
Master Thesis
Master in Innovation and Research in Informatics:

High Performance Computing

Design and implementation of
role-shifting threads in the LLVM

OpenMP runtime

June 2022

Author: Joel Criado Ledesma

Supervisor: Víctor López Herrero (UPC, BSC-CNS)

Co-supervisor: Marta Garcia Gasulla (BSC-CNS)

Facultat d’Informàtica de Barcelona (FIB)

Acknowledgments
Thismaster thesis and themaster’s, in general, have been quite the journey, and Iwouldn’t
be at this point without the support from my colleagues, family, and friends.

Iwant to thank allmy colleagues from the BePPP group, especiallymy advisors, Victor
and Marta. They have helped me in the most challenging moments of the thesis, and I
couldn’t be finishing it without them. Thanks for all your help and guidance.

Finally, I want to dedicate this work to my grandmother Maria. Wherever you are, I
hope you are proud of what I have accomplished.

1

Abstract
Efficiency is a must in the HPC world. Supercomputers are extensively used in public
research institutions, and the CPU time is limited and should be used responsibly. Users
can improve their applications to that end, but tools and programming models must con-
tinue improving accordingly. Nowadays, supercomputers are heterogeneous machines
and keep increasing the number of cores. Making all the software stack, from applica-
tions to runtimes, more malleable and flexible should be one of the community goals. It
is not only necessary for the heterogeneity of the resources, but it will also help deal with
system noise, load imbalances, communication inefficiencies, and dynamic workloads.

This thesis presents the role-shifting threads, an evolution of the current OpenMP
threads designed to improve the malleability and flexibility of the model. Depending
on their roles, when not required in a parallel region, the threads may be used for other
purposes. The free agent role has been added to themodel, aiming to execute explicit tasks
outside parallel regions. In addition, the Clang compiler has beenmodified to comply with
the additions to the runtime. Furthermore, the role-shifting model has been integrated
with the Dynamic Load Balance (DLB) library, used to dynamically solve imbalances in
MPI+OpenMP applications. All software is released open-source.

The utility of the role-shifting threads, and the free agent role, is demonstrated with
three real-world scientific applications, one of themwith a coupling case. Speedups from
1.192x to 2.44x are reached with the new runtime compared to a vanilla run, demonstrat-
ing the potential of this new model.

Keywords: OpenMP | LLVM | Clang | Runtime | Parallelism | Tasking | Free agents
| MPI | Dynamic load balancing | High Performance Computing

2

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Goals . 8
1.3 Document organization . 9

2 State of the art 10
2.1 OpenMP . 10

2.1.1 Threading . 11
2.1.2 Worksharings . 11
2.1.3 Tasks . 11
2.1.4 OMPT . 12

2.2 LLVM . 13
2.2.1 OpenMP runtime . 13
2.2.2 Clang compiler . 14

2.3 Free Agent Threads . 15
2.3.1 Double-pool implementation . 15

2.4 DLB . 16
2.4.1 LeWI . 17
2.4.2 DROM . 17
2.4.3 TALP . 18

3 Design 19
3.1 Roles . 19
3.2 API . 20
3.3 Environment variables . 22
3.4 Task clause . 22
3.5 Methodology . 23

4 Implementation 24
4.1 Role-shifting . 24
4.2 Free agent management . 26

4.2.1 Allowed task teams management . 27
4.2.2 Task creation by free agents . 29

4.3 Thread creation at initialization . 30
4.4 Global thread ID . 31
4.5 OMPT Callback . 31
4.6 API . 32

4.6.1 Individual threads . 32
4.6.2 Bulk of threads . 32

3

4.7 Environment variables . 33
4.8 Task clause . 33

4.8.1 Runtime . 33
4.8.2 Clang . 34

5 DLB Integration 38
5.1 LeWI general concepts . 38
5.2 Thread manager implementation . 39

5.2.1 Enable and disable CPUs . 41
5.2.2 MPI interception . 42
5.2.3 OMPT Callbacks . 43

5.3 Thread manager selection . 45

6 Evaluation 47
6.1 Environment . 47
6.2 DMRG++ . 48
6.3 ParMmg . 51
6.4 Alya . 52

7 Conclusions 56
7.1 Future work . 56

Bibliografia 58

4

List of Figures

2.1 Fork-join model . 10
2.2 OpenMP worker thread flowchart. 14
2.3 Fork-join model . 16
2.4 Example of LeWI balancing algorithm. On the left, an unbalanced hybrid

application. On the right, the same application with LeWI activated and
the unbalance solved. 17

2.5 Example of DROM. The job scheduler reassigns computational resources
from one application to another with higher priority. 18

2.6 Example of TALPusage. An applicationwith twoMPI ranks and twoCPUs
per rank is running, and three different actors gather metrics from the ap-
plication using TALP. 18

