

Implementation and Evaluation of
Microaggregation Algorithms for

Categorical Data

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

Arnold Veltmann

In partial fulfilment

of the requirements for the degree of

Cybersecurity ENGINEERING

Advisor: Esteve Pallarès Segarra, MSc

Barcelona, September 2022

Abstract

In a growingly digitalised world, the need for data privacy is apparent. Data scientists have

contributed much previous work to ensure privacy regarding numerical data attributes in

published datasets. However, work with categorical data tends to significantly affect the

data utility concerning information loss, and less feasible research is available. The thesis

aims to describe, implement and compare multiple microaggregation algorithms for

categorical data. To achieve the goals of the thesis, and provide valuable output, multiple

new proposals to handle categorical data based on the Mondrian algorithm were presented

as part of the thesis. It was found that the proposals fared well compared to some previously

presented algorithms, both in terms of algorithm execution time and potential information

loss and reidentification risk.

 1

Acknowledgements

The help of the advisor, Esteve Pallarès Segarra, in the topic choice, providing related works

of literature, and active willingness to discuss different aspects of the thesis and concepts of

data privacy, in general, is gratefully acknowledged. In addition, the comments and thoughts

of Lemmo Lavonen, who was up to discuss code and theory-related questions concerning

prior works whenever any discussion was required, were also valuable for improving the

outcome of the thesis.

 2

Table of contents

List of Figures ... 4

List of Tables .. 5

1. Introduction .. 6

1.1. Statement and purpose .. 7

1.2. Methods and procedures ... 7

1.3. Work plan ... 8

2. State of the art .. 9

2.1. Background .. 9

2.1.1. Value Generalisation Hierarchies ... 9

2.1.2. WordNet .. 10

2.1.3. Wu-Palmer similarity .. 10

2.1.4. Sum of Squares error ... 11

2.2. Previous related work ... 11

2.2.1. K-modes .. 11

2.2.2. MDAV-generic ... 12

2.2.3. Semantic and Semantic-Adaptive MDAV .. 12

2.2.3.1. Weighted Semantic Distance .. 14

2.2.3.2. Centroid construction .. 14

2.2.3.3. Calculating loss ... 15

2.2.4. Mondrian ... 16

2.2.5. Mondrian for categorical data ... 17

3. Project development .. 19

3.1. Used datasets and VGHs .. 19

3.1.1. Adult Census dataset ... 19

 3

3.1.2. Rsquared Academy Analytics dataset ... 23

3.2. Mondrian proposals .. 25

3.2.1. Multidimensional Strict Mondrian adaptation proposal (Simple Mondrian) 26

3.2.1.1. Variable ordering .. 27

3.2.1.2. Splitting dimensions .. 28

3.2.2. Semantic Adaptive Multidimensional Strict Mondrian adaptation proposal 29

3.2.2.1. Splitting dimensions .. 29

3.3. Developed code .. 30

3.3.1. Algorithms .. 31

3.3.2. Specific functions .. 31

3.3.3. Assisting code ... 32

4. Results and evaluation ... 33

4.1. Utility and privacy .. 33

4.1.1. Information loss .. 33

4.1.2. Global risk ... 36

4.2. Algorithm execution times ... 38

4.2.1. Machine specifications .. 39

5. Conclusions and future development ... 40

Bibliography .. 41

Appendices .. 43

A. Datasets .. 43

B. Source code .. 44

Glossary .. 45

 4

List of Figures

Figure 1. Gantt diagram of the thesis schedule ... 8

Figure 2. Two-level categorical attribute Value Generalisation Hierarchy 9

Figure 3. Mondrian algorithm ... 16

Figure 4. Multidimensional strict partitioning .. 17

Figure 5. Algorithm process visualisation for mixed-value Mondrian 18

Figure 6. Value Generalisation Hierarchy of the occupation attribute (WordNet) 21

Figure 7. Value Generalisation Hierarchy of the native.country attribute (WordNet) 22

Figure 8. Value Generalisation Hierarchy of the os attribute ... 24

Figure 9. Example Value Generalisation Hierarchy for operating systems 28

Figure 10. Python implementation of Weighted Semantic Distance 31

Figure 11. Python implementation of finding the Least Common Subsumer 32

Figure 13. Data loss in relation to k values for Analytics Sample One and Two 34

Figure 14. Data loss in relation to k values for Analytics and Adult Census dataset 35

Figure 15. Analytics Sample One and Analytics Sample Two execution times 38

Figure 16. Analytics and Adult Census execution times .. 38

 5

List of Tables

Table 1. Transformations in the occupation attribute to adapt for WordNet 20

Table 2. Transformations in the native.country attribute to adapt for WordNet 21

Table 3. Most frequent values in the Adult Census dataset .. 23

Table 4. Most frequent values in the Analytics dataset .. 25

Table 5. Global risk recordings for the Adult Census dataset .. 37

Table 6. Global risk recordings for the Analytics Sample One dataset 37

 6

1. Introduction

As the world is growing increasingly digitalised and individuals’ data has become a

commodity, the need for privacy on both an individual and institutional level has become

more evident. In this principle, statistical disclosure control (SDC) aims to reduce the risk

of information disclosure in published datasets. However, not all data is equal, and

researchers may use different anonymisation methods based on the data’s distinct

characteristics. Furthermore, there are multiple ways of dividing data into categories. One

common recourse is to classify the data as continuous or categorical.

Continuous. An attribute is continuous if it is numerical, and arithmetical operations (such

as finding the mean) can be performed on it [1]. A person’s income and net worth can be

considered continuous attributes.

Categorical. An attribute is categorical when it takes values over a finite set, and standard

arithmetical operations cannot effectively be performed on it [Ibid.]. A person’s sex and

address can be considered categorical attributes.

A prevalent way to reduce the risk of information disclosure is to use microaggregation

algorithms on the data before release, which reduces the data utility but improves the level

of data privacy. While microaggregation is most often used in conjunction with continuous

data, it is possible to adapt the data masking algorithms for categorical microdata [3].

Frequently, microaggregation algorithms aim to provide k-anonymity. The concept of k-

anonymity is well-spread in research related to data anonymisation. It was introduced in

1998 by Latanya Sweeney and Pierangela Samarati [2] to reduce the risks of re-

identification in published data. In the simplest sense, a set of published records is k-

anonymous if for every record exists at least k – 1 additional records indistinguishable from

the record under observation. Typically, the first step in a k-anonymity guaranteeing

microaggregation algorithm is to form data clusters containing at minimum k elements. In

the second step, the average for each cluster is calculated, and the original data is replaced

with the averages [3].

Examples of popular microaggregation algorithms to obtain k-anonymity in a dataset

include the Maximum Distance to Average Vector (MDAV) and the Mondrian algorithms.

 7

1.1. Statement and purpose

As stated, microaggregation is most associated with continuous data. However, the thesis

focuses on microaggregation algorithms for categorical data, wherein less research is

available. The aim of the thesis is to describe, implement and compare multiple different

microaggregation algorithms in relation to categorical attributes.

To achieve the thesis's goals and provide a relatively fair background for comparison, the

algorithms are programmed from scratch to have a structurally similar codebase. Python

was chosen as the programming language to implement the algorithms. More specifically,

the thesis is to provide comparisons regarding information loss, reidentification risk, and

the execution time measurements of the algorithms. However, it is essential to note that

runtime comparisons heavily depend on the programming language and the use of different

data structures and libraries. Thus, it serves as an indicator of the potential and is not such

a definite comparison factor as the information loss and risk measurements.

The produced work hopes to create a further basis for research in the future and highlight

some of the difficulties of working with categorical data.

1.2. Methods and procedures

Microaggregation with categorical data has been researched only by a limited circle of

researchers to the best of the author’s knowledge.

The algorithms under observation in the thesis are modified variants of the Maximum

Distance to Average Vector (MDAV) and Mondrian algorithms, which have been adapted

for use with categorical data. The MDAV adaptations are implementations based on the

proposals of Sánchez et al. [6] in 2012. The specific Mondrian adaptations are introduced

in this thesis. Wherein, one of the Mondrian adaptations remains relatively faithful to the

strict multidimensional Mondrian algorithm described by LeFevre et al. [7] in 2006, and the

MDAV adaptation proposals in the work of Sánchez et al. inspire the second [6].

