-cotangent bundle. The following proposition shows that such lifts
are well-defined, E-maps with respect to the pullback structure in ET∗M and that the canonical
Liouville form (16) is preserved.

Proposition 5.13. Let (M,EM ) be an E-manifold and consider the E-cotangent bundle ET∗M
with the pullback structure. Any E-diffeomorphism f ∈ Diff(ETM) defines an E-diffeomorphism

f̂ ∈ Diff(ETET∗M), called the E-cotangent lift. Additionally, f̂ preserves the Liouville one-form
(16). J

Proof. Consider a diffeomorphism f : M −!M compatible with EM which we know, by proposition
5.12, that uniquely lifts to a covering diffeomorphism df : ETM −! ETM . We define, similarly to

the smooth case, the E-cotangent lift as f̂ = (df−1)∗. This map satisfies f̂g = f̂ ĝ and gives rise to
the commutative diagram 23.

(23)

ET∗M ET∗M

M M
f

f̂

τ τ

As the cotangent lift is a diffeomorphism, checking that it is an E-map amounts to checking
that it preserves the pullback structure by proposition 5.12. From the commutativity of diagram
(23), we can see that dτ df̂(EET∗M ) = df dτ(EET∗M ). Given that EET∗M = 〈(dτ)−1(EM )〉 and

that f is an E-map, we have df dτ(EET∗M ) = df(EM ) = EM . As a result, dτ df̂(EET∗M ) = EM ,

which implies df̂(EET∗M ) ⊂ EET∗M . As f̂ is a diffeomorphism, df̂(EET∗M ) ⊂ EET∗M and the
proof is finished.

The proof of the second statement follows from the commutativity of the following diagrams:

(24)

ETET∗M ETET∗M

ETM ETM
df

df̂

dτET∗MdτET∗M

ETET∗M ETET∗M

ET∗M ET∗M
f̂

df̂

τETET∗MτETET∗M

A direct computation shows

〈f̂∗λ,X〉 = 〈λ,df̂X〉
=
〈
τETET∗M (df̂X),dτET∗M df̂X

〉
=
〈
f̂ τETET∗M (X), df dτET∗MX

〉
=
〈
τETET∗M (X),dτET∗MX

〉
= 〈λ,X〉. �

5.3. E-group actions and Marsden-Weinstein reduction. A key technique in classical Hamil-
tonian mechanics is that of Marsden-Weinstein reduction, which formalizes the idea of reducing the
phase space of a physical system by a symmetry. This idea is also completely necessary in the
formulation of classical gauge and Yang-Mills theories, which further motivates their study. Under-
lying this construction is the notion of Lie group action on a symplectic manifold, which encodes
the information of a continuous symmetry and infinitesimal action.
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Definition 5.14. Let (M,E) be an E-manifold and consider a Lie group G. A Lie group action
of G on (M,EM ) is Lie group action ρ : G×M −!M such that, for every (g, p) ∈ G×M , we have
d(g,p)ρ(EG×M ) = EM . Here, we have taken the E-manifold structure (G×M,Vec(G)⊕ EM ). J

For a fixed g ∈ G, the group action defines a diffeomorphism in M and, as a consequence of
the previous definition, the map is lifted to the E-tangent bundle. Therefore, this information is
equivalent to defining Lie group actions in a categorical sense.

Remark 5.15. The definition of E-action implies that the fundamental vector fields of ρ are E-
fields. The fundamental action ρ̂ can be recovered from the action ρ as ρ̂(X) = dρ(X ⊕ 0) for
any left-invariant vector field X ∈ Lie(G) ' g. From the universal property of products 4.13, the
pushforward is an E-field, dρ(X ⊕ 0) ∈ EVec(M). J

The other ingredient in the formulation of Marsden-Weinstein reduction is that of Hamiltonian
group actions. The definition in the case of E-manifolds follows directly from that in the case of
smooth manifolds. We also state a technical lemma concerning the existence of product Hamiltonian
group actions without proof.

Definition 5.16 (Hamiltonian action). Let (M,E) be an E-manifold and consider a symplectic
form ω ∈ EΩ2(M). We say that an action ρ : G×M −!M is Hamiltonian if there exists a moment
map µ ∈ C∞(M)⊗ g∗ fulfilling

(25) ιX]ω = −d〈µ,X〉

for each X ∈ g. J

Lemma 5.17. Let (M,EM ) and (N,EN ) be two E-symplectic manifolds with symplectic forms ωM
and ωN , respectively and let G be a Lie group. Given two Hamiltonian G-actions ρM : G×M −!M
and ρN : G×N −! N with respective moment maps µM and µN , the induced G-action in M ×N
with symplectic form p∗1ωM + p∗2ωN is Hamiltonian with moment map µ = p∗1µM + p∗2µN . J

In the definition of Hamiltonian action we have described the fundamental vector fields of the
action as Hamiltonian vector fields generated by smooth functions C∞(M). This construction is
well defined because the sheaf of smooth functions fits into the cochain complex of E-differential
forms

(26) 0 C∞(M) EΩ1(M) · · · EΩn(M) 0

However, in some instances the class of smooth functions may be enlarged to consider more general
modules of functions which include C∞(M) as a submodule and still fit into equation (26). The
first example to consider are b-functions, as described in [GMPS14, def. 3]. We define E-functions
in the following way: Let α be a E-form of degree 1 which is closed. Obviously this form is not
the differential of a smooth function but we enlarge the set of admissible functions in such a way
that a closed form is exact in this category. In other words, as observed by Nest and Tsygan in
[NT01], in distinction to the standard de Rham complex, the E-complex is not locally acyclic and
hence does not give an acyclic resolution of the set of smooth functions. However, we can still
define artificially a set such that this condition is met. We call this, the set of E-functions. The
exact description of this set depends on the example under consideration. For b-functions this set is
exactly bC∞(M) = {g log |x|+ h, g ∈ R, h ∈ C∞(M)}. The set of bm-functions is defined recursively
according to the formula

bmC∞(M) = x−(m−1)C∞(x) + bm−1C∞(M)
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with C∞(x) the set of smooth functions in the defining function x.