3.1 OpenMP free agent role flowchart. 20
3.2 Fork-join model . 21
3.3 Task execution decision for free agents. 22
3.4 CI/CD pipeline. 23

5.1 DLB CPU states and actions. 39

6.1 DMRG++ main matrix density distribution. 49
6.2 DMRG++ traces using 48 OpenMP threads. Top: vanilla version. Bottom:

execution with role-shifting threads. Both traces use 2 threads in the outer
parallel and 24 in the inner one. 49

6.3 DMRG++ traces using 48 OpenMP threads. Top: vanilla version. Bottom:
execution with role-shifting threads. Both traces use 4 threads in the outer
parallel and 12 in the inner one. 50

6.4 DMRG++ execution time with different parallel configurations. 50
6.5 Paraver traces of three iterations using 32 MPI ranks. Top: vanilla version.

Bottom: execution with role-shifting threads and DLB. 52
6.6 ParMmg speedup with DLB, compared to the vanilla code. 52
6.7 ParMmg weak-scaling experiment execution time. 53
6.8 Paraver trace of 2 Alya’s iterations using 768 MPI processes. The first 96

ranks solve the fluid and the other 672 solve the chemical simulation. . . . 53
6.9 Alya speedup with DLB, compared to the vanilla code, and using different

number of MPI ranks. 54
6.10 Alya strong-scaling experiment execution time. 54

5

Listings

3.1 Global thread ID get function . 20
3.2 OMP Roles enumeration example . 21
3.3 Batch of threads API calls. 21
3.4 Individual threads API calls . 21
3.5 Usage of free agent clause in task and taskloop constructs. 22
4.1 Additional variables for role-shifting purposes 24
4.2 Transform a member of the team into a free agent. 24
4.3 Example of role-shifting operation. 25
4.4 Implicit task push to the threads of the team. 25
4.5 Number of free agents’ global variables. 26
4.6 Free agent list variables. 26
4.7 Per thread allowed teams variables. 27
4.8 Global allowed teams variables. 27
4.9 Adding a task team to the global structure. 28
4.10 Removing a task team from the global structure. 28
4.11 Example of a copy of the global allowed teams to a thread when the API is

used. 28
4.12 Stealing of tasks by a free agent in __kmp_execute_tasks_template. 29
4.13 Pushing of tasks by a free agent in __kmp_push_task. 29
4.14 Example of a functional code with a parallel construct. 30
4.15 Example of a functional code without a parallel construct. 30
4.16 Initial thread creation in __kmp_do_middle_initialize(). 30
4.17 Global thread identifier declaration. 31
4.18 Global thread identifier initialization. 31
4.19 OMPT role-shift callback signature. 31
4.20 OMPT role-shift callback invocation from the runtime. 31
4.21 Individual threads API calls. 32
4.22 Bulk of threads API calls. 32
4.23 Parsing of the environment variables related to free agents. 33
4.24 Global variables obtained from environment variables. 33
4.25 Tasking flags structure. 34
4.26 Free agent clause value check at runtime. 34
4.27 Free agent clause in the LLVM OpenMP tablegen. 35
4.28 Free agent clause parsing. 35
4.29 Free agent clause Semantic Analyzer ActOnOpenMPFreeAgentClause routine. 35
4.30 Free agent clause allowed example in Sema. 36
4.31 Free agent clause not allowed example in Sema. 36
4.32 Free agent clause OMPTaskDataTy struct from CodeGen. 36
4.33 Evaluation of the free_agent clause in CodeGen. 37

6

Joel Criado Ledesma

4.34 Construction of a task in CodeGen. 37
5.1 Initialization of global variables. 39
5.2 Allocation of global structures for CPU management. 40
5.3 Initialization of cpu_data and assignation of CPUs to threads. 40
5.4 LeWI cb_enable_cpu callback setting. 41
5.5 Disable cpu. 41
5.6 Enable cpu. 42
5.7 LeWI IntoBlockingCall function. 42
5.8 LeWI OutOfBlockingCall function. 43
5.9 Thread begin callback. 43
5.10 Parallel begin and end callbacks. 44
5.11 Task create callback. 44
5.12 Task schedule callback. 44
5.13 Role shifting callback. 45
5.14 Thread manager selection. 46
6.1 DMRG++ miniapp structure. 48
6.2 ParMmg main loop structure. 51

7

Chapter 1

Introduction

1.1 Motivation

The HPC community is immersed in the exascale race nowadays. The use of accelera-
tors is widely extended and will be a crucial factor in achieving exascale performance.
Nevertheless, extracting the best performance from the existing components (i.e., CPUs)
is also of great importance. For that reason, programming models must provide support
and performance for the new architectures and deliver good efficiencies for a high num-
ber of cores per socket. As OpenMP [22] is the most extended shared-memory parallel
programmingmodel, the HPC community has big hopes in it to address these challenges.

