
Towards a robust parallel solver for
large-scale industrial flow simulations

Master Thesis by:

Mátyás Rosta

Advisor:

Dr. Matteo Giacomini

Master’s degree in Numerical Methods in Engineering

June, 2022

I

Abstract

In this work a CFD analysis is done on incompressible viscous flows using Finite Volume
schemes implemented in the open-source software OpenFOAM. The objective of this
study is twofold: to gain experience with the software and to define a set of best
practices when running large-scale cases in OpenFOAM using parallel architectures.
The first objective is obtained by testing three academic benchmarks, namely the lid-
driven cavity, the flow over a backward facing step, and flow past a circular cylinder.
The validation of these results is made by contrasting them to the data available in
the literature. The second objective was fulfilled by studying two large-scale industrial
problems, laminar flow inside an S-bend and turbulent external flow around a car.
For the latter, the DriveAer geometry has been used. The analysis of these high-
performance computing studies has been defined in terms of the relative efficiency and
speed up for the two problems. The studied cases have been scaled up until 84 CPUs for
the S-bend, and until 224 CPUs for the vehicle geometry. Furthermore, the performance
of three partitioners, namely the simple, hierarchical, and scotch decomposers have been
evaluated.

II

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Passenger and competitive car simulations 1
1.2 Numerical methods for Computational Fluid Dynamics 2
1.3 Objective of this work . 3

2 Approximation of the Finite Volume method in OpenFOAM 5
2.1 Governing equations for the fluid flow 5
2.2 Treatment of turbulence . 6

2.2.1 Spalart-Allmaras model . 6
2.2.2 k−ϵ model . 7
2.2.3 k−ω SST model . 7

2.3 Introduction to OpenFOAM . 9
2.3.1 Organization of an OpenFOAM model 10
2.3.2 Parallelisation in OpenFOAM 11

3 Numerical validation 13
3.1 2D cavity flow . 13
3.2 Flow past a backward facing step . 17
3.3 Flow past a cylinder . 18

4 Parallel simulations using OpenFOAM 23
4.1 Description of the computational infrastructure 23
4.2 Parallel performance metrics . 23
4.3 Internal laminar flow in Sbend . 25

4.3.1 Case setup and simulation results 25
4.3.2 Scalability results . 27

4.4 External turbulent flow around a vehicle 32
4.4.1 Description of DriveAer model 32
4.4.2 Case setup and simulation results 32
4.4.3 Scalability results . 36

5 Conclusions 39
5.1 Future work . 40

III

IV CONTENTS

List of Figures

3.1 Boundary conditions applied in the case of the 2D cavity flow. Dark
blue surfaces represent fixed no-slip walls, while light blue stands for the
moving lid . 13

3.2 Quadrilateral meshes of the cavity domain 14
3.3 Triangular meshes of the cavity domain 14
3.4 Comparison of the horizontal velocity component (left) and pressure

(right) in the vertical symmetry plane of the cavity between FV and
FEM solutions for Mesh Q1. 15

3.5 Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and
FEM solutions for Mesh Q2. 15

3.6 Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and
FEM solutions for Mesh Q3. 16

3.7 Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and
FEM solutions for Mesh P1. 16

3.8 Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and
FEM solutions for Mesh P2. 17

3.9 Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and
FEM solutions for Mesh P3. 17

3.10 Boundary conditions applied to the problem of the Backward facing
step, inlet (red), outlet(green), and fixed walls (grey) 18

3.11 Results for the backward facing step at Re=100, Re=400, and Re=700. 19
3.12 Comparison of the dimensionless reattachment position with literature

data, see Armaly [ADPS83], Erturk [Ert07], and Giacomini [GSH19] . . 19
3.13 Boundary conditions of the domain of the flow past a cylinder problem 20
3.14 Mapped mesh used to discretise the domain around the cylinder, a closer

view of the mesh near the cylinder walls can be seen in the figure on the
right. 20

3.15 Velocity (left) and pressure field (right) showed at time 6500s 21
3.16 Lift (left) and Drag (right) coefficients calculated in OpenFOAM 21

V

VI LIST OF FIGURES

4.1 Boundary conditions of the S-bend geometry 26
4.2 Fluid flow at the Sbend at Re=1000, view of the whole domain above,

and a closer look to the bending section below 26
4.3 Velocity map at the cross-section of the tube at 0.5m, 0.76, and 1.12

meters from the inlet, being the coarser mesh presented above, and the
refined below. 27

4.4 Relative efficiency (above) and Speed Up (below) obtained with the
coarse mesh used on the S-bend geometry. The value of the parameter
p represents the estimated pendent for the linear regression curve . . . 30

4.5 Relative efficiency (above) and Speed Up (below) obtained on the fine
mesh used on the S-bend geometry. The value of the parameter p
represents the estimated pendent for the linear regression curve 33

4.6 Representation and dimensions of the DriveAer car model[AJSM18] . . 33
4.7 The development of several mesh layers in the domain, obtained from

[IJ19] on the left, and the different mesh refinement zones on the right
shown in Paraview . 34

4.8 Comparison of the pressure coefficient map on the driver’s window, Heft
[HIA12] on the left, and current case on the right 35

4.9 Comparison of the pressure coefficient map on the windshield of the
DriveAer model, Heft [HIA12] on the left, and current case on the right 35

4.10 Pressure coefficient distribution in the symmetry plane of the DriveAer
model . 36

4.11 Scalability results of the DriveAer model, presenting the Relative
Efficiency and Speed Up at a range between 28 and 224 CPUs 37

List of Tables

2.1 Solvers of OpenFOAM working only with incompressible flows, data
obtained from [Com21] . 9

2.2 Coefficients of the simple partitioner 11
2.3 Coefficients of the hierarchical partitioner 11
2.4 Coefficients of the metis partitioner . 12

3.1 Mesh details . 16
3.2 Calculation time and iterations needed to reach convergence in all

meshing scenarios . 17
3.3 Literature comparison of the calculated lift, drag coefficients and

Strouhal number at Re=100. 21

4.1 Partitions of the LaCàN HPC cluster 23
4.2 Running the Sbend case with the coarser mesh on 2 CPUs 28
4.3 Running the Sbend case with the coarser mesh on 4 CPUs 28
4.4 Running the Sbend case with the coarser mesh on 8 CPUs 28
4.5 Running the Sbend case with the coarser mesh on 16 CPUs 29
4.6 Running the Sbend case with the coarser mesh on 8 CPUs with 2 nodes 29
4.7 Running the Sbend case with the coarser mesh on 16 CPUs on two nodes 30
4.8 Running the Sbend case with the coarser mesh on 32 CPUs on two nodes 31
4.9 Running the Sbend case with the refined mesh on 14 CPUs 31
4.10 Running the Sbend case with the refined mesh on 28 CPUs 31
4.11 Running the Sbend case with the refined mesh on 56 CPUs 32
4.12 Running the Sbend case with the refined mesh on 84 CPUs 32
4.13 Scalability results with the DriveAer model 36

VII

Chapter 1

Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD) has experienced an exponential growth starting
from the 1980s, as numerical models became more sophisticated and computational
capacity increased with cluster-architectures [RL21]. This led to the incorporation of
CFD techniques in different industrial areas, such as aerospace and the automotive
industry. A great benefit of CFD is the ability to study the flow around vehicles or
other industrial applications, reducing the cost of a prototype, as it allows to reduce
the required number of wind tunnel testing, and to save money by reducing the number
of fabricated prototypes.

Incompressible laminar or turbulent flows are ubiquitous in industrial applications.A
fluid flow can be treated as incompressible for a Mach number smaller than 0.3, as at
this range of velocities the effects of compressibility can be neglected. A Mach=0.3
corresponds to a speed approximately of 360 km/h for air at sea level, so the field of
applicability of the incompressible Navier-Stokes equations is plentiful. Just to mention
a few examples, industrial flows inside tubes and pipes, pump and turbine applications,
utilization in maritime problems such as flow around vessels and submarines[KK11]. In
ground transportation it is also applicable, to evaluate the fluid flow over cars, trucks or
motorcycles, as well as high-speed train designs [MHB15]. The topic of the application
of incompressible Navier-Stokes equations in the automotive industry is explained in
more detail below, due to the special interest towards this field.

1.1.1 Passenger and competitive car simulations

The automotive industry found in CFD a very reliable tool that can handle results with
acceptable accuracy, affordable cost, and fast turnaround time [ZBFU19]. The study
of the flow around a vehicle is very important, as it can define its aerodynamic loads,
which directly influence important characteristics of the car such as maneuverability
and stability at high speed, traction and fuel consumption [BRG13].

Generally, in automotion, a mesh size on the car surface is approximately 1.5-6 mm
[SB13] [ZBFU19], with a first layer thickness around 0.005 mm. This leads to very
large-scale models, with up to 190-200 million cells per mesh [ZBFU19].

1

Chapter 1 Matyas Rosta

According to the measures of the International Automobile Federation (FIA), the
maximum race speed reached during the 2022 Miami Grand Prix, was 345.6 km/h
achieved by Kevin Magnussen [Cha22]. This is just below the approximated limit of
incompressible flow applicability. Moreover, access to wind tunnel testing facilities is
limited by FIA regulations, hence the computational modelling of the car in a high-
fidelity and highly efficient way is crucial. This goal is obtained by constructing a
large fluid domain around the car and discretising it with very fine mesh elements
around the geometrical surface of the car [RS18][GC20]. The resulting meshes for F1
car simulations also contain several hundreds of millions of elements [BP19].