In the case of regular foliations this set coincides with the set of 0-forms in foliated cohomology,
thus with basic functions.

The notion of Hamiltonian group action can be generalized to include Hamiltonian functions
which belong to the set EC∞(M). This definition, at least for bm-symplectic manifolds, can be
found in [MM22, def. 2.6].

Definition 5.18 (E-Hamiltonian action). Let (M,E) be an E-manifold and consider a sym-
plectic form ω ∈ EΩ2(M). We say that an action ρ : G×M −!M is E-Hamiltonian if there exists
a moment map µ ∈ EC∞(M)⊗ g∗ fulfilling

(27) ιX]ω = −d〈µ,X〉

for each X ∈ g. J

We are ready now to state a version of the Marsden-Weinstein reduction by the Hamiltonian
action of a Lie group G in the context of E-symplectic manifolds. This result has been extracted and
adapted from [MPRO12, theorem 3.11]. Afterwards, we prove a version of the well-known shifting
trick over E-symplectic manifolds. The proof is essentially the same as for regular manifolds, and
all we have to do is check that the construction is compatible with the E-structures.

Theorem 5.19. Let (M,E) be an E-manifold with symplectic form ω ∈ EΩ2(M). Consider a
proper and free group E-action ρ : G×M −!M which is Hamiltonian with moment map µ : M −!
g∗. If α ∈ g∗ is a regular value of µ, µ−1(α)/Gα is an E-symplectic manifold with symplectic form
ωred given by

J(28) π∗ωred = i∗ω.

Theorem 5.20 (E-Shifting trick). Let (M,E) be an E-symplectic manifold with symplectic
form ω ∈ EΩ2(M) and a free and proper E-Lie group action ρ : G×M −! M with moment map
µ : M −! g∗ and assume α ∈ g∗ is a regular value of µ. If we endow (O(−α), ωO(−α)) with the
natural coadjoint action of G and the moment map i : O(−α) ↪−! g∗, there is an isomorphism of
E-symplectic manifolds

(29) µ−1(α)/Gα ' (µ+ i)−1(0)/G.

In particular, the Marsden-Weinstein reduction can always be performed at 0 ∈ g∗. J

Proof. The first part of the proof relies on an interesting observation on its own, which claims
that the reduction by coadjoint orbits is equivalent to the reduction by a point. Given a regu-
lar value α ∈ g∗, the natural inclusion of E-manifolds i : µ−1(α) ↪−! µ−1(O(α)) induces an E-
diffeomorphism µ−1(α)/Gα ' µ−1(O(α))/G. We will also show that the uniqueness of the reduced
form following equation (28) implies that the map of classes [i] : µ−1(α)/Gα −! µ−1(O(α))/G is
an E-symplectomorphism.

Let now πα : µ−1(α)/Gα −! µ−1(α)/Gα and πO(α) : µ−1(O(α)) −! µ−1(O(α))/G be the

respective quotient maps; similarly, let iα : µ−1(α) ↪−! M and iO(α) : µ−1(O(α)) ↪−! M the re-
spective inclusions and let ωα and ωO(α) be the reduced symplectic forms. It is obvious that
iα = iO(α)i, which implies i∗αω = i∗i∗O(α)ω. The characterization of the reduced E-symplectic form

following equation (28) implies π∗αωα = i∗π∗O(α)ωO(α). We construct now the commutative diagram

(30), where all the maps are actually E-maps. A direct consequence of the commutativity is that
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π∗α[i]∗ωO(α) = i∗π∗O(α)ωO(α). The previous results imply now that π∗αωα = π∗α[i]∗ωO(α) but, as the re-

duced form is unique, we conclude ωα = [i]∗ωO(α). This shows that [i] is an E-symplectomorphism.

(30)

µ−1(α) µ−1(O(α))

µ−1(α)/Gα µ−1(O(α))/G
[i]

i

πα πO(α)

After this isomorphism of E-manifolds, we consider the product manifold M ×O(−α), which
is endowed with the product E-symplectic form of the E-form ω and the symplectic form on the
coadjoint orbit: ω ⊕ ωO(−α). The diagonal action of G is Hamiltonian with moment map µ + i
following lemma 5.17. A straightforward computation shows

(µ+ i)−1(0) = {(p, β) ∈M ×O(−α) | µ(p) + β = 0}
= µ−1(O(α)),

and, in particular, the isomorphism respects the corresponding E-structures. This observation,
together with the first result, proves equation (29). �

6. Gauge theory of E-manifolds

In classical gauge theories, the configuration space of a point-mass particle in terms of positions
and momenta does not give a complete characterization of the physical properties of a system. A
standard example is the configuration space of classical electromagnetism, in which particles are
described by an additional scalar called the electric charge. The natural configuration space becomes
a real line bundle L over the space-time M . In a general setting, the new configuration space is
described by a fibre bundle τ : B −!M with typical fibre Q. This fibre is understood to represent
the internal degrees of freedom of the particle.

Additionally, in classical gauge theories we consider the action of a Lie group G on the total
configuration space by gauge transformations. Following the previous interpretation, gauge trans-
formations represent diffeomorphisms of the total configuration space B which do not change the
physical description of a particle in the base manifold M . The geometric idea behind a gauge
transformation is represented in picture 5.

Having recalled the geometric description of gauge theories, we start by defining gauge theories
over E-manifolds using the pullback structure over a fibre bundle.

Definition 6.1. Let (M,EM ) be an E-manifold. A gauge theory over M is a pair (B,G), where
τ : B −!M is a fibre bundle with the pullback structure EB and a G-structure on B. J

The equations of motion are specified using a G-invariant connection on the bundle B, called
a gauge field. Such connections were already described in [NT01]; we give here a different charac-
terization as invariant splittings of an “E-Atiyah sequence”.

