
Evaluating Thread protocol in the
framework of Matter

Andreu Ortega Blasi

Master in Advanced Telecomunications, Internet of Things specialization,
at Universitat Politècnica de Catalunya

Supervisor: Josep Paradells Aspas

Universitat Politècnica de Catalunya
September 2021

Abstract

Internet of Things is a technology which produced one of the biggest,
and with most impact on the society, change in connectivity and automa-
tion solutions. It has a lot of new features and advantages, but also has
its constraints. For this purpose, many standard have been developed, and
IoT solutions designed.

A Home Automation system is an application of IoT. It consist of IP-enabled
embedded devices connected to the Internet using IPv6.The technology im-
proved when IETF designed 6LoWPAN as a interface to link IPv6 to IEEE
802.15.4, a low-power wireless network standard

Untill now, the IoT market is very dispersed with many solutions based
in different standards, which make them incompatible between themselves.
Appart from that, Home Automation technologies and solutions do not meet
the requirements of low power, IP-based, security and friendly use. In order
to profit from, and accelerate it, the IoT technology emergence, a unifica-
tion of the standards used and the requirements needed by the different IoT
solutions must be designed.

The goal of this thesis was to study a new Home Automation standard called
Matter. Matter is an application layer standard which aims to simplify
the development for manufacturers and increase compatibility for the con-
sumers, enabling communication across smart home devices, mobile apps,
and cloud services. As Matter was to be released in the summer of 2021
but was delayed, instead of that, the Thread architecture has been stud-
ied. Thread is, with Wi-Fi, the core of the operational communications
supported by Matter.

Thread is a simplified, IPv6-based mesh networking architecture developed
for efficient communication between energy-constrained devices around the
home. As Thread is a royalty-free but closed-documentation standard, Nest
Labs developed an open source implementation Called OpenThread.

This study is composed by an overview of the architecture, a detailed ex-
planation of each layer of the stack, and a implementation of the network
through OpenThread. Furthermore, some test will be evaluated to provide
to the reader an introduction to some of the Thread functionalities, specially
related with routing.

i

Resumen

El Internet de las Cosas (IoT) es una tecnología que ha provocado uno
de los mayores cambios, y con mayor impacto en la sociedad, en cuanto
a soluciones de conectividad y automatización. Tiene muchas nuevas ca-
racterísticas y ventajas, pero también sus limitaciones. Para ello, se han
desarrollado muchos estándares y se han diseñado diversas soluciones.

Un sistema de automatización del hogar es una aplicación de IoT. Con-
siste en dispositivos incrustados compatibles con IP conectados a Internet
mediante IPv6. La tecnología mejoró cuando IETF diseñó 6LoWPAN como
interfaz para enlazar IPv6 a IEEE 802.15.4, un estándar para redes inalám-
bricas de bajo consumo.

Hasta ahora, el mercado IoT está muy disperso con muchas soluciones basa-
das en distintos estándares, que las hacen incompatibles entre sí. Aparte de
esto, las tecnologías y soluciones de automatización del hogar no cumplen
los requisitos de bajo consumo, basado en IP, seguridad y de fácil uso. Con
el fin de aprovechar y acelerar la emergencia de la tecnología IoT, debe uni-
ficarse los estándares utilizados y los requisitos que necesitan las diferentes
soluciones IoT.

El objetivo de esta tesis era estudiar un nuevo estándar de automatización
del hogar llamado Matter. Matter es un estándar de la capa de aplicación
que tiene como en la nube. Cómo Matter debía lanzarse en verano del 2021
pero se retrasó, en su lugar, se ha estudiado la arquitectura Thread. Thread
es, con Wi-Fi, el núcleo de las comunicaciones operativas soportadas por
Matter.

Thread es una arquitectura de red de malla simplificada basada en IPv6
desarrollada para una eficiente comunicación entre dispositivos con poca
energía en casa. Dado que Thread es un estándar de documentación sin
derechos de autor pero cerrado, Nest Labs desarrolló una implementación
de código abierto llamada OpenThread.

Este estudio está compuesto por una descripción general de la arquitectura,
una explicación detallada de cada capa de la pila y una implementación de
la red mediante OpenThread. Además, se evaluará alguna prueba para ofre-
cer al lector una introducción a algunas de las funcionalidades de Thread,
especialmente relacionadas con el enrutamiento.

ii

Resum

L’Internet de les Coses (IoT) és una tecnologia que ha provocat un dels
canvis més grans, i amb més impacte a la societat, en quant a solucions
de connectivitat i automatització. Té moltes noves característiques i avan-
tatges, però també té les seves limitacions. Amb aquesta finalitat, s’han
desenvolupat molts estàndards i s’han dissenyat diverses solucions.

Un sistema d’automatizació de la llar és una aplicació d’IoT. Consisteix
en dispositius incrustats compatibles amb IP connectats a Internet mitjan-
çant IPv6. La tecnologia va millorar quan IETF va dissenyar 6LoWPAN
com a interfície per enllaçar IPv6 a IEEE 802.15.4, un estàndard per a xar-
xes sense fil de baix consum.

Fins ara, el mercat IoT està molt dispers amb moltes solucions basades en
diferents estàndards, que les fan incompatibles entre elles. A part d’això, les
tecnologies i solucions d’automatització de la llar no compleixen els requisits
de baix consum, basat en IP, seguretat i de fàcil ús. Per tal d’aprofitar i
accelerar l’emergència de la tecnologia IoT, s’ha d’unificar els estàndards
utilitzats i els requisits que necessiten les diferents solucions IoT.

L’objectiu d’aquesta tesi era estudiar un nou estàndard d’automatizació
de la llar anomenat Matter. Matter és un estàndard de la capa d’aplicació
que té com en el núvol. Com Matter s’havia de llançar a l’estiu del 2021
però es va retardar, en comptes d’això, s’ha estudiat l’arquitectura Thread.
Thread és, amb Wi-Fi, el nucli de les comunicacions operatives suportades
per Matter.

Thread és una arquitectura de xarxa de malla simplificada basada en IPv6
desenvolupada per a una comunicació eficient entre dispositius amb poca
energia a casa. Com que Thread és un estàndard de documentació sense
drets d’autor però tancat, Nest Labs va desenvolupar una implementació
de codi obert anomenada OpenThread.

Aquest estudi està compost per una descripció general de l’arquitectura,
una explicació detallada de cada capa de la pila i una implementació de la
xarxa mitjançant OpenThread. A més, s’avaluarà alguna prova per oferir
al lector una introducció a algunes de les funcionalitats de Thread, especi-
alment relacionades amb l’enrutament.

iii

Acknowledgements

First and foremost I would like to thank my supervisor Josep Paradells,
for advising and helping me with the thesis. He helped me to obtain the
devices for testing and gave me documentation to fulfill all the studies do-
ne. Also I would like to thank my University for being the promotor of this
thesis and provided me easy acces to the documentation.

I would like to thank as well to some professors such as Ramon Bragós
or Ramon Morros for helping me in finding the right choice when deciding
the thesis.

Also I would like to thank to my friends and family. In special I would
like to thank my parents, who supported me to do this thesis while being
at home, which was my lab as well, during this strange pandemic times.

iv

Contents

Abstract I

Resumen II

Resum III

Acknowledgements IV

Contents VI

List of figures VIII

List of tables IX

1. Motivation 1
1.1. Matter . 1

2. Thread 4
2.1. Introduction to Thread . 4
2.2. Technical Overview . 5
2.3. Thread Network Topology . 6
2.4. Physical Layer and Data Link Layer: IEEE 802.15.4 9

2.4.1. Physical Link Layer . 9
2.4.2. Data Link Layer . 11

2.5. Network Layer . 11
2.5.1. IPv6 . 11
2.5.2. 6LoWPAN . 14
2.5.3. Routing Protocol: RIP and RIPng 16
2.5.4. MLE messaging . 18
2.5.5. DTLS . 22

2.6. Transport Layer: UDP and TCP 23
2.7. Application Layer . 24

3. Openthread 25
3.1. Network Implementation . 27
3.2. Routing layer implementation . 28
3.3. DTLS implementation . 30
3.4. Application layer implementation: CoAP 30

v

3.5. CLI Commnads . 31

4. Hardware test environment 38
4.1. Zolertia devices . 38

4.1.1. Zolertia Re-Mote . 38
4.1.2. Zolertia Firefly . 40

4.2. TI CC2531EMK Sniffer Tool: ICQUANZX CC2531EMK 42

5. Setup, tests and performances 43
5.1. Test Scenario installation and Configuration 43

5.1.1. Zolertia devices configuration 43
5.1.2. Configuring the sniffer . 46

5.2. Tests . 47
5.2.1. Set up a Thread Network 47
5.2.2. Network Interaction . 49
5.2.3. Visibility of the network . 56
5.2.4. End to end connectivity . 57

6. Conclusions 60
6.1. General Conclusion . 60
6.2. Future work . 61

6.2.1. Thread . 61
6.2.2. OpenThread . 61
6.2.3. This thesis . 62

vi

List of Figures

1.1. Architecture Overview . 1
1.2. Matter detailed functionalities . 2

2.1. Thread Members . 4
2.2. Thread stack layer levels . 6
2.3. Thread stack layer levels . 7
2.4. 802.15.4 frame . 9
2.5. 802.15.4 PHY table summary . 10
2.6. 802.15.4 PHY table summary . 11
2.7. IPv6 frame . 12
2.8. IPv6 newtwork example . 13
2.9. General Format of a 6LoWPAN Packet 14
2.10. 6LoWPAN headers . 15
2.11. 6LoWPAN Packet Containing IPv6 Payload with Compressed IPv6

Header . 15
2.12. 6LoWPAN Packet Containing Mesh Hader for Layer 2 Forwarding,

a Fragmentation Header and a Compression Header 16
2.13. 6LoWPAN Packet Representing Subsequent Fragments that Do Not

Contain Any Information about the IPv6 Header 16
2.14. RIPng frame format . 17
2.15. MLE frame format . 18
2.16. TLV frame format . 20
2.17. Extemded TLV frame format . 20
2.18. DTLS Timer Basic Concept . 23

3.1. SoC architecture . 25
3.2. Overview of the Openthread Modules 27
3.3. Overview of the implemented IPv6 Module 27
3.4. Overview of the implemented MLE Module 28
3.5. Number of child defined in the Openthread API 28
3.6. Some router parameters in the Openthread API 29
3.7. Link Quality definition in the Openthread API 29
3.8. MLE command types . 29
3.9. Overview of the DTLS module . 30
3.10. Example of the bufferinfo command output 31
3.11. Example of the channel command output 31
3.12. Example of the counters command output 32
3.13. Example of the counters <name> command output 33

vii

3.14. Example of the discover command output 34

4.1. Zolertia Re-Mote . 39
4.2. Zolertia Firefly . 40
4.3. Zolertia Firefly connected by its usb adaptor 41
4.4. ICQUANZX CC2531EMK kit . 42