There are multiple prior papers on microaggregation with categorical data, e.g., the ground-

laying work of Domingo-Ferrer et al. in 2005 [1] and later the more closely related work of

Abril et al. in 2010 [8], highlighting the importance of semantics. However, SA-MDAV has

proved to be one of the more feasible proposals for microaggregation with categorical data,

as works further in the past have introduced quite heavy loss of data utility [6]. Despite this,

 8

no prior functional code is available publicly for the SA-MDAV algorithm, which further

prompts an implementation of the algorithm from scratch.

In that regard, the primary comparison metric for information loss in this work is the same

as proposed in the paper by Sánchez et al. [Ibid.]. Using the same metric and related

terminology (such as the Sum of Squares Error (SSE) and Wu-Palmer distance) allows easy

and understandable comparisons between the algorithms and papers. The concepts above

and additional topic-specific terminology and background information are explained in the

thesis's second chapter, providing the solid groundwork to describe the rest of the work and

results. The third chapter describes the tasks completed regarding specific datasets used to

gather results and the adaption of the Mondrian algorithm for categorical data. In chapter

four, the results are visualised and analysed. The final chapter of the thesis concludes the

work and discusses future research possibilities.

1.3. Work plan

The author worked on the thesis from February to August 2022. Before gathering results,

extensive research into the topic was carried out to determine, which algorithms to compare,

and how to compare them. The algorithms were further researched and then implemented

as functional code. A Gantt diagram outlining the rough schedule of the project is visualised

in Figure 1.

Figure 1. Gantt diagram of the thesis schedule

 9

2. State of the art

Chapter 2.1. provides the basic background information concerning terminology and

concepts to lay the foundation for a better understanding of the thesis.

The following chapter 2.2. serves to provide an overview of previous work and studies (as

well as the descriptions of the semantics based MDAV algorithms) related to the topic,

based on which it is possible to create a more extensive foundation for the presentation of

ideas, confirmation of results, and any related discussion.

2.1. Background

The following chapters (2.1.1. - 2.1.5.) describe some of the key concepts and terminology

which the thesis is based upon.

2.1.1. Value Generalisation Hierarchies

A value generalisation hierarchy (VGH) is an organised grouping of entities based on the

common attributes that they share. In other words, in a generalisation hierarchy, a superclass

(or supertype) is connected with one or more subclasses (or subtypes), wherein the subclass

is a specialisation of the superclass. A multilevel hierarchical tree is formed in doing so, as

a subclass can have its own subclasses [10].

These hierarchies can either consist of numerical or categorical data. For example, in

numerical attribute VGH, the range 1 to 100 could be split into two subclasses: 1 to 50 and

51 to 100. The output is a two-level value generalisation hierarchy. A categorical attribute

can be divided into subclasses based on any underlying ontology. An example of a two-

level categorical attribute VGH is visualised in Figure 2.

Figure 2. Two-level categorical attribute Value Generalisation Hierarchy [9]

 10

In the figure, the visualised d between the super and subtypes specifies disjointness, which

means that the entities are mutually exclusive [Ibid.]. The employee is the highest-level

abstraction and is the superclass, while other, more specialised, values are its subclasses.

2.1.2. WordNet

As stated in the previous chapter, a value generalisation hierarchy based on a categorical

attribute is best built on some background ontology.

WordNet is a lexical database of English, where words are grouped into sets (Synsets),

which are interlinked by utilising conceptual-semantic and lexical relations. Princeton

University owns the trademark for WordNet, yet it is available for research and commercial

use free of charge [4].

In the way it is structured, WordNet can be used as a lexical ontology to create unbiased

Value Generalisation Hierarchies. With a standardised background ontology, related works

can also be better compared. In this thesis, WordNet 3.1 was used.

2.1.3. Wu-Palmer similarity

Wu-Palmer similarity has been used in previous related works (such as by Sánchez et al. [6]

and Abril et al. [8]) as a measure to compare the similarity of categorical attributes (or in

the case of WordNet, Synsets) with each other.

Wu and Palmer [5] define the conceptual similarity between two concepts C1 and C2, as:

𝐶𝑜𝑛𝑆𝑖𝑚(𝐶1, 𝐶2) =
2 ∗ N3

N1 + N2 + 2 ∗ N3

Where N3 denotes the depth of the Least Common Subsumer (LCS) of C1 and C2 in the

VGH. N1 and N2 denote the depth distance from the LCS to the nodes under comparison.

A more intuitive definition could be:

𝐶𝑜𝑛𝑆𝑖𝑚(𝐶1, 𝐶2) = 2 ∗
N3

N1 + N2

Where N3 remains the same, N1 and N2 denote the depth distance from the root, yielding

the same result as the previous formula. The result ranges from 1 to 0, marking the

spectrum's ends as identical and with no linkage whatsoever respectively.

 11

As per Sánchez et al. [6], the distance between two concepts is derived from the Wu-Palmer

Similarity formula as:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶1, 𝐶2) = 1 − 𝐶𝑜𝑛𝑆𝑖𝑚(C1, C2)

2.1.4. Sum of Squares error

One standard way to evaluate the information loss in a dataset after applying a

microaggregation algorithm is through the Sum of Squares Error (SSE).

In terms of data loss, the optimal k-partition maximizes within-group homogeneity, as

microaggregation replaces the values in the cluster by the given cluster's centroid (often the

mean or mode). The algorithm for calculating SSE is defined as follows [3]:

𝑆𝑆𝐸 =:	
!

"#$

:<𝑥"% − 𝑥">
&<𝑥"% − 𝑥">

'!

%#$

For each record in the original dataset, the numerical difference (most commonly Euclidean

distance) between the original and the microaggregated records is squared and summed

together. The operation is performed on normalised values.

However, as the input and output are both numerical, a different formula must be considered

when calculating the Sum of Squares Error for categorical data.

In this thesis, instead of the commonly used Euclidean distance in determining the distance

between two datapoints, the distance measure based on Wu Palmer similarity proposed by

Sánchez et al. [6] is used and is explained in the previous paragraph (2.1.3).

2.2. Previous related work

This paragraph gives a brief overview of some previous works regarding microaggregation

and microaggregation specifically in conjunction with categorical data.

2.2.1. K-modes

One of the earliest microaggregation algorithms proposed (in 2004) regarding categorical

data is the k-modes algorithm [14], which is based on the popular k-means algorithm for

numerical data.

 12

In the k-modes algorithm, the process is started by choosing an initial partition or cluster at

random. Next, the number of dissimilarities is calculated for each record in the dataset. For

nominal data – the distance is defined as 1 in case values are different and 0 when they are

equal. In case of ordinal data, the distance is calculated arithmetically considering the

spacing of the attributes in the ordered data. In the third step, new modes (most observed

values) are calculated and chosen as representatives. These steps, starting from the second,

are repeated to form the clusters [Ibid.].

2.2.2. MDAV-generic

In 2005, Domingo-Ferrer et al. proposed MDAV-generic [1], which compared to the prior

works with MDAV, made it fit for the first time to categorical data.

Like the k-modes algorithm (see chapter 2.2.1), the distance between two nominal attributes

was defined using the equality predicate – counting the value between two nominal

attributes as 0 in case of inequality and 1 in case of equality. To calculate the averages,

likewise, the mode was used. However, the two algorithms differ in partitioning, as the

MDAV-generic algorithm does not require to define the number of clusters in the final

output as an input [Ibid.].

2.2.3. Semantic and Semantic-Adaptive MDAV

In their paper, Sánchez et al. [6] introduced two new algorithms – Semantic MDAV and

Semantic Adaptive MDAV, wherein the first is in a way a layer for the second one.

In the proposed algorithms, emphasis is put on data semantics, as it is argued that the

simplistic treatment of categorical data in prior works significantly contributes to data loss.

