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GENERALIZED MANTEL–HAENSZEL ESTIMATORS FOR SIMULTANEOUS

DIFFERENTIAL ITEM FUNCTIONING TESTS

Abstract

The Mantel-Haenszel estimator is one of the most popular techniques for

measuring Differential Item Functioning (DIF). A generalization of this estimator is

applied to the context of DIF to compare items by taking the covariance of odds ratio

estimators between dependent items into account. Unlike the Item Response Theory,

the method does not rely on the local item independence assumption which is likely to

be violated when one item provides clues about the answer of another item.

Furthermore, we use these (co)variance estimators to construct a hypothesis test to

assess DIF for multiple items simultaneously. A simulation study is presented to assess

the performance of several tests. Finally, the use of these DIF tests is illustrated via

application to two real data sets.

Key words:

Differential Item Functioning; dually consistent; Mantel–Haenszel estimator;

multiple items.
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1. Introduction

Differential Item Functioning (DIF) generally refers to the study of bias in testing (Osterlind

& Everson, 2009, pp. 8–13). However, DIF is a necessary, but not sufficient, condition for item

bias (Zumbo, 1999). Members of a group of interest, often a particular gender or ethnic group,

may be dis/advantaged on a test in comparison to other groups even when conditioning for

overall ability. If an item (or a question on a test in this context) has a different probability of

being answered correctly for respondents from different groups who possess the same ability, the

item is said to exhibit DIF. When comparing two groups, by convention, the group expected to be

at a disadvantage is called the focal group, with the other group denoted as the reference group.

In the study of DIF, one might present data in stratified contingency tables, where the rows

represent the reference (row 1) and focal (row 2) groups, the columns represent the correct

(column 1) and incorrect (column 2) answers to a question and the strata represent different

levels of the ability distribution. There have been numerous different techniques applied to

modelling DIF, including Item Response Theory (IRT) (Osterlind & Everson, 2009, pp. 39–60),

Mantel–Haenszel (MH) estimators (Holland & Thayer, 1988, pp. 129–145), Logistic Regression

(Swaminathan & Rogers, 1990) and various non-parametric tests such as the Simultaneous Item

Bias Test (Shealy & Stout, 1993).

The IRT-based approach (Millsap & Everson, 1993; Osterlind & Everson, 2009) uses IRT

models that include examinees’ abilities as latent variables. The inference of parameter estimators

is obtained under the assumption of local independence that items are only be correlated through

latent variables. This assumption of local item independence is likely to be violated when one

item provides clues about the answer of another item or when a series of items share common

material. If it is violated, inference would be misleading (Baghaei, 2008). In the literature, many

authors have discussed and provided methods to evaluate local item independence (Ip, 2001;

Baghaei, 2008; Lee, 2004; Christensen et al., 2017; Edwards et al., 2018). Alternatively, many

testlet-based methods (Douglas et al., 1996; Bradlow et al., 1999; Li et al., 2006; Wainer et al.,

2007; Rijmen, 2010) have been developed when there exists a common testlet to violate the local

item independence.
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The Mantel-Haenszel (MH) estimator (Mantel & Haenszel, 1959) allows for the calculation of

a common odds ratio for the 2× 2 tables across K strata. The use of the MH estimator in

assessing DIF was introduced by Holland & Thayer (1988). It was found to be highly successful

in this context, coming to prominence as one of the most popular measures of DIF (Camilli et al.,

1994; Dorans, 1989; Zwick et al., 2012). Because the MH estimator is consistent even when the

sample size per stratum is small, it can be useful in DIF studies even where there is a very fine

partition of the ability distribution. To the best of our knowledge, the MH method has never

been used to test a set of items for DIF.

When there is more than one item in a test to be analyzed, the MH procedure is applied to

one item at a time by holding everything else constant to calculate the total raw scores as the

ability level (Wang, 2004). The procedure is applicable when the percentages of DIF items are

small (0% to 5%) (Rogers & Swaminathan, 1993). Otherwise, one might use purification

approaches (Clauser et al., 1993; French & Maller, 2007; Wang et al., 2012; Socha et al., 2015) to

adjust the ability estimate. Selecting a set of anchor items that have no or only a trivial amount

of DIF to analyze the other items for evidence of DIF (Wang, 2004; Kopf et al., 2015) is also an

alternative approach.

For a simultaneous test of DIF across several items, the procedure depends on whether the

assumption of local item independence holds or not. If one assumes that the items are

independent given the ability level, then a simultaneous test can be constructed in a

straightforward fashion. For example, the sum of m independent chi-squared test statistics with 1

degree of freedom follows a chi-squared distribution with m degrees of freedom. Otherwise,

without the local item independence assumption, a multiple testing adjustment such as the

Bonferroni correction is needed (Kim & Oshima, 2013) to control the type I error. Many

researchers (Rothman, 1990; Kim & Oshima, 2013; Magis et al., 2015; Park et al., 2021; Penfield,

2001; Sauder & DeMars, 2020; Thissen et al., 2002) have discussed methods for simultaneous and

multiple comparison tests.

The main contribution of this paper is the use of the generalized Mantel-Haenszel (GMH)

estimators, derived by Greenland (1989) and extended by Liu & Suesse (2008), to test a set of

items for DIF simultaneously without assuming local item independence, removing the need to
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make a multiple testing adjustment. One may also use this technique to compare DIF between

two items. Similar to the ordinary MH estimator, the GMH estimators are dually consistent in a

sparse data limiting model and in a large stratum limiting model. A sparse data limiting model

assumes that the sample size per stratum is fixed and the number of strata →∞. A large

stratum limiting model assumes that the number of strata is fixed and the sample size →∞. This

provides flexibility for using the GMH estimators with different partitions of ability distributions.

Finally, Liu & Suesse (2008) derived a method for comparing two items which we apply to

pairwise comparisons in the context of DIF.

This paper defines and describes the GMH estimators and their (co)variance estimators in

Section 2. Section 3 shows pairwise comparisons and simultaneous tests for DIF. Section 4

evaluates the performance of the proposed simultaneous test using a simulation study. Examples

are provided in Section 5. We conclude with a discussion in Section 6.

