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Abstract

The intention of the present work is to generate meshes tailored to the boundary
layer to improve the flow predictions of wall-modeled large-eddy simulations (WM-
LES). To this end, the local reconstruction-method was implemented to measure
the boundary layer thickness using the computations of a constant-height grid as a
baseline.

The NASA Juncture Flow is used as benchmark. WMLES using Alya were
conducted for an angle of attack of AoA = 50 and Reynolds number based on the
crank chord Rec = 2.4 · 106. The errors in the prediction of mean velocity profiles
are characterized at two different locations over the aircraft: the upstream region of
the fuselage, and the wing-body juncture close to the leading-edge.

Better prediction of the flow close to the wall are observed with the tailored
mesh with a equilibrium wall-function, especially at the upstream location where
the equilibrium hypothesis holds.
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Introduction

The aircraft design in the modern aerospace industry needs precise predictive tools to
reduce energy consumption. One of the keys to improving energy efficiency is the use
of computational fluid dynamics (CFD) for external aerodynamic applications [1],
which have improved our understanding and prediction of complex flows. However,
today they are not capable of meeting the stringent requirements for accuracy and
computational efficiency demanded by the industry [2]. These limitations are largely
imposed by the complexity of the turbulence.

Turbulence treatment has been mainly based on Reynolds-averaged Navier-Stokes
(RANS) [3] models, from pure RANS solutions to hybrid methods such as Detached
Eddy Simulation (DES) [4]. In the latter case, the RANS model is used near the
wall, while eddy resolution methodologies are used far from it. The physical limi-
tations of the RANS models have been reduced by expanding and calibrating their
coefficients. However, despite their dependence on tunable parameters, they became
the main methodology for the industry due to their computational efficiency.

An alternative methodology that is spreading lately is large-eddy simulation
(LES) [5]. In LES, small scales of turbulence are modeled using a subgrid model
(SGS) while large scales are resolved directly. In addition, computational and mesh
requirements can be reduced by modeling the region near the wall (wall modeling)
in such a way that only the outer layer region of the boundary layer is resolved [6].
Although WMLES improves on the shortcomings of the RANS-based methods, DES
has been more widely accepted for its ease of implementation and the low level of
development of the wall models.

In WMLES, even with a perfect wall model, the results would still be inaccurate,
since the LES is under-resolved at the first grid point off the wall and thus provides
inaccurate information to the wall model [7]. However, there is no requirement for
the velocity to be evaluated at the first grid point off the wall, the only requirement
is that the velocity is evaluated in the inner part of the boundary layer. Hence, a
proper discretization of the boundary layer is critical have a sufficiently accurate
solution at the exchange interface.

In the present work, the performance of a tailored boundary layer mesh is tested
using WMLES to predict the mean flow quantities over the NASA Juncture Flow
Experiment [8]. In order to generate such a mesh an accurate estimation of the
boundary layer thickness is necessary, thus state of the art methodologies are re-
viewed to assess their suitability for general non-equilibrium flows.

The employed benchmark consist of a full-span wing-fuselage body based on
truncated DLR-F6 wings, with and without leading-edge horn at the wing root.
Most CFD efforts on the NASA Juncture Flow Experiment so far have been focus on
RANS or hybrid-RANS solvers [8–10], whwreas this work employs WMLES following
the idea in [11].
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INTRODUCTION

The remainder of this thesis is organized as follows. In Chapter 1, the basic
notions of Computational Fluid Dynamics to understand the content of this work
are reviewed. Chapter 2, the methodologies for determining the thickness of the
boundary layer are evaluated Later, the local-reconstruction of the inviscid veloc-
ity profile is validated (Chapter 3) and applied to the tailored mesh of the NASA
Juncture Flow (Chapter 4). Finally, some conclusions are drawn and two appen-
dices (Appendix A and Appendix B) provide some technical details on the employed
methodology.
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Chapter 1

Basics on CFD

Turbulent flows are characterized by chaotic changes in pressure and flow velocity.
Many engineering applications involve turbulent flows, whence their numerical sim-
ulation is of great importance to scientists as well as to the engineering community.

However, turbulence has long resisted detailed physical analysis, and the interac-
tions within the turbulence create a very complex phenomenon. Even though many
turbulent flows can be easily observed, it is very difficult to give an exact and pre-
cise definition of turbulence. Richard Feynman described turbulence as “the most
important unsolved problem in classical physics”. However, most researchers gen-
erally agree on certain characteristics present in turbulent flows: unpredictability,
three-dimensionality of fluctuations, diffusivity, and a wide spectrum of spatial and
temporal scales.

For low values of the Mach number, fluid flows can be described using the incom-
pressible Navier-Stokes (NS) equations, a set of partial differential equations that
describe the motion of viscous flows. They arise from applying Newton’s second law
to fluid motion, together with the assumption that the stress in the fluid is the sum
of a viscous diffusion term (proportional to the velocity gradient) and a pressure
term. Its expression for the conservation of momentum and mass for incompressible
flow is as follows:

∂u

∂t
+ (u ·∇)u−∇ · σ = 0 (1.1)

∇ · u = 0 (1.2)

where σ is the Cauchy stress tensor defined as σ = 2ν∇Su − pI, with ∇Su =
1
2
(∇u + ∇uT ), p the kinematic pressure, u the fluid velocity field, and ν the kine-

matic viscosity.
Turbulent flows can be understood as a cascade of kinetic energy transmitted

from larger structures to smaller ones. As the large scales are not able to dissipate
energy at the rate they receive it, they break down into smaller and smaller scales
until they are able to dissipate the excess energy. The responsible for the breaking
process is the convective term while the diffusive term is the one in charge of the
dissipation [12].

Although NS is a perfect mathematical model for flow physics, it cannot be solved
analytically, except for simple cases. Therefore, they have to be approximated by
numerical methods to obtain an acceptable solution and they need an appropriate
space-time discretization.
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CHAPTER 1. BASICS ON CFD

1.1 Direct Numerical Simulations

Direct Numerical Simulation (DNS) is a methodology capable of representing the
entire spatial and temporal energy spectrum. However, in most cases, this methodol-
ogy is unfeasible due to the computational resources needed to solve all the turbulent
structures [13].