Definition 6.2. Let (M,EM ) be an E-manifold and consider a gauge theory (B,G) over M . A
gauge field on (B,G) is a G-invariant splitting of the following short exact sequence:

J(31) 0 ker dτ ETB τ∗ETM 0.ι dτ

The equations of motion of a classical particle under the action of a gauge field were described
by Wong in [Won70], and are named after him as Wong’s equations. Weinstein showed in [Wei78]
that the equations of motion by Wong can be described in geometric terms and that, moreover,
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Figure 5. On the left, the induced pullback structure described locally for a b-
manifold. In this case, the b-structure coincides with that generated by the pullback
hypersurface π−1(Z). On the right, a schematic representation of a gauge transfor-
mation. The transformation may change from fibre to fibre smoothly, but a point
of a fibre has to be mapped to the same fibre.

they become Hamiltonian. In his setting, a gauge field induces a projection from the cotangent
bundle T∗B, which can be regarded as the natural phase space of a gauge theory, to the standard
cotangent bundle T∗M . The choice of a Hamiltonian function in T∗M (the kinetic energy, for
instance, if M is a Riemannian manifold) induces a Hamiltonian function in T∗B which generates
Wong’s equations.

Sternberg introduced generalized the minimal coupling procedure of electromagnetism to Yang-
Mills theories and showed that it could be described by the introduction of a magnetic term in the
canonical symplectic structure of T∗M . Weinstein showed that the choice of a gauge field induces a
symplectomorphism of symplectic manifolds which describes Sternberg’s minimal coupling. Mont-
gomery considered the symplectic formulation of Yang-Mills theories and showed that the minimal
coupling of Weinstein and Wong’s equations of motion could be described over more general Poisson
manifolds. In particular, he proved that the restriction to a symplectic leaf recovers Weinstein’s
results.

Our goal throughout the rest of the section is to prove analogous statements when the base
manifold M has an E-structure.

6.1. Geodesics on Riemannian E-manifolds. In classical mechanics, the base manifold of a
physical system is called the configuration space, and is assumed to be a Riemannian manifold. The
study of geodesics on a Riemannian manifold is one of the first approaches to general gauge theories
in physics. Metrics can be similarly defined for arbitrary E-manifolds, and their construction is
analogue to that of E-symplectic forms.

Definition 6.3. Consider an E-manifold (M,E). A metric on (M,E) is a section g ∈ Γ(ETM �
ETM) which is positive-definite and non-degenerate. An E-manifold ETM together with a metric
g is called a Riemannian E-manifold. J

Analogously to remark 5.2, the non-degeneracy of the metric g gives rise to vector bundle
isomorphisms g[, g], called the musical isomorphisms of the metric. Affine connections are defined
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as splittings of the sequence

(32) 0 ker dτ ETETM ETM 0.ι dτ

The lift X∇ : ETM −! ETETM is an E-field in ETM with the induced E-structure on ETM ,
called the geodesic flow. To construct such a flow in the dual bundle ET∗M we consider the musical
isomorphism given by the metric g, giving the following isomorphism of short exact sequences:

(33)

0 ker dτ ETETM ETM 0

0 ker dτ ETET∗M ET∗M 0

ι

ι

dτETM

dτET∗M

dg[ dg[ g[

X∇

Y∇

The geodesics are the flow of a Hamiltonian vector fields also for E-manifolds.

Theorem 6.4. Consider an E-manifold (M,E) with a metric g ∈ Γ(ET∗M � ET∗M) and an

affine connection X∇ : ET∗M −! ETET∗M . The induced flow ϕt of Y∇ = dg[X∇ is Hamiltonian,
with Hamiltonian function

H(α) = g(g]α, g]α). J

Proof. For the first part of the proof we only have to observe that the flow ϕt gives an isomorphism
of short exact sequences

0 ker dτ ETET∗M ET∗M 0

0 ker dτ ETET∗M ET∗M 0

ι

ι

dτET∗M

dτET∗M

dϕt ϕt

Y∇

Y∇

Notice that the splitting Y∇ remains unchanged under the action of ϕt as [Y∇, Y∇] = 0, and, as a
consequence, dϕtY∇ = Y∇. We can conclude that the flow ϕt preserves the Liouville form in ET∗M
using a similar argument to that in the proof of proposition 5.13. Thus, LY∇λ = 0 and because of
Cartan’s formula:

ιY∇ dλ = −dιY∇λ,

thus, proving that Y∇ is Hamiltonian.

Regarding the Hamiltonian function, from the previous result H(α) = 〈λα, Y∇(α)〉, thus, by

definition (16), equals 〈α,dτET∗MY∇(α)〉. Take now X = g](α) or, equivalently, α = g[(X). Given

that the musical isomorphisms are vector bundle morphisms, we obtain dτET∗M dg[ = dτETM .
Recall that Y∇ = dg[X∇. As a consequence,

〈λα, Y∇(α)〉 = 〈α,dτET∗M dg[X∇(X))〉
= 〈α,dτETMX∇(X)〉
= 〈α,X〉
= g(X,X).

Therefore, we conclude that the Hamiltonian function of the geodesic flow ϕt is g(g]α, g]α). �
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6.2. Principal bundles and gauge fields over E-manifolds. The standard presentation of
E-gauge theories introduced in the beginning of section 6 can be recovered from a formulation in
terms of associated principal bundles. The symplectic formulation of the equations of motion for
gauge theories is commonly stated in these terms (see for instance, [Wei78, Mon84, Mon86]).

This subsection is devoted to the study of the pullback structure in principal G-bundles over
an E-manifold M , as well as the characterizations of gauge fields in this setting. These properties
will be used throughout the study of the symplectic formulation of the equations of motion in
the following subsections. We begin with an example of how gauge theories are formulated in the
context of manifolds admitting an E-symplectic structure and then we present a lemma on the
structure of the vertical bundle of an E-principal G-bundle.

Example 6.5 (Relativistic electromagnetism on E-manifolds). In example 2.4 we saw that,
in a Minkowski space (M, g), the singular foliation of TM by level sets Fk of the kinetic energy is
the E-manifold TF . In the setting of special relativity, the space-time is R4 with the flat metric
and it admits a relativistic version of the Maxwell’s equations of electromagnetism.

To introduce an electromagnetism formulation that behaves well with the Lorentz transforma-
tions in special relativity, instead of talking separately about charge density q and current density
J it is natural to work with the 4-vector J = (ρ,J) called charge-current density. Also, the electric
field E and the magnetic field B are combined into a 2-form F called field strength tensor defined
as:

(34) F = dt ∧ (Ex dx+ Ey dy + Ez dz) +Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy.