In recent years, the number of cores per socket has increased constantly. In that sce-
nario, problems like computational load imbalance, system noise, or lack of parallelism
may significantly affect the performance of HPC applications. Therefore, the program-
mingmodels must adapt to those problems during execution, offering flexibility andmal-
leability to adjust the execution at runtime transparently to the user.

Role-shifting threads are an evolution of the current OpenMP threads designed to
increase the malleability of OpenMP and, at the same time, offer more possibilities to
the developers of applications. The main idea behind role-shifting threads is to have a
unique pool of threads that the runtime can use to perform different jobs. As usual, they
will participate in theOpenMP parallel regions as regularworkers and do other things based
on their roles when not required for those regions.

The main role integrated into the runtime is the free agent [20] role. Previously, free
agents were a stand-alone type of thread, but they have been adapted to become a new
role. Threads with this role as active do not cooperate in executing the implicit tasks from
a parallel construct; instead, they are dedicated to executing explicit tasks. Free agent
threads increase the malleability and flexibility of OpenMP, allowing the runtime to ex-
ecute tasks in idle resources. Free agent threads are one of the main objectives for the
OpenMP 6.0 standard [4].

1.2 Goals

This project aims to improve the OpenMP runtime by introducing the concept of roles.
This will allow the runtime to have a unique pool of threads that perform different oper-
ations based on their available roles and runtime decisions. In particular, the goals of the
project are the following:

• Design and implement the concept of roles in the LLVM OpenMP runtime, and

8

Chapter 1. Introduction Joel Criado Ledesma

prepare it to perform shifting operations of roles transparently to the user.

• Integrate the free agent threads as a supported role for the runtime.

• Prepare the runtime to include more roles in the future easily.

• Integrate the Dynamic Load Balance (DLB) library [14] with the role-shifting
threads.

• Add a new clause to the task and taskloopdirectives ofOpenMP to indicate if a free
agent can execute a task. Modify the LLVM Clang compiler to generate appropriate
code with this new clause.

• Evaluate the role-shifting threads and the DLB integration performance.

• Push the role-shifting threads proposal to the OpenMP standard.

1.3 Document organization

The rest of this document is organized as follows. Chapter 2 gives a high-level explanation
of the topics related to the project: OpenMP, LLVM, free agent threads, and DLB. Chap-
ter 3 covers the design of the role-shifting threads, stating the previous runtime issues
and describing the changes needed to overcome them. It also describes the methodol-
ogy used in the development. In Chapter 4, the changes made to the LLVM source code
are detailed, including both the OpenMP runtime and the Clang compiler. After that,
Chapter 5 explains in detail how the role-shifting threads have been integrated with DLB.
The document continues with Chapter 6, where the performance is evaluated using three
HPC applications. Finally, Chapter 7 explains the conclusions of the project and the future
work.

9

Chapter 2

State of the art

2.1 OpenMP

OpenMP [22] is an application programming interface (API) for shared-memory multi-
processors programming. It is supported by awide variety of compilers and architectures
and works with C, C++, and Fortran. OpenMP offers different compiler directives, also
called pragmas, to annotate the code and express the parallelism, a set of API calls, and
environment variables.

Figure 2.1: Fork-join model.

OpenMP uses a fork-join model. When a thread encounters a code region marked
with the parallel construct, it creates some threads (fork) that will form an OpenMP
team. Those threads will run concurrently and execute all the implicit and explicit tasks of
the parallel region associated with them. After that, all the threads reach the same point,
and the parallel region is closed (join). Figure 2.1 shows an example of a fork-join execution.

OpenMP provides a specification of the API but not an implementation. At the time
of writing, the most recent specification is the 5.2 version released in November 2021, but
no implementation fully supports it yet. The most widely extended implementations are
the GNU and LLVM ones, which are Open Source, and some vendor-specific implemen-
tations like Intel and ARM.

10

Chapter 2. State of the art Joel Criado Ledesma

2.1.1 Threading

OpenMP employs threads, execution entities with its own stack and threadprivate mem-
ory, to perform the useful work. All the threads under OpenMP are considered OpenMP
threads, and they can also fall under other categories:

• Idle thread: An OpenMP thread currently not participating in any parallel region.

• Initial thread: The thread that starts the execution and initializes the runtime.

• Primary thread: AnOpenMP threadwith thread number 0. It is either an initial thread
or a thread that encounters a parallel construct, creates a team and the implicit tasks,
and executes one of the tasks with thread number 0.

• Worker thread: An OpenMP thread that participates in a parallel region executing
one of the implicit tasks, but it is not the primary thread.

• Thread number: A number used to identify the OpenMP threads of a team. The pri-
mary thread has the thread number zero, and consecutive numbers identify the other
threads of the team.