1.2 Large Eddy Simulations

The Large Eddy Simulation (LES) method is based on solving the spatially filtered
NS equations with filter length ∆ and only take into account the large flow struc-
tures. The lack of dissipation due to unresolved scales smaller than ∆ is accounted
for by adding a subgrid viscosity νsgs to the diffusive term. Then, the NS momentum
equation (Equation 1.1) for LES becomes roughly

∂u

∂t
+ (u ·∇)u = ∇ ·

[
2(ν + νsgs)∇Su

]
−∇p (1.3)

where ⊙ represents the filtered variables. Additionally, a model is needed to evaluate
νsgs [5]. For example, Vremann [14] proposed

νsgs = c

√
Bβ

αijαij

(1.4)

with

αij =
∂uj

∂xi

, (1.5)

βij = ∆2
mαmiαmj, (1.6)

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23 (1.7)

The model constant c is related to the Smagorinsky constant CS [15] by c ≈ 2.5C2
S.

Nonetheless, this method has an extremely high computational cost for most
application cases [6], with a total computational cost of a wall resolved (WR) com-

putation TWR
cc ≊ Re

65/21
L [16]. ReL being the Reynolds number for the characteristic

dimension L. Recalling the definition of the Reynolds Number as the ratio between
inertial and viscous forces ReL = uL/ν, where u is the flow velocity and ν is the
kinematic viscosity of the fluid.

1.3 Wall Modeled Large Eddy Simulation

Wall modeled Large Eddy Simulation (WMLES) takes the advantage of the accuracy
of the LES methodology while avoiding the unaffordable requirements imposed by
the presence of a solid wall, thus reducing computational cost to TWM

cc ≊ Re
4/3
L [16].

It is worth recalling that in order to simulate viscous flows, boundary layer effects
need to be accurately captured. To achieve this objective a sufficiently fine mesh is
required in the vicinity of physical walls.

Although the boundary layer varies depending on the Reynolds number and
the geometry, its physical behavior is generalizable. In fact, under equilibrium
conditions, the boundary layer behavior is universal (law of the wall).
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CHAPTER 1. BASICS ON CFD

Figure 1.1: The law of the wall obtained through DNS of three different canonic
flows: Channel flow at Reτ ≈ 2000 [18] (orange line), a Flat plate turbulent bound-
ary layer at Reθ ≈ 6500 [19] (blue), and a Pipe flow at Reτ ≈ 3000 [20] (red). The
expressions of Prandtl and Von Kármán are also shown (extracted from [16]).

The wall closest layer is the viscous sublayer, which features a laminar flow
regime. Then, there is a transition region from laminar to turbulent regime, the
buffer layer. Finally, the mean streamwise velocity function evolves to a logarithmic
profile in the log-law region, which was first identified by Von Kármán in 1930 [17].
The following expression for the mean velocity profile was proposed in [17]

u+ =
1

κ
ln y+ + B, (1.8)

where κ is the Von Kármán constant whose value is approximately 0.41, and B
is another constant of value approximately 5.2. Additionally, quantities have been
non-dimensionalized in wall units (⊙+), with the friction velocity uτ = τw/ρ (where
τw is the mean wall shear stress and ρ is the fluid density) and the viscous length
L = ν/uτ .

In Figure 1.1, the law of the wall, u+ = f(y+) , obtained through DNS, is
compared for three different equilibrium flows and it can be seen that the numerical
results match the analytical expressions proposed by Prandtl and Von Kármán.
Hence, WM allows to reduce the computational cost of simulations by providing a
good approximation to model the inner layer instead of solving it.

One option is to employ a wall shear stress method in which an LES model solves
for the entire domain, while an external model provides a shear stress to the LES
domain as boundary condition.

The simplest approach is to use a function that evaluates the shear stress de-
pending on the solution at a point and its distance from the wall, known as wall
functions, namely

τw = fw(u, y) (1.9)

In this context, Owen et al. [21] showed that in order to properly predict τw, the
streamwise velocity u, should be taken at y = 0.125δ, δ being the boundary layer
thickness. Additionally, the mesh near the wall must be sufficiently fine so the flow
is well resolved at this point.

In the next chapter different strategies to estimate the thickness δ will be re-
viewed

7



Chapter 2

Estimating the boundary layer
thickness

In this chapter, different methods to compute the boundary layer thickness are
reviewed, their limitations are discussed and their accuracies are compared, based
on the review by Griffin et al. [22].

2.1 Zero-pressure-gradient boundary layers

Flows with no pressure gradient, or ZPGBL, approach the free flow velocity U∞ as
we move away from the wall. Then, in this type of flow, we can define the boundary
layer thickness δn as the distance to the wall y where a percentage n of the U∞ is
reached, i.e.

U

U∞

∣∣∣∣
y=δn

=
n

100
(2.1)

where n = 99 is generally accepted as the definition of the boundary layer thickness.
However, this definition cannot be extended to canonical cases with pressure

gradient or complex geometries.

2.2 Mean-vorticity based

These methods are based on the assumption that free-stream flow is irrotational.
Therefore, they identify δ as the edge where the vorticity vanish. Within the bound-
ary layer approximation, we can base the definition of velocity on vorticity (gener-
alized velocity, Lighthill [23]) as

Ũ =

∫ y

0

−Ωzdy, (2.2)

where Ωz denotes the mean vorticity component in the spanwise direction.
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CHAPTER 2. ESTIMATING THE BOUNDARY LAYER THICKNESS

Figure 2.1: Mean streamwise velocity (black solid lines) and the generalized velocity
(blue dashed lines) versus the wall-normal distance normalized by the airfoil chord
c. Profiles from the suction side of a NACA 4412 airfoil at the angle of attack
(AoA) = 50 and the Reynolds number based on the chord length Rec = 106 at the
streamwise location x/c = 0.72 (upper) and a NACA 0012 airfoil at AoA = 00 and
Rec = 4 · 105 at the streamwise location x/c = 0.90 (lower). Blue triangles indicate
the locations y = δ99 (extracted from [22]).

2.2.1 The Ũ∞ method

This method was proposed by Coleman et al. [24]. It determines δ similarly to a

ZPGBL, using the generalized velocity Ũ (Equation 2.2), namely

Ũ

Ũ∞

∣∣∣∣∣
y=δn

=
n

100
. (2.3)

In Figure 2.1, we observe that the mean streamwise velocity U continues to vary
as y → yp (⊙p denotes the furthest point from the wall in the wall-normal direction;
it is an arbitrary length scale), whereas the generalized velocity achieves a constant
asymptotic value as the flow becomes irrotational where the boundary layer edge is
identified.