The above problems require high-performance computing (HPC) techniques to over-
come computational limitations such as long computational time, and available memory
capacity.

1.2 Numerical methods for Computational Fluid Dy-
namics

CFD solves a set of governing partial differential equations modelling the conservation
of mass, momentum, and energy [DH03].

The approximation of flow equations require robust numerical schemes capable of
dealing with convection phenomena, incompressibility, and turbulence effects. These
methods can be divided into ones that follows an Eulerian approach to solve compu-
tational fluid problems and into those who follow a Lagrangian approach. Among the
Lagrangian models the Smooth Particle Hydrodynamics (SPH) method starts to get
popularity, however, these techniques are not in a consolidated phase [MCQ16]. The
vast majority of the CFD solvers are using Eulerian type numerical scheme, which is
based on the idea of control volumes. Among these methods can be found the Finite
Difference Method (FDM), Finite Volume Method (FVM), and Finite Element Method
(FEM). On these three methods lies the vast majority of the commercial softwares
nowadays.

The application of FDM in CFD is not very popular, nonetheless, it is a stable
and accurate scheme that provides rapid convergence [Sha16]. This method discretises
the domain by defining grid points. The governing partial differential equations are
then rewritten into algebraic equations. It is generally applied for free-surface or at-
mospheric, meteorological and astrophysical problems [Sjo16] [Bha12]. Some softwares
that use FDM are ModFlow, HEC-RAS, Flow3D or NASA’s Overflow. The advantage
of this model with respect to the other ones is its easy implementation. However, these
methods present several limitations when geometrically complex domains are consid-
ered.

The Finite Volume Method is currently the most widely applied method in Compu-
tational Fluid Dynamics. This method gained its popularity due to its locally conser-
vative formulation [Hai17]. The discretisation in this case is done by creating control
volumes, and the quantities of interest are evaluated at a certain point of the created vol-
ume. It can be in the cell center (Cell-Centered Finite Volume), at the vertices (Vertex-
Centered Finite Volume), or at the faces (Face-Centered Finite Volume)[SGH18] and

Page 2

Chapter 1 Matyas Rosta

following, the fluxes of the variables are calculated on the boundary of each cell, in this
way imposing their conservation at each cell [Fon18]. This results in very robust nu-
merical schemes. The FVM is implemented in softwares such as Ansys Fluent (CCFV),
Ansys CFX (VCFV), Altair Hyperworks, SimScale or open-source codes such as Open-
FOAM or SU2.

The Finite Element Method creates a piecewise polynomial approximations of the
flow variables. The most common is the application of 2nd order polynomials for veloc-
ity and first order polynomials for pressure to fulfill the so-called LBB-condition[DH03].
Among software that use FEM for CFD is COMSOL Multiphysics, LS-Dyna.

High-order methods, such as spectral elements, discontinuous Galerkin, Hybridisable
discontinuous Galerkin, etc, have also been successfully employed for CFD simulations,
see in [WFA+13], [CKS00], [NPC09]. Nonetheless, their application to large-scale in-
dustrial flow problems is still limited.

1.3 Objective of this work

In this work the CCFV method implemented in the open-source software OpenFOAM
will be employed to solve industrial flow problems, including internal and external
flows around realistic geometries such as an S-bend tube in heating, ventilation and air
conditioning (HVAC) systems or the DriveAer car model.

Despite its limited accuracy, FV is the preferred method by the industry, due to its
robustness. CCFV relies on a piecewise constant approximations of the flow variables,
thus requiring extremely fine meshes to achieve acceptable accuracy.

Hence, High-Performance Computing (HPC) is needed to speed up the computation,
reducing time cost of each simulation, and help to overcome hardware and memory
limitations.

This work aims to identify a set of rules and best practices for parallel simulations
using OpenFOAM. When working with HPC it is important to know the methods one
can use for the decomposition of the domain, and the impact they have on the speed
of the calculation. Furthermore, it is also interesting to know which is the optimal
cell count to be assigned to each processor to obtain the best performance using the
available computing facilities.

Specifically, this work aims to investigate the limitations and capabilities of Open-
FOAM to perform large-scale flow simulations using parallel computing facilities. To
achieve this goal the following steps have been completed:

• literature review on modern aerodynamic internal and external flow problems;

• familiarisation with OpenFOAM for steady and unsteady incompressible laminar
flow computations;

• familiarisation with OpenFOAM for steady incompressible turbulent flow compu-
tations;

• validation using academic benchmarks;

Page 3

Chapter 1 Matyas Rosta

• accuracy and scalability studies for large-scale laminar internal flow problems
using parallel computing facilities;

• accuracy and scalability studies for large-scale turbulent external flow problems
using parallel computing facilities;

• validation using industrial benchmarks.

Page 4

Chapter 2

Approximation of the Finite Volume
method in OpenFOAM

In this chapter, the governing equations for incompressible flows are briefly reviewed
and a basic introduction to OpenFOAM is provided.

2.1 Governing equations for the fluid flow

The governing equations for an incompressible viscid flow are the conservation laws for
mass, momentum and energy. Under the assumption of incompressible flows the energy
equation is decoupled from the other two conservation equations. This makes possible
to evaluate the velocity and the pressure field without solving for the internal energy.
The resulting incompressible steady-state Navier-Stokes equations are:

∇·(u⊗u)−∇·(ν∇u) +∇p = 0 in Ω,
∇·u = 0 in Ω,

u = uin on Γin,
u = 0 on Γw,

(ν∇u−pId)n = 0 on Γout,

(2.1)

The open bounded computational domain Ω ∈ Rnsd is defined in nsd spatial dimensions,
with the corresponding Dirichlet (ΓD) and Neumann (ΓN) boundaries ∂Ω = ΓN ∪ ΓD

and ΓN ∩ ΓD = ∅.
In these equations the first one stands for the conservation of momentum, and the

second one for the mass conservation, which in this case is zero divergence constraint on
the velocity. They are followed by the Dirichlet and Neumann boundary conditions. The
first one is applicable for the imposition of inlet boundary condition or to place physical
walls. In the latter case uD=0. Neumann boundary conditions can be employed, e.g.
on outlet boundaries, imposing the pseudo-traction to be zero.

5

Chapter 2 Matyas Rosta

2.2 Treatment of turbulence

It is known that for convection dominated problems a transition from laminar to turbu-
lent flows occurs. Turbulent flows show a complexity due to the chaotic oscillations of
the flow motion, as well as multi-scale phenomena in space and time. To handle these
problems, several strategies are suitable, e. g. the Reynolds Averaged Navier-Stokes
equations, Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS), to
mention a few.

Among these techniques, DNS provides a very detailed solution of the turbulent
phenomena [Wil06]. Nonetheless, it is extremely time and resource consuming as it
solves the Navier-Stokes equations, without the use of any turbulence model, making
it computationally unaffordable for industrial applications.

LES solves the largest eddies in the flow, with higher kinetic energy, and models the
remaining ones at the subgrid scale [Pop04] [Wil06].

The RANS approach first separates the mean flow and a fluctuation component
[Wil06]. For velocity, this reads as u=U+u’, where U is the mean component and u’
is the fluctuating component. It follows that the momentum equation of the Reynolds
Average Navier-Stokes model is:

∇·(U⊗U)−∇·(ν∇U − u′ ⊗ u′) +∇P = 0, (2.2)

where the third term is known as the Reynolds stress tensor, and it accounts for the
turbulent effects. These are commonly modelled using an additional turbulent viscosity,
νt, contribution leading to:

∇·(U⊗U)−∇·((ν+νt)∇U) +∇P = 0 in Ω,
∇·U = 0 in Ω,

U = Uin on Γin,
U = 0 on Γw,

(ν∇U−pId)n = 0 on Γout,

(2.3)

To determine the turbulent viscosity, several closure models, using one or more
equations, have been successfully adopted by the industry. Below, a short overview of
some common options is presented.

2.2.1 Spalart-Allmaras model

This model is a one equation turbulence model, that solves a nonlinear equation for the
eddy viscosity (ν̃), from which νt is thus computed [SA92]. This model works well in
highly viscous regions, as inside boundary layers near physical walls [Wil06][Rum22].
For this reason, it has been used for calculating the flow around airfoils or turbine blades.
However, it presents some problems working in the free-stream regions, where it can
give nonphysical solutions. It is a very robust turbulence model, and it is commonly
employed to get an initial guess before the application of more complex models.

Page 6

Chapter 2 Matyas Rosta

2.2.2 k−ϵ model

This model has been proposed by Launder [LS74][JL72], in order to improve the mixing-
length model, and to overcome the need for algebraically prescribing the turbulent
length scales for turbulent flows. This is a two equation model, the first equation solves
for the turbulent kinetic energy (k), and the second for the turbulent energy dissipation
rate (ϵ)[Wil06]. It has been one of the most applied turbulence models, however, it
shows some issues when working with large adverse pressure gradients and boundary
layer separation.

2.2.3 k−ω SST model

This turbulence model was introduced by Menter [Men93] deriving from the original
k-ω model of Wilcox[Wil88]. It is a two equation model, that combines the k-ω and
the Shear-Stress Transport models. This model is very popular in the CFD community
as it works as a k-ω model down to the viscous sub-layer but the SST formulation
gives a behaviour similar to the k-ϵ model in the freestream far from the wall[Rum21].
Nonetheless, it is known to overpredict the production of high turbulence levels around
stagnation points and zones with high velocity gradients.