Thus, in the algorithms, a structured knowledge source such as WordNet (however a

different background ontology could be used as well) is used to map the distances between

concepts, while previous works rely on the equality predicate. Based on the created VGH,

Weighted Semantic Distance (see 2.2.3.1) is used to calculate the similarity of concepts in

the clustering process and in the later steps of loss evaluation [Ibid.].

The Semantic Adaptive MDAV uses the same underlying concepts and logic as the

Semantic MDAV algorithm. However, the adaptive part in the name refers to the fact that

the resulting clusters do not have to contain k records; instead, they must contain, at

minimum, k records. It is argued that due to the discrete nature of categorical data, it is more

 13

desirable in terms of cohesion to include all records with identical values in the same cluster.

Thus, the k-anonymity property is met, while the cluster size can vary depending on the data

distribution. In addition, for the algorithms, the centroid is recalculated each time there is a

change in the data, in comparison to the classical MDAV algorithm [Ibid.]. The data is pre-

processed in a way that equivalent records are mapped by frequency, which contributes

greatly to the speed of the algorithm.

The following complete pseudocode [Ibid.] of the SA-MDAV algorithm is taken from the

SA-MDAV paper, with some slight changes, which should not contribute to any differences

in the results. Namely, creating an empty array to store the created clusters instead of

creating a copy of the original dataset for continuous modification. The purpose of the

modification is to give an accurate representation of the work done regarding the

implementation of the algorithm for this thesis (Appendix B).

ALGORITHM 1. SEMANTIC ADAPTIVE MAXIMUM DISTANCE TO AVERAGE VECTOR

 Input: D (dataset), k (level of anonymity)
 Output: CD (data divided into clusters)

1 CD ← new empty array
2 while (|D| ≥ k) do

3 Compute the centroid x of all tuples in D
4 Consider the most distant tuple r to the centroid x

5 Form a cluster C with the tuple r and remove this tuple from D
6 Calculate centroid c
7 while (|C| < k) do

8 	 Find the closest tuple t to c from the tuples in D and add it to C

9 	 Remove the tuple t from D

10 	 Calculate the new centroid c of cluster C

11 end while
12 Add	cluster	C	to	CD	
13 if (|D| ≥ k) then
14 	 Find the most distant tuple s to tuple r

15 	 Form a cluster C with the tuple s. Calculate centroid c

16 	 while (|C| < k) do

17 	 	 Find the closest tuple t to c from the tuples in D and add it to C

18 	 Remove the tuple t from D

 14

19 	 Calculate the new centroid c of cluster C

20 	 end while

21 	 Add cluster C to CD

22 end if

23 end while
24 Add each remaining tuple in D to their closest cluster in CD

25 return CD

2.2.3.1. Weighted Semantic Distance

Sánchez et al. [Ibid.] propose a distance measure based on Wu Palmer similarity and

distance (see 2.1.3). However, theoretically, the Semantic MDAV algorithm could be

implemented with a different distance measure.

The following equation [Ibid.] describes the weighted semantic distance between two data

entries, where v1 and v2 describe the attribute’s values and ω$ and ω(their respective

frequencies. As a clarification, in the case of S-MDAV, the frequencies when calculating

the distance are equal to 1, as each record is considered a unique data entry. The weighted

semantic distance between the two entries is equal to the Wu Palmer distance for the values

times the multiplication of the respective frequencies:

𝑤𝑠𝑑(< 𝑣$,ω$ >, < 𝑣(, ω(>) =:	
ω"

"#$

:𝑑𝑖𝑠)&+(𝑣$, 𝑣() = 𝑑𝑖𝑠)&+(𝑣$, 𝑣() × (ω$ × ω()
ω#

%#$

For multivariate data entries, the distances for each corresponding attribute value are added

up and then divided by the count of attributes under observation m, as can be seen in the

following equation [Ibid.]:

𝑤𝑠𝑑(< {𝑣$$, . . , 𝑣$,},ω$ >, < 𝑣($, … , 𝑣(,}, ω(>) =F
𝑤𝑠𝑑<< 𝑣$% ,ω$ >, < 𝑣(% , ω(>>

𝑚

-

%#$

2.2.3.2. Centroid construction

In the proposal [Ibid.], the centroid of a cluster is selected according to the semantics of

data, rather than its distribution.

 15

The paper highlights two important differences in calculating the centroid in comparison to

previous works:

a) The notion of distance is considered during the centroid construction.

b) The centroid candidates are not limited to the values in the cluster. Instead, they can

also be any taxonomical ancestor in the created VGH, allowing the creation of more

accurate centroids.

Thus, a centroid is chosen such that the concept minimises the weighted semantic distance

concerning all the values in the cluster. Or, in more depth, for each node in the VGH, the

distance of the corresponding (matching attribute) value in the cluster is calculated. The

node with the shortest distance to all cluster elements is chosen as the centroid for the

cluster. The distance measures both for univariate and multivariate inputs are described in

chapter 2.2.3.1. Note that during the centroid calculation, the input frequency of the node in

the VGH is equal to 1.

2.2.3.3. Calculating loss

The loss is calculated using the Sum of Squares error, described in chapter 2.1.4 of the

thesis. However, as stated in the chapter, Euclidean distance is most often used to calculate

the SSE, which is not applicable for categorical values.

Sánchez et al. [Ibid.] use the weighted semantic distance measure based on Wu Palmer

distance described in 2.1.3 instead in the SSE equation:

𝑆𝑆𝐸 =:	
!

"#$

:(𝑑𝑖𝑠)&+<𝑥"% , 𝑥">)(
'!

%#$

Wherein the SSE of the dataset is equal to the sum of (squared) distances of each entry in

each cluster to the cluster centroid. Note that in theory, as the values are pre-processed, the

Wu Palmer measure translates here as the distance measure explained in 2.2.3.1, since the

SSE must be calculated in relation to each record.

Furthermore, for loss calculation, it is also necessary to calculate the Sum of Squares Total

(SST). The measure calculates the sum of (squared) distances between each element and

the centroid of the entire dataset.

 16

After calculating the values, the loss (in percentage) can be calculated as

𝐿 = 	
𝑆𝑆𝐸
𝑆𝑆𝑇 × 100

2.2.4. Mondrian

Mondrian is considered a recursive algorithm and is classically used for numerical, ordinal

data. Due to its recursive factor, it is best visualised with a graph (see Figure 3).

Figure 3. Mondrian algorithm [11]

There are multiple papers that include pseudocode for the Mondrian algorithm, however,

for clarity, a simplified pseudocode demonstrating the core of the algorithm is described

below (Algorithm 2), which is roughly based on the code map visualised in Figure 3.

ALGORITHM 2. MONDRIAN CORE

 Input: D (dataset), k (level of anonymity)

 Output: CD (data divided into clusters)
1 CD ← new empty array

2 Call recursive algorithm on the entire dataset: Mondrian(D)
3 if (no allowable cut for input data) then

4 Create cluster C from D
5 Add cluster C to CD

6 return
7 else

8 Choose dimension (attribute) A to split
9 Evaluate the split point (e.g., median) for A and find its index i

 17

10 Split D based on index i to LeftPartition and RightPartition

11 Mondrian(LeftPartition)
12 Mondrian(RightPartition)

13 Output CD
A more detailed pseudocode in relation to the thesis can be found in the third chapter of the

thesis (3.2), outlying some of the more specific approaches.

Mondrian can be modified and classified by different means, such as being

multidimensional or single-dimensional and strict or relaxed, as described by LeFevre et al.

in 2006. In their paper, it was concluded that strict multidimensional partitioning provided

the best results regarding data utility. Furthermore, despite Mondrian being a greedy

algorithm, it often produced better results compared to more expensive optimal algorithms

for other recoding models [7]. Note that already at its core, strict-Mondrian aims to provide

output data that satisfies k-anonymity, but does not restrict clusters to k values, and thus

already possesses the adaptability property described in the proposal of SA-MDAV [6]

wherein equal values are highly likely to end in the same cluster.