2.2.2 The −yΩz threshold method

Another approach was proposed by Uzun and Malik in [25], where a threshold −yΩz

was established as a function of the value δn to be determined, that is,

−yΩz

max(−yΩz)

∣∣∣∣
y=δn

= CΩ. (2.4)

For δ99, CΩ = 0.02 is estimated empirically [25]. In Figure 2.2, −Ωz is monoton-
ically decreasing while −yΩz features multiple peaks and achieves its maximum in
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CHAPTER 2. ESTIMATING THE BOUNDARY LAYER THICKNESS

Figure 2.2: Distributions of the mean z vorticity Ωz (black solid lines) and the
boundary layer sensor −yΩz (orange dashed lines) versus the wall-normal distance
normalized by the airfoil chord c. Profiles from the suction side of a NACA 4412
airfoil at AoA = 50 and Rec = 106 at the streamwise location x/c = 0.72 (left) and
a NACA 0012 airfoil at AoA = 00 and Rec = 4 · 105 at the streamwise location
x/c = 0.90 (right). Orange diamonds indicate the locations y = δ99 (extracted
from [22]).

the outer portion of the boundary layer. Since the −yΩz profile crosses the threshold
CΩ multiple times, the boundary layer thickness can be defined as the furthest point
from the wall for which Equation 2.4 is satisfied.

A major disadvantage of methods based on mean vorticity is that an initial as-
sumption about the upper limit of integration is required because a semi-infinite
domain of integration is generally not available. Therefore, it is necessary to itera-
tively recompute it over a larger domain until it convergence is achieved.

Additionally, the consistency of mean vorticity-based methods with the classical
definition of δ for ZPGBL flat plates depends on ∂V/∂x << ∂U/∂y. This condition
is satisfied when the boundary layer thickness is much smaller than the distance to
the leading edge of the flat plate and consequently Rex = Uex/ν is high. Therefore,
these methods are not valid for low Reynolds numbers.

Another drawback is that they need the ∂V/∂x data, which is not usually avail-
able.

Finally, the method proposed by Uzun and Malik is also sensitive to the choice
of an empirical threshold.
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CHAPTER 2. ESTIMATING THE BOUNDARY LAYER THICKNESS

2.3 Mean-shear threshold

For these methods, δ is defined as the wall-normal distance y, at which the mean
shear ∂U/∂y drops below an arbitrary threshold. If the threshold is set to zero, the
method is referenced to as max method. Moreover, for its general use, the mean
shear must be properly non-dimensionalized.

On the one hand, for the laminar case, it holds

∂(U/U∞)

∂(y/δ)

∣∣∣∣
y=δn

= Cl, (2.5)

where a suitable non-dimensionalization has been considered ans Cl is the laminar
threshold.

On the other hand, for the turbulent case, quantities are non-dimensionalized
in wall units with the friction velocity uτ and the viscous length L. Consider the
boundary layer description by Coles’s wall-wake law [26]

U+ =
1

κ
ln y+ + B +

2Π

κ
sin2

(πy
2δ

)
, (2.6)

the following mixed non-dimensionalization was proposed

∂U+

∂y/δ

∣∣∣∣
y=δn

= Ct, (2.7)

Ct ≈ 1/κ being the turbulent threshold.
Theoretically, the mean shear can be broken down into a viscous part and an

inviscid part due to the curvature of the geometry. In practice, these methods do
not provide a precise way to distinguish such contributions, so thresholds based
on a equilibrium wall model are not generalizable. Therefore, these methods will
only be successful if the inviscid part is small and the threshold is greater than it.
In other words, for a case with a monotonically increasing velocity profile, there
is no guarantee that a given threshold will be crossed. Additionally, since both
non-dimensionalizations depend on δ, δ has to be computed iteratively and there
is no guarantee that it will converge. Furtermore, there is no valid definition for
laminar-turbulent transitions or vice versa, so these methods are not applicable to
transitional flows.

2.4 Diagnostic plot

The method proposed by Vinuesa et al. [27] is based on the diagnostic plot of stream-

wise turbulence intensity
√

u′2/Ue as a function of the streamwise velocity U/Ue. For

its extension to non-equilibrium flows, we have to take into account
√
u′2/(Ue

√
H)

(Drózdz et al. [28]), where H = δ∗/θ is the shape factor of the boundary layer
(δ∗ and θ being the displacement and momentum thickness respectively). Vinuesa
et al. [27] defined the boundary layer edge δ99 as the normal distance to the wall at

which
√

u′2/(Ue

√
H) = 0.02, after observing asymptotic behavior of the diagnostic

plot. However, this method is characterized by a number of drawbacks:
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CHAPTER 2. ESTIMATING THE BOUNDARY LAYER THICKNESS

(i) Since the criterion for calculating δ depends on Ue, it is an iterative method
that requires a suitable first guess of δ.

(ii) Although, streamwise turbulence intensity and streamwise velocity statistics
are usually available in experimental and numerical databases. In Large Eddy
Simulations (LES) the turbulence intensity is strongly dependent on the quality
of the mesh resolution and for Reynolds-averaged Navier-Stokes (RANS) is
modeled. Hence the accuracy of this method will be influenced by them.

(iii) It depends on an empirical threshold and have to be adapted for n ̸= 99.

(iv) Since it is based on turbulence, it cannot be used for laminar or transitional
flows.

2.5 Local-reconstruction

The local-reconstruction method definition (Griffin et al. [22]) for the boundary-layer
thickness is given by

U

UI

∣∣∣∣
y=δn

=
n

100
, (2.8)

where UI is local reconstruction of the inviscid mean streamwise velocity. The
calculation of UI begins with the definition of the square velocity magnitude

U2
m = U2

I + V 2, (2.9)

where the mean wall-normal velocity V is computed in the 2D local reference frame.
Moreover, the stagnation pressure is given by

P0 = P +
1

2
ρU2

m, (2.10)

where P is the static pressure. Then, Bernoulli’s equation can be applied globally
rather than just along streamlines by assuming an irrotational inviscid flow that has
V [y] and P [y] profiles equivalent to those of the viscous flow. Hence, the inviscid
mean streamwise velocity is described as

UI = ±
√

2

ρ
(P0,ref − P [y]) − V [y], (2.11)

where P0,ref = max(P0) denotes the total pressure achieved at a wall-normal distance
in the outer flow and the sign of UI should match that of U [y = δ].