The formulation of this model is done by calculating the turbulence kinetic energy
(k), the specific dissipation rate (ω) and from these two data evaluate the turbulent
kinematic viscosity (νt) in the RANS equations. Mathematically this is calculated as
[MKL03]:

• Turbulent kinematic viscosity

νt =
a1k

max(a1ω, SF2)
(2.4)

where S corresponds to the strain rate.

• Turbulent kinetic energy

∂k

∂t
+ Uj

∂k

∂xj

= Pk − β∗kω +
∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(2.5)

• Specific dissipation rate

∂ω

∂t
+Uj

∂ω

∂xj

= αS2 − βω2 +
∂

∂xj

[
(ν + σω1νt)

∂ω

∂xj

]
+2(1−F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi

(2.6)

• Closure coefficients
The blending functions F1 and F2 are defined as [MKL03]:

F1 = tanh

[[
min

(
max

(√
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

)]4]

Page 7

Chapter 2 Matyas Rosta

F2 = tanh
[[
max(

2
√
k

β∗ωy
,
500ν

y2ω
)
]2]

Note, that F1 is zero away from the surface, which gives a k-ϵ behaviour, while it
turns to one inside the boundary layer, corresponding to a k-ω model.

The production limiter Pk stands for reducing the turbulence in stagnation re-
gions.

Pk = min
(
τij

∂Ui

∂xj

, 10β∗kω
)

CDkω = max(2ρσω2
1

ω

∂k

∂xi

∂ω

∂xi

, 10−10
)

The following constants are specified by [MKL03]:

σk1 = 0.85, σk2 = 1

σω1 = 0.5, σω2 = 0.856

β1 =
3

40
, β2 = 0.0828, β∗ = 0.09

α1 =
5

9
, α2 = 0.44

Φ = Φ1F1 + (1− F1)Φ2

The boundary conditions applied to the (2.5)(2.6) are fixed values at inlet and zero
gradient at outlet boundaries. Near the walls, all turbulent quantities are set to zero
except for ω, for which [Men93] recommends the following formulation:

ω = 10
6ν

β1(∆y)2
at y = 0

where ∆y is the distance between the current position and the following node. Interested
readers are referred to [Wil06] for more information.

Page 8

Chapter 2 Matyas Rosta

2.3 Introduction to OpenFOAM

OpenFOAM allows to solve a wide range of fluid mechanics problems, including incom-
pressible, compressible, steady state or transient problems. It is also possible to simulate
multi-phase flows, combustion, porous media, heat transfer and buoyancy driven phe-
nomena, etc. For each kind of problems there are one or more solvers available. The
ones targeting incompressible single-phase flows are summed up in Table 2.1.

Solver Tr
an

si
en

t

Tu
rb

ul
en

ce

H
ea

t
tr

an
sf

er

B
uo

ya
nc

y

C
om

bu
st

io
n

M
ul

ti
re

gi
on

D
yn

am
ic

m
es

h

icoFoam x
simpleFoam x
pimpleFoam x x x
pisoFoam x x
chemFoam x x x

laplacianFoam x
potentialFoam

Table 2.1: Solvers of OpenFOAM working only with incompressible flows, data ob-
tained from [Com21]

In this work, simpleFoam and pisoFoam solvers were used, for steady state and
transient simulations, respectively.

Description of the simpleFoam algorithm

simpleFoam implements the so called SIMPLE algorithm [PS72] that stands for semi-
implicit method for pressure linked equations. This method is a fractional-step Chorin-
Temam projection method, that decouples numerically the pressure and velocity fields,
and solves the problem iteratively. For more details about this method one can consult
the book written by Jean Donea and Antonio Huerta [DH03].

The method first evaluates the momentum equation without considering the influ-
ence of the pressure, giving an intermediate result for velocity, namely called u. The
pressure field then is evaluated from the incompressibility constraint, which is refor-
mulated into a Poisson problem. Finally, a correction is made on u, obtaining a final
solution for the velocity field u. The algorithm is detailed in Equation 2.7.

Page 9

Chapter 2 Matyas Rosta

uk − uk−1

∆t
+∇·(uk⊗uk−1)−∇·(ν∇uk) = s in Ω,

uk = uD on ΓD,
n·(ν∇uk) = t on ΓN ,

(2.7a)

∇·(∇p) =

1

∆t
∇·uk in Ω,

n·∇p = 0 on ΓD,
np = 0 on ΓN ,

(2.7b)

u = uk −∆t∇p. (2.7c)

2.3.1 Organization of an OpenFOAM model

To run a case in OpenFoam, the case setup files must be organised in a specific way.
There are three main folders which contain the fundamental information about the
model, which are 0, constant, and system. The first folder contains the initial infor-
mation for the model and it must have at least one file per variable that should be
initialized. For example, for a laminar incompressible case, the definition of the pres-
sure (p) and the velocity (U) is sufficient, while for a turbulent case using k-ω SST
model the turbulent kinetic viscosity (νt), the kinetic energy (k) and the specific dissi-
pation rate (ω) must also be initialized in that folder.

In constant there must be a folder called polyMesh that contains information about
the mesh and boundary conditions, and at least two files, one defining the turbulence
model that is applied, and the other transport properties, such as the kinematic viscosity
of the flow.

The third folder contains files that are required to define the solver and solution
control of the problem. In this folder there must be the three following files: fvSolu-
tion, where one must define a method to solve each variable (for example, GAMG -
geometric-algebraic multigrid for pressure), relative and absolute tolerances at each iter-
ation, number of sub-iterations within in each iteration, residual control for convergence
criteria, under-relaxation factors for specific variables, the number of non-orthogonal
correctors etc. When working with only Dirichlet type conditions for the velocity on
every boundaries it is necessary to define the value of the pressure at a specific point
of the mesh. In OpenFOAM this must be written in the fvSolution dictionary. The file
fvSchemes contains information of the numerical scheme that is used to approximate
the variables, such as the numerical schemes for the time derivative, for the divergence
terms, or for the gradients of each variable. In controlDict one can define the solver
controls, such as setting the solver itself (p.e. simpleFoam), the time step, maximum
number of iterations, the initial time step, writing criteria for saving the results after
determined steps. In the controlDict file one can set the definition of functions used
for post-processing as well. In this folder one should include other dictionaries, such
as blockMeshDict - when the built-in mesh generator is desired to be used, decom-
poseParDict - to specify the domain decomposition method, or other dictionaries for
post-processing.

Page 10

Chapter 2 Matyas Rosta

2.3.2 Parallelisation in OpenFOAM

OpenFOAM gives the possibility to its users to run cases in parallel, and it counts with
several built-in partitioners to decompose the domain. The decomposition of the domain
is made based on the specifications given in the dictionary called decomposeParDict,
located in the folder system. This file contains the specifications about the number
of subdomains, decomposition method with different partitioner specific parameters.
Some of the most frequently used partitioners will be briefly presented below:

• simple
It decomposes the domain into subdomains along the defined directions. The
decomposition is done with uniform weight, which means, the resulting mesh
count per CPU is approximately the same for all partitions.

coefficients description
n number of subdivisions in each direction

order directional order in which the decomposition is made
delta value for the rotation matrix

transform transformation of the cartesian coordinates

Table 2.2: Coefficients of the simple partitioner

• hierarchical
It is based on the simple method, however, it sets a hierarchical order between the
different directions before doing the partitioning. So, it splits the domain first in
one direction, and then in the second and third directions. This method provides
very uniform size for the created subdomains.

coefficients description
n number of subdivisions in each direction

order directional order in which the decomposition is made
delta value for the rotation matrix

transform transformation of the cartesian coordinates

Table 2.3: Coefficients of the hierarchical partitioner

• metis
Metis is a very fast and efficient partitioner. It is based on graph partitioning.
Due to the Fill-reducing Matrix Ordering techniques applied in this decomposition
method, it can reduce the requirements for the computation and storage of sparse
matrix factorization up to an order of magnitude [Lab15]. This means that metis
can create high quality partitions in a very time efficient way.

The coefficients that can be applied are: method - recursive or k-way, depending
on the algorithm which is of the preference of the user, processorWeights - useful if
the machine on which the calculations will be made consist of CPUs with different
speed and cache.

Page 11

Chapter 2 Matyas Rosta

coefficients property
method recursive or k-way (users preference)

processorWeights different mesh count at each CPU

Table 2.4: Coefficients of the metis partitioner

• scotch
This method is considered to be a metis-like method, as it is also based on graphs.
It creates partitions by minimising the number of boundaries between the pro-
cessors. It creates good quality partitions and it is implemented in a very user-
friendly manner into OpenFOAM. It only requires the number of subdomains
given by the user. As Metis is not part of the basic third party license of Open-
FOAM, generally, this method is recommended to use instead.

• kahip:
This method is called the Karlruhe High Quality Partitioning (KaHiP) algorithm.
It is also a metis-like algorithm based on graphs. This method minimise the
number of edges between the subdomains while creating equally sized partitions.

• manual:
This method decompose the domain following the manually written script of the
user, specifying the cells corresponding to a defined processor.

In addition, multi-region method allows to assign different partitioners for specific
regions of the mesh, and multi-level allows to decompose a mesh level-by-level with
different partitioners. One example could be the decomposition of a domain using metis
among the different CPUs, whereas the resulting meshes could be further divided using
hierarchical.