In this framework, the four Maxwell equations are equivalent to the Yang-Mills equations (44).

An electromagnetic potential A ∈ Ω1(M) is an appropriate potential for the field strength
tensor F if dA = F . It is not unique, since for any smooth function φ ∈ C∞(M) the form A+ dφ
will be again an appropriate potential for F . To describe this gauge, it is convenient to define a
connection on a principal G-bundle π : P −! R4.

Take G = U(1), so g = u(1) ' R, and chose a connection on P with connection form θ.
The Minkowski space R4 is contractible, hence, π : P −! R4 is globally trivializable. For any
trivialization corresponding to a section s : R4 −! P , the 1-form s∗θ is an R-valued form on R4,
so it can be written as s∗θ = A. Then, any other section s′ can be written as x 7−! s(x) · u(x)−1

for some function u : x 7−! eiφ(x) : R4 7−! U(1) and we have

(35) s′∗(θ) = A+ d(eiφ) · e−iφ = A+ i dφ.

The choice of an electromagnetic potential is then equivalent to a choice of a trivialization of
the principal U(1)-bundle π : P −! R4. Identifying P with R4×G via a section s, we can rewrite
the field strength tensor as F = s∗ω = s∗ dθ = dA.

J

Lemma 6.6. Let π : P −! M be a principal G-bundle over an E-manifold (M,EM ) with the
pullback structure EP .

(1) The action r : P ×G −! P is an E-action.

(2) The vector bundle map

(36)
ϕ : P × g −! ker dπ

(p, α) 7−! deψp(α)

is an isomorphism. Here, ψp is the orbit map at a point p ∈ P . J



28 PAU MIR, EVA MIRANDA, AND PABLO NICOLÁS

M

U(1) U(1) U(1)

Figure 6. In blue, the phasor representing the amplitude and phase of an electro-
magnetic signal. The principal U(1)-bundle is the natural phase space for electro-
dynamics. Sections of this bundle are often called phasors in the jargon of physics
and engineering.

Proof. Consider the E-structure Vec(G)×EP in G×P . The proof of the first item follows trivially
from the G-invariance condition.

Regarding the second item, we now have that, if τ̃ : TP −! TM is the standard tangent map,
then ker τ̃ ⊂ EP . The proof now follows from the smooth case. �

A fundamental result in the symplectic formulation of classical gauge theories is the existence
of horizontal lifts and connection forms. Their construction and properties can be fundamentally
derived from a result in homological algebra known as the splitting lemma. We show in analogy
with the smooth setting that, even though the category of vector bundles is not abelian because of
the possible non-existence of kernels, a splitting lemma still holds for E-Atiyah sequences.

Proposition 6.7 (E-Splitting lemma). Consider a principal G-bundle π : P −! M over an
E-manifold (M,EM ) with the pullback structure EP . The following objects are in one-to-one cor-
respondence:

(1) G-Invariant splittings of the short exact sequence (31).

(2) G-Invariant retractions θ : ETP −! P × g.

(3) G-Invariant sections h : π∗ETM −! ETP . J

Notation 6.8. Consider a principal connection (31) and the induced connection in ETP . The
induced retraction θ : ETP −! ker dπ is called the connection form. It is an element of Ω1(P ×
g;ETP ). The section h is called the horizontal lift of the connection. J

Remark 6.9. We will consider from now and onward the natural left action induced from r : P ×
G −! P , defined as lg(p) = rg−1(p) for any p ∈ P and g ∈ G. The splitting Φ of the E-Atiyah
sequence and the section h remain invariant by the action of l, while the connection form θ now
intertwines l and the adjoint action in P × g. J

6.3. The Hamiltonian formalism of gauge theories. Having proved the main results concern-
ing the structure of E-principal G-bundles and gauge fields over them, we are ready to investigate
the symplectic formulation of the equations of motion. Throughout the subsection we will consider
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a fixed principal G-bundle π : P −!M with the pullback structure EP . The following commutative
diagram contains the information of the splitting lemma 6.7,

(37)

ETP

0 P × g π∗ETM 0

(P × g)⊕HP

iϕ

i1

π2

π̃

Φ

π1

i2

h

θ

where the maps are understood to be G-invariant. In this diagram, the splitting gives an
identification HP ' π∗ETM . As a consequence, HP is an E-manifold and the splitting Φ is an
E-map. The isomorphism Φ also induces a G-action in (P × g)⊕HP .

In classical Hamiltonian mechanics, the phase space for Hamilton’s equations of motion over
a manifold M is the cotangent bundle T∗M . In the extension of Hamiltonian mechanics to E-
manifolds, we have seen through theorem 6.4 that the natural phase space becomes ET∗M . We
have also concluded that the configuration space of a particle in a gauge theory has to be enlarged
to the total bundle τ : B −! M . In this setting, the natural phase space to describe Hamiltonian
dynamics is ETB. Consequently, we are interested in the dual splitting defined by a gauge field,
represented in the following commutative diagram:

(38)

ET∗P

0 π∗ET∗M P × g∗ 0

(P × g∗)⊕ P ]

Ψ
π†2

i†1

π̃†

ϕ†i†

π†1

θ†

h†

i†2

We have denoted P ] = H∗P . Moreover, it can be noted that the induced splitting is given by
Ψ = Φ†. As before, the isomorphism Ψ induces an action of G in (P × g∗)⊕ P ] and a symplectic
form by pushforward.

Before presenting the main result, we will show that the vector bundle P ] is a specific realization
of the pullback bundle of ET∗M by the projection π : P −!M .