2.1.2 Worksharings

Worksharings are a type of OpenMP directive used to divide the execution of a region of
code among the associated teammembers. These regions have a synchronization point at
the end, where all the threads will wait until everyone has finished their work unless a
nowait clause is specified. The most relevant worksharing directives for the project are
the following two:

• Single: Specifies that the encountering region has to be executed only by one thread
of the team, and it does not require it to be the primary thread. The rest of the threads
will wait at the end of the region unless a nowait clause is specified. The single
directive is usually used with the task directive (see Section 2.1.3) to generate all
the explicit tasks in a serial fashion.

• Worksharing-Loop: This construct is specifiedwith the for directive in C/C++ and
do in Fortran. It is used to divide the work of one loop (or more if specified with the
collapse clause) among the team’s threads and execute it in parallel. The loopsmust
have a particular structure (e.g., only evaluates one expression), called the canonical
form, so the flexibility it offers is quite limited.

2.1.3 Tasks

A task is a specific instance of code and its data environment that the OpenMP runtime
can schedule for execution by threads. There are two main types of tasks:

• Implicit task: A task generated by an implicit parallel region or when a parallel
construct is explicitly used.

• Explicit task: All the tasks that are not implicit. They are generated with different
OpenMP constructs. For the sake of simplicity, wewill call explicit tasks as tasks from
now on.

11

Chapter 2. State of the art Joel Criado Ledesma

Generally, tasks offer more flexibility to the programmer compared to worksharings to
define work. The user can define task dependencies to determine the execution order of the
tasks, allowing the user to exploit parallelism in some situations where worksharings fail.
Also, taskswork perfectly with linked lists and recursivity and offer mechanisms to tackle
those properly. However, tasks are more complex to program than worksharings.

The most relevant tasking constructs for the project are the following ones:

• Task: Specifies that the code region marked with the construct is an explicit task.
Usually, after creating a task, that thread will defer its execution, and any thread in
the team may execute the task. However, if the task is generated inside a serial team,
it will be executed immediately by the same thread that created it.

• Taskloop: Specifies that the iteration of one or more associated loops must be ex-
ecuted using tasks. Each task may consist of one or more iterations of the related
loops.

• Taskwait: Indicate that the thread must wait on the completion of tasks created by
the current task (child tasks).

2.1.4 OMPT

OMPT is an interface for first-party tools introduced in OpenMP 5.0. OMPT provides
mechanisms to initialize the tool, determine the capabilities of an OpenMP implementa-
tion, examine the OpenMP state information associated with a thread, interpret the call
stack of an OpenMP thread, receive notifications about certain OpenMP events, a trac-
ing interface for OpenMP target devices, and a runtime library to control a tool from an
OpenMP application.

Callback functions are the most relevant feature for the project. These are routines
from the first-party tool invoked directly from the OpenMP runtime when certain events
happen, enabling the tool to perform certain operations based on the notifications re-
ceived. The functions are registered in the initialization provided by the OMPT interface,
so the runtime knows which address should call in every case.

The most relevant callbacks for the project are the following ones:

• void ompt_callback_thread_begin_t(ompt_thread_t thread_type,
ompt_data_t *thread_data): The callback is used when an OpenMP thread
is created. The thread_type argument indicates if the thread starts as a worker
(ompt_thread_worker) or as a free agent (ompt_thread_other).

• void ompt_callback_parallel_begin_t(ompt_data_t *
encountering_task_data, const ompt_frame_t *encountering_task_frame
, ompt_data_t *parallel_data, unsigned int requested_parallelism, int
flags, const void *codeptr_ra): The callback is used when a parallel or teams
region starts. The callback is useful to discern if the code is entering a parallel region
and the level of nesting, as well as the number of OpenMP threads requested for
the region.

• void ompt_callback_parallel_end_t(ompt_data_t *parallel_data,
ompt_data_t *encountering_task_data, int flags, const void *codeptr_ra
): The callback is used when a parallel or teams region ends. It serves as the
counterpart of the previous callback.

12

Chapter 2. State of the art Joel Criado Ledesma

• void ompt_callback_task_create_t(ompt_data_t *encountering_task_data
, const ompt_frame_t *encountering_task_frame, ompt_data_t *
new_task_data, int flags, int has_dependences, const void *codeptr_ra):
The callback is used each time the runtime creates a task. It allows to control the
number of explicit tasks created and make decisions based on that.

• void ompt_callback_task_schedule_t(ompt_data_t *prior_task_data,
ompt_task_status_t prior_task_status, ompt_data_t *next_task_data): The
callback is used each time the runtime makes a task scheduling decision. The
prior_task_status argument indicates the type of scheduling point reached.
The value of ompt_task_switch indicates the execution start of a task, and
ompt_task_complete indicates the execution ending of a task.

2.2 LLVM

LLVM [19] is an umbrella project for the development of toolchains and compilers con-
sisting of various subprojects. It started as a research project at the University of Illinois
and nowadays is widely used in the academic and industry worlds. Two subprojects are
relevant for this work: the OpenMP runtime and the Clang C/C++ compiler.