Page 12

Chapter 3

Numerical validation

3.1 2D cavity flow

The first benchmark that has been tested was a 2D problem, a lid-driven cavity flow.
The problem consists of a cavity with three fixed walls and the top surface of the hole
is moving with a constant velocity in the horizontal direction. This case is compared
with the results presented in Tezduyar and Mittal [TMRS92] and Donea and Huerta
[DH03]. The domain is [0 1] × [0 1] and the Reynolds number is set to 400. The second
reference [DH03] is used to compare the performance of the finite volume method using
hexahedral and tetrahedral meshes, and compare them with a Finite Element solution.
From the practical viewpoint a 3D domain is considered by OpenFOAM with only
one element in the third direction, and an "empty" boundary condition is set on the
redundant surfaces.

Summing up, the boundary conditions of the case are the following for the fluid
variables u and p, also see in Figure 3.1:

Figure 3.1: Boundary conditions applied in the case of the 2D cavity flow. Dark blue
surfaces represent fixed no-slip walls, while light blue stands for the moving lid

• Lid (light blue): velocity vector (u) = [1 0 0], and zero pressure gradient

13

Chapter 3 Matyas Rosta

• Fixed walls (dark blue): No-slip condition for velocity, and zero gradient for
pressure

• Front and back surfaces: as the problem is 2D they are set as "empty" surfaces

• At the lower left corner the value of the pressure is set to be zero. This is a
necessary condition as on the walls only Dirichlet conditions have been defined
for velocity, so pressure is not uniquely defined.

Three different meshes have been created for each element types (triangular and
quadrilateral) with the exact same number of divisions per length. The six meshes are
represented in Figure 3.2 and 3.3.

(a) Mesh Q1 (b) Mesh Q2 (c) Mesh Q3

Figure 3.2: Quadrilateral meshes of the cavity domain

(a) Mesh P1 (b) Mesh P2 (c) Mesh P3

Figure 3.3: Triangular meshes of the cavity domain

In Table 3.1 one can also find some quantitative details of the six meshes.
The results of the OpenFOAM solver is compared with a Taylor-Hood Finite EL-

ement solution [DH03] computed on the most refined mesh. The obtained data is
compared in the following order: for each element type and mesh refinement, the hori-
zontal component of the velocity and the pressure value in the vertical symmetry plane
are shown for the FEM and FV cases.

Page 14

Chapter 3 Matyas Rosta

• Mesh Q1
In this case there is a clear difference between the target, FEM and FV solutions.
The relative L2 error for the horizontal velocity component Ux has been found to
be 7.05 % between the FEM and FV solutions for the same mesh.

Figure 3.4: Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and FEM solutions
for Mesh Q1.

• Mesh Q2
The error between the FEM and FV results has been reduced considerably, having
an L2 error for Ux equal to 2.7 %.

Figure 3.5: Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and FEM solutions
for Mesh Q2.

• Mesh Q3
This is the finest mesh, where the FEM and FV solutions appears to be almost
identical, showing a relative L2 error for Ux of 1.38 %. The above results are
confirmed also in the case of triangular elements, see Figures 3.73.83.9.

Page 15

Chapter 3 Matyas Rosta

Mesh Q1 Mesh Q2 Mesh Q3 Mesh P1 Mesh P2 Mesh P3
Elements 361 1,521 6,241 722 3,041 12,482
Nodes 800 3,200 12,800 800 3,200 12,800

Table 3.1: Mesh details

Figure 3.6: Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and FEM solutions
for Mesh Q3.

Figure 3.7: Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and FEM solutions
for Mesh P1.

Concerning the computational cost, Table 3.2 the number of iterations and elapsed
clock time to achieve convergence for all 6 scenarios. It is worth noting that Open-
FOAM performs better with quadrilateral meshes than with triangular ones, as both
the number of iterations needed to reach convergence and the elapsed time are less
for quadrilateral meshes. This is due to the well-known sensitivity of CCFV to mesh
orthogonality, see [SGH18].

Page 16

Chapter 3 Matyas Rosta

Figure 3.8: Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and FEM solutions
for Mesh P2.

Figure 3.9: Comparison of the horizontal velocity component (left) and pressure
(right) in the vertical symmetry plane of the cavity between FV and FEM solutions
for Mesh P3.

Mesh Q1 Mesh Q2 Mesh Q3 Mesh P1 Mesh P2 Mesh P3
iterations 108 97 213 109 184 531

Time (s) 0.89 1.2 5.41 0.82 2.12 17.08
cells 361 1,521 6,241 722 3,041 12,482

Table 3.2: Calculation time and iterations needed to reach convergence in all meshing
scenarios

3.2 Flow past a backward facing step

This benchmark studies the flow over a backward facing step, for different Reynolds
numbers. The problem is 2D, steady state, and it is generally used to study the ca-
pability of numerical schemes to capture the recirculation zone behind the step. The
domain is normalized in terms of the height of the step (h), so the length of the channel
is set to 80 h downstream from the step, 5 h upstream the step, and its inner height is

Page 17

Chapter 3 Matyas Rosta

2 times h. The following boundary conditions are applied:

• Inlet: Fixed velocity u=[1 0 0], zero pressure gradient

• Outlet: zero normal velocity gradient , fixed pressure p=0

• Fixed wall: no-slip condition for velocity, zero pressure gradient

• Back and front surfaces: "empty" (according to 2D problem)

The Inlet (red), Outlet (green), and Fixed wall (grey) conditions are presented in Figure
3.10.

Figure 3.10: Boundary conditions applied to the problem of the Backward facing
step, inlet (red), outlet(green), and fixed walls (grey)

The solution was compared at three Reynolds numbers, namely Re=100, Re=400,
and Re=700. These results can be seen in Figure 3.11.

The results represent the growth of the first recirculation zone with the increment
of the Reynolds number, however, the length of this zone increases non-linearly with
the Reynolds number. For a Re higher than 400, a second recirculation zone appears.
The dimensionless position of the reattachment point is studied and compared to the
literature, see Figure 3.12. The reattachment occurs at Xr/h= 2.84, 8.65, and 11.6 in
the three cases, respectively, where Xr is the position of the reattachment along the
x-axis, and h is the height of the backward facing step. These results present a relative
error of 1.3 %, 5.8 %, and 2.9 % with respect to the data presented by Erturk [Ert07]
and Giacomini [GSH19].

3.3 Flow past a cylinder
This benchmark is used to test the simulation of laminar unsteady incompressible flows.
The problem is given by a 2D cylinder immersed in a fluid. The flow has a uniform
upstream velocity given by a specific Reynolds number, namely Re=100, calculated
with the diameter of the cylinder.

The physical domain is set up according to the parameters in [TMRS92], the length
of the domain is 30,5 times the diameter (D), while the cross sectional length is 16 D.
As in this case the diameter was set to be 2 m, and it is placed in the position P =
[0,0,0], the domain has the following dimensions: [-12 49] × [-16 16]. Its boundaries are

Page 18

Chapter 3 Matyas Rosta

Figure 3.11: Results for the backward facing step at Re=100, Re=400, and Re=700.

Figure 3.12: Comparison of the dimensionless reattachment position with literature
data, see Armaly [ADPS83], Erturk [Ert07], and Giacomini [GSH19]

represented in Figure 3.13, where the yellow boundary represents the face where inlet
boundary is defined, green, and blue faces stands for symmetry boundary conditions,
while on the black boundary outlet condition is applied. The cylinder is represented by

Page 19

Chapter 3 Matyas Rosta

Figure 3.13: Boundary conditions of the domain of the flow past a cylinder problem

Figure 3.14: Mapped mesh used to discretise the domain around the cylinder, a closer
view of the mesh near the cylinder walls can be seen in the figure on the right.

the red faces, where no-slip wall conditions are set. The previous conditions mean the
following restrictions on the flow parameters:

• Inlet boundary condition: u=[0,05 0 0] m/s, zero pressure gradient;

• Outlet boundary condition: zero normal velocity gradient, p=0;

• Symmetry boundary conditions: u: u·n=0, t(∇u)·n=0, zero pressure gra-
dient;

• No-slip wall: u=[0 0 0], zero pressure gradient.

As the problem is 2D the front and back faces are defined to be "empty". The domain
has been discretised using the mesh presented in Figure 3.14. The previously described
problem is solved using pisoFoam having the temporal domain defined between 0 and
6500 s. The velocity and pressure fields at the last instant are presented in Figure 3.15

Page 20

Chapter 3 Matyas Rosta

Figure 3.15: Velocity (left) and pressure field (right) showed at time 6500s

Figure 3.16: Lift (left) and Drag (right) coefficients calculated in OpenFOAM

From the obtained results the lift, drag coefficients are computed and the Strouhal
number is determined. The obtained data are shown in Figure 3.16, and compared with
the data in the literature, in Table 3.3..

Cases Lift coefficient Drag coefficient Strouhal number
Current case ± 0.321 1.42 ±0.007 0.163

Tezduyar [TMRS92] ±0.350 1.40±0.01 0.170
Kim[JDH01] ±0.320 1.33 0.165
Calhoun[D02] ±0.300 1.35±0.014 0.175
Russel[DJ03] ±0.322 1.38±0.007 0.169

Choi[ICRcw07] ±0.315 1.34±0.011 0.164
Ming [PW09] ±0.313 1.34±0.008 0.165

Table 3.3: Literature comparison of the calculated lift, drag coefficients and Strouhal
number at Re=100.