In Figure 2.3a, the dynamic pressure varies continuously whereas the stagnation
pressure converges to a constant outside the boundary layer. In Figure 2.3b the
inviscid solution UI [y] agrees with the viscous solution U [y] outside the boundary
layer.

2.6 Qualitative assessment

The flow over the NACA 4412 airfoil at AoA = 50 and Rec = 106 is considered
to evaluate the estimates of δ99 provided by the five methods discussed above, at
different stations.
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CHAPTER 2. ESTIMATING THE BOUNDARY LAYER THICKNESS

(a) Distributions of the stagnation
pressure P0 and the dynamic pressure
versus the normalized wall-normal

coordinate y/c.

(b) Distributions of the velocity profile U
and the locally reconstructed inviscid

velocity profile UI versus the normalized
wall-normal coordinate y/c.

Figure 2.3: Profiles from the suction side of a NACA 4412 airfoil at (AoA) = 50 and
Rec = 106 at the streamwise location x/c = 0.72 (left) and a NACA 0012 airfoil
at AoA = 00 and Rec = 4 · 105 at the streamwise location x/c = 0.90 (right). The
maximum stagnation pressure (a) and the boundary-layer edge (b) are indicated
with the black hexagram and the green square, respectively (extracted from [22]).

On the suction side (see Figure 2.4a), the U∞ method, the diagnostic diagram
method and the local reconstruction method are provide consistent and accurate
results. The results of the max method (i.e., mean-shear threshold method with
zero threshold) are correct, except for the most downstream station, where the
velocity profile increases monotonically. The −yΩz threshold method overestimates
the boundary layer thickness, suggesting that the threshold proposed by Uzun and
Malik [25] is not suitable for this case and it cannot be generalized.

In Figure 2.4b, the results for the flow on the pressure side are displayed. In this
case, the results of the diagnostic plot method and the local-reconstruction method
are able to consistently identify the boundary layer thickness at various stations. In
contrast, the U∞ method underestimates the edge of the boundary layer at the most
upstream station and overpredicts it at the rest. The −yΩz threshold method also
overestimates δ. Finally, as expected, the max method is not reliable, since several
of the profiles are monotonically increasing.
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CHAPTER 2. ESTIMATING THE BOUNDARY LAYER THICKNESS

(a) Suction side (b) Pressure side

Figure 2.4: Distributions of the mean streamwise velocity (black solid lines) versus
the wall-normal coordinate y/c for various profiles from a NACA 4412 at AoA = 50

and Rec = 106. These wall-normal profiles originate from the airfoil surface at the
streamwise stations x/c = 0.20, 0.37, 0.55, 0.72, 0.90 (from top left to bottom right).
The estimates of the boundary-layer edges (and the corresponding edge velocities)
are plotted with symbols as indicated in the legend (extracted from [22]).

2.7 Comparison of the methods

A summary of the limitations of the previously discussed methods is presened in
Table 2.1.

Method Ũ∞ −yΩz
Mean
shear

Diagnostic
plot

Local-
reconstruction

Integral Based ✓ ✓
Computes derivatives ✓ ✓ ✓ ✓
Empirical data ✓ ✓ ✓
Iterative ✓ ✓ ✓
High Re ✓ ✓ ✓
Quiet free stream ✓

Data apart from U [y] Ωz Ωz

√
u′2 V [y] P [y]

Total 5 4 3 7 1

Table 2.1: Undesirable features

The local-reconstruction method limits the number of such undesirable charac-
teristics, making it the most robust and generalizable among the discussed options.
The major drawback of this approach is the necessity of velocity and pressure pro-
files, besides the mean streamwise velocity U [y]. Nonetheless, similar shortcomings
are experienced also by other methods, e.g., the mean vorticity Ωz or the turbulent

intensity
√

u′2. In addition, it is worth noticing that the required data on V [y] and
P [y] are, in general, easily accessible.
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Chapter 3

Numerical validation of the
Local-reconstruction method

In order to generate a tailored mesh for the boundary layer, we first determine its
thickness δ from a previous simulation employing the local-reconstruction method.
In this chapter, a validation of this strategy and an assessment of its computational
performance are presented.

3.1 δ determination

First of all, the workflow that is followed to calculate the thickness of the boundary
layer of a point pB at the boundary is explained:

1. Create a discretized line of arbitrary length passong through pB in the normal
direction to the boundary.

2. Interpolate the variables (P0, p, V , and U) needed to determine the inviscid
velocity UI and the percentage of the mean streamwise velocity n, at the points
of the discretized line pline (for the details of the interpolation the reader is
addressed to Appendix B).

3. Compute P0,ref .

4. Compute UIline
at each pline using (2.11).

5. Determine nline at each pline using (2.8).

At this point, we have a discretization of n as a function of the distance to the wall
y (Figure 3.1). In order to determine δ, we could either take the value closest to the
wall where n > 99 or interpolate from points just above and below n = 99. However,
if the flow is not well resolved this can lead to false positives and, consequently, to
an incorrect δ prediction. Instead, the points whose y ≤ y95, where y95 is the closest
point to the wall where n ≥ 95, are taken and fitted to a third-order curve with the
method of least squares. Finally, from this fitted curve y99 = δ is extrapolated.
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CHAPTER 3. NUMERICAL VALIDATION OF THE
LOCAL-RECONSTRUCTION METHOD

Figure 3.1: Distribution n as a function of the wall-normal distance normalized
by the sphere diameter y/D. Profile of the flow around a sphere at the Reynolds
number based on the diameter length ReD = 104 at the pB = (−0.215,−0.25, 0.375)
location. Symbols indicate diferent ways of determine δ.

3.2 Reference total pressure P0,ref

One of the key ingredients of this methodology is the computation of P0,ref . Recall
that P0,ref = max(P0), that is the total pressure achieved in the outer flow. The
following strategies are available to determine P0,ref :

• The maximum total pressure in a line of arbitrary length in the normal direc-
tion of the boundary point P0,ref = max(P0,line).

• The maximum stagnation pressure in the whole domain P0,ref = max(P0,global).

• The total pressure related to inlet boundary condition P0,ref = max(P0,inlet).