2. Generalized Mantel-Haenszel (GMH) estimators

A three parameter logistic model frequently used in item response theory (IRT) has the

following form
π(θ)− c

1− c
=

1

1 + exp(−a(θ − b))
(1)

with parameters a, b and c. The variable θ is the person ability and π(θ) approaches c when

θ → −∞. Often the parameter c is set to zero and then (1) reduces to a standard two parameter

logistic regression model

log

(
π(θ)

1− π(θ)

)
= β0 + β1θ, (2)

where β0 = −ab is the intercept and β1 = a is the slope. By adding the group effect, the following

model shows different probabilities of correctly responding for the focal and reference groups

conditioning on the person ability:

log

(
π(θ)

1− π(θ)

)
= β0 + β1θ + γI(group=ref), (3)

where I(group=ref) = 1 for the reference group and I(group=ref) = 0 for the focal group.
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Next, we describe the connection between the two parameter IRT model (2) and the model

used in the paper. Adding the m items into (2), we have

log

(
πj(θ)

1− πj(θ)

)
= β0j + β1jθ, (4)

where j = 1, . . . ,m. Model (5) treats the person ability effect {β1jθ} as discrete using the idea

from a Rasch model (Rasch, 2003):

log

(
πij

1− πij

)
= βj + uij , (5)

where i = 1, . . . , n refers to person i and uij is the ability for person i on item j. Notice that the

model (5) uses (n− 1)×m parameters ujk to describe person ability effects, whereas the model

(4) uses m parameters.

Two popular methods to test for DIF include the MH method (Holland & Thayer, 1988) and

the logistic regression method (Swaminathan & Rogers, 1990). This paper focuses on the former,

by treating the person ability as discrete having K levels. Thus, the model (5) is simplified to

log

(
πj|k

1− πj|k

)
= βj + ujk, (6)

where k = 1, . . . ,K and K < n. The model used in the paper has the following form:

log

(
πj|gk

1− πj|gk

)
= βgj + ujk, (7)

where g, j, and k refer to the group (reference or focal), item, and ability level, respectively.

Model (7) adds the group effects into the model (6). The πj|gk is the probability of giving a

correct answer for item j when a subject lies in group g with ability level k. For the scope of this

paper, we focus on the situation of having two groups (reference and focal), i.e. G = 2. In

general, it can be extended to cases with G > 2.

Model (7) assumes that there is no interaction between ability and group, that is, the odds of

giving a correct answer between two groups remain the same across different ability levels. It

implies that the common log odds ratio comparing the reference (g = 1) with the focal (g = 2)

group is γj = β1j − β2j for the jth item. When γj 6= 0, we say that item j exhibits DIF. If the

common odds ratio assumption does not hold, the MH method cannot be used. This assumption
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limits the type of DIF one could test using the MH method. For example, adding the ability and

group interactions to Model (3), we have

log

(
π(θ)

1− π(θ)

)
= β0 + β1θ + γI(group=ref) + τθI(group=ref). (8)

Model (8) violates the common odds ratio assumption because the DIF is not uniform across the

ability levels. That is, the odds of a correct answer between the reference and the focal groups

could vary across different ability levels. Paek (2012) discussed various types of DIF tests

associated with different logistic regression models.

In the DIF context, while being restricted to testing only for uniform DIF limits the use of

the MH method, there are several advantages including the generalization of the model (e.g.,

Model (7)), and the flexibility on the sample size within strata. Because Model (7) treats the

person ability effect as discrete instead of continuous, it allows the probability of a correct answer

to have a non-monotonic trend association with ability. When the total sample size is large, the

MH approach is appropriate even if there are few observations within strata. The test statistics

based on the dually consist estimators (Greenland, 1989) behaves well in the two limiting cases.

Suppose there are m items to be assessed for DIF. We consider a 2×m table, with one row

representing the reference group, the other the focal group, and where the columns represent

items. The cell count represents the number of people who respond correctly for the

corresponding row and column. There are K such tables for K ability levels. In the 2×m×K

table, the cell counts are not independent, because the same people contribute to multiple cell

counts. Thus, the sum of cell counts is not equal to the total number of people. Therefore, the

traditional Chi-squared test fails to test the independence between the row and column variables.

This issue has been widely discussed in the context of multiple column responses (Loughin &

Scherer, 1998; Agresti & Liu, 1999, 2001), where survey respondents are asked to tick all answers

that apply. To analyze such data, we need complete information on the response profile which

shows all patterns of correct answers on m items. Because each item has only two possible

responses (correct and incorrect), the total number of patterns is 2m. Therefore, the complete

data can be expressed in a 2× 2m ×K contingency table.

Let Xj|gk denote the number of people who responded correctly to item j from group g
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within stratum k and Xj|gk denote the complement i.e. the number of people who responded

incorrectly to item j from group g within stratum k. Within stratum k, there are ngk subjects in

group g. Then the total number of respondents in the kth stratum is Nk =
∑

g ngk. The MH

estimator (Mantel & Haenszel, 1959) of γj becomes:

γ̂j = log


K∑
k=1

Xj|1kXj|2k/Nk

K∑
k=1

Xj|2kXj|1k/Nk

 . (9)

Note that γ̂j is the log of the ordinary MH estimator.

The estimator for the variance of the (log) odds ratio between different groups for item j

derived from Greenland (1989) is:

V̂ar(γ̂j) =

K∑
k=1

cj|khj|k

2C2
j

+

K∑
k=1

cj|khj|k + cj|khj|k

2CjCj

+

K∑
k=1

cj|khj|k

2C
2
j

. (10)

The estimator for the covariance between the (log) odds ratios between different groups for items

j and ` derived by Liu & Suesse (2008) is:

Ĉov(γ̂j , γ̂`) =
D11

CjC`
+

D01

CjC`

+
D10

CjC`

+
D00

CjC`

, (11)

where:

Dst =

K∑
k=1

dstk

dstk =
1

N2
k

(Xs
j|1kX

t
`|1kX

st
j`|2k +Xst

j`|1kX
s
j|2kX

t
`|2k −X

st
j`|1kX

st
j`|2k)

Cj =
K∑
k=1

cj|k, Cj =
K∑
k=1

cj|k

cj|k = Xj|1kXj|2k/Nk, cj|k = Xj|2kXj|1k/Nk,

hj|k = (Xj|1k +Xj|2k)/Nk, and hj|k = (Xj|2k +Xj|1k)/Nk.