The computed solution presents relative errors of 4,42 % in the drag, 0,31 % in the

Page 21

Chapter 3 Matyas Rosta

lift, and 2,98 % in the Strouhal number, compared with the reference values in the
literature.

Page 22

Chapter 4

Parallel simulations using OpenFOAM

4.1 Description of the computational infrastructure
All the results presented in this study have been computed on the cluster of the Lab-
oratori de Càlcul Numéric - LaCàN de la Universitat Politècnica de Catalunya. The
cluster consist of several nodes and machines that belongs to different queues that can
be used according to the size of the problem at hand. Table 4.1 summarises the relevant
information on the LaCàN cluster.

The HPC cluster consists of 33 computing nodes, one master node and one storage
node. These nodes are connected using an Infiniband network. The queue standard top

Partition Name Number of nodes Number of cores Memory Limit
standard 1 1-8 64 GB
mpi16c 1-2 1-32 192 GB
mpi28c 2-10 56-280 192 GB

Table 4.1: Partitions of the LaCàN HPC cluster

is composed of 6 x Bull Sequana X440-E5 2 x 12-core Xeon Gold 6246 (3.30 GHz/25MB
cache, 2933Mhz FSB) with 384 GB RAM - EDR Infiniband Network or 3 x Dell Power
Edge R630 2 x Octa-Core Xeon E5-2667 v3 (3.2 GHz/20MB cache, 2133Mhz FSB) with
128 GB RAM - QDR Infiniband Network. This queue is used for serial computation.
The other two partitions are for parallel computing only. The smaller one is the mpi16c
partition formed by 10 x Bull Sequana X440-E5 2 x Octa-Core Xeon Gold 6134 (3.20
Ghz/25MB cache, 2666Mhz FSB) with 192 GB RAM connected with EDR Infiniband
Network. The largest partition for HPC is the mpi28c, which is formed by 10 x Bull
Sequana X440-E5 2 x 14-Core Xeon Gold 6132 (2.60 Ghz/19MB cache, 2666Mhz FSB)
with 192 GB RAM using EDR Infiniband Network.

4.2 Parallel performance metrics
In order to evaluate OpenFOAM performance using parallel computing architectures,
the following metrics will be used:

23

Chapter 4 Matyas Rosta

• Relative maximum discrepancy
This metric can be written as:

Dmaxr =
max|nel(i)− n̄el|

n̄el

· 100,

where nel(i) is the number of cells per processor at CPU i and n̄el is the average
number of cells per processor. This metric measures the ratio in percentage of
the average number of cells per processor with respect to difference between the
number of cells at the worst processor (where highest or lowest number of cells
are assigned) and the average number of cells. This is a measure of the largest
inhomogeneity of the workload across processors.

• Mean discrepancy
This metric is similar to the previous one, but it measures an average discrepancy,
so it expresses mean inhomogeneity of the workload subdivision:

D̄r =
1

nproc

∑ |nel(i)− n̄el|
n̄el

· 100,

where nproc is the total number of processors used.

• Speed up
This metric gives the ratio between the clock time of running the case in serial (1
processor only), and the clock time of the parallel computation, giving the user
the information of the speed up of the computation if the domain is split up into
several subdomains.

Sp =
Ts

Tp

,

where Ts is the clock time of the serial, and Tp is the clock time of the parallel
computation. This value can be defined on two different scaling basis. When the
term strong scaling is used, it refers to the case when the computation time is
evaluated while increasing the number of CPUs and the global problem size is
maintained fix (Amdahl’s law). Weak scaling evaluates the computational time
while increasing the problem size for a fixed size of processors (Gustafson’s law)
[Wol]. In this study, strong scaling have been analysed.

• Relative efficiency
This metric compares the efficiency of the parallel computation by evaluating the
ratio of the total run time needed to solve the problem in serial (using only 1
processor) Ts, and the total CPU run time, which is the sum of the clock time of
each processor Tt. Sometimes Tt is approximated as nproc · Tp. However, as the
load of each processor is not the same there may be important differences.

ηrel =
Ts

Tt

≈ Ts

nproc · Tp

,

Page 24

Chapter 4 Matyas Rosta

If this value is greater than one, the overall time spent by the processors in parallel
is smaller than the clock time of the serial run, so the algorithm is accelerated
and it converges faster.

It can be mentioned that there are other efficiency metrics that are used in scala-
bility analsysis, however, they are not used in this study. One is the isoefficiency,
which gives the relation between the problem size and the number of machines
to maintain a constant efficiency value. The other metrics is the CMP efficiency,
which gives an efficiency while maintaining the local problem size constant (the
increment in the number of processors is linear with the global problem size). For
more details, interested readers are referred to [Fie95].

4.3 Internal laminar flow in Sbend

The order in which the scalability testing is done follows the principle of graduality,
which means that the starting point of this study is a reasonably small mesh, that gives
the opportunity to study several parameters, such as the influence of the partitioner on
the convergence, and to set the lower limit for an optimal number of cells per processors.

For this reason, the first case that has been parallelised is an internal laminar flow
in a three dimensional S-bend geometry. This problem allows a discretisation with a
relatively small mesh, without loosing important details, or physical phenomena.

4.3.1 Case setup and simulation results

The geometry is created in GiD, and it is composed of a rectangular tube with a cross
section of 0,04 × 0,04 meters, bended in an S-shape in the horizontal and vertical
directions as well. The bend starts at 0,335 meters from the inlet and its total length is
about 0,18 meters, reaching a displacement of 0,048 meters in the two directions with
respect to the initial cross section.

The boundary conditions of the problem are the following ones:

• Inlet: fixed velocity of u=[1 0 0] m/s, zero pressure gradient

• Outlet: zero gradient for the velocity, and fixed pressure p=0 Pa.

• Fixed walls: no-slip wall condition for the velocity, zero pressure gradient

The boundary conditions can be observed in Figure 4.1
To guarantee a laminar flow inside the pipe, the viscosity of the fluid has been

determined in order to give a Reynolds number Re=1000. The problem has been
solved using the steady state algorithm, simpleFoam. The problem has been computed
on the mpi16c queue of the LaCàN cluster.

The solution have been obtained on two different meshes, a coarser mesh and a
refined mesh. The first one consists of approximately 900,000 cells, while the latter
is made of approximately 3.6 millions of elements. The streamlines of the flow at the
S-bend are presented in Figure 4.2 on the finer mesh.

Page 25

Chapter 4 Matyas Rosta

Figure 4.1: Boundary conditions of the S-bend geometry

Figure 4.2: Fluid flow at the Sbend at Re=1000, view of the whole domain above,
and a closer look to the bending section below

Page 26

Chapter 4 Matyas Rosta

The results of the coarser and the refined mesh are compared at three different
sections, at 0.5, 0.76, and 1.12 meters from the inlet. These results can be seen in
Figure 4.3.

Figure 4.3: Velocity map at the cross-section of the tube at 0.5m, 0.76, and 1.12 me-
ters from the inlet, being the coarser mesh presented above, and the refined below.

In these figures the stabilisation of the cross flows in the tube can be observed after
the Sbend. It can be seen that the coarser mesh can already give reasonable results
about the velocity pattern and the flow in the tube. Only some smaller details are lost,
but the main behaviour of the flow is reproduced.

4.3.2 Scalability results

The testing is made using two different meshes, a coarser and a refined one. The objec-
tive of these tests is to determine an optimal partitioner to achieve better performance,
and to study the behaviour of the scalability. The latter is evaluated when the test
is done using one node of processors only, and also when two nodes are involved, and
there is a important communication effort between the nodes as well. For the one node
study a mesh of 900,000 hexahedral cells is used, while for the multiple nodes study,
mesh of 3.6 millions of cells is considered.

Page 27

Chapter 4 Matyas Rosta

Case 1: coarse mesh

In this test the problem is computed using 4 different partition sizes. It is split into 2,
4, 8, and 16 subdomains that are computed in parallel, and the results are compared
with the results of the serial computation. The partitioning is done by three different
partitioners, namely, simple, hierarchical, and scotch.

2 CPUs Simple Hierarchical Scotch
cells 900,000 900,000 900,000

cells per CPU 450,000 450,000 450,000
Dmaxr (%) 0 0 0
D̄r (%) 0 0 0

Clock Time (s) 661.2 659.7 658.3
Total CPU time (s) 1,325 1,323 1,325

ηrel 1.056 1.057 1.056
Speed Up 2.116 2.121 2.125

Table 4.2: Running the Sbend case with the coarser mesh on 2 CPUs

4 CPUs Simple Hierarchical Scotch
cells 900,000 900,000 900,000

cells per CPU 225,000 225,000 225,000
Dmaxr (%) 0 0 0.400
D̄r (%) 0 0 0.200

Clock Time (s) 314.3 313.3 317.2
Total CPU time (s) 1,284 1,267 1,284

ηrel 1.090 1.104 1.090
Speed Up 4.452 4.465 4.410

Table 4.3: Running the Sbend case with the coarser mesh on 4 CPUs

8 CPUs Simple Hierarchical Scotch
cells 900,000 900,000 900,000

cells per CPU 112,500 112,500 112,500
Dmaxr (%) 100 0 0.56
D̄r (%) 50 0 0.296

Clock Time (s) 298.0 167.0 160.6
Total CPU time (s) 2,420 1,353 1,302

ηrel 0.578 1.034 1.075
Speed Up 4.694 8.375 8.710

Table 4.4: Running the Sbend case with the coarser mesh on 8 CPUs

As it can be observed in Tables 4.2-4.5, simple and hierarchical partitioners create
subdomains with the exact same number of cells in the first two scenarios. Scotch only

Page 28

Chapter 4 Matyas Rosta

16 CPUs Simple Hierarchical Scotch
cells 900,000 900,000 900,000

cells per CPU 56,250 56,250 56,250
Dmaxr (%) 294 0 0.999
D̄r (%) 70.632 0.000 0.530

Clock Time (s) 303.5 99.6 93.5
Total CPU time (s) 4,823 1,615 1,517

ηrel 0.290 0.866 0.922
Speed Up 4.610 14.050 14.964

Table 4.5: Running the Sbend case with the coarser mesh on 16 CPUs

decomposes the domain with the exact weight for two subdomains, and the relative
mean discrepancy and relative maximum discrepancy start to increase with the number
of subdomains. This is not true for the hierarchical decomposer, who maintain the same
number of cells for all subdomains for all cases. It can be seen that the simple partitioner
starts to suffer with the decomposition above 4 CPUs, provoking an imbalance in the
number of cells per CPU. This leads to relative efficiencies of only 0,290 when the
domain is decomposed in 16 partitions. The Speed Up does not change effectively
above 4 CPUs with this partitioner. Henceforth, the simple partitioner will thus be
neglected.