The flow around a sphere at the Reynolds number based on the diameter length
ReD = 105 is used to assess the above options to determine the reference total
pressure.

(a) U and UI versus y/D (b) n versus y/D

Figure 3.2: Comparison of the inviscid reconstructed flow for different P0,ref at
location x = (−0.27,−0.39, 0.15)
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On the one hand, in Figure 3.2a we observe that the local reconstruction of the
inviscid mean streamwise velocity UI does not depend on the choice of P0,ref because
the point lies in an area where the boundary layer is fully developed. Consequently,
the percentage of the mean streamwise velocity n is not influenced by it either
(Figure 3.2b).

(a) U and UI versus y/D (b) n versus y/D

Figure 3.3: Comparison of the inviscid reconstructed flow for different P0,ref at
location x = (0.49, 0.04,−0.06)

On the other hand, Figure 3.3a, evaluated at a point located close to the stag-
nation region of the sphere, shows major discrepancies in the reconstruction of UI

and n. This disagreement is a consequence of an overprediction of P0,ref when
P0,ref = max(P0,global) and an underprediction when P0,ref = max(P0,inlet). On the
contrary, P0,ref = max(P0,line) is more robust and provides a good prediction of the
UI . Hence, P0,ref = max(P0,line) is the optimal choice and the one used in this work.

3.3 2D local reference frame

Apart from an appropriate estimation of P0,ref , the definition of the 2D local frame of
reference is required to determine V [y], p[y] and U [y]. In order to get V [y] and p[y],
we have to rotate the velocity and pressure field in order to have the Y-component
aligned with the normal of the boundary node from which we want to determine δ.
However, for U we have to rotate the velocity field until the tangential component
of the velocity is aligned with the X axis of the local reference system. Nonetheless,
it is unclear with respect to which point it has to be rotated.

A priori, one would think that using the first out-wall node would be correct
since is the approach that is normally used in wall modeling. However, Figure 3.4a
shows a region of the fuselage near the leading edge and under the wing where the
model is unable to predict δ. Alternatively, using the last point as reference for the
rotation (Figure 3.4b), the previous region is correctly predicted. But, although it
is an improvement over the previous estimation, it is a risky approach as the last
point is arbitrarily chosen and could be close to another wall which would introduce
a significant error. Additionally, these two options overpredict δ at the leading edge
as well as fail to determine it at the wingtip.
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(a) Rotation from first node

(b) Rotation from last node

(c) Magnitude of the tangential components of velocity

Figure 3.4: Boundary layer thickness δ over the surface of the NASA Juncture Flow
geometry

In order to understand the reason why we are not able to predict δ in the region
mentioned before, we plot the velocity profiles for both tangential components (U [y]
and W [y]) using the first and the last node as the reference for the rotation. As we
can see in Figure 3.5a, W ̸= 0, except in the point taken as base for the rotation,
which calls into question the two-dimensionality of the boundary layer flow and
shows that the flow is rotating around the normal axis inside it.

If we inspect in detail the evolution of W we see that in the outer region (y/c ⪆
0.07) tends to a constant Wfirst ≈ −0.58 and Wlast ≈ 0. The behavior inside the
boundary layer is different in the two cases: for the first node, from zero on the wall,
the velocity increases until it reaches its maximum at the edge of the boundary layer;
for the last, from zero on the wall it goes to a maximum at the first out-wall node
and then decreases back to zero at the edge.

On the one hand, all this adds up to a deficit in the magnitude of Ufirst, which
is why no δ is found since it is very far from UI (Figure 3.5b). On the other hand,
Wlast is practically zero at the edge, just the point we are looking for. However,
near the wall there is a deficit of Ulast (Figure 3.5b) which makes it inaccurate in
thin boundary layers as the ones in the leading edge and wingtip.

Therefore, the last option is to rotate the tangential components of the velocity
for each of the points on the line. Which can be computationally expensive depend-
ing on the number of points on the line. However, rotation per point is equivalent
to calculating the magnitude of these components per point, which is much simpler
and cheaper. This is the approach that has been followed in Figure 3.4c where it
can be seen that the prediction of the boundary layer thickness in the leading edge
and the wingtip is adequate.

18



CHAPTER 3. NUMERICAL VALIDATION OF THE
LOCAL-RECONSTRUCTION METHOD

(a) Secondary mean tangential
velocity (W ) versus y/mac

(b) Main mean tangential velocity
(U) versus y/mac

Figure 3.5: Tangential velocity profiles of the flow around the Juncture flow at the
angle of attack (AoA) = 50 and the Reynolds number Rec = 2.4 · 106 based on the
crack chord length c at location X(2120.38,−232.15,−160.34) [mm]

3.4 Parallelization performance

Once clarified how to determine the data that is needed in a robust way, we can
focus on the parallelization of the method. Until now we had assumed, for simplicity,
that we wanted to obtain the boundary layer thickness at a point on the domain
boundaries of a sequential numerical simulation, without partitioning. However, to
reduce the time to solution, CFD runs are parallelised, which throws up a series of
questions that have to be answer:

(i) how to identify the points of a discretized line generated from a node in a
subdomain that belong to other subdomains, and how to do it for several
lines,

(ii) how to reconstruct the line once the interpolation in those subdomains have
been completed,

(iii) how to do it efficiently.

The easy way to solve (i) is to share all generated points with all subdomains.
However, this approach is memory intensive as we will end up with

npoints = nbnnsub (3.1)

per subdomain, with nbn, and nsub the total number of boundary nodes and the
number of subdomains respectively. A workaround following this basis is to solve N
portions, reducing the memory requireents by a factor N . After interpolating the
points, they are distributed so that nlines = nbp/(NnSub) is the number of discretized
lines per subdomain. This way the calculation of δ will be balanced (ii).

One drawback of the previously described approach is that when the points are
gathered they are stored in a sequential way (see Figure 3.6), i.e., first the points
from subdomain 1, then subdomain 2 up to domain N. Hence, when partitioning
will be generating points from a specific range of subdomains and, consequently,
only them an their neighbours will be working. If we take the partition from figure
Figure 3.6, only the processes 1, 2 and 3 will be working whilst 4 and 5 will be
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Ω1

Ω2

Ω3

Ω4

Ω5

Γ

Gathered Array

Partitioned
Array

Figure 3.6: Partitioned points array

waiting. An improvement to the performance of the partitioned method is to mix
the boundary points so that as many subdomains as possible work in each partition.