2.2.1 OpenMP runtime

The OpenMP runtime is divided into twomain libraries: libomp and libomptarget. The first
is the host library, which manages the threading and task models. The other is the device
library, designed to offload the computations to such devices. Libomp is the relevant one
for this project; the document will refer to it as LLVM OpenMP runtime from now on.

The most relevant feature of the runtime for this project is the implementation of the
parallel region and its barriers and the management of threads.

When a thread encounters a parallel region, that thread becomes the primary thread for
that region. The thread will create all the necessary structures for the team of threads and
assign as many threads as needed to the team. The first time this happens, the worker
threads are created. An actual pthread_create is used here. Therefore the OpenMP
threads are mapped to actual OS threads. Upon completion of the parallel region, all the
worker threads are placed in a structure called thread-pool. The runtime will reuse the
threads in the thread-pool for subsequent parallel regions and will create new threads only
after emptying the thread-pool.

The runtime implements the fork-join model using two different barriers. All the
threads not needed for a parallel region wait at the fork-barrier. When an idle thread is
assigned to a team, it is released from the barrier and starts executing its assigned implicit
task. Note that as soon as a thread is ready, it will start executing and not wait for other
threads to arrive at the barrier. This type of barrier is called release-barrier.

After ending their structured block associated with the parallel construct, the
threads reach the join-barrier. Here, all threads must wait until every thread involved
in the parallel region reaches the barrier. Then, all the threads advance to the fork-barrier.

Figure 2.2 shows the described behaviour of a worker thread. During the execution of
the implicit task, it may reach a task scheduling point, where the thread can execute explicit
tasks. These points are typically taskwait, taskgroup, and barrier constructs, as well as
the implicit barrier at the end of a parallel region.

13

Chapter 2. State of the art Joel Criado Ledesma

release()fork_barrier

task scheduling point

implicit task

while (!g_done)

implicit barrier

join_barrier

explicit task

Figure 2.2: OpenMP worker thread flowchart.

2.2.2 Clang compiler

Clang [18] is the open-source compiler’s front-end for the C family of programming lan-
guages of the LLVM project. One of Clang’s key features is compatibility with most GCC
flags. Other relevant features are faster compile times, better memory usage than other
compilers, highly expressive error andwarnings diagnostics, and amodular library-based
architecture.

LLVM also has libraries dedicated to the middle-end and back-end of the compilation,
which work in conjunction with Clang to generate the final executable. LLVM uses the
LLVM Intermediate Representation (IR) in the middle-end to perform the optimizations.
It is designed to be lightweight, low-level, and expressive simultaneously. Therefore, the
programmer/user can understand it, and the compiler can still optimize the code easily.
The front-end lowers the source code into the LLVM IR for the optimizer phase. Then
the back-end generates the final executable from the optimized LLVM IR for the target
architecture.

Internally, the LLVM compilation is divided into six different steps:

• Driver: The Clang executable is, in fact, a small driver which controls the execution
of all the tools involved in the compilation. Typically, the user will not interact with
the driver but use it transparently.

• Preprocessing: It handles the tokenization of the source files and expands the
macros and included files.

• Parsing and Semantic analysis: It parses the tokens from the preprocessor and gen-
erates a parse tree. Then, it performs a semantic analysis of the code, detecting the
types of expressions and the correctness of the code. When needed, it will emit
errors and warnings. After that, the Abstract Syntax Tree (AST) is generated.

• Code generation and Optimization: This step translates the AST to LLVM IR. Then,
several optimizations are applied to the code, including target-specific optimiza-
tions. Finally, it translates the resulting LLVM IR into machine code (.s extension
files).

• Assembler: It translates the output of the last phase into object files.

• Linker: It merges multiple object files into a single executable or dynamic library.

14

Chapter 2. State of the art Joel Criado Ledesma

Since this project aims to add a new clause for the OpenMP task and taskloop con-
structs, the relevant part of the compiler will be the front-end. In particular, the Parser,
Sema (Semantic analyzer), and CodeGen (Code Generation) modules of Clang need to
be modified.

2.3 Free Agent Threads

Free agent threads [20] are a new type of thread designed to increase the malleability and
flexibility of OpenMP. These threads serve a unique purpose: execute explicit tasks. This
approach aims to relax the rigid fork-join model of OpenMP, having an additional group
of threads that can execute tasks.

Free agent threads must not be confused with the Hidden Helper Threads [24]. These
threads are designed in a similar way; they form a separate set of threads and are used in
the offloading of target regions to a device. In contrast, free agent threads are designed to
execute any explicit tasks, with their scope not tied to parallel regions, and allow for dynam-
ically changing the number of active threads.