Lemma 6.10. Let π : P −!M be an E-principal G-bundle over an E-manifold (M,EM ). In the
notation of diagrams (37) and (38), the vector bundle P ] fits the pullback bundle diagram

(39)

P ] P

ET∗M M

π]

τET∗M

π

τET∗P π̃
†

Here, the map π] : P ] −! ET∗M is defined by its action on elements X ∈ g×HP and β ∈ g∗×P ]
as

J(40) 〈β,X〉 = 〈κπ̃†β,dπhX〉.
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Proof. To begin the proof we realize that, by definition, π∗ET∗M is the pullback bundle of ET∗M
by the submersion π : P −! M . We take the identification P ] ' π∗ET∗M and construct the
following commutative diagram, where we have also expressed the pullback property of π∗ETM :

(41)

ETP ET∗P

π∗ETM P P ] P

ETM M ET∗M M

πσ

π̃

dπ

h

π]

τ
P]

π

h†

π̃†

τET∗P

κ

The proof of the commutativity of these diagrams now follows from the same elementary idea:
the maps in the splittings (37) and (38) are vector bundle morphisms. Firstly, as π† is a vector
bundle morphism it is straightforward to see that τP ] = τET∗P π̃

†. We are defining the projection
κ : ET∗P −! ET∗M by means of the dual splitting h†.

To prove equation (40) we use the fact that ETM and P ] are pullback bundles and, as a
consequence, 〈β,X〉 = 〈π]β, σX〉. Following diagrams (41) we see that σ = dπh, which proves the
result. �

Remark 6.11. To prove equation (40) we have used the inclusions h, π̃† to obtain representatives
of X and β in ETP and ET∗P , respectively. We can show that this choice of representatives is
not relevant for expression (40), that is, for any Y ∈ ETP and η ∈ ET∗P such that π̃Y = X and
h†η = β we have 〈β,X〉 = 〈κη,dπY 〉.

To prove this fact we only have to see, given equation (40), that 〈κη,dπY 〉 = 〈κπ̃†β,dπhX〉.
A direct computation shows

〈κη,dπY 〉 − 〈κπ̃†β,dπhX〉 = 〈κη,dπY 〉 − 〈κπ̃†β,dπY 〉+ 〈κπ̃†η,dπY 〉 − 〈κπ̃†β,dπhX〉〉

= 〈κ(η − π̃†β), dπY 〉 − 〈κπ̃†β,dπ(Y − hX)〉.

We use now the fact that π̃h = I π∗ETM from the properties of the splitting lemma 6.7. From
diagram (41) and using π̃Y = X, we have dπ(Y −hX) = σπ̃Y −σπ̃hX = σX−σX = 0. Similarly,
h†π̃† = I P ] . Using condition h†η = β we can show that κ(η−π̃†β) = π]h†η−π]h†π̃†β = π]β−π]β =
0. This concludes the proof. J

Theorem 6.12. Consider a principal G-bundle π : P −!M over an E-manifold M and a Hamil-
tonian G-space Q.

(1) The product space ET∗P ×Q is Hamiltonian with moment map µP + µQ.

(2) The hypothesis of the reduction theorem 5.19 are satisfied and, consequently, the space
(ET∗P ×Q)0 is an E-symplectic manifold.

(3) The horizontal lift h† is well-defined in classes of equivalence and defines a map α : (ET∗P×
Q)0 −! ET∗M . J

Proof. The first item is straightforward from lemma 5.17. We simply take the natural E-manifold
structure (Q,Vec(Q)).

To see that we can define the Marsden-Weinstein reduced space we have to check that we are
in the conditions of theorem 5.19. Given that 0 ∈ g∗ is a regular value of µP , it is also a regular
value of µP + µQ. As G acts transitively in ET∗P , it also acts transitively in ET∗P × Q. This
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shows that the reduced space µ−1(0)/G is well-defined and carries a natural E-symplectic structure
induced from that of ET∗P ×Q.

Regarding the surjection α : (ET∗P × Q)0 −! ET∗M , we consider the composition of the
surjection h† : ET∗P −! P ] induced from the connection and the natural projection p̃1 : ET∗P ×
Q −! ET∗P , giving the map h†p̃1 : ET∗P ×Q −! P ]. We can consider the restriction of this map
to the submanifold j : µ−1(0) −! ET∗P ×Q, giving the map h†p̃1j. As h†, p̃1, and j intertwine the
G-actions in their respective manifolds, we can take the map defined in classes α = [h†p̃1j], which
completes the proof. �

Remark 6.13. Notice that in the hypotheses of theorem 6.12 we could have taken Q to be an
E-Hamiltonian G-space with E-structure EQ compatible with the G-action. This choice implies
that the associated bundle B = P ×G Q is no longer equipped with the pullback E-structure 4.10,
but rather with a compatible E-structure ẼB ⊂ EB. This procedure induces an E-structure in the
typical fibre Q, which yields room for more levels of degeneracy in the construction. J

Weinstein proved the equivalence of this construction with the so-called Sternberg space, orig-
inally introduced in [Ste77]. An analogue statement, which we present here, holds in the context
of E-manifolds.

Theorem 6.14. Let π : P −!M be an E-principal G-bundle and consider a G-Hamiltonian space
Q. There exists a diffeomorphism

(42) µ−1(0) ' P ] ×Q.

As a consequence, there exists a symplectomorphism of spaces (ET∗P ×Q)0 ' P ] ×G Q. J

Proof. Notice that, from diagram (38), that the horizontal lift induces a map h† : ET∗P −! P ].
In order to obtain the isomorphism with Sternberg’s space we notice that, because we have chosen
the trivialization ker dπ ' P × g∗ by the infinitesimal action of G on ETP , the moment map of the
action is simply µP = −p2 (see [Wei78]). As a consequence, the moment map µ : g∗×P ]×Q −! g∗

is given by µ = −p1 + µQ. With this expression, we can readily show that µ−1(0) ' P ] × Q. Of

course, if µ(p,X, q) = −X + µQ(q) = 0 we have that p ∈ P ] is arbitrary and that X = µQ(q).
As a consequence, q ∈ Q is arbitrary and X ∈ g∗ is completely determined by q, so the claim is
proved. �

The results proved here can be framed under the paradigm of “cotangent bundle reduction”,
as referred to in [MP00]. The authors study the reduction in the cotangent bundle of a smooth
manifold M by a proper and free Lie group action G. As the quotient π : M −! M/G defines a
principal bundle, this model is completely equivalent to our setting. The reduction of the cotangent
action by a coadjoint orbit is can be re-conducted to the reduction at 0 using the shifting trick
presented in Theorem 5.20. Specifically, the diffeomorphism µ−1(α)/Gα ' µ−1(O(α))/G used in
the proof together with the shifting trick is the main tool connecting our results and those found
in [MP00]. We briefly outline some generalizations in this direction to the theory of E-manifolds.