The remaining two alternatives scale well in every case. It is worth noticing that
they both present their maximum efficiency when the number of cells per CPU is around
225,000, that is for 4 processors. The relative efficiency and Speed Up data are displayed
in Figure 4.4.

In order to estimate the effect of communication costs among the nodes, the previous
mesh is now split into 8, 16, and 32 subdomains distributed over two computing nodes.

8 CPUs Hierarchical Scotch
cells 900,000 900,000

cells per CPU 112,500 112,500
Dmaxr (%) 0.000 0.56
D̄r (%) 0 0.296

Clock Time (s) 174.4 163.7
Total CPU time (s) 1,412 1,336

ηrel 0.991 1.047
Speed Up 8.020 8.547

Table 4.6: Running the Sbend case with the coarser mesh on 8 CPUs with 2 nodes

The results of this case suggest that the minimum weight per CPU should be above
100,000 cells. It is worth noticing that the efficiency of the parallel computing slightly
decays by increasing the number of partitions when using hierarchical decomposition.
On the other hand, scotch slightly decays for 16 CPUs but it increases when 32 subdo-
mains are created, so in the case when both nodes are working at maximum capacity.

Page 29

Chapter 4 Matyas Rosta

Figure 4.4: Relative efficiency (above) and Speed Up (below) obtained with the
coarse mesh used on the S-bend geometry. The value of the parameter p represents
the estimated pendent for the linear regression curve

16 CPUs Hierarchical Scotch
cells 900,000 900,000

cells per CPU 56,250 56,250
Dmaxr (%) 0.000 0.999
D̄r (%) 0 0.530

Clock Time (s) 99.0 95.8
Total CPU time (s) 1,594 1,554

ηrel 0.878 0.900
Speed Up 14.132 14.597

Table 4.7: Running the Sbend case with the coarser mesh on 16 CPUs on two nodes

Case 2: fine mesh

In order to study the effect of employing more than 2 nodes (and more than 32 proces-
sors), the second mesh is used. It is split up until 3 nodes and 84 processors. This case

Page 30

Chapter 4 Matyas Rosta

32 CPUs Hierarchical Scotch
cells 900,000 900,000

cells per CPU 28,125 28,125
Dmaxr (%) 0.000 0.999
D̄r (%) 0 0.603

Clock Time (s) 49.4 46.7
Total CPU time (s) 1,611 1,526

ηrel 0.868 0.917
Speed Up 28.331 29.983

Table 4.8: Running the Sbend case with the coarser mesh on 32 CPUs on two nodes

has been run on the partition mpi28c of the LaCàN cluster.

14 CPUs Scotch Hierarchical
cells 3,600,000 3,600,000

cells per CPU 257,142.9 257,142.9
Dmaxr (%) 0.728 8.333e-4
D̄r (%) 0.260 2.857e-4

Clock Time (s) 842.1 876.3
Total CPU time (s) 11,810 11,579

ηrel 0.883 0.901
Speed Up 12.377 11.893

Table 4.9: Running the Sbend case with the refined mesh on 14 CPUs

28 CPUs Scotch Hierarchical
cells 3,600,000 3,600,000

cells per CPU 128,571.4 128,571.4
Dmaxr (%) 0.900 1.222e-3
D̄r (%) 0.460 4.286e-4

Clock Time (s) 642.0 667.8
Total CPU time (s) 18,058 18,768

ηrel 0.578 0.556
Speed Up 16.233 15.606

Table 4.10: Running the Sbend case with the refined mesh on 28 CPUs

It can be seen that when increasing the number of subdomains and nodes the scotch
algorithm outperforms the hierarchical partitioner. However, both decomposers pro-
vide the best results for the smallest number of processors. This can be seen as the
Relative Efficiency drops considerably when dealing with less than 130,000 cells per
CPU. Nonetheless, it is also observed the scotch method increases its relative efficiency
and Speed Up when two nodes are working at their maximum capacity (56 CPUs).

Page 31

Chapter 4 Matyas Rosta

56 CPUs Scotch Hierarchical
cells 3,600,000 3,600,000

cells per CPU 64,285.7 64,285.7
Dmaxr (%) 0.998 3.556e-3
D̄r (%) 0.83 0.0014

Clock Time (s) 286.3 353.1
Total CPU time (s) 16,142 19,546

ηrel 0.646 0.534
Speed Up 36.400 29.517

Table 4.11: Running the Sbend case with the refined mesh on 56 CPUs

84 CPUs Scotch Hierarchical
cells 3,600,000 3,600,000

cells per CPU 42,857.1 42,857.1
Dmaxr (%) 0.984 4.333e-3
D̄r (%) 0.524 5.952e-4

Clock Time (s) 217.2 238.4
Total CPU time (s) 18,396 20,129

ηrel 0.567 0.518
Speed Up 47.986 43.713

Table 4.12: Running the Sbend case with the refined mesh on 84 CPUs

These results are represented in Figure 4.5, whereas the detailed description of the per-
formance of the two approaches is reported in Tables 4.9-4.12.

4.4 External turbulent flow around a vehicle

4.4.1 Description of DriveAer model

The DriveAer model is a generic car CAD model created at the Technical University
of Munich in collaboration with AUDI AG and BMW Group. This model is widely
used in the scientific community, as generic bodies like the Ahmed body do not provide
physically significant results to be employed for the shape optimisation or evaluation
of the flow field around realistic car geometries [Mun22]. The dimensions of the model
are reported in Figure 4.6.

The domain length is 18 Lc, with 7 Lc before the car, 10 Lc after the car, 48 Wc

width, and 13 Hc height, where Lc, Wc, and Hc are the length, width, and height of
the car, respectively.

4.4.2 Case setup and simulation results

Mesh generation of complex geometries is extremely expensive in terms of man-hours
of specialized technicians. Fot the current study, the mesh available from [IJ19] was

Page 32

Chapter 4 Matyas Rosta

Figure 4.5: Relative efficiency (above) and Speed Up (below) obtained on the fine
mesh used on the S-bend geometry. The value of the parameter p represents the esti-
mated pendent for the linear regression curve

Figure 4.6: Representation and dimensions of the DriveAer car model[AJSM18]

employed. The mesh contains approximately 25 million cells, 96.4% of which are hexa-
hedral elements, 2.9 % polyhedral, and 0.45 % prismatic elements. Tetrahedral, wedges,
and piramids are only 0.25 % of the total number of cells. The mesh is non-uniform,

Page 33

Chapter 4 Matyas Rosta

with local refinement in regions such as the mirrors, and the wheels. The coarsest ele-
ments have dimensions of 1 meter (far from the car surface), while on the car surface
this data varies between 15.8 and 4 mm. The average mesh size on Some sketches of
the mesh are displayed in Figure 4.7.

Figure 4.7: The development of several mesh layers in the domain, obtained from
[IJ19] on the left, and the different mesh refinement zones on the right shown in Par-
aview

The boundary conditions are the following ones:

• Floor: Moving wall (constant velocity of u=[40 0 0]m/s).

• Car surface: No-slip walls (steady)

• Inlet: velocity inlet (u constant, 40 m/s in the direction of the motion of the
vehicle

• Outlet: pressure outlet, mean pressure is set to be 0, the normal gradient of the
velocity is also zero

• Top and lateral surfaces (corresponding to far field): Perfectly slip walls.

The free-stream velocity is of 40 m/s, which corresponds to a Reynolds number
equal to 4,87 millions. The relative pressure has been set to zero. The problem has
been modelled with the k-ω SST model. As the mesh layers around the body are not
sufficiently small (y+ > 1) wall functions are needed to estimate the boundary condition
for ω, νt, and k.

After the problem converged, the results are compared to Heft [HIA12]. First, the
pressure coefficient map on the driver’s window is compared in Figure 4.8.

The obtained results reproduce with good resemblance the ones presented in the
literature. The pressure coefficient distribution on the windshield is also compared,
see Figure 4.9. Important differences can be seen here, with a high pressure region in
the lower central part of the windshield. Whereas, the pressure coefficient distribution
elsewhere shows a similar pattern presented by Heft in [HIA12].