5.1. Code to compile the CC2538 example 44
5.2. Code to compile the CC2538 example 44
5.3. Window asking where to connect the plugged device 44
5.4. Command to flash the image into the device 44
5.5. Image flashing process . 45
5.6. Command to start the cli console 45
5.7. Serial port setup configuration . 45
5.8. Configuration window for adjusting the sniffing parameters 46
5.9. Additional commands to set up the pip 46
5.10. Decription key configuration . 47
5.11. Dataset creation and submission . 48
5.12. Ipv6 interface and Thread deployment commands 48
5.13. Procedure to attach a new device into an existing Thread network . 49
5.14. Discovery command output . 49
5.15. Leader device multicasting the network information 49
5.16. Details of the information provided by the MLE Advetisement mes-

sage . 50
5.17. Details of the initial MLE Link Request message 50
5.18. Details of the information provided by the MLE Link request . . . 50
5.19. Process of attachment, initial interaction 51
5.20. Details of the TLVs provided by the MLE Parent Resonse 51
5.21. Details of the TLVs provided by the MLE Child Id Request 52
5.22. Process of attachment, the parent allocates the new device into the

network as its child . 53
5.23. Details of the new routing table of the leader, through a MLE Ad-

vertisement message . 54
5.24. Overview of the attachment of the 3rd device (1) 54
5.25. Overview of the attachment of the 3rd device (2) 55
5.26. Routing table of the leader broadcasted in a MLE Advertisement

message . 55
5.27. Routing table of the leader broadcasted in a MLE Advertisement

message . 56
5.28. Frames captured by the sniffer without knowing the decryption key 57
5.29. Leader Routing Table and ping example 58
5.30. Ping process . 58
5.31. Leader Routing Table and ping example 59
5.32. Leader Routing Table . 59
5.33. Ping command from Leader to Router 59

viii

List of Tables

2.1. Overview of the Thread Specification 6
2.2. MLE Commands description table 19
2.3. TLV value field description table 22

ix

Chapter 1

Motivation

1.1. Matter
As already mentioned, the Home Automation technology needs a unification

of the standards used and the requirements needed. Moreover it should be able to
use Internet to access to a big ammount of services already available there. For
this purpose, new architectures and standards have appeared in the lasts years.

The goal of this thesis was to study a new application layer protocol (fig 1.1)
called Matter (formely Project Connected Home over IP, or Project CHIP) [2],
which aims to enable communication across smart home devices, mobile apps, and
cloud services and to define a specific set of IP-based networking technologies for
device certification. It is developed by the Connectivity Standard Alliance (CSA,
formely Zigbee Alliance) working group and their plan is to make it a royalty-
free standard. At January 2020, the CSA opened the Matter Working Group and
started the process of drafting Matter.

Figure 1.1: Architecture Overview

1

CHAPTER 1. MOTIVATION UPC

Matter will be deployed on devices and controllers to help achieve the inter-
operability architectural goal. It will initally support Wi-Fi and Thread for core,
operational communications and Bluetooth Low Energy (BLE) will be used for
device commisioning and setup.

The application layer can be broken down into seven main features (fig 1.2) Which
will be detailed in a list below [1].

Figure 1.2: Matter detailed functionalities

Application: High order business logic of a device. It will be mainly related
with the funcitionalities the device provides.

Data Model: Structured by the various functionalities of the devices.

Interaction Model: Represents a set of actions that can be performed on the
devices to interact with it. These actions operate on the structures defined
by the data model.

Action Framing: Once an action is constructed using the Interaction Model,
it is framed into a prescriptive packed binary format to enable being well
represented over the different devices of the network.

Security: An encoded action frame is then sent down to the Security Layer to
encrypt and sign the payload to ensure that data is secured and authenticated
by both sender and receiver of a packet.

Message Framing and Routing: the Message Layer constructs the payload
format with required and optional header fields; which specify properties of
the message as well as some routing information.

IP Framing and Transport Management: Finally, the frame is sent to the
underlying transport protocol for IP managment of the data.

2

CHAPTER 1. MOTIVATION UPC

The plan of CSA was to have it released by the summer of 2021, but it was
delayed. As it is not released yet and the documentation is not still ready, I had to
change the thesis goal. As the routing architecture used by Matter is Thread (the
other that can be used is Wi-Fi, which is already widely known), the goal will be
changed to study Thread. Furthermore, as I am studying the routing architecture,
the network messaging can be studied using software which I am already familiar,
such Wireshark.

3

Chapter 2

Thread

2.1. Introduction to Thread
This chaper introduces the Thread networking architecture. Not only there is

described an overview of it, but also a deeper insight into the implementation and
technical details will be provided here.

The Thread protocol was created by a group, formed in 2014, of allied companies,
called the ”Thread Group”. This alliance was composed by the following compa-
nies (fig 2.1): ARM Holdings, Big Ass Solutions, NXP Semiconductors/Freescale,
Google-subsidiary Nest Labs, OSRAM, Samsung, Silicon Labs, Somfy, Tyco In-
ternational, Qualcomm, and the Yale lock company. Then it has grown adding as
members some of the bigger companies in the world such as Intel or Amazon.

Figure 2.1: Thread Members

The Thread architecture [7] is an open standard for wireless communication
providing a native IP solution for reliable, low-power, secure, device-to-device,
application agnostic communication. It is the premier IPv6 based solution run-
ning on existing and broadly supported IEEE 802.15.4 radio technology. For this
reason, ZigBee and other application protocols can run over Thread newtworks

4

CHAPTER 2. THREAD UPC

making it suitable for many IoT devices.

Thread networks use 6LoWPAN to be able to convert IPv6 packets into IEEE
802.15.4 frames. Therefore, Thread devices are IP-addressable with cloud access
and a protection based in a AES-128 encryption with replay protection. It always
must be protected, there is no way to deploy a Thread nework without security.

2.2. Technical Overview
To protocol has some main features, documented in the specifications file [8],

to be highlighted:

It provides a simple network installation, start up and operation: The simple
protocols for forming, joining, and maintaining Thread Networks,which will
be discussed later, allow systems to self-configure, dynamically optimize and
heal.

Secure: devices cannot join a Thread Network unless they are authorized
and have the credentials, and all network communication is encrypted and
secure.

Small and large networks: the thread network layer is designed to optimize
the network operation based on the expected use, for a home automation,
the newtwork will be smaller but in commercial networks the number of
devices can reach up to thousands.

Range: the network covers a sufficient range, with typycal devices, to cover a
normal home. The Backbone Border Routers (BBRs) unify various Thread
networks into a single IPv6 subnet for the commercial market. Spread spec-
trum technology is used at the physical layer to provide good immunity to
interference.

No single point of failure: the protocol is designed to provide to the net-
work auto-configuring and self-healing, so will continue to provide secure
and reliable communication even if individual devices fail.

Low power: using suitable duty cicles, the host devices can operate for several
years.

Built on open and proven standards: the Thread specification uses well
defined standards from the IEEE and IETF which make it transparent and
with information accessible for everyone.

Application-layer agnostic: Thread is a networking layer solution based on
IPv6. Any low bandwidth application layer that can run over IPv6 can run
over Thread, and multiple application layers can share the same network.

5

CHAPTER 2. THREAD UPC

The following table describes the main technical aspects of the Thread Network:

Specification Thread Data
Topology Mesh Network
Range About 20 to 30 meters
Max Devices connected 32 Routers with up to 511 end devices per router
Operating band 2.4GHz (The ISM unlicensed band)
Spread Spectrum Direct sequence spread spectruim (DSSS)
Throughput 250kbps
Security AES-128 encryption (Private Key cryptography)
Modulation O-QPSK

Table 2.1: Overview of the Thread Specification

The Thread stack only defines the Network and Transport layers, as shown in
the figure 2.2 and relies in the IEEE 802.15.4 protocol for the Physical and Mac
layers. Then, applications such as Zigbee can work on top of the Thread network.

Figure 2.2: Thread stack layer levels

2.3. Thread Network Topology
As described previously, the Thread network has a mesh topology, where the

Thread users can communicate with it from their own electronic devices (computer,
tablet or smartphone) via Wi-Fi or using cloud-based applications.

6

CHAPTER 2. THREAD UPC

Figure 2.3: Thread stack layer levels

The network contain different types of devices [8], each of them having their
specific rol to obtain the desired performance. The following list describes all of
them:

Border Routers: they provide connectivity from the Thread network to adja-
cent network on other physical layers (for example, Wi-Fi or Ethernet).They
are gateways which handle the connection between Thread networks and
non-Thread networks. Border routers provide services for devices within
the Thread network. There may be several Border Routers in one Thread
network.

Thread Router: it provides routing services to the Thread devices in the
network. They also provide joining and security services for devices trying
to join the network. These devices are not designed to sleep and they can be
downgraded to REEDs (Router-eligible End Devices, which will be discused
later).

Leader: this role is an additional, elected, one of one router in a Thread
network. The leader takes certain decisions such as allowing REEDs to
upgrade to router. If the Leader of the network fails, another router wil be
dinamically selected.

Router-eligible End Device (REED): they have the capability to become
Routers but due to the network topolofy or conditions they are not acting as

7

CHAPTER 2. THREAD UPC

Routers. REEDs do not forward messages neither provide joining or security
services for other devices in the network. The network manages and promotes
router-eligible devices to routers if necessary without user interaction.

End Device: they are similar to REEDs but they do not have the capability
to be promoted to a Router. They can be either full end devices (FEDs) or
minimal end devices (MEDs) MEDs do not need to explicitly synchronize
with their parent to communicate. Sleepy end devices communicate only
through their Thread Router parent and cannot relay messages for other
devices.

Sleepy End Device (SED): they communicate only through their Parent
Router and cannot forward messages for other devices.It has its radio turned
off during idle periods and wakes periodically to communicate with its par-
ent.

Synchronized Sleepy End Device (SSED): as SEDs, they cannot forward
messages for other devices.It has its radio turned off during idle periods and
wakes periodically to communicate with its parent.

Bluetooth End Device (BED): they communicate only through their Parent
Router,which is a Bluetooth LE Bridge Router. Unlike other Thread de-
vices, these communicate over a Bluetooth Low Energy link, and not IEEE
802.15.4.

The newest version of the protocol, Thread 1.2, provided a new capability to
control directly using non-IP technologies like Bluetooth, through the Bluetooth
LE Bridge Routers, the BEEDs. These devices can be operated independently
from the enterprise network. When these devices are controlled via Bluetooth,
its new status is immediately available to other Thread devices or the rest of the
enterprise network, as they still form a part of the overall IPv6 infrastructure.

The sleepy devices spend most of their time in sleep mode, with duty cycles which
let them operate in low power mode. They can just communicate to the parent
router and do not forward messages to other nodes. The parents must hold the
messages until the devices wake up to poll for data or send it. They duty cycle for
these devices can be summarized in a few points:

Wake up from sleep mode.