Corollary 6.15. Let (M,EM ) be an E-manifold and consider a principal G-bundle π : P −! M
with the induced structure EP . Then, the map

(43)
σ : P × g∗ −! ET∗P/G

(p, α) 7−! [θ†α]
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intertwines the diagonal action and the cotangent lifted action of G on ET∗P , and therefore it
factors to a quotient map [σ] : P ×G g∗ −! ET∗P/G which is fibre-wise injective and [ϕ†i†][σ] =
I. J

Proof. As it was noted in remark 6.9, the connection form θ associated to a connection intertwines
the tangent lift in ETP and the diagonal action in P×g. A direct consequence is that θ† intertwines
the diagonal action in P × g and the cotangent lift in ET∗P . Moreover, this map is a splitting of
the dual Atiyah sequence (38) and, as a consequence, is fibre-wise injective and ϕ†i†θ† = I . The
result follows now taking quotients and noticing that [σ] = [θ†]. �

Corollary 6.16. If O ⊂ g∗ is a coadjoint orbit, then µ−1(O)/G ' ET∗M ×M (P ×G O). J

Proof. The proof follows the same guidelines as the one of theorem 6.14 and, in fact, the result to
be proved now is a consequence of 6.14 using the shifting trick (Theorem 29). We will, however,
give a more explicit description. As in the proof of 6.14, the moment map of the cotangent lift in
the trivialization ET∗P ' P ] ⊕ (P × g∗) is given by µ : (X, p, α) 7−! α. As a consequence, we can
readily see that µ−1(O) ' P ] ⊕ (P ×O). The result follows taking quotients. �

6.4. The Montgomery space for Yang-Mills theories. Classical Yang-Mills theories fall within
the setting of gauge theories. In a Yang-Mills theory, the fundamental object is a principal G-bundle
π : P −!M over a Riemannian manifold (M, g) and the configuration space is the associated bun-
dle P×Gg∗ [GS90]. As a consequence, the internal symmetries or charges of a particle are described
by elements of the dual algebra g∗. In such theories, the gauge field ∇ is a connection specified
following the Yang-Mills equations,

(44)

{
d∇F = 0,

? d∇ ? F = J,

where F is the curvature of the connection ∇ and J is a source term for the equations. The operator
? : Ω•(M) −! Ω•−1(M) is Hodge’s star operator induced from the metric g.

Montgomery exhibited the natural phase space of a classical particle under a Yang-Mills field
in [Mon84] as a symplectic leaf of a bigger Poisson space and generalized Weinstein’s isomorphism
(theorem 6.14) to Poisson manifolds. The following theorem is an extension of these results to the
setting of Yang-Mills theories on E-manifolds.

Theorem 6.17. Consider an E-principal G-bundle π : P −! M . An E-principal connection
induces the commutative diagram 45. Moreover, the map [Ψ], called the minimal coupling, is a
Poisson isomorphism.

(45)

ET∗P ET∗P/G

ET∗M

g∗ × P ] g∗ ×G P ]

πET∗P/G

π
g∗×GP]

[π2]

[h†]

[Ψ]Ψ

As a result,

• The Hamiltonian equations of motion generated by the pullback of a Hamiltonian function
H ∈ C∞(ET∗M) to ET∗P/G or to g∗ ×G P ] are equivalent. These equations are called
Wong’s equations of motion.
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• We obtain induced dynamics in the associated bundle P ×G g, which has base M and fibre
g. Elements in the fibres are called charges1. J

Proof. Consider the induced Poisson structure ΠET∗P ∈ EVec2(ET∗P ) from the canonical symplec-
tic form ωP . This structure induces a Poisson structure by pull-back Πg∗×P ] = dΨ−1ΠET∗P ∈
EVec2(g∗ × P ]). As the action of G in ET∗P is symplectic (it is a cotangent lift), the quo-
tient ET∗P/G can be endowed a Poisson structure ΠET∗P/G = dπET∗P/GΠET∗P . The induced

G-action in g∗ × P ] induces a surjection πg∗×GP ] which can be used to define a Poisson structure
Πg∗×GP ] = dπg∗×GP ]Πg∗×P ] . The fact that this structure exists also follows from the fact that the

G-action in g∗×P ] is symplectic. The map Ψ intertwines the orbits of G in ET∗P and g∗×P ] and,
as a consequence, there exists a map [Ψ] : g∗ ×G P ] −! ET∗P/G which is well-defined on orbits
and makes diagram (45) commute. Given that the projections to the quotients πET∗P/G, πg∗×GP ] ,

and Ψ are Poisson maps, the induced map [Ψ] is a Poisson morphism as

�(46) d[Ψ](Πg∗×GP ]) = d[Ψ] dπg∗×GP ](Πg∗×P ]) = dπET∗P/G dΨ(Πg∗×P ]) = ΠET∗P/G.

The equivalence given by the minimal coupling procedure gives two different ways to understand
the action of a Yang-Mills field. Under Weinstein’s perspective, the field defines a way to pull back
a Hamiltonian function to ET∗P . In this sense, the field “modifies” the Hamiltonian function
but leaves the Poisson structure unchanged. On the other hand, from Sternberg’s viewpoint the
Hamiltonian function is “unchanged” by the pullback to the space g∗×P ]. Rather, the Yang-Mills
field modifies the Poisson structure by a magnetic term. The following result describes the induced
Poisson structure and is a direct generalization of the expression given in [Mon86].

Proposition 6.18. Let π : P −!M be an E-principal G-bundle. Denote by λM , λP the canonical
Liouville forms in ET∗M and ET∗P , respectively, and by ωM and ωP their canonical symplectic
forms.

(1) We have the equality (θ†)∗λP = 〈α, θ]〉. Here, θ] is the pullback connection θ] = τ∗P×g∗θ

and 〈α, θ]〉 is defined as the one-form 〈α, θ]〉 ∈ EΩ1(g∗ × P ]) whose action on elements is
(α,X) 7−! 〈α, θ](X)〉.