To verify quantitatively the difference between the results of the literature and
the model used in the present study, the pressure coefficient has been plotted in the

Page 34

Chapter 4 Matyas Rosta

Figure 4.8: Comparison of the pressure coefficient map on the driver’s window, Heft
[HIA12] on the left, and current case on the right

Figure 4.9: Comparison of the pressure coefficient map on the windshield of the
DriveAer model, Heft [HIA12] on the left, and current case on the right

midplane of the vehicle, in the first part of the model. This suggests that the mesh
should be further refined in that region (Figure 4.10).

From the numerical results it can be seen that the obtained pressure distribution
represents with good resemblance the ones from the literature, however, there are some
critical points where deviations can be observed. One is in the middle of the hood, where
a pressure drop can be seen. Another is the already mentioned region in the windshield
where the pressure shows a maximum value. In the current study the maximum value
of the pressure coefficient at 220 mm is below the reference values. On the other hand,
the pressure drop around 475 mm is over estimated, with respect to the bibliographical
data.

Finally, the drag coefficient of the current model and the one in [ATN12] are com-
pared. The drag coefficient of this study gives a value of 0,284, compared with the
reference value of 0,246. This gives a relative error of around 15 %, confirming that a
refinement of the mesh around the vehicle is required to obtain more accurate results.

Page 35

Chapter 4 Matyas Rosta

Figure 4.10: Pressure coefficient distribution in the symmetry plane of the DriveAer
model

4.4.3 Scalability results

The scalability testing of this geometry consists of studying the relative efficiency and
Speed up while increasing the number of subdomains. The partitioner that was used
for this purpose is scotch due to its better performance with respect to the hierarchical
approach, as seen in Section 4.3.2. The domain was partitioned into 28, 42, 56, 84, 112,
and 224 subdomains, using mpi28c on the cluster. The results are summed up in Table
4.13. It is worth mentioning that all tests are performed considering a perfectly linear
scalability using 28 processors, that is, the baseline value of computing time using one
processor is estimated as 28 the time required by 28 processors.

Scotch 28 56 84 112 224
cells 25.33 M 25.33 M 25.33 M 25.33 M 25.33 M

cells per CPU 904 k 452 k 301 k 226 k 113 k
Dmaxr (%) 0.799 0.100 0.998 0.999 0.999

Clock Time (s) 49,250 22,492 13,934 8,912 4,643
Total CPU time (s) 1,379,160 1,259,400 1,171,080 997,980 1,040,100

ηrel 1 1.0951 1.178 1.382 1.326
Speed Up 28 61.31 98.97 154.75 297.00

Table 4.13: Scalability results with the DriveAer model

The number of cells per CPU varies between almost 1 million elements and 100,000.
In 4.11 it is seen that using the full capacity of the nodes, the relative efficiency grows
until reaching a maximum value at 112 CPUs. Also, for less than 200,000 cells per
CPU, the efficiency starts to decrease slowly. The variation of the relative efficiency
with the increment of the number of machines is displayed in Figure 4.11.

Page 36

Chapter 4 Matyas Rosta

Figure 4.11: Scalability results of the DriveAer model, presenting the Relative Effi-
ciency and Speed Up at a range between 28 and 224 CPUs

Figure 4.11 also reports the Speed Up which scales linearly with the number of
CPUs. The maximum relative efficiency is reached for 112 CPUs (225,000 cells per
CPU). The value of the Speed Up is higher than the number of CPUs, e.g. the Speed
Up is around 154 when computing with 112 CPUs.

Page 37

Chapter 4 Matyas Rosta

Page 38

Chapter 5

Conclusions

The objectives of this study was twofold: to get acquainted with OpenFOAM, and to
define a set of best practices to run it using parallel architectures.

To achieve the first goal, several benchmarks have been tested, namely the lid-driven
cavity, flow over a backward facing step, and flow past a circular cylinder. The first
benchmark has been used to compare the influence of triangular and quadrilateral mesh
on the accuracy of the results and computational clock time. It has been observed
that the number of iterations needed to reach convergence with triangular elements
is more than twice the value corresponding to quadrilateral elements, with the finest
mesh. Comparing the results with a Finite Element solution, the error between the
two solutions reduces down to 1.38% with the most refined mesh. This verifies that the
Finite Volume Method can give results with high accuracy when the mesh is sufficiently
fine. In the case of the second benchmark the capability of catching recirculation regions
of OpenFOAM has been studied, obtaining results that correspond to the values found
in the literature. Studying the third benchmark, the capability of OpenFOAM to treat
unsteady problems were verified with errors below 5% with respect to the reference
solution.

In order to define some guidelines for HPC, two physical problems were studied,
a laminar internal flow in an S-bend and the turbulent external flow around a car
geometry. For the S-bend problem, a coarse and a fine mesh have been created. With
the coarse mesh, three partitioners have been analysed, namely the simple, hierarchical,
and scotch decomposers. The case has been run on 2, 4, 8, and 16 processors. It has been
observed, that up to 4 partitions simple and hierarchical split the domain in equal size
subdomains, while scotch starts to create non-equal size partitions. Simple partitioner
demonstrated to be inefficient for a decomposition of 8 CPUs or above, whereas the
hierarchical and scotch decomposers provided comparable results.

The same case has also been computed using 2 nodes with up to 32 CPUs. In that
case the similar behaviour between the two studied partitioners is confirmed. Analysing
the HPC metrics, it is clear that the case is too small for 2 node computation, so cases
below 1 million elements should not be run on two nodes.

The next study uses the same geometry of the S-bend, but increasing the mesh
count up to 3.6 millions. In this case, an important difference of performance between
the hierarchical and scotch methods was seen when creating 56 partitions or more. For

39

Chapter 5 Matyas Rosta

this reason, it has been decided that the hierarchical method is not recommended for
more than 28-32 partitions.

The last model under analysis is the external turbulent flow around a car. For
this purpose the DriveAer model has been studied using the mesh created from [IJ19].
This mesh consists of 25.33 million elements, and it was run on 28-224 CPUs. Scotch
partitioner was employed. The maximum efficiency has been found for 112 CPUs,
which corresponds to approximately 226,000 cells per CPU in average. It has been
observed, that the relative efficiency increases linearly with the number of processors
until 84 CPUs. This generates a supposition that the processors might suffer memory
limitations. The Speed Up for all cases scaled up linearly with the number of CPUs.
In general it can be said that the scotch partitioner is the good choice for large-scale
problems, and a recommended value of cells per CPU can be found around 225,000.

5.1 Future work
Future work will explore new partitioners in the HPC study, for example the metis
algorithm which is widely used in commercial softwares and in the industry as well.

Moreover, it would be interesting to extend the current study to transient simula-
tions.

Page 40

Bibliography

[ADPS83] B. F. Armaly, F. Dursts, J. C. F. Pereira, and B. Schonung. Experimental
and theoretical investigation of backward-facing step flow. Journal of Fluid
Mechanics, 1983.

[AJSM18] Mohamed Sukri Mat Ali, Jafirdaus Jalasabri, Anwar Mohd Sood, and Salle-
huddin Muhamad. Wind noise from a-pillar and side view mirror of a re-
alistic generic car model, driveaer. International Journal of Vehicle Noise
and Vibration 14, 2018.

[ATN12] Heft A, Indinger T, and Adams N. Introduction of a new realistic generic
car model for aerodynamic investigations. SAE Technical paper, 2012.

[Bha12] Sailaja Bhanduvula. Finite difference method in computational fluid dy-
namics. International Journal of Education and applied research, 2012.

[BP19] Jakub Broniszewski and Janusz Piechna. A fully coupled analysis of un-
steady aerodynamics impact on vehicle dynamics during braking. Engineer-
ing Applications of Computational Fluid Mechanics, 2019.

[BRG13] S. K. Birwa, N. Rathi, and R. Gupta. Aerodynamic analysis of audi a4
sedan using cfd. Journal of the Institution of Engineers of India, 2013.

[Cha22] FIA Formula 1 World Championship. Race maximum speeds at
formula 1 crypto.com miami grand prix 2022 - miami. https:
//www.fia.com/sites/default/files/2022_05_usa_f1_r0_timing_
racemaximumspeeds_v01.pdf, 2022. Accessed: 2022-06-15.

[CKS00] B. Cockburn, G. E. Karniadakis, and C.-W. Shu. Discontinuous galerkin
methods. theory, computation and applications. Lecture Notes in Compu-
tational Science and Engineering 11, 2000.

[Com21] OpenFOAM CFD Community. Openfoam user guide v2112. https://www.
openfoam.com/documentation/user-guide, 2021. Accessed: 2022-02-13.

[D02] Calhoun D. A cartesian grid method for solving the two-dimensional stream
function-vorticity equations in irregular region. Journal of Computational
Physics, 2002.

41

https://www.fia.com/sites/default/files/2022_05_usa_f1_r0_timing_racemaximumspeeds_v01.pdf
https://www.fia.com/sites/default/files/2022_05_usa_f1_r0_timing_racemaximumspeeds_v01.pdf
https://www.fia.com/sites/default/files/2022_05_usa_f1_r0_timing_racemaximumspeeds_v01.pdf
https://www.openfoam.com/documentation/user-guide
https://www.openfoam.com/documentation/user-guide

Chapter 5 Matyas Rosta

[DH03] Jean Donea and Antonio Huerta. Finite element methods for flow
problems. http://ww2.lacan.upc.edu/huerta/FEM4FLOW/exercises/
Exercises.htm, 2003. Accessed: 2022-01-18.