We extend the notation Xj|gk for the counts by introducing Xs
j|gk for those who responded

positively or negatively indicated by superscript s, where s denotes either 0 (incorrect) or 1
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(correct) to item j from group g in stratum k. Similarly when considering multiple items

simultaneously Xst
j`|gk refers to respondents from group g in stratum k who answered s to item j

and t to item `. Note that s = 1− s. So for example X10
j`|gk = X01

j`|gk.

Using the above estimators for γ̂j and Ĉov(γ̂j , γ̂`) we can estimate the covariance matrix Σ of

γ̂ = (γ̂1, . . . , γ̂m)> by

Σ̂ =


V̂ar(γ̂1) Ĉov(γ̂1, γ̂2) . . . Ĉov(γ̂1, γ̂m)

Ĉov(γ̂2, γ̂1) V̂ar(γ̂2) . . . Ĉov(γ̂2, γ̂m)
...

...
. . .

...

Ĉov(γ̂m, γ̂1) Ĉov(γ̂m, γ̂2) . . . V̂ar(γ̂m)

 .

The notation in this section follows the work derived by Liu & Suesse (2008). Although the

formulae are complex, the estimates in (9) – (11) have a closed form expression. The R code (on

request) is available for calculation.

3. Tests for DIF

Single Tests for DIF

Although this paper focuses on the GMH estimators discussed in the previous section applied

to DIF tests for multiple items, we first review a test when there is only one item of interest.

Common practice for assessing the extent of DIF uses the Educational Testing Services

classification scheme (Dorans & Holland, 1992). This classification scheme applies the MH

Delta–DIF statistic given by the following steps:

Let ∆̂j = −2.35γ̂j ,

where γ̂j is as in equation (9). The level of DIF depends on the value of |∆̂j |.

• Step 1: The extent of DIF is said to be negligible if |∆̂j | < 1.0 or, if the statistic is not

significantly different from 0.

• Step 2: The extent of DIF is said to be moderate to large if |∆̂j | ≥ 1.5 and the statistic is

significantly larger than 1.0
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• Step 3: Otherwise the extent of the DIF is said to be slight to moderate.

For Step 1, an analogue statistical test can be conducted for item j by testing

H0,j : γj = 0 vs. H1,j : γj 6= 0,

using a Wald type statistic

Zj =
γ̂j√

V̂ar(γ̂j)
. (12)

The test statistic Zj is asymptotically distributed standard normal under H0. Due to the dual

consistency, the asymptotic distribution applies to both limiting models, the sparse data and the

large stratum limiting models.

For Step 2, if ∆ = 1.0, we have γ = −0.426 (= − 1.0
2.35). Thus, a null interval hypothesis

H0 : |γj | ≤ 0.426 vs. H1 : |γj | > 0.426 can be conducted to find whether |∆j | is significantly

larger than 1.0. Paek & Holland (2015) showed the p-value based on |∆̂j | using Schervish’s

p-value formula for a null interval hypothesis (Schervish, 1996). Based on |γ̂j |, the p-value has the

following formula:

p− value = Φ

(
−0.426− |γ̂j |

s

)
+ Φ

(
0.426− |γ̂j |

s

)
,

where Φ(·) is the cdf of the standard normal distribution and s =

√
V̂ar(γ̂j).

For Step 3, the DIF is said to be slight to moderate if the DIF is not negligible (from Step 1)

nor moderate to large (from Step 2). Note that one can use the function difMH from the R

package difR (Magis et al., 2010, 2020) to conduct the above tests.

Pairwise Comparisons for DIF

Instead of analyzing each item separately one may also compare DIF between two items. For

example if two items j and ` are measured to exhibit some level of DIF, we may wish to

determine whether the extent of DIF for item j is significantly different from the extent of DIF in

item `. While it is true in general that test designers want to detect and remove all DIF items,

pairwise comparisons can still be very useful in determining if one or both of the two items need

to be modified or removed. Item revisions are essentially a balancing act informed by previous
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trials. During cycles of test validation, decisions are constantly being made as to which items are

performing as expected in eliciting the target competencies and which are not. In this sense, the

more evidence available, including pairwise DIF differences, the more informed decisions made

about revising the test will be.

We can calculate the covariance of the log odds ratio estimators for the two items using the

GMH method, which then allows us to calculate a standard 95% confidence interval for the

difference in the log odds ratios as follows:

95% CI : γ̂j − γ̂` ± 1.96

√
V̂ar(γ̂j − γ̂`)

γ̂j − γ̂` ± 1.96

√
V̂ar(γ̂j) + V̂ar(γ̂`)− 2Ĉov(γ̂j , γ̂`), (13)

where the variance and covariance estimators are given in (10) and (11). If the confidence interval

(13) excludes 0, we conclude there is a 5% significant difference in the extent of DIF in the two

items.

Simultaneous Tests for DIF

Unlike the current use of MH tests which allow one item to be tested at a time, the inference

based on the GMH estimators allows us to test for DIF in multiple items simultaneously. By

calculating the covariance matrix for the log odds ratio estimators γ̂ = (γ̂1, . . . , γ̂m)> over m

items, we are able to perform a simultaneous test. By utilizing a single GMH test we can keep the

type I error rate the same as the significance level. Doing so may be beneficial to test developers

(Roussos & Stout, 1996). Our methods do not need to make any adjustments for multiple

comparisons. The test statistic itself has already taken the dependency between items into

account.

Define the global null hypothesis as H0 = H0,1 ∩H0,2 ∩ · · · ∩H0,m, where H0,j : γj = 0 for all

j = 1, . . . ,m, and the alternative is that any of the individual null hypothesis H0,j does not hold

(or in other words, any of the individual alternative hypothesis H1,j : γj 6= 0 holds) or in formula

H1 = H1,1 ∪H1,2 ∪ · · · ∪H1,m.

Then a simultaneous test for H0 can be conducted by applying Hotelling’s T 2 test statistic
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(Wellek, 2010, pp. 235–264) as follows:

Under H0 : W = (γ̂ − γ0)
>Σ̂−1(γ̂ − γ0)→d χ

2
df=m. (14)

For example, to perform a simultaneous test of no DIF in m items we can use the global test

statistic W as follows:

Under H0 : W = γ̂>Σ̂−1γ̂ →d χ
2
df=m. (15)

This allows us to use a single test statistic to detect evidence of DIF across all m items.