(2) We have the equality (π̃†)∗λP = (π])∗λM .

(3) The induced Liouville form in (P × g∗)⊕ P ] by the isomorphism Ψ is

(47) Ψ∗λP = (π])∗λM + 〈α, θ]〉.

As a consequence, the induced symplectic form is expressed as

J(48) Ψ∗ωP = (π])∗ωM + d〈α, θ]〉.

Proof. To prove the first item we show by a direct computation, taking (p, α) ∈ P × g∗ and
X ∈ Tα(P × g∗), that

(θ†)∗(λP )(p,α)(X) =
〈
(λP )θ](p,α),dθ

†X
〉

= 〈θ†(p, α), dτET∗P dθ†X〉 = 〈α, θ dτET∗P dθ†X〉

Now, we can use that θ† is a vector bundle morphism to get that τET∗P θ
† = τP×g∗ . As a conse-

quence, θ dτET∗P dθ† = τ∗P×g∗θ, concluding the proof.

Regarding the second item, we compute both terms separately. Let us choose a point β ∈ ET∗pP

and a tangent vector X ∈ ETβ
ET∗P . A direct computation using the definition of Liouville form

1In the case G = U(1) the fibre is u∗(1) ' R, which is the standard electric charge. For the strong nuclear force,
G = SU(3) and elements in su∗(3) are called color charges.
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and the conclusion of remark 6.11 yields

(π̃†)∗(λP )β(X) =
〈
(λP )π̃†β, dπ̃

†X
〉

= 〈π̃†β,dτETP dπ̃†X〉 = 〈π]β,dπ dτETP dπ†X〉.

An analogous computation yields

(π])∗(λM )β(X) =
〈
(λM )π]β, dπ

]X
〉

= 〈π]β,dτM dπ]X〉.

The commutativity of diagram (39) shows that both expresssions agree.

Finally, to prove the third item observe that from the splitting (P × g∗)⊕ P ], any one-form α

can be decomposed as α = (π†2)∗α+ (π†1)∗α. Consequently, Ψ∗λP = (Ψπ†2)∗λP + (Ψπ†1)∗λP and, as

Ψπ†2 = π̃† and Ψπ†1 = θ† from diagram (38), we conclude that Ψ∗λP = (π])∗λP +(θ†)∗λP . Equation
(47) follows from the first and second items.

Regarding the expression of the induced symplectic form, we only have to use equation (47)
and the commutativity of the pullback of an E-map with the exterior differential, as was proved in
remark 6.11. As all the maps in diagram (38) are E-manifolds, we obtain

Ψ∗ωP = Ψ∗ dλP = dΨ∗λP = d(π])∗λM + d〈α, θ]〉 = (π])∗ωM + d〈α, θ]〉. �

We show now the minimal coupling procedure in some degenerate instances arising from phys-
ical considerations. We also use the induced Poisson structure to compute Wong’s equations of
motion.

Example 6.19 (General minimal coupling for b-manifolds). Consider a b-manifold (M,Z)
and a principal G-bundle π : P −! M . We take now a local chart (U,ϕ) adapted to Z with
coordinates q1, . . . , qn. We construct natural induced coordinates q,v in the b-tangent bundle bTM .
Consider the local trivialization V = π−1(U) ' U ×G of P . Taking the identification TG ' G× g
by right-invariant vector fields, we have that bTV ' bTU ×G×g, inducing coordinates (q,v, g,Q).
The tangent lift dl• is expressed as dlh(q,v, g,Q) = (q,v, lhg,AdgQ). As a consequence, a local

expression of the b-cotangent bundle is bT∗V ' bT∗U × G × g∗ and we have local coordinates
(q,p, g,O). The cotangent lift in these coordinates is l̂h(q,p, g,O) = (q,p, lhg,Ad∗gO). The

reduced space is bT∗V/G ' bT∗U × g∗.

The set of coordinates (U,ϕ) also induces a local trivialization P ]U ' bT∗U ×G. Therefore, the

adjoint bundle is locally expressed as P ]U ×G g∗ = bT∗U × g∗ and we have coordinates (q,p,Q) as

used in ETV/G.

A connection can be locally specified, by the splitting lemma, as a linear map h : bTU −!
bTV/G such that dπh = I bTU . In coordinates (q,v) of bTU and coordinates (q,v,Q) of bTV/G

the most general expression for such a map is h(q,v) = (q,v,Q + A · v). Here, Aji are smooth
functions of q and v. As a consequence, the splitting of the Atiyah sequence has local expres-

sion [Φ](q,v,Q) = (q,v,Q + A · v). In particular, 〈∂∗vi , d[Φ]∂vj 〉 = δij , 〈∂∗vi , d[Φ]∂Qj 〉 = Aji ,
〈∂∗Qi ,d[Φ]∂vj 〉 = 0, 〈∂∗Qi ,d[Φ]∂Qj 〉 = δij . As a consequence, the minimal coupling is given as

[Ψ](q,p,O) = (q,p +A ·O,O).

The local expression of the canonical Poisson structure in bT∗P/G is

ΠET∗P/G = q1
∂

∂p1
∧ ∂

∂q1
+

n∑
i=2

∂

∂pi
∧ ∂

∂qi
+

1

2

n∑
i,j,k=1

Okc
k
ij

∂

∂Oi
∧ ∂

∂Oj
.
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From the expression of Ψ in local coordinates and the fact that it is a Poisson map, the induced
structure is

[Ψ]∗ΠET∗P/G = q1
∂

∂p1
∧ ∂

∂q1
+

n∑
i=2

∂

∂pi
∧ ∂

∂qi
+

1

2

n∑
i,j,k=1

OkF
k
ij

∂

∂pi
∧ ∂

∂pj

− 1

2

n∑
i,j,k,l=1

Olc
l
jkA

k
i

∂

∂pi
∧ ∂

∂Oj
+

1

2

n∑
i,j,k=1

Okc
k
ij

∂

∂Oi
∧ ∂

∂Oj
.