Due to the reasons above, the Mondrian implementations in this thesis are also based on

strict multidimensional partitioning. As per the name, the multidimensional part suggests

that the data can be split in different dimensions, while the strict part suggests that no split

is made such that a dimension is split in a way that equal values could end up in both the

left and right partition. A visual representation of the partitioning for numerical data is

presented in Figure 4.

Figure 4. Multidimensional strict partitioning [7]

2.2.5. Mondrian for categorical data

While likewise to MDAV, most work regarding Mondrian is done with numerical data, the

transformation to use Mondrian with categorical data is in theory simpler. However, it does

 18

garner some difficulty if data semantics are of great importance. To adjust the standard

Mondrian algorithm for categorical data, it is necessary to describe a way to order the

categorical values. To create cohesive clusters, the most similar values should intuitively be

ordered close to each other.

One such proposal is a part of the EU-funded MOSAICrOWN projects’ [15] specifications,

which describe a mixed-data Mondrian algorithm. The proposed algorithm is based on the

multi-dimensional Mondrian algorithm. In the project, the categorical attributes are ordered

based on their appearance in the leaf level of the created Value Generalisation Hierarchy.

In contrast to other works, instead of replacing the values in a cluster with their averages or

mean values, the Least Common Subsumer is chosen as the recoded value for the cluster

elements [Ibid.]. This means, for example, that if a cluster consists of values {‘France’,

‘Italy’, ‘Italy’} and k is equal to 3, all the values in the cluster will be recoded

as Europe instead of Italy. The algorithm process is visualised in Figure 5 below, where a)

is the original data, b) shows the partitioning, and c) shows the recoded data after

partitioning and generalisation.

Figure 5. Algorithm process visualisation for mixed-value Mondrian [Ibid.]

The work does not elaborate on how the ordering can be adjusted to deal with cases where

not all values in the dataset are placed in the leaf nodes, and some might already be

generalisations and thus reside in higher levels of the VGH. As per the algorithm

description, the dimension is split at the median value. This, presumably based on the

illustrations, means that the cut takes place for categorical values such that the left and right

partitions contain an equal number of records.

 19

3. Project development

In this paragraph, the work done in order to obtain the results for comparison and analysis

is described. Starting with the descriptions of the datasets used, Value Generalisation

Hierarchies created, and within containing a brief overview of some of the issues faced and

decisions taken. Finally, more specific work in implementing the Mondrian and MDAV

algorithms is discussed.

3.1. Used datasets and VGHs

As stated in 3.1.2, WordNet can be treated as a background ontology when creating VGHs

for categorical data. However, this introduces some limitations, as not all concepts can be

mapped as Synsets within WordNet. For example, creating a VGH based on WordNet for

an attribute describing operating systems is impossible. In this scenario, a different ontology

must be used or created.

In this thesis, two datasets were used, wherein one was further divided into smaller datasets

to obtain more different results for comparison. For the first dataset, VGHs based on

WordNet with slight modifications were created, while due to the nature of the attributes

and their properties, for the second dataset, VGHs based on the authors’ general knowledge

were created. All used datasets are included as part of Appendix A.

3.1.1. Adult Census dataset

The first dataset is the publicly available Adult Census dataset [12] in the UCI repository,

which has previously been used in other works such as by Sánchez et al. [6] and prior works.

Similar to the paper mentioned above, some replacements had to be made to the dataset due

to some of the modalities in the data not being directly found in WordNet. Thus, the changes

were required to create proper VGHs and map the distances for each term used in the data.

Furthermore, likewise to past work by Sánchez et al., two categorical attributes from the

dataset were used – occupation and native.country.

The occupation attribute

Multiple transformations were required to be performed on the data before a Value

Generalisation Hierarchy based on the occupation attribute could be constructed. These

value transformations are visualised in Table 1.

 20

Original value Used WordNet Synset
Tech-support technician
Craft-repair craftsman
Other-service worker
Sales salesperson
Exec-managerial executive
Prof-specialty specialist
Handlers-cleaners cleaner (sense 3)
Machine-op-inspct machinist
Adm-clerical clerk
Farming-fishing farmer
Transport-moving mover
Priv-house-serv housekeeper
Protective-serv guard
Armed-Forces soldier

Table 1. Transformations in the occupation attribute to adapt for WordNet

Most of the replacements were the same as those by Sánchez et al. [Ibid.], with a few

exceptions. It was not explicitly clear in the paper mentioned above whether the built VGH

reached out to the root of the WordNet ontology or not, for clarity, the VGH in this thesis

reached to the root, entity. Furthermore, in contrast to the work by Sánchez et al., an

additional replacement of sales with salesperson took place. Moreover, machine-op-

inspct was replaced by machinist in favour of operator; farming-fishing was replaced

with farmer in favour of a more general skilled_worker; and transport-moving was

replaced with mover in favour of carrier.

For all Synsets, the sense 1 of the word was used when creating the VGH, except for cleaner,

where sense 3 seemed more fitting for the concept of an occupation based VGH, as in

WordNet 3.1 [4] sense 1 referred to a cleanser.

Regarding the occupation attribute, a Value Generalisation Hierarchy based on the WordNet

ontology is visualised in Figure 6.

 21

Figure 6. Value Generalisation Hierarchy of the occupation attribute (WordNet)

The native.country attribute

In the case of the native.country attribute, fewer substitutions were required. These

substitutions were performed as by Sánchez et al. [6.] and are visualised in Table 2.

Original value Used WordNet Synset
Outlying-US(GUAM-USVI-etc) american_state
Hong hong_kong
Holand-Netherlands netherlands

Table 2. Transformations in the native.country attribute to adapt for WordNet

However, outside of the WordNet based ontology, a more appropriate or precise substitution

might be considered for replacing the Outlying-US(GUAM-USVI-etc) value.

The VGH for the native.country attribute was created based upon WordNet ontology as

prior; however, the liberty to distance from the WordNet based ontology was taken in the

case of one single variable - Taiwan. It was moved in the VGH to be classified among other

Asian countries, as compared to being considered an island and building a distinct separate

branch for it in the Value Generalisation Hierarchy. For clarification, in the WordNet

Lexical Database, Taiwan is not considered a country [4].

Furthermore, this highlights why it might make sense to create purpose-built ontologies to

build the VGH upon in some circumstances. Further characterised by the fact that with

en
tit
y physical

entity
casual
agent person

creator farmer

leader head executive

worker

employee

sales-
person

workman
mover

laborer cleaner
clerk

servant domestic house-
keeper

skilled
worker

craftsman machinist
service-

man
enlisted
person soldier

technician

preserver defender guard

expert specialist

 22

WordNet, some specifications can go missing. For example, England and Scotland are not

considered closer in the general ontology compared to England and Netherlands [Ibid.]. A

more specific VGH can potentially decrease relative data loss significantly. For

reproducibility, the created VGH has been visualised and shown in Figure 7.

Figure 7. Value Generalisation Hierarchy of the native.country attribute (WordNet)

 23

Notice that one might also consider reconstructing the VGH on different aspects, such as

making it more region-specific by defining a separate branch for Caribbean countries or

moving american_state under the United States, hong_kong under China, and

commonwealth under England, for example.

Data overview

The Adult Census dataset consists of 30162 records (after removing n/a values). In the

dataset, 84 records (0.278%) violate 2-anonymity and 497 records (1.648%) violate 5-

anonymity. The most common value in the dataset corresponds to (‘executive’,

‘united_states’), which makes up 12.38% of the records. The top 5 most frequent values

comprise almost half of the entire dataset (48%) and are visualised in Table 3.

Table 3. Most frequent values in the Adult Census dataset

The native.country attribute contains 41 distinct values, where a whopping 27504 records

correspond to united_states (91.2%). The occupation attribute contains 14 distinct values

and is more distributed, where specialist corresponds to 13.9% of all the records.

3.1.2. Rsquared Academy Analytics dataset

The second publicly available dataset has been taken from the Rsquared Academy Handling

Categorical Data in R series [13].