The test statistics (15) requires a positive definite covariance matrix Σ in order for W to be

positive. Unfortunately for large m, the estimated Σ is often not positive definite. If it is not

positive definite, we adjust this matrix by using the closest positive definite matrix using the R

function nearPD of the package Matrix (Bates & Maechler, 2021). The variances of γ̂j remain

fixed, but the co-variance estimators between γ̂j and γ̂` are adjusted. This adjustment makes the

covariance matrix positive definite, however it can make the covariance estimators unreliable and

the asymptotic distribution invalid. The impact of the adjustment and the type I error rates

based on the theoretical asymptotic distribution are evaluated later in the simulation section.

Under the assumption of local item independence, the test statistic

Wind =

m∑
j=1

Z2
j

follows a χ2
df=m distribution asymptotically under H0. It is an alternative global test statistic for

the simultaneous test. When the local item independence assumption does not hold, the Wind

fails to follow the χ2
df=m asymptotic distribution. One could compute the p-value using the

bootstrap resampling technique (Efron & Tibshirani, 1993). The next section evaluates the

performance of various global test statistics.

Comparison to the Likelihood Ratio Test

As well as the global tests discussed, we can also use a maximum likelihood approach for a

simultaneous test for no DIF in any item. Using the standard likelihood-ratio (LR) test to

compare models (6) and (7) we obtain a test for with a null hypothesis of no group effects, i.e. no
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effect of DIF on any item. As discussed by Breslow (1981), the maximum likelihood estimator of

odds ratios are not consistent in sparse cases. Andersen (1980) showed that when each stratum

consists of a single matched pair, the maximum likelihood estimator of γj converges to double the

true value. Therefore, the LR test described, unlike the global tests, is not consistent in sparse

data cases. We present this as a benchmark to compare to the results of the global tests in the

next section. As discussed in section 6.1 of Wang et al. (2014), for unordered categorical variables

the global invariance test is the normal likelihood ratio test. The tests provided can therefore also

be viewed as score-based test for measurement invariance.

4. Simulation Study

In this section we evaluate the performance for the proposed global test W , the global test

Wind, the item based tests and pairwise based comparisons. Since the proposed method does not

rely on the local independence assumption, we introduce another set of odds ratios {Γj`|gk} as

measures of dependence across items conditional on the ability as follows:

Γj`|gk =
π11j`|gkπ

00
j`|gk

π10j`|gkπ
01
j`|gk

, (16)

where πstj`|gk refers to the probability of responding s to item j and t to item ` for respondents

from group g in stratum k. The probabilities {π00j`|gk, π
01
j`|gk, π

10
j`|gk, π

11
j`|gk} form a joint distribution

for items j and ` for respondents from group g in stratum k. The odds ratios {Γj`|gk} have been

used by various authors in simulation studies for multiple response data, for example Liu &

Suesse (2008). Often items are positively correlated resulting in Γj`|gk > 1. The case Γj`|gk = 1

refers to independence and Γj`|gk < 1 to negatively correlated items. For simplicity we consider a

constant Γ that is Γ = Γj`|gk with values of Γ = 1, 10.

We first determine the marginal probability distribution for each item j using Model (3):

log

(
πj(θ)

1− πj(θ)

)
= β0j + β1θ + γI(group=ref),

by setting β0j = −1 + ej with ej ∼ N(0, 1), β1 = 0.5 and by simulating K different ability levels

θ1, . . . , θK (one for each stratum) according to θ ∼ N(µg, 1). Consider the scenarios by varying

the following settings:
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• The impact factor: (1) µ1 = µ2 = 0; (2) µ1 = 0 for the reference group, µ2 = 1 for the focal

group. Note: the first option shows that the reference and focal groups have the same ability

distribution. The second option shows that the mean ability for the focal group is higher than

the reference group.

• The level of DIF: (1) γ = 0 (∆ = 0) no DIF; (2) γ = 0.426 (|∆| = 1) moderate DIF (in favor of

the reference group).

• The number of strata K: (1) K = 20; (2) K = 100. We stratified observations based on their

ability into K tables.

• The number of observations in the reference group (N1) and the focal group (N2): (1)

N1 = 1000, N2 = 200; (2) N1 = 500, N2 = 500. By default we let Ngk = Ng/K for g = 1, 2 and

k = 1, . . . ,K leading to a balanced scenario. However, this balanced case gives always µ1 = 0

and µ2 = 0. For the case µ2 = 1 we need to change the N2k values in order to obtain µ2 = 1,

because each stratum has a different ability level θ. This means strata with a higher ability

level need values N2k ≥ Ng/K and strata with a lower ability level need generally values

N2k ≤ Ng/K. The values of N2k were determined by simulated annealing until the condition

µ2 = 1 was met. There is usually no unique solutions. The final solution that meets µ2 = 1 was

randomly selected. This procedure provides unbalanced sample sizes of N2k across K strata.

• The number of items m for the global test: (1) m = 2, 3, 4, 5, 7, 10, 50.

• The number of items with DIF (called false hypotheses FH): (1) FH = 0; (2) FH = 1; (3)

FH = 5; (4) FH = 10; (5) FH = 20.

• The dependency between items given strata: (1) Γ = 1 (independence); (2) Γ = 10

(dependence).

Given the values of Γ and πj for a given stratum and group, the joint distribution of the m

items is determined via the R package mipfp (Barthélemy & Suesse, 2018) using the IPF

algorithm. This joint distribution is characterised by 2m probabilities. Then a random binary

sequence of length m is obtained. For large m this algorithm is infeasible, as 2m is too large. To

circumvent this problem, we created independent blocks of 10 items each for m = 50.
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Figure 1.

Type I error rates (FH = 0) of W tests for various m, K = 20, N1 = 500 and N2 = 500 based on 10,000 simulated

data sets. Here W is the adjusted statistic and Wunadj is the unadjusted statistic. Below the vertical line at 5%, the

proportion when W and Wunadj are the same is shown.