[DJ03] Russell D. and Wang Z. J. A cartesian grid method for modeling multiple
moving objects in 2d incompressible viscous flow. Journal of Computational
Physics, 2003.

[Ert07] Ercan Erturk. Numerical solutions of 2-d steady incompressible flow over a
backward-facing step, part i: High reynolds number solutions. Computers
& Fluids, 37, 2007.

[Fie95] Mark Alan Fienup. Scalability study in parallel computing. Department of
Computer Science, Iowa State University, 1995.

[Fon18] Ed Fontes. Fem vs. fvm. https://www.comsol.com/blogs/fem-vs-fvm/,
2018. Accessed: 2022-06-21.

[GC20] Alex Guerrero and Robert Castilla. Aerodynamic study of the wake effects
on a formula 1 car. Energies, 2020.

[GSH19] M. Giacomini, R. Sevilla, and A. Huerta. Tutorial on hybridizable discon-
tinuous galerkin (hdg) formulation for incompressible flow problems. CISM
International Centre for Mechanical Sciences, Springer International Pub-
lishing., 2019.

[Hai17] Jibran Haider. An upwind cell centred finite volume method for large strain
explicit solid dynamics in openfoam. PhD thesis at Swansea University,
2017.

[HIA12] Angelina I. Heft, Thomas Indinger, and Nikolaus A. Adams. Experimental
and numerical investigation of the drivaer model. ASME 2012 - Fluids
Engineering Summer Meeting, 2012.

[ICRcw07] Choi J I, Oberoi R C, Edwards J R, and co workers. An immersed bound-
ary method for complex incompressible flows. Journal of Computational
Physics, 2007.

[IJ19] CfMesh Irena Juretic. Turbulent flow simulation around drivaer ve-
hicle solved by using cf-mesh+ and openfoam. https://cfmesh.com/
turbulent-flow-simulation-around-drivaer-vehicle-solved-by-using-cf-mesh-and-openfoam/,
2019. Accessed: 2022-06-10.

[JDH01] Kim J, Kim D, and Choi H. An immersed boundary finite volume method
for simulations of flow in complex geometries. Journal of Computational
Physics, 2001.

[JL72] W. P. Jones and B. E Launder. The prediction of laminarization with a
two-equation model of turbulence. International Journal of Heat and Mass
Transfer, 1972.

Page 42

http://ww2.lacan.upc.edu/huerta/FEM4FLOW/exercises/Exercises.htm
http://ww2.lacan.upc.edu/huerta/FEM4FLOW/exercises/Exercises.htm
https://www.comsol.com/blogs/fem-vs-fvm/
https://cfmesh.com/turbulent-flow-simulation-around-drivaer-vehicle-solved-by-using-cf-mesh-and-openfoam/
https://cfmesh.com/turbulent-flow-simulation-around-drivaer-vehicle-solved-by-using-cf-mesh-and-openfoam/

Chapter 5 Matyas Rosta

[KK11] Dochan Kwak and Cetin C. Kiris. Computation of Viscous Incompressible
Flows. Springer, 2011.

[Lab15] George Karypis Karypis Lab. Overview - metis: Serial graph partitioning
and fill-reducing matrix ordering. http://glaros.dtc.umn.edu/gkhome/
metis/metis/overview, 2015. Accessed: 2022-06-10.

[LS74] B. E. Launder and B. I Sharma. Application of the energy dissipation model
of turbulence to the calculation of flow near a spinning disc. Letters in Heat
and Mass Transfer, vol. 1, 1974.

[MCQ16] C. Mingham, D.M. Causon, and Ling Qian. Numerical Modelling of Wave
Energy Converters - Chapter 6: Computational Fluid Dynamics (CFD)
Models. Academic Press, 2016.

[Men93] Florian R. Menter. Zonal two equation k-ω, turbulence models for aerody-
namic flows. 24th Fluid Dynamics Conference, 1993.

[MHB15] Justin A. Morden, Hassan Hemida, and Chris. J. Baker. Comparison of rans
and detached eddy simulation results to wind-tunnel data for the surface
pressures upon a class 43 high-speed train. J. Fluids Eng, 2015.

[MKL03] Florian R. Menter, Martin Kuntz, and Robin Langtry. Ten years of indus-
trial experience with the sst turbulence model. Turbulence, Heat and Mass
Transfer 4, 2003.

[Mun22] T.U. Munchen. Drivaer model. https://www.epc.ed.tum.de/en/aer/
research-groups/automotive/drivaer/, 2022. Accessed: 2022-04-23.

[NPC09] N.C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridiz-
able discontinuous galerkin method for the incompressible navier-stokes
equations. Journal of Computational Physics, 2009.

[Pop04] Stephen B Pope. Ten questions concerning the large-eddy simulation of
turbulent flows. New Journal of Physics, 2004.

[PS72] S.V Patankar and D.B Spalding. A calculation procedure for heat, mass
and momentum transfer in three-dimensional parabolic flows. Int. J. Heat
Mass Transfer, 15, 1972.

[PW09] Ming Pingjian and Zhang Wenping. Numerical simulation of low reynolds
number fluid-structure interaction with immersed boundary method. Chi-
nese Journal of Aeronautics, 2009.

[RL21] Arthur Rizzi and James M. Luckring. Historical development and use of
cfd for separated flow simulations relevant to military aircraft. Aerospace
Science and Technology, 2021.

Page 43

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://www.epc.ed.tum.de/en/aer/research-groups/automotive/drivaer/
https://www.epc.ed.tum.de/en/aer/research-groups/automotive/drivaer/

Chapter 5 Matyas Rosta

[RS18] Umberto Ravelli and Marco Savini. Aerodynamic simulation of a 2017 f1
car with open-source cfd code. Journal of Traffic and Transportation Engi-
neering, 2018.

[Rum21] Christopher Rumsey. Turbulence modelling resource: The menter shear
stress transport turbulence model. https://turbmodels.larc.nasa.gov/
sst.html, 2021. Accessed: 2022-06-11.

[Rum22] Christopher Rumsey. Turbulence modelling resource: The spalart-allmaras
turbulence model. https://turbmodels.larc.nasa.gov/spalart.html,
2022. Accessed: 2022-06-11.

[SA92] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for
aerodynamic flows. AIAA Paper, 1992.

[SB13] R. B. Sharma and Ram Bansal. Cfd simulation for flow over passenger car
using tail plates for aerodynamic drag reduction. IOSR Journal of Mechan-
ical and Civil Engineering, 2013.

[SGH18] Ruben Sevilla, Matteo Giacomini, and Antonio Huerta. A face-centred finite
volume method for second-order elliptic problems. International Journal for
Numerical Methods in Engineering, 2018.

[Sha16] Dr. Atul Sharma. Introduction to Computational Fluid Dynamics: Devel-
opment, Application and Analysis - Chap: Essentials of Numerical-Methods
for CFD. Springer, 2016.

[Sjo16] Bjorn Sjodin. What’s the difference between fem, fdm, and fvm? https:
//www.machinedesign.com/3d-printing-cad/fea-and-simulation/
article/21832072/whats-the-difference-between-fem-fdm-and-fvm,
2016. Accessed: 2022-05-25.

[TMRS92] T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih. Incompressible flow compu-
tations with stabilized bilinear and linear equal-order-interpolation velocity-
pressure elements. Computer Methods in Applied Mechanics and Engineer-
ing, 95, 1992.

[WFA+13] Z. J. Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, et al. High-
order cfd methods: current status and perspective. International Journal
For Numerical Methods in Fluids, 2013.

[Wil88] David C. Wilcox. Re-assessment of the scale-determining equation for ad-
vanced turbulence models. AIAA Journal, vol. 26, 1988.

[Wil06] David C. Wilcox. Turbulence Modelling for CFD. DCW Industries, Inc.,
3rd edition, 2006.

[Wol] Wolfdynamics. Running in parallel - teaching slides. http://www.
wolfdynamics.com/wiki/parallel.pdf. Accessed: 2022-03-18.

Page 44

https://turbmodels.larc.nasa.gov/sst.html
https://turbmodels.larc.nasa.gov/sst.html
https://turbmodels.larc.nasa.gov/spalart.html
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
http://www.wolfdynamics.com/wiki/parallel.pdf
http://www.wolfdynamics.com/wiki/parallel.pdf

Chapter 5 Matyas Rosta

[ZBFU19] Chunhui Zhang, Charles Patrick Bounds, Lee Foster, and Mesbah Uddin.
Turbulence modeling effects on the cfd predictions of flow over a detailed
full-scale sedan vehicle. Fluids, 2019.

Page 45

	Introduction
	Motivation
	Passenger and competitive car simulations

	Numerical methods for Computational Fluid Dynamics
	Objective of this work

	Approximation of the Finite Volume method in OpenFOAM
	Governing equations for the fluid flow
	Treatment of turbulence
	Spalart-Allmaras model
	k- model
	k- SST model

	Introduction to OpenFOAM
	Organization of an OpenFOAM model
	Parallelisation in OpenFOAM

	Numerical validation
	2D cavity flow
	Flow past a backward facing step
	Flow past a cylinder

	Parallel simulations using OpenFOAM
	Description of the computational infrastructure
	Parallel performance metrics
	Internal laminar flow in Sbend
	Case setup and simulation results
	Scalability results

	External turbulent flow around a vehicle
	Description of DriveAer model
	Case setup and simulation results
	Scalability results

	Conclusions
	Future work