In this dataset, two categorical attributes were chosen as well – os and country. However,

in contrast, for the os attribute, no existing background ontology was used, and for the

country attribute, the VGH was more loosely based on WordNet and was not built to the

root entity. This was done due to the fact that, in WordNet, there are no existing concepts to

create a VGH for operating systems. The country attribute could have been strictly based

on WordNet; however, the creative freedom was taken to allow a more specialised VGH

 24

and keep the VGHs structurally similar. In Figure 9, the Value Generalisation Hierarchy

created for the os attribute is visualised.

Figure 8. Value Generalisation Hierarchy of the os attribute

As the country attribute consists of 193 unique values, the VGH is not visualised in the

thesis; however, it is recreatable with the code attached in Appendix B. As mentioned, the

VGH is based loosely on WordNet. However, more specific generalisations were created

and country was used as the root of the VGH. Some of these generalisations include but are

not limited to oceanian_country, carribean_country, and balkan_country.

Based on the Analytics dataset, two smaller datasets with 10000 random records each were

created to further evaluate the algorithms under comparison in the thesis. These datasets are

later in the work referred to as Analytics Sample One, and Analytics Sample Two.

Data overview

The Analytics dataset consists of 243545 records. In the dataset, only 125 records (0.051%)

violate 2-anonymity and 531 records (0.218%) violate 5-anonymity. The most common

value in the dataset corresponds to (‘windows’, ‘united_states’), which makes up 13.3% of

the records. The top 5 most frequent values comprise a considerable chunk of the entire

dataset (39.9%) and are visualised in Table 4.

operating_system

console_os

playstation

playstation_4_os

playstation_vita_os

xbox

desktop_os

linux

chrome_os

mac_os ms_desktop

os/2

windows

mobile_os

blackberry

windows_phone_os

ios linux_mobile

android

firefox_os

tizen

 25

.

Table 4. Most frequent values in the Analytics dataset

The os attribute contains 14 distinct values, where the most frequent value is windows with

91208 (37.5%) corresponding records. The country attribute contains 193 unique values.

Out of all the records, 39.8% of them correspond to united_states.

Overview of Analytics Sample One and Analytics Sample Two

As the datasets are random samples of the Analytics dataset, their percentual values

regarding most of the values remain similar. However, the smaller datasets allow for

obtaining faster results, and possess some distinctness regarding the removed values.

The first dataset violates 2-anonymity on 115 occasions (1.150%) and 5-anonymity on 340

occasions (3.4%). Likewise, to the original dataset, the most common tuple is (‘windows’,

‘united_states’) with 1354 matching records (13.5%). For the country attribute, only 124

distinct values remain, and for the os attribute, only 7. In complete, there are 380 distinct

value tuples in the formed dataset.

The second dataset is similar, and consist of 396 distinct value tuples. The dataset violates

2-anonymity on 136 occasions (1.36%) and 5-anonymity on 350 (3.5%) occasions. The

most common tuple is again (‘windows’, ‘united_states’) with 1377 occurrences (13.8%).

For the country and os attributes, 129 and 8 distinct tuples remain respectively.

3.2. Mondrian proposals

In this chapter of the thesis, two proposals for adapting Mondrian with categorical data are

described. The first is a more-or-less standard approach to the issue, while the second builds

upon the first and introduces new logic in determining the split value. Both proposals use

the same core algorithm; however, the differences are found in data pre-processing and how

the dimensions are split. The pseudocode in Algorithm 3 demonstrates the core of the

 26

Mondrian algorithm in more detail and shows the more realistic view on how the algorithms

in Appendix B are programmed in Python.

ALGORITHM 3. MONDRIAN DETAILED

 Input: D (dataset), k (level of anonymity)

 Output: CD (data divided into clusters)
1 CD ← new empty array

2 Call recursive algorithm on the entire dataset: Mondrian(D)
3 Split input D into dimensions and sort by widest range of values

4 if (no allowable cut for input data) then
5 Create cluster C from D

6 Add cluster C to CD
7 return

8 else
9 Choose dimension (attribute) A to split

10 Evaluate the split point for A and find its index i
11 Split D based on index i to leftPartition and rightPartition

12 if (|leftPartition| == k) then
13 Create cluster C from leftPartition and add to CD

14 Mondrian(rightPartition)
15 elif (|rightPartition| == k) then

16 Create cluster C from rightPartition and add to CD
17 Mondrian(leftPartition)

18 else
19 Mondrian(leftPartition)

20 Mondrian(rightPartition)
21 Output CD

3.2.1. Multidimensional Strict Mondrian adaptation proposal (Simple Mondrian)

This thesis proposes a way to adapt categorical data for use with the multidimensional strict

Mondrian algorithm. The proposal is similar to the categorical adaption described in chapter

2.2.5 of the thesis and remains true to the underlying multidimensional strict Mondrian

algorithm demonstrated by LeFevre et al. [7]. While the code produced in this thesis only

handles categorical data, then the algorithm and implementation can be easily modified to

 27

handle mixed data, which is, in terms of information loss, significantly more complicated

with MDAV implementations.

The main differences between the proposal in this paper, and the algorithm described in

2.2.5 and others are the following:

a) The centroid values can be any existing values in the VGH and are not limited to the

Least Common Subsumers of the values inside the cluster, as the cluster centroid

calculation is the same as used by Sánchez et al. [6] in their proposal for SA-MDAV

and described in chapter 2.2.3.2 of the thesis.

b) The input data can contain values that are generalisations of other existing values

within the attribute. In other words, in the created Value Generalisation Hierarchy,

the parent nodes can also correspond to some values in the data.

c) The value at which to split the dimension (attribute) is not chosen, such as to have

equal left and right partitions, and is not explicitly linked to the mode either; rather,

it is determined based on the centroid value of the dimension.

The feature described in b) is especially important in terms of our input data in the Adult

Census and Analytics datasets (see chapters 3.1.1 and 3.1.2 respectively), where such

instances occur.

3.2.1.1. Variable ordering

The ordering of variables should aim to minimise the potential of splitting the dimension

between conceptually similar values. This allows for the creation of more cohesive clusters

and limits the potential loss of information.

This paper proposes that the created Visual Generalisation Hierarchies are traversed using

Postorder Traversal. In Postorder Traversal [16] a tree is first recursively traversed in the

left subtree and then the right subtree. Finally, the parent node is observed. While tree

traversing is in terminology most associated with binary trees conceptually, it can be used

with non-binary trees, which the created VGHs are.

An ordered list is created during the traversal of the VGH, such that each node’s value,

which is also a value for the attribute in the dataset, is added to the list. This ordering ensures

that similar concepts are, in most cases, placed close to each other in the ordered list. Later,

this list can be used to order all the occurrences in the input data.

 28

In Figure 10, an example Value Generalisation Hierarchy for operating systems is visualised

in order to demonstrate how such a VGH could be traversed.

Figure 9. Example Value Generalisation Hierarchy for operating systems

In Postorder Traversal [Ibid.], as stated, the child nodes of a subtree are traversed first. If all

these values presented in the VGH would also exist as values in the dataset, the ordered list

created would be the following: [playstation_vita_os, playstation_4_os, playstation_os,

xbox_os, console_os, windows_phone_os, tizen, android, blackberry_os, ios,

linux_mobile_os, mobile_ios, operating_system]. As observed, most values in the ordered

list are close to the same values as in the VGH, however, there are some values that are

conceptually quite different, yet are next to each other in the ordered list. This issue is

tackled in the second proposal in chapter 3.2.2 of the thesis. Another algorithmically

complicated approach would be to mix different means of traversal across the subtrees, such

that one subtree might be traversed in post-order, and another in pre-order.

3.2.1.2. Splitting dimensions

In the Mondrian algorithm, it is necessary to evaluate which dimension to split during each

recursion. In this proposal, the dimension chosen for splitting is the one that maximises the

average distance to the centroid of the dimension.

The point to split the dimension is chosen as the centroid value (see chapter 2.2.3.2 for

calculating the centroid). Probabilistically, the centroid value will regularly coincide with

the mode of the dimension; however, not necessarily. Thus, often similar centroids as in the

k-modes algorithm [14] are chosen. If the centroid does not exist within the ordered values

operating_system

console_os

playstation_os

playstation_4_os

playstation_vita_os

xbox_os

mobile_os

blackberry_os

windows_phone_os

ios linux_mobile_os

android

tizen

 29

(for example, it is a distant LCS of the values in the cluster), then the closest existing value

to the centroid is used as the split value. In an ordered list, an attempt is made to split the

dimension before the first occurrence of the value; if either the left or right partition contains

less than k values, then a cut is attempted after the last occurrence of the value. If neither

cut is possible, the next dimension is chosen.