Free agent threads are not part of any team. They are not considered when encounter-
ing a parallel construct; neither can they execute any implicit task or participate in awork-
sharing. Regarding the synchronization constructs, they do not participate in barriers
(explicit or implicit) but will participate in atomic and critical sections.

Not forming part of a team and not constituting a team on their own has a couple of
advantages:

• The number of free agent threads is dynamic. They are created at initialization, and
after that, the number of active free agents can be modified using a runtime library
routine. Therefore, the amount of threads is no longer limited by the parallel con-
struct.

• Free agent threads are not limited to executing tasks from their team since they do
not have any. Instead, they may execute tasks from any team.

Some OpenMP programs use threadprivate variables or distribute the work using
the omp_get_thread_num routine. If a free agent thread executed one of those tasks, the
program would probably have an incorrect result. For that reason, the initial free agent
proposal included the free_agent(bool-expr) task clause. By default, a free agent thread
cannot execute a task, and when the clause is present and the boolean evaluates to true,
a free agent may execute the task.

2.3.1 Double-pool implementation

The double-pool is the first implementation of the free agent threads by Lopez et al. [20].
It is characterized by having two separate pools of threads: one with regular OpenMP
threads and anotherwith free agent threads. Each of these threads is backed by a different
Linux pthread.

The execution model is shown in Figure 2.3. The execution has four OpenMP threads,
three free agent threads, and only four CPUs. Free agent threads use a CPU freely until
a parallel region starts. At that point, the worker threads are activated in the CPUs used by
the free agents, which are deactivated. At the end of the parallel region, the free agents are
reactivated, and the worker threads are put to sleep. If the worker thread that should occupy

15

Chapter 2. State of the art Joel Criado Ledesma

Figure 2.3: Double-pool execution example.

the CPU is not reclaimed in a parallel region, the free agent thread can continue using the
CPU.

The number of free agent threads is decided with the OMP_FREE_AGENT_NUM_THREADS
environment variable. When set, free agents will be created at runtime initialization but
not at any other point. Therefore, the number of free agent threadsmust be decided before
starting the execution. In addition, the OMP_FREE_AGENT_POLICY is used to determine if
free agents are active from the beginning or not. If they start disabled, the user must
enable them with an API call. Otherwise, they will not participate in the execution.

The LLVM runtime does not defer the execution of explicit tasks when executing
a serial parallel region (i.e., a parallel region with a single OpenMP thread). When free
agent threads exist, they could participate in the execution of these tasks. Therefore,
the implementation allows deferring tasks in that regions when free agents are available
(OMP_FREE_AGENT_NUM_THREADS ≥ 1).

2.4 DLB

DLB [14] (Dynamic Load Balancing) is a library developed at Barcelona Supercomput-
ing Center (BSC-CNS) aimed to speed up hybrid applications (i.e., applications that use
both distributed and shared memory parallelism) and optimize the utilization of compu-
tational resources.

One of DLB’s main goals is to be transparent to the user. Therefore, DLB can be used
via the LD_PRELOAD mechanism without needing to recompile and link the application
again. Nevertheless, DLB also offers a public API, allowing the users to fine-tune their
applications and obtain different metrics at runtime.

Since version 3.0 DLB includes three independent modules: LeWI, DROM, and TALP.
The following subsections explain each of them.

16

Chapter 2. State of the art Joel Criado Ledesma

2.4.1 LeWI

LeWI [13] (Lend When Idle) is used to optimize the performance of hybrid applications
without previous analysis of the application. It improves the load balance by redistribut-
ing the CPUs inside a node from one process to another. This approach can tackle imbal-
ances from all kinds of sources: data, architectural, algorithm, etc.

Figure 2.4 shows an example of LeWI improving the load balance of a hybrid appli-
cation. Initially, the application has an imbalance at the outer level (MPI). The second
process takes more time to reach the MPI call, and the CPUs from the first process are
entirely idle during that time. With LeWI activated, it will detect that the first process
has reached a blocking call and lend the idle CPUs to the other process. That way, the
program uses all the available resources and finishes the execution faster.

Figure 2.4: Example of LeWI balancing algorithm. On the left, an unbalanced hybrid
application. On the right, the same application with LeWI activated and the unbalance
solved.

2.4.2 DROM

DROM [10] (Dynamic Resource Ownership Manager) is the second module of DLB, in-
troduced in version 2.0. DROM is used to modify the resources assigned to an existing
process, modifying the process affinity and the thread affinity. DROM offers an API that
an external entity can use, i.e., job scheduler (e.g., SLURM), resource manager, etc., and is
already integrated with MPI, OpenMP, and OmpSs [11].

Figure 2.5 shows an example of a DROM use case. In this scenario, an application is
running using six CPUs, three per process. At some point, a second application with a
higher priority has to be run. Then, the job scheduler uses DROM tomodify the resources
of app 1 and gives two CPUs to app 2.