We first evaluate the performance of the global test statistic W under the adjustment of Σ̂ to

ensure a positive definite covariance matrix. Figure 1 shows the type I error rates at a 5%

significance level based on 10,000 simulated data sets for the adjusted test statistic W , the

unadjusted test statistic Wunadj , and the statistic Wind. When the Σ̂ is positive definite without

the adjustment, then W = Wunadj . The proportion of times when W = Wunadj is given below the

horizontal line at the 5% level. Our proposed test has its desired asymptotic distribution up to

m = 4, but we cannot rely anymore on its asymptotic distribution for m ≥ 5, especially when the

adjustment is required. We recommend using the non-parametric bootstrap method when m ≥ 5.

We also notice from the results that the asymptotic distribution of Wind is as expected under

Γ = 1 (independence), but the type I error rate is exceeding the nominal level under Γ = 10

(dependence of items).

Figure 2 shows the power under FH = 1 based on the asymptotic distribution. Since Wunadj

and W are identical and keep the nominal level only for small m (< 4), we focus on the
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Figure 2.

Power of W tests for various m and FH = 1, K = 20, N1 = 500 and N2 = 500 based on 10,000 simulated data sets.

Here W is the adjusted statistic and Wunadj is the unadjusted statistic. Below the vertical line at 5%, the proportion

when W and Wunadj are the same is shown.

performance of power under small m. The proposed test W is more powerful than Wind, as

expected under Γ = 10 (dependence), because W uses the covariance estimators of γ̂, whereas

Wind does not.

Figures 3 and 4 show the rejection rates of the global tests W and Wind for H0 vs. H1 using

the asymptotic distribution (Asym) and using the non-parametric bootstrap method (Boot) at a

5% significance level, over 2, 000 simulated datasets. Similarly, we show results for testing H0,j vs.

H1,j using the coverage of the 95% confidence intervals of γj . Because there is little difference

across items, the averaged values across all items are presented to give a better summary. We also

considered testing the pairwise hypothesis H0,j` : γj = γ` vs. H1,j` : γj 6= γ` by showing the

averaged coverage of the 95% confidence interval of γj − γ` for all pairs. Tables 7 and 8 in

Supplementary Document give the exact values. When FH = 0, the proportion of times that the

null hypothesis was rejected equals 1−coverage. If a test is good, the proportion should be close

to the value of 0.05 at a 5% significance level. For these figures and tables, we consider various

Page 16 of 35

http://mc.manuscriptcentral.com/epm

Educational and Psychological Measurement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Educ. Psychol. Meas. Submission September 7, 2022 17

numbers of strata and observations within strata, such that the scenarios cover the sparse data

case (e. g., K = 100, N1 = N2 = 500) and the large strata case (e. g., K = 20, N1 = 1000,

N2 = 200), and we only show the cases that m = 50.

The results show that the coverage of γ̂j and γ̂j − γ̂j′ is near 95% as expected, irrespective of

whether the asymptotic confidence intervals are used or whether the bootstrap confidence

intervals are used. It appears that the asymptotic tests are often slightly better for the sparse

data case (e. g., K = 100, N1 = N2 = 500).

For the global test W , under H0 the rejection rate exceeds 5% when the asymptotic method

is used. This is not surprising, because when m is large, the performance of W is affected by the

adjustment of Σ̂ shown in Figure 1. For the global test Wind, the type I error rates based on the

asymptotic distribution are around 5% when Γ = 1 (independence of items), whereas under

dependence Γ = 10 the type I error rate exceeds 5%. In contrast the type I error rates of both

test statistics using the bootstrap method are around the 5% level. This means that for medium

and large m (e.g., m ≥ 5) the bootstrap method has to be used in order to make valid statistical

inference. We also see that Wind has mostly larger power than W when using the bootstrap

method. It seems surprising as W uses more information, i.e. the covariance matrix, than Wind.

However, the adjustment of Σ̂ to ensure positive definiteness seems to reduce power due to the

uncertainty in many estimated covariances. The results are very similar for the scenario

µ1 = 0, µ2 = 1 (Figure 4) and µ1 = µ2 = 0 (Figure 3).

We also compare the results of the global tests with the results of a maximum likelihood

estimation approach. In Supplementary Document, Table 9 presents the result from the LR test

comparing models (6) and (7). The table presents a number of different scenarios illustrating the

behaviour of the estimator under a variety of different conditions. In the non-sparse case where

K = 5 and N1 = N2 = 200 (80 observations per stratum) we observe the LR test gives a type I

error rate of 5.2%, shown in the cell where FH = 0 i.e. H0 is true. We see this the type I error

rate increase as the data becomes increasingly sparse (case K = 20, N1 = N2 = 60 has 6

observations per stratum and a type I error rate of 29.6%). Moreover, for Γ = 10 we see the type

I error rate is much higher than 5% even in the non-sparse case, K = 20, N1 = N2 = 500, where

we observe a type I error rate of 14.2%. These cases demonstrate several scenarios where the LR
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Figure 3.

Under µ1 = µ2 = 0, the power W and Wind show the rejection rates of the global tests at a 5% level. The coverage γ̂j

shows the averaged coverage of the 95% confidence intervals of γj over all j. The coverage γ̂j − γ̂` shows the averaged

coverage of the 95% confidence intervals of γj − γ` for all pairs. Both the asymptotic distribution (Asym) and the

non-parametric bootstrap method (Boot) were used.
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Figure 4.

Under µ1 = 0 and µ2 = 1, the power W and Wind show the rejection rates of the global tests at a 5% level. The

coverage γ̂j shows the averaged coverage of the 95% confidence intervals of γj over all j. The coverage γ̂j − γ̂` shows

the averaged coverage of the 95% confidence intervals of γj−γ` for all pairs. Both the asymptotic distribution (Asym)

and the non-parametric bootstrap method (Boot) were used.

Page 19 of 35

http://mc.manuscriptcentral.com/epm

Educational and Psychological Measurement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Educ. Psychol. Meas. Submission September 7, 2022 20

test has far worse performance.

From the simulation study, we conclude that of the proposed global tests the bootstrap

method is recommended for most cases and Wind is also generally preferred over W . For a small

m (≤ 5), the asymptotic distribution of W behaves well and we recommend W over Wind. The

LR test approach is not recommended in sparse data cases (for sparse data or large stratum

limiting models), or in cases with highly correlated items.