Thus, a dimension of values [‘wolf’, ‘dog’, ‘dog’, ‘dog’, ‘cat’, ‘cat’] and k equal to 2, with

centroid dog, is first attempted to be split into [‘wolf’] and [‘dog’, ‘dog’, ‘dog’, ‘cat’, ‘cat’].

However, as the created partitions do not satisfy the k condition, another cut is performed

instead to divide the dimension as [‘wolf’, ‘dog’, ‘dog’, ‘dog’] and [‘cat’, ‘cat’].

3.2.2. Semantic Adaptive Multidimensional Strict Mondrian adaptation proposal

The second proposed algorithm in the thesis is the Semantic Adaptive Multidimensional

Strict Mondrian algorithm, which is inspired by the SA-MDAV algorithm [6] and shares

the same structural basis as the previously discussed Mondrian algorithm (see 3.2.1).

As previously discussed, the strict Mondrian algorithm is already adaptive in the way that

is discussed in the SA-MDAV proposal [Ibid.], as it disallows cuts within a dimension that

splits equal values into different partitions [7]. However, the algorithm's performance can

be increased if we pre-process the data in the same way as Sánchez et al. [6], wherein the

input data is categorised by their frequencies beforehand. In this regard, the dimensions

under observation are much smaller (containing less data points), which allows different

operations to be performed faster on the data. Furthermore, it lays the groundwork for the

split measure introduced in this thesis.

3.2.2.1. Splitting dimensions

The logic for choosing the dimension to split is the same as the one described in chapter

3.2.1.2. of the thesis. However, this chapter introduces a new proposal for splitting the

dimension as an addition to the algorithm.

Ordering data is an integral part of the Mondrian algorithm and ordered lists of values are

used in previous works regarding both numerical [7] and mixed or categorical data [15], as

well as in the proposal in chapter 3.2.1. In this chapter, an addition is proposed to the

algorithm, which lessens the importance of the ordered list; however, ordering the list prior

 30

with some logic still produces better results. In this thesis, the dimension is still sorted by

the same measures proposed in chapter 3.2.1.1.

In this proposed addition, rather than relying on the mode or centroid for determining where

to split the value, the chosen dimension is iterated over before splitting it to find the index

where two consecutive values are furthest apart. The split logic is the main improvement of

the algorithm, as it ensures that in most cases, most semantically distant values are separated

into different clusters. Thus, emphasis is put on the semantics of the data when choosing the

split value and creating the clusters.

Wu Palmer distance, described in chapter 2.1.3 of the thesis, was used as the distance

measure. Below is a demonstrative piece of pseudocode, which illustrates how a dimension

can be evaluated, where the sort() function sorts the dimension based on the post-order

traversal of the attribute in the Value Generalisation Hierarchy, and WuPalmer() finds the

Wu Palmer distance of two values.

ALGORITHM 4. DIMENSION EVALUATION

 Input: D (dimension), k (level of anonymity)
 Output: leftPartition, rightPartition

1 sort(D)
2 set splitIndex; foundDistance as 0

3 for (value in D) do
4 set tempDistance as WuPalmer(value, nextValue)

5 if (tempDistance < foundDistance) then
6 set foundDistance as tempDistance

7 set splitIndex as indexOf(value)
8 endif

9 endfor
10 set leftPartition as D[0: splitIndex + 1]

11 set rightPartition as D[splitIndex + 1:]
12 return leftPartition, rightPartition

3.3. Developed code

As part of this thesis, multiple microaggregation algorithms were implemented using the

Python programming language. The source code is added as Appendix B. In this chapter,

an overview of the produced code is given, as well as some concrete examples.

 31

3.3.1. Algorithms

The main algorithms programmed were SA-MDAV (see 2.2.3.), Multidimensional Strict

Mondrian (or later, simple Mondrian) and SA-Mondrian (see 3.1.).

Further, as control algorithms, S-MDAV and S-MDAV-Static can be found in the source

code and part of the presentation of the results. For testing measures, Mondrian and MDAV

for numerical data were also implemented but not used in the thesis for any data gathering,

as well as a relaxed Multidimensional Mondrian algorithm.

3.3.2. Specific functions

In this paragraph, two functions are shown, as they are integral to gathering results in this

thesis. First, Figure 10 shows the Python implementation of the Weighted Semantic

Distance measure described in chapter 2.2.3.1.

Figure 10. Python implementation of Weighted Semantic Distance

In the function, the depth of the compared values is found using the the tree. In addition, the

depth of the Least Common Subsumer is calculated with the help of another function. That

function is visualised in Python code on Figure 11.

 32

Figure 11. Python implementation of finding the Least Common Subsumer

3.3.3. Assisting code

In addition to the algorithms and functions that were used in them, various other code had

to be written in order to achieve the goals of the thesis.

More specifically, functioning code was required, for example, to read, write and modify

CSV data, to create Value Generalisation Hierarchies and to plot and measure the results.

The code for the algorithms themselves stays relatively true to the pseudocodes proposed

throughout the thesis.

 33

4. Results and evaluation

In this chapter, the results of the thesis are presented and discussed. More specifically, in

chapter 4.1. the utility and privacy of the produced anonymised datasets is assessed in terms

of information loss and global risk. In chapter 4.2. the algorithm execution times are

visualised and reasoned.

For easier readability, the Mondrian algorithm proposed in 3.2.1. is referred to as the simple

Mondrian, and the Mondrian algorithm proposed in 3.2.2. is referred to as the semantic

adaptive Mondrian in the following parts of the thesis. Note that in the graphs, they are

marked as Mondrian-Strict-Improved and SA-Mondrian-Strict respectively.

The results presented in this paragraph were gathered using the different datasets described

in Chapter 3.1. of the thesis.

4.1. Utility and privacy

In 4.1.1. graphs related to information loss are visualised, and in 4.1.2. a simple comparison

of global risk between the different algorithms is presented.

4.1.1. Information loss

In this chapter, the results regarding information loss are presented. The loss calculation

measure used in this thesis is described in 2.2.3.3.

The information loss was calculated for each dataset (Adult Census, Analytics, Analytics

Sample One, and Analytics Sample Two). The following four graphs (Figure 13 and Figure

14) show the loss for k values ranging from 2 to 10.

Result graphs

Figure 13 shows data loss in Analytics Sample One and Analytics Sample Two, respectively.

In addition to the SA-MDAV algorithm and the two proposals in this thesis (Mondrian-

Strict-Improved and SA-Mondrian-Strict on the graphs), multiple other algorithms were

executed as a control. S-MDAV and SA-MDAV-Static both originate from the same

proposal as SA-MDAV [6], wherein the S-MDAV algorithm does not ensure that all equal

values are added into the same cluster, and the SA-MDAV-Static algorithm does not

recalculate the centroid on each cluster modification. The visualised Mondrian-Strict

algorithm is theoretically the same as the Mondrian-Strict-Improved algorithm. However,

 34

the categorical data is not ordered by any logic; thus, the splits cannot ensure cluster

cohesion; rather, the goal is just to satisfy k-anonymity.

Figure 12. Data loss in relation to k values for Analytics Sample One and Two

Based on the information in Figure 13, our controls function as expected. We can visually

deduce that the ordering logic described in 3.3.2.1 significantly increases the output data

utility compared to a zero-knowledge random ordering. Across all k values, the information

loss was less than half in comparison. For the other MDAV algorithms, it is concluded they

perform similarly, as demonstrated by Sánchez et al. [6].