In Figure 3.7a, we have an example of the discretization of a subdomain for the
search of elements (for details see Appendix A), where a box contains the elements
close to the wall. This causes the search algorithm to slow down since the points
that we generate will fall within it and there will be many elements to search for.
Therefore, in cases where the box contains more than 200 elements, it is divided
into subboxes using the 20th percentile of the size of the elements contained in the
box (Figure 3.7b).

The ideal alternative to the partitioning method would be to send to each subdo-
main only the points which lie within the subdomain. This option cannot be carried
out since the shape of the subdomain should be known in advance. However, we can
determine a bounding box oriented with the principal axes. Then, each subdomain
determines which of its points are inside each bounding box and sends it to the
corresponding subdomain.

(a) non-optimal box (b) subboxes

Figure 3.7: Subdomain discrezation for element search
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Case Sphere Juncture Flow
nbn 151,395 199,421

Time [min] Speed up Time [min] Speed up

Partitioned 10.5 - 50 -
Subboxes 9.8 1.07 30.5 1.64
Shuffle 4.8 2.19 25.2 1.98
Subboxes & shuffle 4.9 2.14 15.6 3.20
Bounding boxes 3 3.5 13 3.84

Table 3.1: Performance of the δ calculation

In Table 3.1, the performance of each method commented before is shown. Par-
titioned, stands for the partition method. Subboxes, indicates that partition method
includes the subboxes improvement. Shuffle, denote the boundary nodes have been
mixed. Finally, Bounding boxes, refers to the method that distributes the points
based on the bounding boxes of each subdomain. On the one hand, we can see how
the shuffle option is the one that improves the partition method the most, although
the subboxes also help. On the other hand, it is clear that the bounding boxes is
the one that performs better.
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Chapter 4

Application to a full aircraft
configuration

The NASA Juncture Flow geometry [8] is based on the wing DLR-F6 and a leading-
edge horn to mitigate the effect of the horseshoe vortex over the wing-fuselage
juncture (Figure 4.1). The model wingspan is nominally 3397.2 mm, the fuselage
length is 4839.2 mm, and the crank chord (chord length at the Yehudi break) is
c = 557.1 mm.

Figure 4.1: Wing-fuselage junction model installed in the 14- by 22-Foot Subsonic
Wind Tunnel.

In the experiment, the model was tripped near the front of the fuselage and on
the upper and lower surfaces of both wings. In our case, preliminary computations
showed that tripping was also necessary to trigger the transition to turbulence over
the wings. Hence, the geometry of the wing was modified by displacing in the z
direction a line of surface mesh points close to the leading edge by 1 mm along the
suction side and pressure side of the wing (Figure 4.2).
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Figure 4.2: Wing tripping to trigger the transition to turbulence

4.1 Problem definition

The flow around the NASA Juncture Flow with a leading-edge horn is approximated
with WMLES at Rec = 2.4 million based on the crank chord length c = 557.1 mm
and AoA = 50. The case is solved in a spherical domain of diameter Dfarfield = 5·104.
A bulk velocity is imposed as the inflow boundary condition on the upstream half of
the spherical domain and null traction as outflow condition on the downstream half.
At the walls, we impose slip boundary conditions with the shear stress provided by
the wall model as described in Section 4.2.

4.2 Numerical method

In order to solve the LES equations, the code Alya is used [29]. Alya is a low
dissipation finite elements code, second order accurate in space [30]. The convective
term is discretized using a Galerkin finite element scheme which preserves linear
and angular momentum together with kinetic energy at a discrete level [31]. The
pressure-velocity coupling is solved, using a fractional-step method [32], whereas
equations are integrated in time using a semi-implicit approach, or IMEX, with a
Crank-Nicholson method for the diffusive term and a third-order Runge-Kutta for
the convective one, combined with an eigenvalue-based time-step estimator [33].
The Vreman subgrid-scale model [14] is used for turbulence closure with c = 0.1
(Equation 1.4).

A wall model is employed to reduce the restrictive spatial resolution requirements
to resolve the small scales in the near-wall. The no slip boundary condition on the
walls is replaced by a wall stress boundary condition obtained from the algebraic
equilibrium wall model of Reichardt’s law of the wall [34]. The velocity evaluation
point for the wall function is located at a distance h = 0.5NExLoc ∗∆n, where NExLoc

is the exchange location multiplier.

4.3 Computational meshes

Two strategies were followed in order generate the unstructured hybrid grids:

(a) Constant-height mesh (Baseline). The grid size in the neighborhood of the
plane surface is ∆t1 ≈ ∆t2 ≈ ∆t ≈ 10∆n, with ∆t the tangential components,
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(a) Baseline (b) Adaptive

Figure 4.3: Mesh topologies

∆t1 and ∆t2 , and ∆n the component normal to the surface. Additionally, the
number of layers in the normal direction is specified such that the isotropic ele-
ment, ∆t ≈ ∆n, is reached with a growth ratio of 1.2. In addition, a refinement
zone ∆wake is defined around the wings in order to properly capture the wake
development. Finally, a resolution of the farfield grid, ∆farfield > ∆wake, is set.
Figure 4.3a illustrates the spacial discretization for ∆n = 1 mm, ∆wake = 100
mm, and ∆farfield = 200 mm.

The advantage of this method is its simplicity, however, it does not take into
account the development of the boundary layer, which implies that the neigh-
borhood of the leading edges are underresolved and as we move downstream we
reach a point where the resolution of the mesh is excessive. Grid strategy (b)
aims to lessen this problem.

(b) Tailored boundary layer mesh (Adaptive). In general aspects this strategy is
very similar to strategy (a), however, the definition of ∆n is no longer a constant
but rather a function of the boundary layer thickness ∆n = f(δ). Consequently,
the mesh of the vicinity of the walls varies depending on the flow (Figure 4.3b).
In our application case, in order to have a sufficiently well-resolved solution
at the exchange location point, ∆n ≈ 0.125δ/3 (Figure 4.4) has been chosen,
where δ has been calculated employing the local-reconstruction method from a

Figure 4.4: Grid resolution in the normal direction ∆n
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(a) Grid resolution regions
underestimated (black)

(b) Grid resolution regions
correct (gray)

(c) Grid resolution regions
overestimated (white)

Figure 4.5: Resolution Comparison: Adaptive vs. Baseline

previous simulation using mesh strategy (a).