5. Examples

To illustrate the use of these DIF tests, we present two examples. The first example is from

the 2012 Program for International Student Assessment (PISA) database (Organisation for

Economic Co-operation and Development, 2012a) based on the responses provided by 15-year-old

students in the subject area of science literacy. The second is from the existing test suite of the

English for Academic Purposes (EAP) program at the first author’s university.

5.1. PISA 2012

The Programme for International Student Assessment (PISA) is a well-known set of surveys

which periodically measure the global academic performance of 15 year old students. PISA is

commonly used in the DIF literature, with many papers analysing the occurrence of DIF in PISA

data, for example Le (2009); Khorramdel et al. (2020); Chen & Jiao (2014). For the purposes of

this study we consider data from the 2012 PISA paper-based assessment. In particular, we have

considered the response of Australian students to the science section.

The raw data from the study, including student-level responses, was published by the OECD

Organisation for Economic Co-operation and Development (2012a). We have processed this data

and made it available on Kaggle for users who do not have access to SAS or SPSS (Organisation

for Economic Co-operation and Development, 2021). Students participating in PISA sit one exam

booklet, these booklets vary over students due to the balanced incomplete block test design of the

study (Organisation for Economic Co-operation and Development, 2012b, pp. 30). We selected all

Australian students who sat one specific booklet, providing a subset of students who all took a

test containing the same questions. Responses were coded so that fully or partially correct
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answers were treated as correct, and all other responses were coded as incorrect. This provides a

dataset with 1132 students responding to 35 different science questions.

We then consider the item purification approach as described by Lord (1980). All items are

tested individually for DIF first and each item displaying non-negligible evidence of DIF is

removed from the calculation of the ability distribution used for stratifying students. The test of

each item in the purification process was assessed using the Education Testing Services

classification scheme as in section 3. This left us with 25 questions after removing 10 questions

which displayed non-negligible DIF. We then stratify students into K = 5 strata based on their

total number of correct responses on the anchor items:

[0, 5) < [5, 10) < [10, 15) < [15, 20) < [20, 25), before assessing the test for DIF with regard to

gender.

Table 1 displays the estimated common log odds ratios of each item (γ̂j) and two-tailed

p-values for individual questions by treating female students as the reference group and male

students as the focal group. In 10 of the 35 questions individually assessed, DIF was detected at a

5% significance level. We also compare the extent of DIF among items through the pairwise

comparison test, Table 2 shows pairwise comparisons of items which had DIF detected with 5%

significance by the single item tests. We can see that of the 45 pairs of items, 25 have a 5%

significant difference between them in the extent of DIF detected.

This example also shows the utility of the global test W for cases where an assumption of

local independence between items does not hold. As discussed in Section 1, if this assumption

does hold then Wind can be used as an alternative test statistic. However, where local

independence does not hold, we can still apply the global test W . This PISA dataset contains

several subsets of questions which are related to each other. For example, there is a sequence of

questions (PS326Q01 - PS326Q04), labelled as SCIE - P2003 Milk Q1-4. As in (Baghaei, 2008),

an assumption of local item independence is likely to be violated when items share common

material. To test this, we consider the odds ratios {Γj`|gk} (16) of different items within the test

set. If we examine the odds ratio pairs corresponding to these items, we find that a MH type

common odds ratio estimate of Γj` = Γj`|gk between questions PS326Q01 and PS326Q02 has a

value of 5.801. To find p-values we used the bootstrap method based on 10,000 bootstrap samples
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Question ID PS131Q02D PS131Q04D PS256Q01 PS326Q01 PS326Q02

γ̂j 0.0528 -0.0355 0.626 -0.0753 0.4415

se γ̂j 0.1478 0.1506 0.2018 0.1441 0.1502

pj 0.721 0.8137 0.0019 0.6012 0.0033

Question ID PS326Q03 PS326Q04T PS413Q04T PS413Q05 PS413Q06

γ̂j 0.093 -0.2287 -0.0893 0.0126 -0.5931

se γ̂j 0.147 0.1543 0.1377 0.139 0.1594

pj 0.5271 0.1382 0.5168 0.9276 0.0002

Question ID PS415Q02 PS415Q07T PS415Q08T PS425Q02 PS425Q03

γ̂j 0.149 0.3903 0.0443 -0.1707 -0.1911

se γ̂j 0.1748 0.1721 0.1352 0.1427 0.1385

pj 0.3938 0.0233 0.7433 0.2316 0.1677

Question ID PS425Q04 PS425Q05 PS428Q01 PS428Q03 PS428Q05

γ̂j 0.0516 0.1613 -0.3278 -0.3421 0.0377

se γ̂j 0.1684 0.143 0.1335 0.1902 0.1518

pj 0.7591 0.2594 0.0141 0.0721 0.8039

Question ID PS438Q01T PS438Q02 PS438Q03D PS465Q01 PS465Q02

γ̂j -0.072 -0.0584 0.428 0.2134 0.137

se γ̂j 0.1638 0.1718 0.1373 0.1472 0.1433

pj 0.6605 0.734 0.0018 0.147 0.3391

Question ID PS465Q04 PS478Q01 PS478Q02T PS478Q03T PS498Q02T

γ̂j 0.0001 0.1848 0.0838 0.3308 -0.2152

se γ̂j 0.127 0.1374 0.145 0.1379 0.129

pj 0.9995 0.1788 0.5634 0.0164 0.0953

Question ID PS498Q03 PS498Q04 PS514Q02 PS514Q03 PS514Q04

γ̂j -0.0337 0.4094 0.1616 -0.4692 -0.0617

se γ̂j 0.131 0.1558 0.2185 0.132 0.1566

pj 0.7971 0.0086 0.4597 0.0004 0.6938

Table 1.