Perform the startup operations and the radio initialization.

They start in receive mode and chek if they are clear to transmit.

When they are able, they change to transmit mode and they send the data.

They wait to receive the aknowledgment of their parent.

Finally, they go back to sleep mode.

8

CHAPTER 2. THREAD UPC

2.4. Physical Layer and Data Link Layer: IEEE
802.15.4

Thread stack PHY and MAC layer can use both the IEEE 802.15.4-2006 and
IEEE 802.15.4-2015 versions of the specification. The IEEE 802.15.4 was a stan-
dard developed for low-rate control and monitoring applications, which first version
was released in 2003. It defines the physical layer (PHY) and medium access con-
trol (MAC) layer specifications for low data rate wireless personal area networks
(LR-WPANS).

These networks are commonly limited to a low range, more or less 10 meters,
and require a very basic infrastructure. Their nodes are low in complexity, energy
constrained and their data rate demand is low (for example, wireless sensors).

In order to achieve the desired performance in LR-WPANS, the IEEE 802.15.4
protocol uses a very small, 127 bytes at the PHY layer, frame in order to limite
the Bit Error Rate (BER) when using energy constrained devices.

Then, the MAC layer payload can be at the lowest 88 bytes, depending on the
security options and addressing type as illustrated in 2.4:

Figure 2.4: 802.15.4 frame

2.4.1. Physical Link Layer
IEEE 802.15.4 PHY provides the interface between the Data Link layer and

the physical radio channel. The general caracteristics of this standard is provided
in the following table:

9

CHAPTER 2. THREAD UPC

Figure 2.5: 802.15.4 PHY table summary

Specifically, in the Thread specification, IEEE 802.15.4 PHY operates in the
2.4 GHz band, that can be used worldwide. The whole 2.4 GHz band is composed
of different partitions, called channels (from 2.4 GHz to 2.483 GHz, each one in
a higher band). The channels are nummbered from channel #11 channel #26,
as the initial 11 channels (0-10) are occued by the other 802.15.4 Phy interfaces
operating in the other existing bands.

There are two main services provided: the PHY data transmission service, en-
abling transmissions and receptions of PHY protocol data units (PPDUs) across
the physical radio channel; and the interface for the PHY layer management en-
tity (PMLE) which offers access to every physical layer management function and
maintains a database of information on related personal area networks (Service
Access Point, SAP). The standard also supports important functions like Energy
Detection, Link Quality Indicator, channel selection or Clear Channel Assessment.
Each PPDU, contains a preamble field, which designed for acquisition of symbol
and chip timing, a packet length field, and a payload field, or PHY service data
unit.

The IEEE 802.15.4 payload length can vary from 2 to 127 bytes and the PHY
Header is composed by 4 bytes for the Preamble, 1 byte for the Start Packet De-
limiter and 1 byte for Length Field.

The link quality is based on the link margin on incoming messages from the neigh-
boring devices This incoming link margin is mapped to a link quality from 0 to 3.
A value of 0 means unknown or infinite cost. The link margin is a measure of RSSI
(Received Signal Strength Indication), a Signal to Noise Ratio based parameter
that compares the received signal with the noise floor.

10

CHAPTER 2. THREAD UPC

Figure 2.6: 802.15.4 PHY table summary

2.4.2. Data Link Layer
The IEEE 802.15.4 MAC layer is used for basic message handling and con-

gestion control. This MAC layer includes a CSMA-CA (Carrier Sense Multiple
Access-Collision Avoidance) mechanism to allow multiple Thread devices to uti-
lize the shared bandwidth by waiting for a clear channel before transmission, as
well as a link layer to handle retries and acknowledgement of messages for reliable
transmission of individual messages. Encryption, authentication and replay pro-
tection are also used to provided secure and reliable end-to-end communications
in the network.

The features of the MAC sublayer are beacon management, channel access, Guar-
anteed Time Sloots (GTS) management, frame validation, acknowledged frame
delivery, association, and disassociation. In addition, the MAC sublayer provides
hooks for implementing application-appropriate security mechanisms.

IEEE 802.15.4 MAC layer supports two modes:

Beacon Mode: In this mode the PAN (Personal Area Network) coordina-
tor generates beacons periodically to synchronize the nodes associated with
it.Two beacons conform the superframe structure which is sent to the child.

Non-Beacon Mode: In this mode, the data is transmitted using unslotted
CSMA/CA algorithm. No beacons are generated, so the PHY layer now
provides a higher network scalabillity but cannot guarantee the delivery in
time of the data.

As the Thread networks topology is based on a mesh topology, for scalability
purposes, it is used the Non-Beacon Mode.

2.5. Network Layer
2.5.1. IPv6

As already mentioned, Thread devices support IPv6 (Internet Protocol version
6) addressing architecture. It is the most recent version of the Internet Protocol,

11

CHAPTER 2. THREAD UPC

developed by the IETF (Internet Engineering Task Force). Provides an identifi-
cation and location system for all the devices which have internet connection and
are suitable for that version. DHCPv6 is used for router address assigment.

The IPv6 frames are 40 bytes long and contains an address field of 128 bits, so
this allow 2128 addresses, much more than what IPv4 and its 32 bits addresss field
provided.

Figure 2.7: IPv6 frame

There are different type of IPv6 addresses which are classified with the following
types:

Unicast: used to send a packet from the source to a single destination. They
are the commonest ones and we will talk more about them and their sub-
classes.

Multicast: used to send a packet from the source to several destinations. This
is possible by means of multicast routing that enable packets to replicate in
some places.

Anycast: used to send a packet from the source to the nearest destination
from a set of them.

Reserved: Addresses or groups of them for special uses, for example addresses
to be used on documentation and examples.

Then, there are some unicast addresses which the Thread users take profit from
them:

ULA (Unique Local Address):They are intended for local communications,
usually inside a single site, they are not expected to be routable on the global
Internet butused only inside a more limited environment.

Global Unicast: Equivalent to the IPv4 public addresses, they are unique in
the whole Internet and can be used to send a packet from one site to any
destination in Internet.

12

CHAPTER 2. THREAD UPC

Thread devices configure one or more ULAs or GUA addresses. They also
support multicast addresses such as link-local all node multicast (for referring to
all the nodes in a Thread network, with the notation ”FF02::01”) and link local
all-router multicast (for referring to all the routers in a Thread network, with the
notation ”FF02::02”).

The high-order bits of an IPv6 address are referred to the network and the rest
are referred to the particular addresses in that network. Thus, all the addresses
in one network have the same first N bits, which are called the ”prefix”. In IPv6
the prefix is 64 bits. The device starting the network picks a ”/64” prefix which
is used through all the network. This prefix is a Locally Assigned Global ID. The
devices in the Thread networks use its Extended MAC address to derive its in-
terface identifier and from this configure a link local IPv6 address with the prefix
FE80::0/64.

Once the network is created, the thread can also contain one or more Border
Routers which can have, optionally, a prefix to generate additional GUAs. Then,
each end device joining the Thread network is assigned to a 16-bit short address.
For Routers, this address is assigned using the high bits in the address field with
the lower bits set to 0, indicating a Router address. Children are then allocated a
16-bit short address using their Parent’s high bits and the appropriate lower bits
for their address, allowing any other device in the Thread network to understand
the Child’s routing location simply by using the high bits of its address field.

Figure 2.8: IPv6 newtwork example

Devices support the ICMPv6 (Internet Control Message Protocol version 6)
protocol and ICMPv6 error messages, as well as the echo request (ping) and echo

13

CHAPTER 2. THREAD UPC

reply messages.

Thread Devices use UDP (User Datagram Protocol) [13] for messaging between
devices for mesh establishment and maintenance. Thread Networks also support
TCP (or any other IPv6-based transport protocol) [3] for application layer com-
munication.

2.5.2. 6LoWPAN
6LoWPAN defines de standard for IPv6 communications over the IEEE 802.15.4

standard. It acts as an adaptation layer between both standards. The data frames
coming from internet have tipical size of 1280 bytes (IPv6 MTU). The 6LoWPAN
sublayer provides a reliable way to adapt these big frames into smaller ones which
are better fitted for energy constrained and basic devices.

Figure 2.9: General Format of a 6LoWPAN Packet

In order to adapt to the 127 reduced syze of the PHY 802.15.4 size (and usually
just 81 bytes, which can be at maximum 102 bytes, for payload), 6LoWPAN
provides a set of functionalities which will be detailed now:

IPv6 packet fragmentation and reassembly: IPv6 specification establishes
that the minimum MTU that a link layer should offer to the IPv6 layer
is 1280 bytes. The protocol data units may be as small as 81 bytes in
IEEE 802.15.4. For this purpose, a fragmentation of this packers is done.
The fragmented packets are carried in frames containing the fragmentation
header. Then, on the receiver, these packets are reassembled in order to
obtain the original IPv6 frame. They also contain some specific fields for the
reassembly process: it has a datagram size field for knowing the real size of
the packet before fragmentation (as already mentioned, in IPv6 frames this
would be 40 bytes); a datagram tag, common to all the fragmented frames,
to recognize from which packet they were; and a datagram offset field that
is used to order the fragments received. For this reason, it does not require
to receive all the fragments in order.

IPv6 header compression: as already exposed, the big IPv6 headers must
be converted to smaller headers to minimize the overhead. 6LoWPAN of-
fers a way to reduce the header’s size which take advantage of cross-layer
redundancies between protocols such as source and destination addressing,
payload length, traffic class and flow labels. Thread utilizes IPHC (Im-
proved Header Compression) for compressing IPv6 headers and NHC(Next
Header Compression) for UDP headers. The 40 bytes size of the IPv6 header
are compressed down to 2 bytes and the8 bytes UDP header is compressed

14

CHAPTER 2. THREAD UPC

down to 4 bytes. The frames are marked with a field to identify if it has
been compressed or not.

Link layer packet forwarding: Thread uses IP routing to forward packets.
The IP routing table is maintained with each destination and the next hop
to it. The 6LoWPAN mesh header is used to do link level next hop for-
warding based on the IP routing table information. Thread uses 6LoWPAN
mesh headers for next hop forwarding. They nodes do not require to have
reachability in order to communicate because the mesh headers have an
”Originator” field and a ”Final Destination” field and each node looks in
their table which is the way to achieve the destination hop by hop. Each
header in the header stack contains a header type followed by zero or more
header fields. When more than one LoWPAN header is used in the same
packet they must appear in the following order: Mesh Addressing Header,
Broadcast Header, and Fragmentation Header. This order must be followed
always.

Figure 2.10: 6LoWPAN headers

From all of them, the Thread standard uses the following types of 6LoWPAN
headers:

Mesh Header: used for link layer forwarding.

Fragmentation Header: used for fragmenting the IPv6 packet into several
6LoWPAN packets.