Figure 4.4 shows how the resolution required in the boundary layer should vary
from 0.1 mm, at the nose and leading edges of the wings, to 10 mm, at the end of
the fuselage. Moreover, Figure 4.5b highlights that only on a small region close
to the trailing edges and the top of the fuselage were correctly discretized in
the baseline mesh. On the one hand, in Figure 4.5c we can see that the trailing
edges and the rear of the fuselage are overdiscretized, which implies a waste of
nodes that could have been distributed more intelligently. On the other hand,
the mesh on the front of the fuselage and in most of the wings is oversized, so it
would have to be reduced, which would entail two counterpoints: a mesh with
more unknowns and a smaller time step due to the explicit integration of the
convective term. Depending on the characteristics of the flow in this area, the
time step could be reduced in the same proportion as the mesh.

4.4 Results

In order to assess the performance of the tailored boundary layer mesh (adaptive)
with respect to the constant-height mesh (baseline), the computational cost and the
streamwise velocity profiles in different stations of the fuselage are compared.

4.4.1 Computational cost

Table 4.1 summarizes the number of nodes in the mesh, the number of CPUs used
for the simulation, the mean time step (∆t), the approximated CPU cost per time
step (t∆CPU), the physical time needed to obtain a stationary solution (tss) and the
cost of the simulation (Tcc).

As the number of unknowns triples, the computational time per time step in-
creases accordingly as we use the same number of CPUs for both cases. Additionally,
the time step

∆t = Cconv
∣∣∣∣∆i

ui

∣∣∣∣
min

(4.1)

is reduced, to satisfy the convective CFL Cconv ≤ 1, since ∆n is smaller in the
adaptive mesh, to accommodate the thickness of the boundary layer at the leading
edge. Furthermore, as smaller turbulent scales in the near-wall are being resolved,
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Mesh # nodes # CPUs ∆t[T.U’s]1 t∆CPU [s]
tss

[T.U’s]
tcc

[CPUh]
Baseline 8.23 M 1,058 4.462 · 10−4 0.692 20 10 K

Adaptive 25.2 M 1,058 7.831 · 10−5 1.805 70 508 K

Table 4.1: Computational details of the simulations

the physical time to reach a steady state is increased. Therefore, the computational
cost is massively increased because we have more unknowns, we take longer to solve
them, we move forward in time more slowly and we need more time to reach the
steady state.

4.4.2 Velocity profiles

Figure 4.6a and Figure 4.6b show four different zones where experimental measure-
ments of the velocity profiles were taken at various stations (cyan squares). These
measurements are taken as ground truth to assess the precision of the two meshes.
Zone B is discarded since it only includes two points. In addition, the influence
of the exchange location on the mesh will be evaluated by varying the multiplier,
NExLoc, from 6 (≈ 0.125δ) to 8 (≈ 0.166δ).

(a) Upstream region of the fuselage (b) Wing-body juncture leading edge

Figure 4.6: Velocity profile stations at the plane fuselage

The absolute and relative L2 errors

∆εL2 =

npoints∑
i=1

√
(unum

i − uexp
i )2 (4.2)

εL2 =

∑npoints

i=1

√
(unum

i − uexp
i )2∑npoints

i=1

√
(uexp

i )2
(4.3)

are summarized in the Table 4.2, where unum and uexp
i are the numerical and exper-

imental solution respectively.
On the one hand, clearly, zone A is better predicted by the adaptive (‡), with

εL2 ⪅ 3%, where the assumption of flow in equilibrium is more representative. On

1Time Units (T.U.): time that takes the flow at the inlet velocity to travel the crank chord
length.
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Id Zone X Z Baseline (§) Adaptive (†) Adaptive (‡)2 Best

∆εL2 εL2 [%] ∆εL2 εL2 [%] ∆εL2 εL2 [%]
1 A 1168.4 0 3.07 3.37 4.61 5.05 2.78 3.04 ‡
2 A 1168.4 -30 5.88 6.47 3.77 4.15 2.75 3.03 ‡
3 A 1168.4 30 5.09 5.56 3.52 3.85 2.25 2.46 ‡
4 A 1168.4 -60 3.77 4.16 2.56 2.83 2.56 2.82 ‡
5 A 1168.4 60 4.93 5.38 4.51 4.93 2.20 2.40 ‡
6 C 1864.2 6.2 3.13 4.27 4.51 6.14 3.95 5.39 §
7 C 1879.2 6.2 2.78 3.96 3.12 4.43 4.88 6.93 §
8 C 1904.2 6.2 3.61 5.67 4.31 6.76 6.03 9.48 §
9 C 1919.2 6.2 5.28 9.11 6.32 10.90 7.35 12.68 §
10 D 1864.2 98.05 2.63 3.16 2.45 2.95 2.98 3.58 †
11 D 1869.2 98.05 2.79 3.37 2.40 2.90 2.98 3.60 †
12 D 1874.2 98.05 3.08 3.72 2.63 3.18 2.86 3.45 †
13 D 1879.2 98.05 3.19 3.87 2.82 3.42 2.93 3.56 †
14 D 1884.2 98.05 3.33 4.05 3.03 3.69 3.00 3.66 ‡
15 D 1889.2 98.05 3.43 4.18 3.31 4.03 3.01 3.67 ‡
16 D 1894.2 98.05 3.48 4.25 3.16 3.87 3.21 3.93 †
17 D 1899.2 98.05 3.43 4.20 3.07 3.76 3.22 3.95 †
18 D 1904.2 98.05 3.54 4.33 3.11 3.80 3.52 4.31 †
19 D 1909.2 98.05 3.62 4.46 2.84 3.50 3.79 4.67 †
20 D 1914.2 98.05 3.71 4.57 2.80 3.45 4.09 5.03 †
21 D 1921.2 98.05 4.06 4.91 3.15 3.86 4.44 5.44 †

Table 4.2: L2 error at the different stations

the other hand, zones C and D are better approximated by the baseline (§) and
the adaptive (†), respectively. Since the flow goes from bottom to top due to the
AoA, it has been influenced by the pressure gradient generated by the rounding
of the fuselage. Hence, the errors are larger in these zones with respect to zone
A because the equilibrium hypothesis is no longer valid. As we move away from
the rounding, the influence of the pressure gradient vanishes and the equilibrium
hypothesis becomes acceptable again, which is why the adaptive meshes predict a
better solution, (†) slightly better. It is worth noting that as we get closer to the
leading edge the approximations get worse as other pressure gradients come into
play.