MH Log odds ratio estimator γ̂ after item purification and their standard error (s.e.(γ̂)), two-sided p-values pj for

identified PISA 2012 science questions.
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Question ID PS256Q01 PS326Q02 PS413Q06 PS415Q07T PS428Q01

PS256Q01 - 0.6038 1.7565 0.5948 1.4156

PS326Q02 -0.2347 - 1.4872 0.4186 1.1493

PS413Q06 0.6818 0.582 - -0.4989 0.1101

PS415Q07T -0.1234 -0.3163 -1.4679 - 1.1164

PS428Q01 0.4921 0.3893 -0.6406 0.3199 -

PS438Q03D -0.3359 -0.4115 -1.4288 -0.511 -1.1388

PS478Q03T -0.1508 -0.296 -1.3522 -0.3456 -1.0298

PS498Q02T 0.3201 0.2158 -0.765 0.1258 -0.495

PS498Q04 -0.2988 -0.4082 -1.4802 -0.4855 -1.1359

PS514Q03 0.6338 0.5166 -0.491 0.4414 -0.2156

Question ID PS438Q03D PS478Q03T PS498Q02T PS498Q04 PS514Q03

PS256Q01 0.732 0.7413 1.3623 0.7322 1.5567

PS326Q02 0.4385 0.5173 1.0974 0.4724 1.3047

PS413Q06 -0.6134 -0.4956 0.0091 -0.5247 0.2431

PS415Q07T 0.4357 0.4646 1.0852 0.4474 1.2777

PS428Q01 -0.3728 -0.2875 0.2697 -0.3385 0.4983

PS438Q03D - 0.4647 0.9946 0.4231 1.281

PS478Q03T -0.2704 - 0.9198 0.3191 1.1883

PS498Q02T 0.2917 0.1722 - -0.2253 0.6074

PS498Q04 -0.3859 -0.4763 -1.0238 - 1.306

PS514Q03 0.5133 0.4117 -0.0993 0.4512 -

Table 2.

Pairwise comparisons: lower (lower triangular matrix/half) and upper (upper triangular matrix/half) endpoint of

95% confidence intervals for each pairwise comparison of items with DIF detected at 5% significance by the individual

tests of PISA questions in Table 1 (using the stratification after item purification)
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under the local independence assumption, i.e. item responses were obtained independently for

each item. We find that for questions PS326Q01 and PS326Q02 the bootstrap p-value is exactly

1/10,000=0.0001, i.e. the bootstrap sampled odds ratio did not exceed the observed value in any

sample. We conclude that these two items are not locally independent. Examining all odds ratios

where we find a p-value of less than 0.05, we find that 9 of the 21 pairs (43% where this occurs are

pairs of items belonging to the same sequence of questions. In total 37 of 595 pairs (6.2% of these

pairs) of items belong to the same sequence. The over-representation of items which are part of

the same parent question among items with significantly different odds ratios agrees with the

theory that local item independence is less likely to hold when items share common material.

Finally, we compare the values for the global test W and the test Wind in Table 3. While we

have already established that the local independence assumption of the Wind test statistic

following a χ2
m distribution has been violated, and have m ≥ 5 meaning we cannot rely on the

asymptotically distribution, we consider the comparison of results to be informative. We see that

with either method of estimating the global test statistic W we reject the null hypothesis of no

DIF in any of the test items. We would have reached the same conclusion with the naive test

Wind if we were able to apply it and reach the same value without violation of its assumptions.

Value p-value (Asym) p-value (Boot)

W 115.56 1.533 ×10−10 0.0001

Wind 99.61 4.086 ×10−8 0.0001

Table 3.

The global test W based on asymptotic distribution using the adjustment of Σ̂ (Asym) and the bootstrap method

(Boot); the global test Wind based on the sum of independent χ2 statistics (Asym) and the bootstrap method (Boot).

5.2. EAP Reading Tests

The reading comprehension test with 15 multiple choice items was designed for an English

for Academic Purposes program. Seventy-seven students took the reading test that determines

whether students meet the English language proficiency criteria for university entry. The

high-stakes nature of the in-house tests means that new versions are being designed, and existing
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versions are being revised and validated on an on-going basis based on the psychometric

properties of the tests. We argue that DIF information is particularly relevant in the situations

where the stakes are high and where the test designers, often teachers themselves, are closely

involved in the test validation process.

It is of interest to investigate whether the test exhibits DIF with regard to gender. For

example, DIF could be caused by questions which are favorable for female students. This example

treats female students as the reference group and male students as the focal group. For the global

DIF test, we considered m = 15 questions. Note that unlike in Subsection 5.1, assessing each

question individually does not show significant evidence of DIF in any question (see Table 4).

Therefore, there is no item purification applied.

We created K = 14 strata based on student’s ability using the final score calculated by

adding up 0 (incorrect answer) or 1 (correct answer) for all 39 questions. The stratum range is as

follows: < 10.5, 10.5− 12.5, 12.5− 14.5, . . ., > 34.5. We estimated the odd ratio in (16) to check

the local item independence assumption. To test this, we consider the odds ratios {Γj`|gk} (16) of

different questions for Passage A. When the local item independence assumption holds, Γj`|gk = 1

for all j < ` = 2, . . . , 15, g = 1, 2, and k = 1, . . . ,K. For simplicity, we consider a common odds

ratio Γj` for all g = 1, 2 and k = 1, . . . ,K using a MH type common odds ratio estimate of Γj`.

To find p-values we used the bootstrap method based on 10,000 bootstrap samples under the local

independence assumption, i.e. item responses were obtained independently for each question.

Among m× (m− 1)/2 = 105 pairs, three Γj`’s are significantly different from 1 with a maximum

value of 7.75 and corresponding bootstrap p-value of 0.027 (unadjusted for multiple testing). The

local item independence assumption is only slightly violated for this example.

Table 4 shows the γ estimates, their standard errors and the p-values based on the Z statistic

(12) using γ0 = 0 for individual items. When γ̂ value is large, the question shows a disadvantage

for the focal (male) group based on the definition of γ̂j in (9). The smallest p-value is 0.03 (Q4),

followed by 0.06 (Q7) and 0.07 (Q12).

Testing all m = 15 items jointly does not result in rejecting H0. For example, using the

Bonferroni method, a p-value of a particular item needs to be smaller than

α/m = 0.05/15 = 0.003 to be rejected, which is clearly not the case as the smallest p-value is only
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0.03. We also applied a range of other multiple testing procedures, such as Holm (1979),

Benjamini & Hochberg (1995) and Benjamini et al. (2006). See Hemmelmann et al. (2005) for an

overview of common multiple testing methods. None of these standard methods provided

significant results. Table 5 shows the global tests W and Wind based on both the theoretical

asymptotic distribution and the non-parametric bootstrap method. None of these tests found DIF

at the 5% significance level. For this example, the bootstrap method is recommended due to the

value of m ≥ 5 as discussed in Section 4.