Header Compression Header: used for IPv6 headers compression.

The following are examples of 6LoWPAN packets sent over the air:

Figure 2.11: 6LoWPAN Packet Containing IPv6 Payload with Compressed IPv6
Header

In the figure above (2.11), the 6LoWPAN payload is composed of the com-
pressed IPv6 header and the rest of the IPv6 payload

15

CHAPTER 2. THREAD UPC

Figure 2.12: 6LoWPAN Packet Containing Mesh Hader for Layer 2 Forwarding,
a Fragmentation Header and a Compression Header

In the figure above (2.12), the 6LoWPAN payload contains the IPv6 header
and part of the IPv6 payload

The rest of the payload will be transmitted in subsequent packets perthe for-
matin the following figure (2.13).

Figure 2.13: 6LoWPAN Packet Representing Subsequent Fragments that Do Not
Contain Any Information about the IPv6 Header

2.5.3. Routing Protocol: RIP and RIPng
Thread networks’ routing is made to be a shortest-path any-to-any routing.

The Thread routing protocol is a simple distance vector routing protocol. The
main goal of the protocol is ot maximize the amount of routing information that
can be communicated in a single message. More precissely it uses a similar version
of the Routing Information Protocol (RIP).

RIP came to be one of the earliest efforts in the field of dynamic routing pro-
tocols and dated to the 1970s. Later in the 1990s a new version, named RIPv2,
was released defining as well the old version as RIPv1. Also in the mid-1990s, the
process of defining IPv6 was drawing toward completion at least for the original
IPv6 standards the RIPv3 or RIPng. RIP is one of the first routing protocols
implemented on TCP/IP.

Routing information is sent through the network using UDP. Each router that
uses this protocol has limited knowledge of the network around it. This simple
protocol uses a hop count mechanism to find an optimal path for packet routing.
A maximum number of 16 hops are used to avoid routing loops. However, this
parameter limits the size (216) of the networks that this protocol can support. The
popularity of this protocol is largely due to its simplicity and its easy configurabil-
ity. However, its disadvantages include slow convergence times, and its scalability
limitations. Therefore, this protocol works best for small scaled networks. Simple
distance vector algorithm:

Provides next-hop information about all router nodes.

Highly compressed protocol format: one byte per destination packets.

No reactive route discovery by devices.

16

CHAPTER 2. THREAD UPC

Child ID encodes parent router ID. Route is known when address is known.

Point to point routes always available to every router.

The frame format can be observed in the next figure 2.14:

Figure 2.14: RIPng frame format

Thread uses a distance-vector routing protocol similar to RIPng, but with very
compact message formats. All Routers exchange with other Routers their cost of
routing to other Routers in the Thread Network in a compressed format using
MLE (Mesh Link Establishment) messages.

In the Thread networks, there are some guidelines for the router selection:

There is a limit of 32 active routers to reduce bandwidth and RAM con-
sumption.

There are 64 router addresses to allow timing out and reassignment.

REED behave as end devices, but listen to routing messages.

Routers are selected automatically from router eligible end devices (REED).
They can be downgraded to end devices if the number of routers increase.

And then the Leader decisions in a network are (which are chosen dinamically
and autonomously):

Assign router IDs.

Assign 6LoWPAN contexts.

Collate border router information.

17

CHAPTER 2. THREAD UPC

Assembled network data is distributed using MLE advertisements.

All routers store the network data, only the leader can make changes to it.

2.5.4. MLE messaging
MLE operates below the routing laye. MLE messages are used for establishing

and configuring secure radio links, detecting neighboring devices, and maintain-
ing routing costs between devices in the Thread Network. MLE is also used to
distribute configuration values that are shared across the Thread Network such as
the channel and the Personal Area Network ID (PAN ID). These messages are for-
warded with controlled flooding as specified by Multicast Protocol for Low-power
and Lossy Networks (MPL).

MLE messages consider an asymmetric link costs when linking devices. Asym-
metric link qualities are common in IEEE 802.15.4 networks. To ensure two-way
messaging is reliable, as the quality in one-way can be significantly different to the
other, Thread Devices consider bidirectional link quality.

Their format, which can be observed in fig ?? is the following: a byte that in-
dicates if they are secured (”0”) or not (”255”), then if it is secured it includes an
Auxiliar Header, a Command and the Message Integrity Code (MIC). If it is not
secured, then it just includes the Command field. The Auxiliar header contains
information require for security processing, including a Security Control field, a
Frame Counter field, and a Key Identifier field. The MIC field is used for authen-
tication.

Figure 2.15: MLE frame format

The command fiel consist of a command type and some TLV (Time-Length-
Value) fields in order to achieve the goal of each functionality. The different
command types will be discribed in the table below:

18

CHAPTER 2. THREAD UPC

Command Type (identifier) Definition
Link Request (0) A request to establish a link to a neighbor.
Link Accept (1) Accept a requested link.
Link Accept and Request (2) Accept a requested link and request a link

with the sender of the original request.
Link Reject (3) Reject a link request.
Advertisement (4) Inform neighbors of network information and

a device’s link state.
Update (5) Not used in Thread Networks.
Update Request (6) Not used in Thread Networks.
Data Request (7) A request, typically containing a TLV Re-

quest TLV that indicates which TLV(s) are
being requested.

Data Response (8) A response to a request, containing whatever
TLVs were requested.

Parent Request (9) A multicast request used to find neighboring
devices that can act as a Parent.

Parent Request (10) Response to Parent Request, identifying a po-
tential Parent.

Child ID Request (11) Request for a Child ID sent by a device
to a Router or Router-Eligible End Device
(REED).

Child ID Response (12) Response from a Router to a device assigning
it a 16-bit network ID.

Child Update Request (13) Request by Child to update parameters on
Parent.

Child Update Response (14) Response from Parent on Child request to up-
date parameters.

Announce (15) A multicast message used to notify neighbor-
ing devices of the Thread Network’s current
Channel, PAN ID, and Active Timestamp.

Discovery Request (16) A multicast message used to discover net-
works.

Discovery Response (17) Response from a device on the Thread Net-
work to a Discovery request.

Table 2.2: MLE Commands description table

The TLV fields are parameters designed to provide a set of commands to use
according to the routing features that Thread have. As the name itself tells, the
TLV frame can be fragmented into an 1-byte Type field, which tells which is the
TLV used; 1-byte Length field, which tells the Value field’s length; and the bytes
(usually 2 to 4 bytes) corresponding to the Value field , as seen in the figure 2.16.
As the Length field is 8 bits long, it gives up to 254 bytes for the Value Field.

19

CHAPTER 2. THREAD UPC

Figure 2.16: TLV frame format

There is also an extended format which allows for a higher length of the Value
field as the Length field is 2 bytes long (2.17).

Figure 2.17: Extemded TLV frame format

These commands are explained in the table below:

TLV (identifier) Definition
Source Address TLV (0) Contains the sender’s 16 MAC address.
Mode TLV (1) Contains a byte string representing the

mode in which this link is used by the
source of the message: Receiver, Secure,
Device Type, Network Data.

Timeout TLV (2) 32-bit length field to fix the expected max-
imum interval between.

Challenge TLV (3) A 4-byte field, at least, providing a ran-
dom value which must be included in
the reply MLE message to prove security
against recorded messages.

Response TLV (4) It has the byte string copied froma a Chal-
lenge TLV.

Link-layer Frame Counter TLV (5) Contains the sender’s current outgoing
link-layer Frame Counter, encoded as an
32-bit unsigned integer.

Link Quality TLV (6) Not used in Thread Networks.
Network Parameter TLV (7) Not used in Thread Networks.
Mle Frame Counter (8) Contains the sender’s current outgoing

MLE Frame Counter, encoded as an 32-
bit unsigned integer.

20

CHAPTER 2. THREAD UPC

Route 64 TLV (9) A multicast request used to find
neighboring devices that can act as
a Parent.

Address 16 TLV (10) Contains a 16-bit MAC address. It is
sent from a Parent to a new Child to
assign it an address.

Leader Data TLV (11) Contains the sender’s current Net-
work Leader Data.

Network Data TLV (12) Contains the sender’s current Net-
work Data.

TLV Request TLV (13) Contains a lit of TLV codes that the
sender is requesting.

Scan Mask TLV (14) Contains flags that indicate the types
of devices that are to respong to a
multicast Request (Routers or End
devices).

Connectivity TLV (15) Shows how well is the sender con-
nected to other Routers and Children.

Link Margin TLV (16) Contains the sender’s link margin in
dB for the destination.

Status TLV (17) Contains the status response to a re-
quest.

Version TLV (18) Contains the version number of the
Thread protocol implemented by the
sender as an unsigned 16-bit integer.

Addresss Registration TLV (19) Contains zero or more addresses that
have 3 been configured by the source
of the MLE message that contains it.
It is used for registration of valid uni-
cast addresses.

Channel TLV (20) Contains the channel page and chan-
nel of an adjacent Thread Network
Partition operating on a different Ac-
tive Operational Dataset.

PAN ID TLV (21) Contains the PAN ID of an adja-
cent Thread Network Partition op-
erating on a different Active Opera-
tional Dataset.

Active Timestamp TLV (22) Contains an Active Tmestamp.
Pending Timestamp TLV (23) Contains a Pending Timestamp.
Active Operational Dataset TLV (24) Contains the sender’s Active Opera-

tion Dataset.
Pending Operational Dataset TLV (25) Contains the sender’s Pending Oper-

ation Dataset.

21

CHAPTER 2. THREAD UPC

Thread Discovery TLV (26) Contains a series of Mesh Commissioning TLVs
for Thread network discovery on iEEE 802.15.4
interfaces.

Table 2.3: TLV value field description table

2.5.5. DTLS
The Datagram Transport Layer Security (DTLS) [5] is a communications proto-

col which provid es security to datagram-based applications. It is designed to pre-
vent eavesdropping, tampering, or message forgery. The DTLS protocol is based
on the stream-oriented Transport Layer Security (TLS) protocol and is intended to
provide similar security guarantees. The DTLS protocol datagram preserves the
semantics of the underlying transport and the application does not suffer from the
delays associated with stream protocols, but has to deal with packet reordering,
loss of datagram and data larger than the size of a datagram network packet.

There are two main areas that unreliability creates problems for TLS:

The traffic encryption layer does not allow individual packets to be de-
crypted, there are two inter-record dependencies:

• The cryptographic context is chained between records.
• A Message Authentication Code (MAC) that includes a sequence num-

ber provides anti-replay and message reordering protection, but this
fields are implicit in the records.

The handshake layer breaks if messages are lost because it depends on them
being transmitted reliably for these two reasons:

• It is a lockstep cryptographic handshake, which requires that the mes-
sages have to be transmitted and received in a defined order, causing a
problem with potential reordering and message loss.

• Fragmentation can be a problem because the handshake messages are
potentially larger than any given datagram.