While on most occasions, the semantic adaptive Mondrian algorithm performed better than

its counterpart, in Figure 13, we can see that the simple Mondrian algorithm outperformed

it for a single k value of 6. However, we can observe that, in general, the algorithms perform

in a seemingly similar manner. The Mondrian implementations at large both also performed

better than the SA-MDAV algorithm. Despite this, for some smaller k values, SA-MDAV

can perform better. Such as in the case where k is equal to 3 in Analytics Sample One, and

k values 3 to 6 in Analytics Sample Two.

As our controls showed expected results, the following two results based on the two more

extensive datasets are graphed in conjunction with only the SA-MDAV and the two

proposed Mondrian algorithms for easier visual comparison. In the following two graphs

(Figure 14), the same k values (2 – 10) are used; however, the datasets under observation

are the entire Analytics dataset and the Adult Census dataset.

 35

Figure 13. Data loss in relation to k values for Analytics and Adult Census dataset

For most k values in both datasets observed in Figure 14, the Mondrian proposals

outperform the SA-MDAV algorithm. An interesting observation in the results is that

for k value of 3 in both datasets, SA-MDAV performs better than the Mondrian algorithms.

Further, SA-MDAV outperformed the simple Mondrian on one more case for each of the

datasets (k equal to 10 in Analytics and k equal to 2 in Adult Census dataset). The worst

performance for the semantic adaptive MDAV algorithm was observed in conjunction

with Adult Census – with k equal to 10, the loss when running the semantic adaptive MDAV

was almost twice as high as the loss with semantic adaptive Mondrian. However, the

information loss values for the Analytics dataset remained relatively close for all of the three

implemented algorithms.

Both Figures 13 and 14 show that the implemented Mondrian algorithms fare well in

comparison to the SA-MDAV, wherein across the used datasets for most k values, the

semantic adaptive Multidimensional Mondrian algorithm proposed in chapter 3.2.2.

outperforms the other algorithms (regarding information loss).

Analysis of results

The results coincide with some previous works; for example, LeFevre et al. [7] also noticed

that often the Mondrian algorithm produced better results compared to more expensive

recoding models.

During the implementation of the algorithms for this thesis, it was also observed that for

SA-MDAV, the higher loss values were often due to a few individual clusters introducing

high data loss. If only values with low frequencies are left during the SA-MDAVs cluster

creation process, some clusters with high data loss might be created. For example, suppose

 36

there are still enough records to form a cluster. In that case, the records are more likely to

be conjoined to form a new cluster rather than being appended to an existing, more giant

cluster, even if the values might be semantically distant. The conjunction takes place

because the frequency parameter in the weighted semantic distance (see 2.2.3.1) makes it

so that the semantics might be overlooked if values with high and low frequencies are

compared to each other. The distance is considered bigger due to the weight property of the

distance measure.

In the Mondrian counterparts, these values are more likely to end up in more prominent

clusters that are more semantically similar. Thus, in the Mondrian algorithms, such data is

more often suppressed rather than creating clusters that are generalised to a significant

factor. This, in turn, also lessens the potential risk of reidentification, as new value pairs are

less likely to be introduced in the data.

In terms of information loss, a potential improvement to the semantic adaptive MDAV

algorithm might be to detect when the dataset reaches a state where only values with a

certain frequency threshold exist. Then the low-frequency values can be added to the closest

clusters at a prior point, as opposed to only once they cannot form a new cluster among

themselves. Based on the characteristics of the data, the weighted semantic distance might

not be the optimal choice for a distance measure, and it is best served in instances where

data is more evenly distributed.

The fact that the simple Mondrian adaptation can, in some cases, outperform the semantic

adaptive variation in data loss is explained by the fact that Mondrian is a greedy algorithm.

The order of the split dimensions and the precise split points can already be heavily affected

by how the previous splits are done. This might create a situation where the first split to

make is optimal from the dimension’s perspective but not optimal when it comes to

clustering the entire dataset. However, the results show that the more advanced approach

still results in better outcomes in most cases.

4.1.2. Global risk

In this chapter, the global risk and information loss both are shown in a table setting for

each of the three algorithms. The output was produced for the Adult Census and the

Analytics Sample One dataset using k values 2, 6 and 10. The global risk was calculated

using RStudio’s sdcMicro package.

 37

Adult Census dataset

k Global risk Loss Algorithm
- 1.31 % 0.000% Before microaggregation
2 1.08% 0.082% SA-Mondrian-Strict
6 0.66% 0.434% SA-Mondrian-Strict
10 0.48% 0.710% SA-Mondrian-Strict
2 1.08% 0.101% Mondrian-Strict-Improved
6 0.65% 0.526% Mondrian-Strict-Improved
10 0.46% 0.847% Mondrian-Strict-Improved
2 1.16% 0.084% SA-MDAV
6 0.78% 0.608% SA-MDAV
10 0.60% 1.116% SA-MDAV

Table 5. Global risk recordings for the Adult Census dataset

Analytics Sample One dataset

k Global risk Loss Algorithm
- 3.80% 0.000% Before microaggregation
2 1.08% 0.162% SA-Mondrian-Strict
6 0.66% 0.533% SA-Mondrian-Strict
10 0.48% 0.856% SA-Mondrian-Strict
2 1.08% 0.154% Mondrian-Strict-Improved
6 0.65% 0.635% Mondrian-Strict-Improved
10 0.46% 1.112% Mondrian-Strict-Improved
2 1.16% 0.178% SA-MDAV
6 0.78% 0.653% SA-MDAV
10 0.60% 1.130% SA-MDAV

Table 6. Global risk recordings for the Analytics Sample One dataset

In Tables 5 and 6, we can observe the expected results in the sense that with higher k values,

the risk of reidentification is also lower. While the risk and k ratio are similar for the

Mondrian adaptations, it is important to notice the relatively higher global risk for the SA-

MDAV algorithm. This further implies and confirms the assessment in chapter 4.1.1 that

for the Mondrian algorithms, more suppressions rather than generalisations take place. As

often, these generalisations can bring new values to the produced dataset that did not exist

in the original data, which in a mathematical sense, increases the risk of reidentification as

more unique values are present. However, these results might also differ in the case of more

evenly distributed datasets.

 38

4.2. Algorithm execution times

The algorithms under observation were all programmed in Python; thus, a general outline

of the potential differences between run-times can be assessed. However, the results are still

not definite, as some specific implementation choices can significantly affect execution

times. Regardless, the measurements can offer some insight.

The same k values [2 – 10] are used in presenting the execution time, as were used in chapter

4.1.1. to describe the information loss in the dataset.

First, in Figure 15, the execution times in seconds are visualised for the three algorithms

when running on the smaller (Analytics Sample One and Analytics Sample Two) datasets.

Figure 14. Analytics Sample One and Analytics Sample Two execution times

In Figure 16, the left shows the execution times for the Analytics dataset and the right for

the Adult Census dataset.

Figure 15. Analytics and Adult Census execution times

 39

For all datasets, we can observe that the execution times are relatively slow for the SA-

MDAV algorithm. For the Analytics dataset with k value 2, the execution time is four times

longer than the one for the simple Mondrian algorithm and more than eight times higher

than the one for the semantic adaptive Mondrian. This is mainly because the Analytics

dataset contains many unique values, and the clustering process for the MDAV algorithm

is pretty resource intensive.

In SA-MDAV, in each iteration, the distance of a value is calculated concerning all other

data. In the case of semantic adaptive Mondrian, the distances are a) only calculated for a

single dimension at a time and b) the number of distance measurements equals the number

of unique values in the dimension. The semantic adaptive Mondrian algorithm outperforms

its Mondrian counterpart because of the pre-processing of data introduced by Sánchez et al.

[6], where prior to running the algorithm, values are mapped to their corresponding

frequencies. This makes any iteration over the data significantly faster, especially if any

values occur with a significant frequency.

The simple Mondrian algorithm could also be easily improved execution time wise by the

data pre-processing. It would most likely perform better than the semantic adaptive

Mondrian, as no distance measuring during the algorithm execution would be required.

4.2.1. Machine specifications

All results were gathered on the same machine, and in the same condition, with all

background applications being closed.