In Figure 4.7 one representative station of each zone is selected, where we can
observe that:

• Adaptive (‡) predicts consistently a better solution close to the wall and over-
predicts the flow in the transition region between the inner and outer flow.

• Adaptive (†) offers a better estimate in the transitional region than adaptive
(‡).

• The three approaches are practically equivalent in the outer flow.

2NExLoc = 6, for the other cases NExLoc = 8
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(a) Id. 1 (Zone A)

(b) Id. 7 (Zone C)

(c) Id. 13 (Zone D)

Figure 4.7: Velocity and εL2 profiles at different stations
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Conclusions

After evaluating several methods to determine the thickness of the boundary layer, it
was concluded that the most robust and general method was the local-reconstruction
of the inviscid streamwise velocity method. Apart from requiring less statistics for
its implementation, it offers a better solution, qualitatively speaking, besides being
applicable independently to laminar, turbulent and transitional flows. This method
was successfully implemented after validation of its robustness and efficiency.

During the validation, the method showed sensitivity to the choice of the maxi-
mum stagnation pressure as well as to the transformation of the 2D reference system.
It offers increased robustness in the case that P0,ref is evaluated in each discrete nor-
mal line, as well as when the streamwise velocity is computed as the magnitude of the
tangential components. Additionally, points below 95% of the boundary layer edge
velocity are fit to a curve from which δ is extrapolated. In this way, overprediction
is avoided when the resolution of the statistics is too coarse.

As the last point of validation, parallel computing efficiency was assessed. The
best performance was obtained when the points were communicated to each subdo-
main based on their bounding boxes.

The main conclusion we can draw from the results of the NASA Juncture Flow
WMLES approximations is that wall modeling works well in regions where the
flow resembles a boundary layer in equilibrium. However, solution quality degrades
in the presence of pressure gradients and wing-body junctions. Therefore, a non-
equilibrium wall model must be explored for flows with these characteristics.

Additionally, the velocity evaluation point has an impact on the solution. Hence,
an adaptive exchange location method based on the boundary layer thickness should
be investigated as an alternative to the multiplier one.

The above conclusions are based on the results of the velocity profiles. Their
impact on predicting skin friction is uncertain due to the lack of experimental mea-
surements, although they are expected to propagate to wall stress.

Finally, the slow convergence of the tailored mesh solution significantly increases
the computational cost. One option to reduce the computational cost is to increase
the mesh size in the laminar area of the leading edge. Error will be introduced
because the flow will be underresolved but the turbulent wall law assumption is
incorrect as well. Therefore, the time step can be increased without violating the
CFL condition.
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Appendix A

Element search algorithm

In order to interpolate at a point p the values of a field, the element host must be
identified. We could check element by element if the point is contained but obviously
this would be highly inefficient. Instead, the bounding box of each subdomain is
partitioned into orthogonal boxes, each of which is filled with the elements that
have a minimum portion within it. So, knowing the length of the partition in each
direction (x,y,z), we can obtain an index (i,j,k) of the point that will give us the box
that contains the candidate elements to host the point. In this way, the search time
is drastically reduced because the box includes a subset of all the elements. The
algorithm is the following:

1. Create a bounding box Ωbb of the subdomain Ωi (Figure A.1a).

2. Partition the bounding box Ni times in each direction (Figure A.1b).

3. Loop over elements:

(a) Generate a bounding box, ebb, for element e.

(b) Determine the index ijk of the maximum and minimum ebb nodes coor-
dinates (Figure A.2a).

(c) Include e in the boxes from ijkmin to ijkmax (Figure A.2b).

4. Loop over points:

Ωbb

Ωi

(a) Bounding box

Ωbb

Ωi

(b) Subdomain partitioning

Figure A.1: Generation of the orthogonal discretization of the subdomain
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Ωbb

e

Ωi
ijkmax

ijkmin

(a) Element bounding box and
indices (red)

Ωbb

e

Ωi
ijkmax

ijkmin

(b) Boxes (green) containing the
element e

Figure A.2: Boxes filling

(a) Calculate the index pijk of the point p.

(b) Loop over elements in box bijk:

i. Split elements into tetrahedrons, pyramids (2), wedges (3), and hex-
ahedrons (5).

ii. Loop over tetrahedrons:

A. Transform global coordinates of point p(x) to the natural coor-
dinates of the tetrahedron p(ξ).

B. Check if p(ξ) is inside the tetrahedron.

p(ξi) ≤ 1 (A.1)
nsd∑
i=1

p(ξi) ≤ 1 (A.2)

with nsd the number spatial dimensions.
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Appendix B

Interpolation

The field value u(p) is estimated from the node values u(nep) of the element con-
taining the data point p, ep (host element), with the shape functions, Ni,

u(p) =

n
ep
nodes∑
i=1

Ni(ξp)u(n
ep
i ) (B.1)

Then, we have to calculate the local coordinates of a point, which is a non-trivial
operation, requiring two steps. First, finding the host element (Appendix A). Sec-
ond, calculating the local coordinates of the point (inverse mapping), which involves
solving a multi-dimension non-linear system of equations. Hence, to evaluate the
shape functions coefficients it is necessary to compute ξ(p) from x(p) the inverse of
the mapping algorithm.

x(p) =

n
ep
nodes∑
i=1

Ni(ξp)x(n
ep
i ) (B.2)

By means of Newton-Raphson iterations with residual

r(ξ) = x(p) −
n
ep
nodes∑
i=1

Ni(ξp)x(n
ep
i ), (B.3)

given an initial guess ξ0p , set k = 0 and iterate:

1. Compute the Jacobian matrix

J(ξkp )ij =
∂ri(ξ

k
p )

∂ξj
= −

n
ep
nodes∑
i=1

∂Ni

∂ξj
(ξkp )x(n

ep
i ), (B.4)

and the residual rk(ξkp ) using the last computed solution ξkp

2. Compute the new variation ∆ξk+1
p of the solution solving

J(ξkp )∆ξk+1
p = −rk(ξkp ) (B.5)

3. Update the solution
ξk+1
p = ξkp + ∆ξk+1

p (B.6)

4. If not converged go to 1.

5. Evaluate Equation B.1 using ξk+1
p .
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