To solve the issue of packet loss DTLS employs a simple retransmission timer.
This concept is ilustrated in the figure 2.18. The client is expecting to see the
HelloVerifyRequest message from the server. If the timer expires then the client
knows that either the ClientHello or the HelloVerifyRequest was lost and retrans-
mits.

Reordering is solved by giving each handshake message a specific sequence num-
ber used to determine if it has received the next message in the sequence. If the
message is the next one then the peer processes it, otherwise it queues it up for
future handling when message’s individual sequence number is reached.

22

CHAPTER 2. THREAD UPC

Figure 2.18: DTLS Timer Basic Concept

Thread uses the DTLS protocol for internet-grade end-to-end security when
commissioning, and may use CASE, PASE, TLS or other encryption methods,
based on the used application layer.

From the point of view of joining new devices into a network, the possession of
the network key is used to discriminate between an authenticated and authorized
Thread Device and the joining device (in its initial state). The network-wide key,
along with other network parameters, is delivered securely to a joining device.
This way, the network key is never exposed in the clear on a wireless link.

2.6. Transport Layer: UDP and TCP
Thread Devices use UDP (User Datagram Protocol) for messaging between

devices for mesh establishment and maintenance. Thread Networks also support
TCP (or any other IPv6-based transport protocol) for application layer communi-
cation.

The UDP protocol is defined to make available a datagram mode of packet-
switched computer communication in the environment of an interconnected set
of computer networks. This protocol assumes that the Internet Protocol (IP) is
used as the underlying protocol. It provides a procedure for application programs
to send messages to other programs with a minimum of protocol mechanism. The
protocol is transaction oriented, and delivery and duplicate protection are not
guaranteed. That is why it is needed the DTLS in the Thread architecture, as it is
mainly based in UDP messaging. Applications requiring ordered reliable delivery
of streams of data should use the Transmission Control Protocol (TCP).

TCP provides reliable, ordered, and error-checked delivery of a stream of data,
by also providing fragmentation of reassembly of them, between applications run-
ning on hosts communicating via an IP network. TCP detects network congestion

23

CHAPTER 2. THREAD UPC

and traffic load balancing problems, requests re-transmission of lost data, rear-
ranges out-of-order data and even helps minimize network congestion to reduce
the occurrence of the other problems. If the data still remains undelivered, the
source is notified of this failure.

2.7. Application Layer
This layer specifies the shared protocols and interface methods used by the

hosts of a network. The Thread specification defines standard methods for forming
and joining a network (called commissioning) and custom applications are respon-
sible for interoperability. Thread does, however, provide these basic application
services:

UDP messaging: UDP offers a way to send messages using a 16-bit port
number and an IPv6 address. UDP is a simpler protocol than TCP and
has less connection overhead (for example, UDP does not implement keep-
alive messages). For this reason, UDP enables a faster, higher throughput
of messages and reduces the overall power budget of an application. UDP
also has a smaller code space than TCP, which leaves more available flash
on the chip for custom applications.

Multicast messaging: Thread provides the ability to broadcast messages,
that is, sending the same message to multiple nodes on a Thread network.
Multicast allows a built-in way to talk to neighbor nodes, routers, and an
entire Thread network with standard IPv6 addresses.

Application layers using IP services: Thread allows the use of application
layers such as UDP and CoAP (Constrained Application Protocol) to allow
devices to communicate interactively over the Internet. Non-IP application
layers will require some adaptation to work on Thread.

24

Chapter 3

Openthread

Nest Labs, Inc. (acquired by Google in the beginning of 2014) released OpenThread
in May 2016. OpenThread [11] is an open source implementation of the Thread
networking protocol (based in the Thread 1.1.1 specification). The purpose is to
make the Nest products more broadly available to accelerate the development of
products for the connected home. It is operative system (OS) and platform agnos-
tic, with a radio abstraction layer and a small memory footprint, making it highly
portable. It supports both system-on-chip (SoC) and network co-processor (NCP)
designs.

Along with Nest, ARM, Atmel, Dialog Semiconductor, Qualcomm Technologies,
Inc. and Texas Instruments Incorporated are contributing to the ongoing develop-
ment of OpenThread. In addition, OpenThread can run on Thread-capable radios
and corresponding development kits from silicon providers like NXP Semiconduc-
tors and Silicon Labs.

Figure 3.1: SoC architecture

25

CHAPTER 3. OPENTHREAD UPC

OpenThread implements all Thread networking layers including:

IEEE 802.15.4 with MAC security.

IPv6 and 6LoWPAN.

Mesh Link Establishment and Mesh Routing.

Key management.

Definitions in code of specific roles in Thread including:

• Leader.
• Router.
• End Device.
• Border Router.

UDP packet compression.

A CoAP implementation.

It is mostly written in C++. All the code is available at the Openthread
Github repository and can be run in a variety of Software platforms and SoCs
development boards including:

Dialog DA15000.

Nordic Semiconductor nRF52840.

Texas Instruments CC2538, CC2650 and CC2652 .

Zolertia RE-Mote and Firefly.

Silicon Labs EFR32.

NXP KW41Z.

Qorvo GP712.

POSIX Emulation.

In the next sections, some of the most important functions implemented will
be explained.

26

CHAPTER 3. OPENTHREAD UPC

Figure 3.2: Overview of the Openthread Modules

3.1. Network Implementation
The Openthread API offers an IPv6 implementation which includes definitions

for the IPv6 network layer. The IPV6 module (fig 3.3) have different submodules
implemented: the ICMPv6 implementation, the network interfaces, the multicast
protocol and the IPv6 implementation itself.

Figure 3.3: Overview of the implemented IPv6 Module

27

CHAPTER 3. OPENTHREAD UPC

All the files concerning the network implementation can be found in src/core/net
folder and the IPv6 main file can be found in the folder src/core/net/ipv6.cpp.

3.2. Routing layer implementation
OpenThread implement MLE to propagate the Routing table information and

RIPng to process information and maintain routing tables.

The MLE module provides the MLE functionality required for the Thread Router
and Leader roles. It contains the Router module, to manage the roles already men-
tioned, the Core and the TLVs module. The Type Length Value (TLV) module
includes definitions for generating and processing MLE TLVs.

Figure 3.4: Overview of the implemented MLE Module

All the routing implementations are found in the src/core/thread. MLE
main file is src/core/thread/mle.cpp and contains all the functions and refer-
ences to implement MLE functionalities. The Routing parameters are defined
in the file named src/core/thread/mletypes.hpp. Some examples are: the num-
ber of child allowed by a router (FIG), the maximum number of allowed Routers
(OPENTHREADCONFIGMLEMAXROUTERS is defined as 32 in a more gen-
eral configuration file) in (FIG) or the definition of the different levels of link
quality (FIG).

Figure 3.5: Number of child defined in the Openthread API

28

CHAPTER 3. OPENTHREAD UPC

Figure 3.6: Some router parameters in the Openthread API

Figure 3.7: Link Quality definition in the Openthread API

The command types are defined in src/core/thread/mle.hpp (FIG).

Figure 3.8: MLE command types

29

CHAPTER 3. OPENTHREAD UPC

3.3. DTLS implementation
The DTLS implemented (FIG) is part of the MeshCoP module and defines all

the related messages to implement the DTLS functionalities in OpenThread stack.
It is the file named src/core/meshcop/dtls.hpp.

Figure 3.9: Overview of the DTLS module

3.4. Application layer implementation: CoAP
The OpenThread standard offers a CoAP API that allows application to use

the same CoAP implementation to send/receive CoAP messages. It also offers an
API for communications over CoAP and DTLS.

CoAP is an application layer protocol that is intended for use in resource-constrained
internet devices, such as WSN nodes. CoAP is designed to easily translate to
HTTP for simplified integration with the web, while also meeting specialized re-
quirements such as multicast support, very low overhead and simplicity.

CoAP can run on most devices that support UDP. CoAP makes use of two message
types, requests and responses, using a simple binary base header format. The base
header may be followed by options in an optimized Type-Length-Value format.
CoAP is by default bound to UDP and optionally to DTLS (Datagram Transport
Layer Security), providing a high level of communications security.

The CoAP Message Types can be either confirmable (CON), non-confirmable
(NON). Confirmable messages require an ACK, while non-confirmable messages

30

CHAPTER 3. OPENTHREAD UPC

don’t. If we don’t need reliability, we use NON, for example, a sensor broadcast-
ing data and if we need reliability, we use CON, for example, issuing a GET to a
server.

3.5. CLI Commnads
The OpenThread CLI exposes configuration and management APIs via a com-

mand line interface. Use the CLI to play with OpenThread, which can also be
used with additional application code.

Some of the CLI available commands are:

bufferinfo: shows the current buffer information.

Figure 3.10: Example of the bufferinfo command output

channel:

• channel: get the IEEE 802.15.4 channel value.
• channel <channel>: set the IEEE 802.15.4 channel value.

Figure 3.11: Example of the channel command output

child:

• child list: prints a list of the attached child IDs.
• child table: prints a trable of the attached children.

31

CHAPTER 3. OPENTHREAD UPC

child max:

• child max: get the Thread maximum available connected children.
• child max <count>: set the Thread maximum available connected chil-

dren.

.

childtimeout:

• child timeout: get the Thread Child Timeout value.
• child timeout <timeout>: set the Thread Child Timeout value.

commissioner:

• commissioner start <provisioningURL>: Start the Commissioner role.
• commissioner stop: Stop the Commissioner role.
• comissioner joiner add <hashmacaddr> <psdk>: add a joiner entry.
• commissioner joiner remove <hashmacaddr>: remove a joiner entry.
• commissioner provisioningurl <provisioningUrl>: set the provisioning

URL.
• commissioner energy <mask> <count> <period> <scanDuration>

<destination>: send a MGMT_ED_SCAN message.
• commissioner panid <panid> <mask> <destination>: send a MGMT_PANID_QUERY

message.
• commissioner sessionid: Get current commissioner session id.

contextreusedelay:

• contextreusedelay: get the CONTEXT_ID_REUSE_DELAY .
• contextreusedelay <delay>: set the CONTEXT_ID_REUSE_DELAY .

counter:

• counter: get the supporter counter names.

Figure 3.12: Example of the counters command output

32

CHAPTER 3. OPENTHREAD UPC

• counter <name>: get the counters value.

Figure 3.13: Example of the counters <name> command output

dataset (set of configuration properties of the Thread network):

• dataset active: active operational dataset.
• dataset channel <channel>: set channel.
• dataset commit <dataset>: commit operational dataset buffer to ac-

tive/pending operational dataset.
• dataset panid <extpanid>: set panid.
• dataset networkkey <networkkey>: set network key.

delaytimermin:

• delaytimermin: get the minimal delay timer.
• delaytimermin <delaytimermin>: set the minimal delay timer.

discover:

33

CHAPTER 3. OPENTHREAD UPC

• discover: perform an MLE Discovery operation.
• discover <channel>: The channel to discover on. If no channel is pro-

vided, the discovery will cover all valid channels.