Table 6 shows the 95% confidence intervals comparing any two of these items, where the

upper right corner shows the upper limit and the lower left corner shows the lower limit of the

confidence interval of γj − γ`. The pairs (Q2, Q4), (Q7, Q8), (Q7, Q12), (Q7, Q13) are

significantly different at a 5% level.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

γ̂j −0.09 0.17 −0.12 −1.32 −0.44 −0.23 1.06 −0.57 0.05 −0.15 −0.48 −1.20 −0.83 −0.16 −0.17

s.e.(γ̂j) 0.59 0.53 0.61 0.62 0.69 0.55 0.56 0.51 0.51 0.56 0.52 0.66 0.58 0.55 0.57

p-value 0.88 0.75 0.85 0.03 0.52 0.67 0.06 0.26 0.92 0.79 0.36 0.07 0.15 0.77 0.76

Table 4.

MH Log odds ratio estimator γ̂ and their standard error (s.e.(γ̂)), two-sided p-values based on Z statistic.

Value p-value (Asym) p-value (Boot)

W 23.04 0.08 0.43

Wind 16.70 0.34 0.29

LR 11.77 0.70 −

Table 5.

The global test W based on asymptotic distribution using the adjustment of Σ̂ (Asym) and the bootstrap method

(Boot); the global test Wind based on the sum of independent χ2 statistics (Asym) and the bootstrap method (Boot);

LR corresponds to the likelihood ratio test.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Q1 – 1.4 1.5 2.9 2.2 1.7 0.3 2.0 1.5 1.7 1.9 3.0 2.4 1.7 1.5

Q2 −1.9 – 2.0 2.7∗ 2.0 1.8 0.7 2.3 1.7 2.0 2.1 3.1 2.7 1.8 1.9

Q3 −1.4 −1.4 – 3.0 2.2 1.8 0.3 1.8 1.3 1.6 2.0 3.3 2.5 1.7 1.5

Q4 −0.4 0.2∗ −0.6 – 0.8 0.6 −0.7 0.8 0.4 0.5 0.7 1.7 1.1 0.5 0.6

Q5 −1.5 −0.8 −1.5 −2.6 – 1.3 0.1 2.0 1.2 1.4 1.6 2.6 1.9 1.6 1.7

Q6 −1.4 −1.0 −1.6 −2.8 −1.7 – 0.1 1.8 1.5 1.5 1.7 2.6 2.2 1.5 1.6

Q7 −2.6 −2.4 −2.6 −4.0 −3.1 −2.7 – 3.3∗ 2.5 2.9 3.3 4.1∗ 3.5∗ 2.7 2.8

Q8 −1.0 −0.8 −0.9 −2.3 −1.8 −1.1 0.0∗ – 0.9 1.1 1.4 2.3 1.8 0.9 1.1

Q9 −1.8 −1.4 −1.6 −3.1 −2.2 −2.1 −0.5 −2.2 – 1.7 2.1 2.9 2.3 1.7 1.7

Q10 −1.6 −1.3 −1.5 −2.9 −2.0 −1.6 −0.4 −2.0 −1.3 – 1.8 2.7 2.1 1.4 1.3

Q11 −1.1 −0.8 −1.2 −2.3 −1.5 −1.2 −0.2 −1.6 −1.0 −1.1 – 2.3 1.9 1.3 1.2

Q12 −0.8 −0.3 −1.2 −2.0 −1.1 −0.6 0.4∗ −1.1 −0.4 −0.6 −0.9 – 1.0 0.4 0.9

Q13 −0.9 −0.7 −1.1 −2.1 −1.1 −1.0 0.3∗ −1.2 −0.5 −0.8 −1.2 −1.7 – 0.8 0.9

Q14 −1.6 −1.1 −1.6 −2.8 −2.1 −1.6 −0.3 −1.7 −1.3 −1.3 −1.9 −2.5 −2.2 – 1.5

Table 6.

Pairwise comparisons: lower (lower triangular matrix/half) and upper (upper triangular matrix/half) endpoint of

95% confidence intervals for each pairwise comparison. The significantly different pairs at a 5% level are indicated

by ∗.

6. Conclusion

By using the GMH estimators described, we are able to estimate the covariance of the

common log odds ratio estimator across multiple dependent questions. This allows for

simultaneous statistical tests for DIF when the local item independence assumption does not

hold. This paper compares two global test statistics W and Wind based on the theoretical

asymptotic distribution and the non-parametric bootstrap method. When the simultaneous test

involves less than 5 items, the proposed global test statistics W shows the best performance. If

the number of items is large, the global test statistic Wind is recommended in conjunction with

the bootstrap method used to find the p-value of the test. The comparison to the standard LR

Page 27 of 35

http://mc.manuscriptcentral.com/epm

Educational and Psychological Measurement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Educ. Psychol. Meas. Submission September 7, 2022 28

test procedure illustrates the global test statistics are generally more suitable for cases with

correlated items or highly sparse data.

We illustrate different tests using two examples. While this paper only compares two groups

(reference and focal), the GMH estimators can be applied to compare more than two groups.

Though there is still work to be done in determining a suitable multivariate analogue to the MH

Delta–DIF scale.

It would be of interest to further investigate the performance of these estimators in different

situations, such as testing these GMH estimation techniques against other simultaneous tests in

highly sparse data cases. While the dual consistency of the GMH estimators provides a

motivation for their use in sparse data cases, we are unaware of how they may perform compared

to other simultaneous tests (e.g. SIBTEST) in these situations.

Further generalization of these GMH techniques to ordinal response data should also be

possible. The Liu–Agresti estimator (Liu & Agresti, 1996) provides a method for estimating a

common cumulative odds ratio across strata for ordinal data in a 2× c×K table. In the context

of DIF this allows for the detection of DIF in polytomous items i.e. questions with ordinal

responses (Penfield & Algina, 2003). A combination of the Liu–Agresti estimator and the GMH

techniques would allow for estimation of the covariance of the cumulative common odds ratio

estimator between answers to different polytomous items.

Finally, the R code to calculate the GMH estimators and their (co)variance estimators is

available on Github. Note: Due to the blinded manuscript requirement, the link is not provided

for this version.
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