17

Chapter 2. State of the art Joel Criado Ledesma

Figure 2.5: Example of DROM. The job scheduler reassigns computational resources from
one application to another with higher priority.

2.4.3 TALP

TALP [21] (Tracking Application Live Performance) is the newest module of DLB, intro-
duced in version 3.0. TALP is a lightweight, portable, extensible, and scalable tool for
measuring the parallel performance of applications. The metrics obtained with TALP al-
low the users to evaluate their application efficiencies both at runtime and post-mortem.
With the API, the user or resource manager can gather metrics at runtime and then adapt
the execution based on the dynamic state of the application. A typical scenario of TALP
can be seen in Figure 2.6.

Figure 2.6: Example of TALP usage. An application with two MPI ranks and two CPUs
per rank is running, and three different actors gather metrics from the application using
TALP.

18

Chapter 3

Design

The idea of the role-shifting threads came to us after receiving feedback from theOpenMP
community about the free agent threads [20] proposal (see Section 2.3.1) and analyzing
in detail the performance of the implementation. The drawbacks of the previous imple-
mentation were the following ones:

• The total number of free agent threads was fixed at runtime initialization. The num-
ber of active free agents could be changed during the execution, but it was limited
to the number decided at the start. This limited the malleability of the model dras-
tically.

• An OpenMP thread and a free agent thread were bound to the same physical CPU.
Switching the active thread of a CPU is usually really time-consuming, so a strategy
where this is not needed is preferred.

• OpenMP has a thread-limit-var that indicates the maximum amount of threads
that can be created. The more threads the runtime has, the sooner it may reach the
limit.

To solve these drawbacks, themain idea is to have a uniquepool of threadswith several
potential roles and shift their roles as the execution demands. The following sections
describe all the things considered for the design of the role-shifting threads.

3.1 Roles

The roles are the foundation of these new threads. Roles define the actions that a thread
can perform at that moment, and a thread can shift from one role to another to perform a
different set of actions. The design distinguishes between two kinds of roles:

• Potential roles: The available roles of a thread. Each thread can have from 0 to n
roles.

• Active role: The current role of the thread. It must be listed in the potential roles of
the thread. A single role may be active simultaneously.

Both workers and the initial thread can have roles since this simplifies the specifica-
tion. The initial thread must probably not use any role since it typically performs some
critical functions, and the runtime cannot afford to delay them. Nevertheless, this is

19

Chapter 3. Design Joel Criado Ledesma

implementation-defined, meaning that it is not defined in the standard but decided by
each implementation.

Regarding the worker role, this is an implicit role in the model. All the role-shifting
threads may be required to participate in a parallel region at some point, so the role must
be available to them always.

At the start of the project, the free agents were implemented as stand-alone
threads [20]. One of the primary efforts of this master thesis will be to adapt them as
a role in the model. Regarding other roles, I will adapt the runtime to implement them in
the future easily but leave the implementation of them as future work.

A thread can shift its role at different points. When a parallel region starts, all the re-
quired threads must abandon their current role (if they have any) and execute their as-
signed implicit task. After finishing the implicit task, the threads may shift again to one of
their potential roles. Figure 3.1 illustrates the role-shifting points for free agents. When a
thread is acting as a free agent, it may shift its role before and after executing an explicit
task but not while executing it.

release()fork_barrier

task scheduling point

implicit task

while (!g_done)

implicit barrier

join_barrier

explicit task

explicit task
role == free agent thread

role != free agent thread change
role?

yes/no

change
role?

Figure 3.1: OpenMP free agent role flowchart.

Figure 3.2 shows an execution analogous to the one from Figure 2.3 but using the role-
shifting model. Here, gray arrows represent a role-shift operation. Only one thread per
CPU is active during the entire example with two different roles.

3.2 API

We proposed two different APIs to interact with the model during the design phase. In
general terms, the first one operates with a bulk of threads, while the second one operates
on individual threads.

To operate on specific individual threads, the user must be able to identify them
uniquely, something that OpenMP does not allow now. The OpenMP thread number is
used to identify a thread inside a parallel region, but it is not a global identifier. Therefore,
we introduced a global identifier per thread for the whole execution and an API call to
obtain it. The threads are numbered from 0 to n− 1, and the IDs must be consecutive, so
if thread 1 and thread 3 exist, thread 2 must also exist.

1 int __kmp_get_thread_id () ;

Listing 3.1: Global thread ID get function

20

Chapter 3. Design Joel Criado Ledesma

Figure 3.2: Role-shifting execution example.

To allow for multiple potential roles simultaneously, the implementation should use
an enumeration where each bit represents a role. The structure must ensure that a value
for no role exists.