Device: MacBook Pro (16-inch, 2019)

Operating System: macOS Monterey (version 12.4)

Processor: 2,6 GHz 6-Core Intel Core i7

Memory: 16 GB 2667 MHz DDR4

Graphics: AMD Radeon Pro 5300M 4 GB; Intel UHD Graphics 630 1536 MB

The code was executed in the Visual Studio Code (2022) console.

 40

5. Conclusions and future development

The thesis aimed to describe, implement and compare different microaggregation

algorithms for categorical data. In addition, as part of the thesis, multiple new proposals for

handling categorical attributes with Mondrian were introduced and evaluated. The

compared algorithms were implemented and tested in Python. The primary reference point

for the algorithms was the semantic adaptive MDAV algorithm. The work on the new

proposals proved fruitful. In many cases, the newly proposed algorithms fared well

compared to previously proposed microaggregation algorithms regarding information loss,

reidentification risk, and execution time. The goals set in this thesis were achieved.

In future works, more research into microaggregation with mixed data might be made, as

current works mainly focus on either numerical or categorical data. Thus, appropriate

distance and evaluation measures should be trialled to propose functional algorithms.

In consideration of the current proposals, different distance measures could be tested and

proposed along with more persuasive logic for splitting the dimensions in the Mondrian

algorithms, which would not give up after one or two failures to split the dimension. More

algorithms could be adjusted to use the measures in this work and previous works to

compare different microaggregation algorithms further.

It is also essential to discuss how to better handle (or incorporate in a mixed manner)

categorical variables which are limited to only a few values, such as gender. In these cases,

a Value Generalisation Hierarchy cannot be used. In addition, work on improving the

semantic Adaptive MDAV algorithm could also be done, such as avoiding grouping low-

frequency data points together (and generalising them) and rather suppressing the values.

 41

Bibliography

[1] Domingo-Ferrer, J., Torra, V. Ordinal, Continuous and Heterogeneous k-Anonymity

Through Microaggregation. Data Min Knowl Disc 11, 195–212 (2005).

https://doi.org/10.1007/s10618-005-0007-5

[2] Samarati, Pierangela and Latanya Sweeney. “Protecting privacy when disclosing

information: k-anonymity and its enforcement through generalization and suppression.”

(1998).

[3] Domingo-Ferrer J. Microaggregation. In: LIU L., ÖZSU M.T. (eds) Encyclopedia of

Database Systems. Springer, Boston, MA (2009. https://doi.org/10.1007/978-0-387-

39940-9_1496

[4] Princeton University "About WordNet." WordNet. Princeton University. 2010.

[5] Wu, Zhibiao & Palmer, Martha. Verbs Semantics and Lexical Selection. Proceedings of

the 32nd Annual Meeting on Association for Computational Linguistics. 133-138 (1994).

10.3115/981732.981751.

[6] Martínez, Sergio & Sánchez, David & Valls, Aida. (2012). Semantic Adaptive

Microaggregation of Categorical Microdata. Computers & Security. 31. 653-672.

10.1016/j.cose.2012.04.003.

[7] Kristen LeFevre, David J. DeWitt, and Ragu Ramakrishnan. (2006). Mondrian

Multidimensional K-Anonymity. In Proceedings of the 22nd International Coference on

Data Engineering (ICDE ’06). IEEE Computer Society, USA, 25.

https://doi.org/10.1109/ICDE.2006.101

[8] Abril, D., Navarro-Arribas, G., Torra, V. (2010). Towards Semantic Microaggregation

of Categorical Data for Confidential Documents. In: Torra, V., Narukawa, Y., Daumas, M.

(eds) Modeling Decisions for Artificial Intelligence. MDAI 2010. Lecture Notes in

Computer Science(), vol 6408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-

642-16292-3_26

[9] Teorey, T., Lightsone, S., Nadeau, T., & Jagadish, H. V. (2011). Database Modeling

and Design (Fifth Edition). Burlington, Morgan Kaufmann. 13-34.

https://doi.org/10.1016/B978-0-12-382020-4.00002-1

 42

[10] Brambilla, M., and P. Fraternali. (2015). Interaction Flow Modeling Language: Model-

Driven UI Engineering Of Web And Mobile Apps With IFML. Burlington, Morgan

Kaufmann. 25-50. https://doi.org/10.1016/B978-0-12-800108-0.00003-5

[11] Ayala-Rivera, V., McDonagh, P., Cerqueus, T., & Murphy, L. (2014). A Systematic

Comparison and Evaluation of k-Anonymization Algorithms for Practitioners. Trans. Data

Priv., 7, 337-370.

[12] Hettich S, Bay SD. (1999). The UCI KDD archive, http://kdd.ics.uci.edu.

[13] Rsquared Academy. Handling categorical data in R. (2021)

https://github.com/rsquaredacademy-education/online-

courses/commit/c777df177b3a6bc2845418c05270c0c5784f7d16.

[14] Torra, V. (2004). Microaggregation for Categorical Variables: A Median Based

Approach. In: Domingo-Ferrer, J., Torra, V. (eds) Privacy in Statistical Databases. PSD

2004. Lecture Notes in Computer Science, vol 3050. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-25955-8_13

[15] Böhler,, J. (2021). Multi-Owner data Sharing for Analytics and Integration respecting

Confidentiality and OWNer control. D 5 . 5 Report on Data Sanitisation and Computation.

MOSAICrOWN. Ref. Ares(2021)6716240 - 31/10/2021.

[16] Mehta, Dinesh P. (2018), "Trees" , in Handbook of Data Structures and

Applications ed. Dinesh P. Mehta and Sartaj Sahni (Boca Raton: CRC Press, 07 Mar 2018),

accessed 10 July 2022 , Routledge Handbooks Online.

 43

Appendices

A. Datasets

This thesis includes a .zip file (all_files.zip) with all the datasets used in the creation of the

thesis. The datasets are in three different folders.

• data_files/raw_data: contains the raw datasets, prior to any modifications

• data_files/modified_data: contains the modified datasets for obtaining the results

• data_files/test_data: contains datasets that were used during the testing phases of

the thesis

• data_files/output_data: contains datasets produced to measure global risk in

RStudio

All the datasets are Comma-Separated Values (CSV) files.

 44

B. Source code

This thesis includes a .zip file (all_files.zip) that includes the Python source code files with

implementations of different algorithms discussed in the thesis. Along with different helper

files that assisted in gathering the results.

• src/plot.py: contains the code to execute and plot SA-MDAV and the two Mondrian

proposals for k values of 2 to 10, the default dataset used is Adult Census

• src/sa_mdav.py: contains the semantic adaptive MDAV implementation

• src/sa_mondrian.py: contains the semantic adaptive Mondrian implementation

• src/mondrian.py: contains the simple Mondrian implementation

• src/microaggregate.py: contains some common code used for multiple algorithms

• src/generalisation_trees.py: contains the code to create the VGH’s

• src/order_mapping.py: contains some potential order mappings for the Mondrian

implementations (hard-coded)

• src/create_sample.py: contains code to create a 10000-record sample of the

Analytics dataset

• src/speed_comparison.py: contains code to execute and plot the SA-MDAV and

the two Mondrian proposals in terms of execution time for k values of 2 to 10, the

default dataset is Adult Census

• src/clean_adult_dataset.py: contains code to transform the original Adult Census

to the one used in this thesis (transformations and removal of n/a values)

• src/clean_analytics_dataset.py: contains code to transform the Analytics dataset to

the one used in this thesis (transformations and removal of unused attributes)

• src/graveyard: contains some developed, but unused code for the final results,

along with the implementations of S-MDAV, SA-MDAV-Static and Mondrian and

MDAV for numerical data, along with multiple testing files

Python 3.9 was used to implement the algorithms, to run the code, it is required that the

used dependencies are installed. The dependencies are mapped in the requirements.txt file

and can be installed in a Python environment variable either with the use of pip or conda.

 45

Glossary

MDAV (algorithm) – Maximum Distance to Average Vector

CSV (file) – Comma-separated Values

VGH – Value Generalisation Hierarchy

SSE – Sum of Squares Error

SST – Sum of Squares Total

SDC – Statistical Disclosure Control

LCS – Least Common Subsumer

WSD – Weighted Semantic Distance