This example extends the computations of Montgomery [Mon86] to b-manifolds and generalizes the
contents of [BKM22].

We can now explicitly compute Wong’s equations in local coordinates (q,p,O). The pullback
of a Hamiltonian function in coordinates (q,p) remains unchanged. Therefore, it has no explicit
dependence on O. A direct computation contracting with the Poisson structure [Ψ]∗ΠET∗P/G shows
that

q̇1 = q1
∂H

∂p1
, ṗ1 = −q1

∂H

∂q1
+

n∑
j,k,l=1

OkF
k
j1

∂H

∂pj
, Ȯi =

n∑
j,k,l=1

Olc
l
ikA

k
j

∂H

∂pj
,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+

n∑
j,k,l=1

OkF
k
ji

∂H

∂pj
,

with i = 2, . . . , n. We can see the explicit contribution of the boundary in the evolution equations
for q1 and p1. Specifically, if q1 = 0, then the point always remains on the boundary of the system,
although its conjugated momentum can change due to the interaction with the Yang-Mills field. J

Example 6.20 (Compactified black hole). Following Sternberg’s original motivation, we will
compute the minimal coupling of electromagnetism in general relativity. As our singular model,
we have chosen the compactification due to Penrose of a Schwarzschild’s solution to a non-rotating
black hole. Below we describe its construction, the obtained coordinates and exhibit a new singular
structure associated to it (which we already announced in Section 1).

Recall that Schwarzschild’s metric can be written in spherical coordinates (t, r, θ, ϕ) as:

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2,

with dΩ2 = dϕ2 + sin2 ϕdθ2. The coordinate r is only valid in the range 2M < r < +∞. We will
consider the metric g⊥, where the term containing dΩ2 is dropped. Denote by h(r) = 1− 2M

r and
introduce now the change of coordinates v = t+ r and w = t− r to obtain:

g =
1

4

(1

h
− h
)

dv2 − 1

2

(1

h
+ h
)

dv dw +
1

4

(1

h
− h
)

dv2.

Observe that the condition r > 0 is equivalent to v > w + 4M .

Recall that the compactification of the configuration space by defining α = arctan v y β =
arctanw. The range of both coordinates is −π/2 6 α 6 π/2 and −π/2 6 β 6 π/2. Equality can
be attained as we are modelling the compactified space as a manifold with corners. The condition
v > w + 4M is equivalent to tanα > tanβ + 4M . The region spanned by the coordinates α, β will
be denoted by N . In these new coordinates, the metric becomes singular and reads

g⊥ = g =
1

4

(1

h
− h
)

sec4 α dα2 − 1

2

(1

h
+ h
)

sec2 α sec2 β dα dβ +
1

4

(1

h
− h
)

sec4 β dβ2.

The secant function blows up quadratically at α, β = π/2 and the E-structure is given by
the set of vector fields which vanish quadratically at the boundary, described locally by values
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neighbouring α = π/2. We will now compute the musical isomorphism induced by g (showing, as
a consequence, that it is non-degenerate) and the induced kinetic energy.

Let us consider a sufficiently small open chart U ⊂M centered around α0 = π/2 and β0 6= π/2
with coordinates α, β satisfying β 6= π/2 at U . In this setting, the fields vanishing quadratically at
the boundary (an early example of E-fields) admit as local generators α2 ∂

∂α and ∂
∂β and the dual

basis is written as 1
α2 dα,dβ. The metric can be written as:

g⊥ =
1

4

(1

h
− h
)

csc4 α dα2 − 1

2

(1

h
+ h
)

csc2 α sec2 β dα dβ +
1

4

(1

h
− h
)

sec4 β dβ2.

In the set of local generators of E-fields, the matrix of the metric and the inverse matrix is given
by

Mg =
1

4

(
(h−1 − h)α4 csc4 α −(h−1 + h)α2 csc2 α sec2 β

−(h−1 + h)α2 csc2 α sec2 β (h−1 − h) sec4 β

)
M−1
g = −4 sin4 α cos4 β

α4

(
(h−1 − h) sec4 β (h−1 + h)α2 csc2 α sec2 β

(h−1 + h)α2 csc2 α sec2 β (h−1 − h)α4 csc4 α

)
.

As limα!0 h = 1 and α cscα can be extended to a smooth function around α = 0, the metric is
smooth and so is the inverse matrix. The induced kinetic, which is computed in natural coordinates
pα and pβ in the E-cotangent bundle associated to the sections 1

α2 dα,dβ as

(g])∗K(α, β, pα, pβ) = −4
sin4 α cos4 β

α4

(
(h−1 − h) sec4 βp2

α + 2(h−1 + h)α2 csc2 α sec2 βpαpβ

+ (h−1 − h)α4 csc4 αp2
β

)
,

is also smooth.

After these computations, we can compute Wong’s equations for an electromagnetic field in
these coordinates. As N is simply connected, every fibre bundle is trivial and, therefore, the
principal U(1)-bundle which describes the theory is N × U(1). As U(1) is one-dimensional, the
connection is completely specified by a pair of functions A1(α, β) and A2(α, β). Moreover, the
structure constants ckij vanish. The minimal coupling of this system with A1(α, β), A2(α, β) gives
Wong’s equations as in example 6.19. J

In the physics terminology, the sections of the associated bundle P ×G g∗ are referred to as
matter fields. Understanding a section of a bundle as a kind of topological generalization of a
function, the choice of a matter field amounts to specifying a given element of g∗ for each space-
time event m ∈ M . As elements of g∗ as the generalization of electric charges, a matter field
corresponds to a density of charges on the space-time M . Our framework allows us to rigorously
define the notion of such matter fields in manifolds with boundary, manifolds with corners, and
manifolds with additional singularities, as well as studying their evolution under Wong’s equations
of motion.

In the same spirit, we can see the effect of Marsden-Weinstein’s reduction by direct observation
of Wong’s equations. The charges of the model do not have conjugated momenta, contrasting with
the classical position variables in the base manifold M . The quotient by gauge transformations
identifies the momenta for internal charges and completely determines the evolution of the charge
by coupling it with the canonical momenta.

Data availability statement. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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