Figure 3.14: Example of the discover command output

eui64: Get the factory-assigned IEEE EUI-64.

extaddr:

• extaddr: get the IEEE 802.15.4 Extended Address.
• extaddr <extaddr>: set the IEEE 802.15.4 Extended Add

extpanid:

• extpanid: get the Thread Extended PAN ID value.
• extpanid <extpanid>: set the Thread Extended PAN ID value.

factoryreset: Delete all stored settings, and signal a platform reset.

hashmacaddr: Get the HashMac address.

ifconfig:

• ifconfig: Show the status of the IPv6 interface.
• ifconfig up: Bring up the IPv6 interface.
• ifconfig down: Bring down the IPv6 interface.

ipaddr:

• ifconfig: List all IPv6 addresses assigned to the Thread interface.
• ifconfig up: Add address to the Thread interface.
• ifconfig down: Delete address from the Thread interface.

ipmaddr:

• ipmaddr: List all IPv6 multicast addresses.
• ipmaddr add <ipaddr>: Subscribe the Thread interface to the IPv6

multicast address.

34

CHAPTER 3. OPENTHREAD UPC

• ipmaddr del <ipaddr>: Unsubscribe the Thread interface to the IPv6
multicast address.

linkquality:

• linkquality <extaddr>: Get the link quality on the link to a given
extended address.

• linkquality <extaddr> <linkquality>: Set the link quality on the link
to a given extended address.

masterkey

• masterkey: get the Thread Master Key value.
• masterkey <key>: set the Thread Master Key value.

mode:

• mode: get the Thread Device Mode value.
• mode [rsdn]: set the Thread Device Mode value.

◦ r: rx-on-when-idle.
◦ s: Secure IEEE 802.15.4 data requests.
◦ d: Full Function Device
◦ n: Full Network Data

netdataregister: register local network data with Thread Leader.

networkidtimeout:

• networkidtimeout: get the NETWORKIDT IMEOUT used in the
Router.

• networkidtimeout <timeout>: set the NETWORKIDT IMEOUT used
in the Router role.

networkname:

• networkname: get the Thread Network Name.
• networkname <name>: set the Thread Network Name.

panid:

• panid: get the IEEE 802.15.4 PAN ID value.
• panid <panid>: set the IEEE 802.15.4 PAN ID value.

parent: get the information for a Thread Router as parent.

ping <ipaddr> [size] [count] [interval]: Send an ICMPv6 Echo Request.

eleaserouterid <routerid>: Release a Router ID that has been allocated by
the device in the Leader role.

35

CHAPTER 3. OPENTHREAD UPC

reset: signal a platform reset.

rloc16: get the Thread RLOC16 value.

route:

• route remove <prefix>: Invalidate a prefix in the Network Data.
• route add <prefix> [s] [prf]: Add a valid prefix to the Network Data

router:

• router list: List allocated Router IDs.
• router <id>: Print diagnostic information for a Thread Router.
• router table: Print table of routers.

routerrole:

• routerrole: Indicates whether the router role is enabled or disabled.
• routerrole enable: enable the router role.
• routerrole disable: disable the router role.

routerupgradethreshold:

• routerupgradethreshold: get the ROUTER_UPGRADE_THRESHOLD
value.

• routerupgradethreshold <threshold>: set the ROUTER_UPGRADE_THRESHOLD
value.

scan: perform an IEEE 802.15.4 Active Scan.

singleton: Return true when there are no other nodes in the network, oth-
erwise return false.

state:

• state: return the current state.
• state <mode>: tries to switch to the State (detached, child, router,

leader).

thread:

• thread start: Enable Thread protocol operation and attach to a Thread
network.

• thread stop: Disable Thread protocol operation and detach from a
Thread network.

version:print the build version information

whitelist:

36

CHAPTER 3. OPENTHREAD UPC

• whitelist: List the whitelist entries.
• withelist enable: Enable MAC withelist filtering.
• withelist disable: Disable MAC withelist filtering.
• withelist add <extaddr>: Add an address to the withelist.
• withelist remove <extaddr>: Remove address from the withelist.
• withelist clear: Clear all entries from the withelist.

37

Chapter 4

Hardware test environment

Once all the theory is exmplained, and before tests are perfomed and the re-
sults are exposed, a Thread network must be created. For doing it, different thread
devices are needed, which are detailed in the following sections.

Zolertia devices (Re-Mote and Firefly) are the ones used for creating the thread
Networks. Other devices were tested, like MakerDiary Thread devices, but they
were not configured successfully.

4.1. Zolertia devices
Zolertia is a catalan company who develop IoT hardware and software solutions.

They provide some development tools to set up and configure Thread networks
like Zolertia Re-Mote and Zolertia Firefly. Both will be discussed in a detailed
way in the following sections.

4.1.1. Zolertia Re-Mote
The Zolertia Re-Mote is a lightweight and powerful Internet of Things hardware

development platform to enable any idea to be connected to the Internet, providing
a seamless connectivity for most indoor and outdoor aplications, running forever
on batteries. The RE-Mote includes a multiband antenna to start sending data
from the start.

38

CHAPTER 4. HARDWARE TEST ENVIRONMENT UPC

Figure 4.1: Zolertia Re-Mote

It provides the following features [16]:

ISM 2.4-GHz IEEE 802.15.4 and Zigbee compliant radio.

ISM 863-950-MHz ISM/SRD band IEEE 802.15.4 compliant radio.

ARM Cortex-M3 32 MHz clock speed, 512 KB flash and 32 KB RAM (16
KB retention).

AES-128/256, SHA2 Hardware Encryption Engine.

ECC-128/256, RSA Hardware Acceleration Engine for Secure Key Exchange.

User and reset button.

Consumption down to 150 nA using the shutdown mode.

Programming over BSL without requiring to press any button to enter boot-
loader mode.

Built-in battery charger (500 mA), facilitating Energy Harvesting and direct
connection to Solar Panels and to standards LiPo batteries.

Wide range DC Power input: 3.3-16 V.

Small form-factor (73 x 40 mm).

MicroSD (over SPI).

On board RTCC (programmable real time clock calendar) and external
watchdog timer (WDT).

Programmable RF switch to connect an external antenna either to the 2.4
GHz or to the Sub 1 GHz RF interface through the RP-SMA connector.

39

CHAPTER 4. HARDWARE TEST ENVIRONMENT UPC

Supported in Open Source OS as Contiki, RIOT and OpenWSN.

And with those, it can perform the following functionalities:

Two radios, compatible with trending protocols such as Thread and SiG-
FOX, to use both residential/indoor and long-range applications,on top of
very well supported protocols like 6LoWPAN and IEEE 802.15.4. The maxi-
mum range is between 100 meters and 20 km, with highly configurable radio
parameters such as modulation, data rate, transmission power, etc.

Ultra-low power operation, ranging from 1uA to 150nA.

Protected communication with on-board hardware security (SHA2, AES-
128/256, ECC-128/256 and RSA for secure key exchange).

Real Time clock capabilities to develop applications based on real time in-
formation

Available interfaces and connectors to plug-in directly any different sensors
(analogue and digital).

Benefit from a wide-world community of developers due to being supported
in Open Source OS.

4.1.2. Zolertia Firefly
The Zolertia Firefly is a breakout board designed to inspire, build and develop

from scratch any Internet of Things application.The Firefly can be seen as the
”small brother” of the RE-Mote, with a slick design and a lower cost.

Figure 4.2: Zolertia Firefly

It provides the following features [14]:

40

CHAPTER 4. HARDWARE TEST ENVIRONMENT UPC

ISM 2.4-GHz IEEE 802.15.4 and Zigbee compliant radio.

ISM 863-950-MHz ISM/SRD band IEEE 802.15.4 compliant radio.

ARM Cortex-M3 with 512KB flash and 32KB RAM (16KB retention), 32MHz.

On-board printed PCB sub-1GHz antenna, ceramic antenna for 2.4GHz in-
terface. Alternatively u.FL for sub-1GHz external antenna.

AES-128/256, SHA2 Hardware Encryption Engine.

ECC-128/256, RSA Hardware Acceleration Engine for Secure Key Exchange.

Compatible with breadboards and protoboards.

On-board CP2104/PIC to flash over PCB USB.

User and reset buttons.

RGB LED to allow more than 7 colour combinations.

Small form factor (68x25mm) including USB.

3.3VDC C support for 2xAA/AAA and Coin Cell batteries.

So, the hardware of the Zolertia Firefly is more basic than the Hardware Zoler-
tia Re-Mote development board.The improvements are the size reduction and the
easy way to connect, through the usb adapter to the pc.

The firefly can be programmed and debugged over JTAG and USB. The board has
a CP2104 USB to serial converter with a PIC, it allows to program the CC2538
without having to manually to put the device in bootloader mode.

Figure 4.3: Zolertia Firefly connected by its usb adaptor

41

CHAPTER 4. HARDWARE TEST ENVIRONMENT UPC

4.2. TI CC2531EMK Sniffer Tool: ICQUANZX
CC2531EMK

The ICQUANZX CC2531EMK kit provides one CC2531 USB Dongle and doc-
umentation to support a PC interface to 802.15.4 / ZigBee applications. The don-
gle can be plugged directly into your PC and can be used as an IEEE 802.15.4
packet sniffer or for other purposes.

Figure 4.4: ICQUANZX CC2531EMK kit

The dongle has 2 LEDs, two small push-buttons and connector holes that al-
low connection of external sensors or devices. The dongle also has a connector for
programming and debugging of the CC2531 USB controller.

It comes preprogrammed with firmware such that it can be used as a packet sniffer
device.

42

Chapter 5

Setup, tests and performances

This chapter will cover the different hardware and software configurations are
applied to be able to perform all the desired tests, such as a basic connectivity
between devices, thus creating a small Thread network. In addition, we will check
the visibility of the nodes connected to the same network and also the ones that
are not joined. The next step will be the revision of the routing tables. Finally,
through different captures, we will analyze the behavior after some changes of
scenario.

5.1. Test Scenario installation and Configuration
As the goal of this section is to create a Thread network to evalute, a configura-

tion and installation of the test must be done in the available devices. It consist on
flashing images with the pre-configured examples to emulate the desired scenario
for doing the test. In our case, it will be to allow the cli interaction through the
command window.

Moreover, it is needed to configure a Thread sniffer, in order to adquire and visual-
ize the Thread messages between devices, and configure Wireshark to plot direcly
from the data provided by the sniffer.

5.1.1. Zolertia devices configuration
In order to set up a Thread network, the Zolertia devices have to be configured

and programmed by a flashing image. In order to do it, a preconfigured virtual
enviroment will be used, called Contiki, provided by the course IoT infivedays.
Contiki is an open source operating system for the Internet of Things, it connects
tiny low-cost, low-power microcontrollers to the Internet.

Contiki provides powerful low-consumption Internet communication, it supports
fully standard IPv6 and IPv4, along with the recent low-power wireless standards:
6LoWPAN, RPL, CoAP. With Contiki’s ContikiMAC and sleepy routers, even
wireless routers can be battery-operated.

43

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

A virtual machine with Contiki installed will be used. It can be downloaded
freely from this web site: https : //sourceforge.net/projects/zolertia/files/. It
contains also the CC2538 compiler which will allow to interact with the device by
the cli command console.

Figure 5.1: Code to compile the CC2538 example

And the image file will be stored in openthread/output/cc2538/bin.

Figure 5.2: Code to compile the CC2538 example

Then, the Zolertia board can be plugged into the computer. A window will
promt asking where the device is connected and it must be chosen to connect it to
the virtual machine.

Figure 5.3: Window asking where to connect the plugged device

For installing the image in any device, the following command must be used
(taking in account the usb where is connected the board):

Figure 5.4: Command to flash the image into the device

The instalation process, if concluded successfully, will notify that it was able to
write the image into the memory and the checksum obtained matched, as shown
in the figure below.

44

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.5: Image flashing process

Then, the only thing left to do is call the appropiate command to enable the
cli console interaction:

Figure 5.6: Command to start the cli console

It will promt a settings menu where we need disable, in the serialportsetup
submenu, the HardwareF lowControl option (fig 5.7). Then the configuration and
communication wirh the Zolertia device through the cli interface will be available.

Figure 5.7: Serial port setup configuration

45

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

5.1.2. Configuring the sniffer
For setting up the sniffer, the software needed can be downloaded the Texas

Instrument web site [10]. It is a IEEE 802.15.4 MAC software stack used to sniff
IEEE 802.15.4 frames. It is also needed to install the Microsoft Visual C++ and
the drivers of the usb dongle. Finally, in order to visualize the frames, Wireshark
must be installed in our Windows device.

Once everything is installed, the TiWsPc (Texas Instruments Wireshark Packet
Converter) program must be available in our machine. Then, then only thing
remaining is to configure the TiWSPc to user our sniffer device to get the IEEE
802.15.4 frames. If everything is installed well, TiWsPC will recognize the CC2538
usb dongle. It must be configured to sniff in the same channel where the Thread
network is working (I will set it to 26 in my particular case, as this one is the
channel with less interference due to WiFI users).

Figure 5.8: Configuration window for adjusting the sniffing parameters

Next, a pipe for connecting the sniffer with Wireshark must be created. First,
a shortcourt in our desktop will be created. Then, some commands must be added
to enable it properly, as shown in FIG:

Figure 5.9: Additional commands to set up the pip

Finally, the program will show if its working propperly. Then, clicking the start
button in the TIWPC program will enable, when we open Wireshark through the
link created. to capture and show the IEEE 802.15.4 frames.

In order to decrypt all the network messaging, it is also needed to add a con-
figuration field in the Wireshark. It is found in Preferences Wireshark’s option,

46

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

then in the navigation bar Protocols must be selected to expand it and search
for IEEE802.15.4. There, a decryption key must be provided, adding a new field
with the index of the key and the key of the network 5.10 (which is known and
can be found in the configuration dataset of the network leader deviifconfe).

Figure 5.10: Decription key configuration

5.2. Tests
5.2.1. Set up a Thread Network

The goal of the initial test is to set up a Thread network and obseve in Wire-
shark the interaction between the devices and the network’s performance under
different conditions, such as the attachment of a new device or a device disconnec-
tion.

In order to create the network, the first Zolertia device must create a new dataset
with the configuration needed for the network creation. It will consist on adjusting
the channel where the network will operate, in my case, to be able to capture the
frames with the sniffer it will be the 26th channel; and commit it. Whenever the
device is connected, it will use the configuration provided (5.11). The network key
that appears here it will be used to configure the new devices in order to attach
it to the network as well as to configure Wireshark to unmmask all the network’s
communication.

47

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.11: Dataset creation and submission

Then, the IPv6 interface must be enabled and the Thread network is ready
to be deployed (5.12). As it is the first device, it will become the leader of the
network.

Figure 5.12: Ipv6 interface and Thread deployment commands

In order to attach a new device, the process is similar to creating one. But in
that case the dataset will be created with just the channel and the network key
(fig 5.13). Once the Thread interface is enabled, this new device will attach to
the existing network and obtain the information of it through the devices already
deployed.Then, the last thing to do is to select the role (Router or Child), according
to the functionality desired for the new device.

48

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.13: Procedure to attach a new device into an existing Thread network

For doing this initial test, two devices will be attached to the network (appart
from the leader): one will be a router and one will be a child.

Finally, to prove that the devices are connected in the same network, a discovery
of the channel used is done:

Figure 5.14: Discovery command output

As the information table provides, there are 2 devices, appart from the leader
who is doing the discovery, and they belong to the same Personal Area Network.

5.2.2. Network Interaction
In this subsection the network interaction will be analyzed through the Wire-

shark captures showing the sniffed the Thread messages.

At the beginning, there was just one device. It continuously keeps announcing
the network information to all neighbors, shown in figure 5.15, and its links with
other devices (like a routing table) through MLE advertisement messages (fig 5.16).

Figure 5.15: Leader device multicasting the network information

49

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.16: Details of the information provided by the MLE Advetisement
message

Once a new device wants to be attached to the existing network it will start
sending a MLE Link Request (5.17) message where it will ask, as it is a request,
for different TLV (5.18) in order to obtain the Routing Information through the
Route64 TLV and the MAC addressing through the Address16 TLV.

Figure 5.17: Details of the initial MLE Link Request message

Figure 5.18: Details of the information provided by the MLE Link request

Then it will start sending MLE Parent Request to start the handshake. When-
ever the Leader (and the only one in the network till now) realized of a new entry,
it announces through an MLE Announce message. Then, the routers and REEDs
that receive the child request (and the leader) will respond with a MLE Parent
Response message. This process can be seen in fig 5.19.

50

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.19: Process of attachment, initial interaction

The MLE Parent Response will contain the following TLV (fig 5.20):

Source Address TLV.

Leader Data TLV.

Link-layer Frame Counter TLV.

MLE Frame Counter TLV.

Response TLV.

Challenge TLV, which is the same that the parent has received from the
attaching device.

Link Margin TLV.

Connectivity TLV.

Version TLV.

Figure 5.20: Details of the TLVs provided by the MLE Parent Resonse

Then, based on each device’s connectivity, through the Connectivity TLV, the
new device will decide where to attach and who will become his parent. It will

51

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

consider the two-way link quality, the parent priority and the connectivity data in
that order of priority when deciding. Then, the new device unicast a MLE Child
ID Request to the chosen parent requesting the following TLV (fig 5.21):

Response TLV.

Link-layer Frame Counter TLV.

MLE Frame Counter TLV.

Model TLV.

Timeout TLV.

Version TLV.

Address Registration TLV.

TLV Request TLV: Address16 (Network Data and/or Route).

Active Timestamp TLV.

Pending Timestamp TLV.

Figure 5.21: Details of the TLVs provided by the MLE Child Id Request

If the Child ID Request does not contain an MLE Active Timestamp TLV the
Parent must include an Active Operational Dataset TLV in the Child ID Response.
If the Parent has a valid Pending Operational Dataset and the Child ID Request
does not contain a MLE Pending Timestamp TLV, or if contains an MLE Pend-
ing Timestamp TLV that does not match the Parent’s Pending Timestamp, the
Parent must include a Pending Operational Dataset TLV in the Child ID Response.

Now, the parent will answer with a MLD Child ID Response where it will in-
clude:

Source Address TLV.

Leader Data TLV.

52

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Address16 TLV

Network Data TLV

Route64 TLV

Address Registration TLV.

Active Operational Dataset TLV.

Pending Operational Dataset TLV.

So the child can now be allocated in the network. The parent will add this
new device to its Child Table. To end with the attachment, the child will ask
for creating a link between itself and the Leader through a Link Request MLE
message, starting a new hanshake with a Challenge TLV. As the links are just one
way, the Leader will repply accepting that link and will request to create its own
link to the child (MLE Link Accept and Request message). After the acceptance
of this last link, the attachment will be finished.

Figure 5.22: Process of attachment, the parent allocates the new device into the
network as its child

Then, it can be seem that the routing table of each device has been updated
(fig 5.23). It can be observed that the routing table includes a new device with
his link quality information appart form itself.

53

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.23: Details of the new routing table of the leader, through a MLE
Advertisement message

After attaching the first device, a new device is attached. The process is the
same but now it must interact with the two devices already deployed to decide
which one will be his Parent, and to create links. In the routing table of the
Leader, a new device can be observed.

Figure 5.24: Overview of the attachment of the 3rd device (1)

54

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.25: Overview of the attachment of the 3rd device (2)

Figure 5.26: Routing table of the leader broadcasted in a MLE Advertisement
message

To end with this first test, the last device attached (the child) will be discon-
nected, and the performance of the network will be analysed in Wireshark.

When the leader does not receive any broadcast MLE Advertisement message
of the child, after a timeout. it will start asking for routing information to the
Router (the parent of the disconnected child). After some retries, it will conclude
that the device has been dettached from the network. So it will update his routing
tables as shown in the figure 5.27.

55

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.27: Routing table of the leader broadcasted in a MLE Advertisement
message

If the Leader is the one which is dettached, another Router will assume the
role.

5.2.3. Visibility of the network
In this short test, the purpose is to observe what would see a device which can’t

decypher the MLE messages, because i t does not know the network key. Taking
in account the same example used previously, now the decryption key added to
Wireshark has been deleted.

56

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.28: Frames captured by the sniffer without knowing the decryption key

In the figure above, the sniffer could not know the purpose of each message,
the type of MLE message is, and the information provided in the TLV. So with
this simple example, it is demonstrated that the MLE fields are secure end to
end. In addition, sniffers are configured to capture the frames of one determined
802.15.4 PHY channel. If the network communication goes through one of the
other 802.15.4 PHY channels, it could not get them.

5.2.4. End to end connectivity
The last test that will be detailed is the end to end connectivity through a

multihop routing. For this purpose, a Thread network composed by one Leader
and two Routers will be created. The routing tableof the leader will be studied
and ping messages will be sent from the Leader to one of the Routers, proving how
it reaches to the destination and it replies.

Finally, in order to see the smart routing process that the Thread architecture
has, a new Router will be added into the existing network. The reestructuration
of the routing tables will be discussed, and then and older router will be detached,
to observe the same performance of auto reconfiguration of the network.

So, when the environment is already set, a Thread network composed by a Leaders
and two Routers is deployed, the leader has the routing table shown in the figure

57

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

below. It also included an example of a Ping command, used to send 5 ICMP
echo request messages, sent by the Leader, to the Router identified as 36 (routing
through ’63’ is indicated when the receiver Router is itself).

Figure 5.29: Leader Routing Table and ping example

As can be observed, the ICMP echo request message was delivered succesfully
and a ICMP echo reply was returned from the Router to the Leader. The ping’s
output also provides information about the average Round-trip time, the time to
reach the destination and come back with the reply, of 26.2 ms.

In Wireshark the interaction between the devices was demonstrated as 5 the dif-
ferent ICMP echo requests and replies can be seen easily (fig 5.30).

Figure 5.30: Ping process

Now, a new router has been attached and the table has been reconfigured. The
same Ping example has been tested succesfully. The following figure shows how the
routing information has changed and adapted to the current situation: Router 49
has been added an can be reached through Router 30. At the same time, Router
30 has changed his routing topology and now can be accessed over the Router 49
instead of Router 36 of the previous test.

58

CHAPTER 5. SETUP, TESTS AND PERFORMANCES UPC

Figure 5.31: Leader Routing Table and ping example

Finally, the Router 30 was dettached, and after a while, the routing was recon-
figured as shown in the following figure:

Figure 5.32: Leader Routing Table

So, to reach the Router 36 now it must go through the Router 49 instead of the
previously used Router 30. The same Ping command already used was tested and
was able to reach Router 36 and come with a response as the command’s output
explains.

Figure 5.33: Ping command from Leader to Router

59

Chapter 6

Conclusions

6.1. General Conclusion
In this thesis, a general study of the Thread Protocol has been provided. More-

over, the Open Source Thread (the 1.1.0 version) implementation, OpenThread
has also been studied. Last but not least, a Thread network has been implemented
to observe its performance.

In summary, Thread is built upon a foundation of existing standards and can
fulfill the requirements of low power, resilience, ip-based, security and friendly
use. On top of that, the application layer runs independently supporting a wide
range of applications which can use Thread for the interaction of their devices.

With the cli interface, it is very easy to set up and observe the different functional-
ities Thread offers by using the Openthread API. Not only a Thread network has
been created easily, but also a basic network interaction, through some commands
such as the Discover command and the Wireshark, has been tested. In overall,
Thread is one of the leading protocols for LR-WPAN networks.

Eventhough the overall feedback was good, there were some problems related with
flashing the examples into different devices, such as MakerDiary and also some
Zolertia devices were not working well or the documentation to do it was confus-
ing or outdated. This prevented me to reach the nexts steps into studying that
protocol. Also the scarcity of the devices or the malfuncitoning of some of them
prevented to have a more broad overview of the technology.

For doing all these studies and tests, a lot of documentation has been used. The
Thread documentation is very messy and even the specification file is very difficult
to follow. Also, it is said that all the protocols, such as the IEEE 802.15.4 involved
are open so Thread is built on top of open and accessible protocols, but then I
see that I need an IEEE subscription to see them, which may not be afordable for
everyone. I could get acces thanks to the UPC ebib functionallity which let me
dive in these files.

60

CHAPTER 6. CONCLUSIONS UPC

6.2. Future work
6.2.1. Thread

Thread must keep evolving, including new features and functionalities.Till now,
Thread has achieved the following features: it is IP-based mesh networking solu-
tion that is secure, reliable, scalable and optimized for low power operation. In
addition to it, the newest version provided support for managment of the network
via bluetooth. Nevertheless it needs a tunneling solution until ISPs provide native
IPv6 to the home.

Not only in the technical aspects, and something which is found in other IoT
solutions, Thread has to improve. Eventhough seems very easy to build the net-
work, for non-engineer users remains quite complicated. In order to extend the
reachability of the technology, it must provide very simple solutions for unexperi-
enced users.

Another thing to consider for improving in Thread, and also in almost each IoT
solution, is the cost of the devices. The Thread certified products [6] are very ex-
pensive and creating a home automated network requires a very high investment,
which are not afordable for the majority of the population.

All users are looking for saving money and commodity, which a smart network
provides both. IoT solutions have a great future and for me, eventhough I am
not an expert, the key improvements are the cost of the devices involved and the
complexity of creating an automated network.

As already mentioned, the Thread documentation must be reworked. Now there
are many documents explaining different things and is not even clear in the main
specification file. In order to attract more users (and developers for the Thread
implementations), the Thread Group must work in producing a more ordered and
clean documentation.

6.2.2. OpenThread
OpenThread must always seek for addapting to the newest versions of the

Thread protocol. For example, now it must update to support the Bluetooth man-
agment, as it does Thread 1.2.0.

As it is an Open Source implementation, all the users are free to add their im-
provements. In the future, it may have a lot of functionalities which will improve
the performance of Openthread, thus adding also new features.

As Thread Group’s objective is to make Thread widely available, the Open Source
implementations such as OpenThread, which they directly depend on how many
users are involved in developing it, would be very benefited from the nature and
goal of this protocol.

61

CHAPTER 6. CONCLUSIONS UPC

6.2.3. This thesis
This thesis has provided not only a summary of the theory of how the Thread

protocol work, but also has shown some practical implementations. Eventhough,
it is just an introduction and it needs to be more developed. Different studies are
still needed to test its performance, such as obtaining the metrics of the messag-
ing in the network or testing the network in different enviroments with different
interferences, to test its reachability.

Many problems I had when trying to configure the different devices (for example, I
was unable to configure and program the MakerDiary devices, the documentation
for programming the Zolertia devices was outdated and needs a review...) and
they prevented me from reaching further steps, so a very concise documentation,
which in part is provided here is needed.

I hope that future students or Thread users would be able, following all the step
I have described here, to continue testing and studying this protocol. This would
generate feedback which could improve the performance of Thread. In my personal
opinion, the development of IoT solutions, like Thread, are very important when
considering that IoT solutions are one of the key technologies in our future, if not
already in the present, and it will be one of the technologies more used, if not the
most.

62

Bibliography

[1] Alliance, Connectivity S.: Matter github. – URL https://github.com/
project-chip/connectedhomeip#readme

[2] Alliance, Connectivity S.: Matter web site. – URL https://csa-iot.org/
all-solutions/matter/

[3] Cerf, Vint ; Kahn, Bob: TCP. – URL https://datatracker.ietf.org/
doc/html/rfc675

[4] Colina, Antonio L. ; Marco, Alvaro V. ; Bagula, Zennaro A. ; Piet-
rosemoli, Ermanno: IoT in 5 days. 2016. – URL http://www.iet.unipi.
it/c.vallati/files/IoTinfivedays-v1.1.pdf

[5] Group, IETF: DTLS rfc. – URL https://datatracker.ietf.org/doc/
html/rfc6347

[6] Group, Thread: Thread certified products. – URL https:
//www.threadgroup.org/What-is-Thread/Thread-Benefits#
certifiedproducts

[7] Group, Thread: Thread. 2014. – URL https://www.threadgroup.org/

[8] Group, Thread: Thread. 2014. – URL https://www.threadgroup.org/
support#Whitepapers

[9] IEEE: 802.15.4 Mac and Phy. 2007. – URL https://ieeexplore.ieee.
org/document/4152704

[10] Instruments, Texas: CC2531EMK IEEE802.15.4 sniffer. –
URL https://www.mouser.es/ProductDetail/Texas-Instruments/
CC2531EMK?qs=GbW5dzAYBFdEggnrw1cUyQ%3D%3D

[11] Lab, Nest: OpenThread. 2016. – URL https://openthread.io/

[12] Lab, Nest: OpenThread Github. 2016. – URL https://github.com/
openthread

[13] Reed, David P.: UDP. – URL https://datatracker.ietf.org/doc/html/
rfc768

[14] Zolertia: Zolertia Firefly Github. – URL https://github.com/Zolertia/
Resources/wiki/Firefly

63

https://github.com/project-chip/connectedhomeip#readme
https://github.com/project-chip/connectedhomeip#readme
https://csa-iot.org/all-solutions/matter/
https://csa-iot.org/all-solutions/matter/
https://datatracker.ietf.org/doc/html/rfc675
https://datatracker.ietf.org/doc/html/rfc675
http://www.iet.unipi.it/c.vallati/files/IoTinfivedays-v1.1.pdf
http://www.iet.unipi.it/c.vallati/files/IoTinfivedays-v1.1.pdf
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://www.threadgroup.org/What-is-Thread/Thread-Benefits#certifiedproducts
https://www.threadgroup.org/What-is-Thread/Thread-Benefits#certifiedproducts
https://www.threadgroup.org/What-is-Thread/Thread-Benefits#certifiedproducts
https://www.threadgroup.org/
https://www.threadgroup.org/support#Whitepapers
https://www.threadgroup.org/support#Whitepapers
https://ieeexplore.ieee.org/document/4152704
https://ieeexplore.ieee.org/document/4152704
https://www.mouser.es/ProductDetail/Texas-Instruments/CC2531EMK?qs=GbW5dzAYBFdEggnrw1cUyQ%3D%3D
https://www.mouser.es/ProductDetail/Texas-Instruments/CC2531EMK?qs=GbW5dzAYBFdEggnrw1cUyQ%3D%3D
https://openthread.io/
https://github.com/openthread
https://github.com/openthread
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://github.com/Zolertia/Resources/wiki/Firefly
https://github.com/Zolertia/Resources/wiki/Firefly

BIBLIOGRAPHY UPC

[15] Zolertia: Zolertia github. – URL https://github.com/Zolertia

[16] Zolertia: Zolertia Re-Mote Github. – URL https://github.com/
Zolertia/Resources/wiki/RE-Mote

[17] Zolertia: Zolertia web site. – URL https://zolertia.io/

64

https://github.com/Zolertia
https://github.com/Zolertia/Resources/wiki/RE-Mote
https://github.com/Zolertia/Resources/wiki/RE-Mote
https://zolertia.io/

	Abstract
	Resumen
	Resum
	Acknowledgements
	Contents
	List of figures
	List of tables
	Motivation
	Matter

	Thread
	Introduction to Thread
	Technical Overview
	Thread Network Topology
	Physical Layer and Data Link Layer: IEEE 802.15.4
	Physical Link Layer
	Data Link Layer

	Network Layer
	IPv6
	6LoWPAN
	Routing Protocol: RIP and RIPng
	MLE messaging
	DTLS

	Transport Layer: UDP and TCP
	Application Layer

	Openthread
	Network Implementation
	Routing layer implementation
	DTLS implementation
	Application layer implementation: CoAP
	CLI Commnads

	Hardware test environment
	Zolertia devices
	Zolertia Re-Mote
	Zolertia Firefly

	TI CC2531EMK Sniffer Tool: ICQUANZX CC2531EMK

	Setup, tests and performances
	Test Scenario installation and Configuration
	Zolertia devices configuration
	Configuring the sniffer

	Tests
	Set up a Thread Network
	Network Interaction
	Visibility of the network
	End to end connectivity

	Conclusions
	General Conclusion
	Future work
	Thread
	OpenThread
	This thesis