1 typedef enum omp_role {
2 OMP_ROLE_NONE = 0 ,
3 OMP_ROLE_FREE_AGENT = 1 << 0 ,
4 OMP_ROLE_OTHER_ROLE = 1 << 1 ,
5 OMP_ROLE_ANOTHER_ROLE = 1 << 2
6 } omp_role_t ;

Listing 3.2: OMP Roles enumeration example

The first API operates on batches of threads. The setter call gives the roles roles to
the number of threads specified with how_many and ensures that the other threads do not
have that role. If the user demands more threads than the existing number of threads, the
runtime will create themwith the proper roles. The getter function allows to consult the
current number of threads with the potential role role.

1 int __kmp_get_num_threads_role (omp_role_t ro l e) ;
2 void __kmp_set_thread_roles (int how_many , omp_role_t r o l e s) ;

Listing 3.3: Batch of threads API calls.

The second API operates on individual threads using the global thread id. The setter
function gives the potential roles roles to thread tid and removes any other role from
the thread. If the user wants to create a new thread, it has to use a tid greater than the
current number of existing threads. The getter function allows to consult the number of
roles for thread tid and sets roles with the potential roles of that thread.

1 int __kmp_get_thread_roles (int t id , omp_role_t ∗ r o l e s) ;
2 void __kmp_set_thread_roles (int t id , omp_role_t r o l e s) ;

Listing 3.4: Individual threads API calls

21

Chapter 3. Design Joel Criado Ledesma

3.3 Environment variables

Whenwe presented the free agent threads [20], the reviewers and the conference audience
criticized the fact that the model had too many environment variables. Therefore, I have
tried to simplify this for the role-shifting threads and reduced the amount from six to two.

• OMP_FREE_AGENT_CLAUSE_DEFAULT. Indicates if all the tasks may be executed by
threads with the free agent role as active. The accepted values are true and false.
Works in conjuction with the task clause introduced in Section 3.4.

• OMP_ROLES. A list with the potential roles per thread desired at initialization. Usage
example:

– OMP_ROLES="{role1},{role2},{role1,role3}". Three different threads, one
with role1, one with role2, and another with role1 and role3.

– OMP_ROLES="{role1},{role2,role4}*3". Four different threads, one with
role1 and three with role2 and role4.

3.4 Task clause

As explained in Section 2.3, free agents are not suited for the execution of tasks with some
particularities. When a program has both suitable and unsuitable tasks for free agent ex-
ecution, using an environment variable that applies to all tasks is not enough. Therefore,
tasks must have a specific clause indicating if they are eligible for free agent execution. In
Listing 3.5 an example of the clause usage can be found.

1 #pragma omp taskloop free_agent (true)
2 for (i = 0 ; i < n ; i ++) {
3 //This task may be executed by any

thread
4 }

1 #pragma omp task f ree_agent (false)
2 {
3 /∗This task must be executed by
4 a thread from th i s team ∗/
5 v [omp_get_thread_num ()] = . . . ;
6 }

Listing 3.5: Usage of free agent clause in task and taskloop constructs.

Figure 3.3 summarizes the steps and preferences to decide if a free agent can execute a
task. When the free_agent clause is present, it takes preference. If there is no clause, then
the behaviour defined by the environment variable is used. Finally, if the environment
variable is not set, the task cannot be executed by a free agent.

Figure 3.3: Task execution decision for free agents.

22

Chapter 3. Design Joel Criado Ledesma

3.5 Methodology

The OpenMP runtime and the Clang compiler (and LLVM in general) are used by many
users for several different purposes. When performing changes to such elements, one
must ensure that all the other features of the program still work, performing tests for both
new and old features.

During the development, both the runtime and DLB have been tested regularly to
detect any error that may have been introduced. Both code distributions come with a set
of tests, which are perfect for that purpose. CI/CD (Continuous Integration, Continuous
Deployment) has been used to automatize and ease that part.

GitLab [16] repositories have been used for LLVM [2] and DLB [1]. When pushing
to DLB, the server starts a pipeline where the code is compiled, and the tests are run. If
any error is detected, the commit is not accepted. However, the LLVM repository is more
extensive thanDLB, and performing those tests on the server is not viable. For that reason,
the proper CI/CD has been done in another server using Jenkins [7].

Figure 3.4 shows a Jenkins pipeline of the LLVM CI/CD. The DLB Jenkins pipeline is
the same, so it is not shown for simplicity. The three steps work as follows:

• Make distributable: The code from the repository is packed in a tarball.

• Staging: This step is done inMestral, a server used exclusively by Jenkins to perform
builds and tests. The code is extracted from the tarball and then built and installed
in the machine. Finally, the OpenMP tests are passed.

• Production: At last, the code is deployed in production clusters. It also extracts,
compiles, and installs the code and then performs the tests.

Each node of the process is sequential (but the production nodes are performed in par-
allel), and when a step fails, the process is aborted, ensuring that no errors are introduced
into productionmachines. After that, the new features introduced are tested inMareNos-
trum 4 manually because the test suite does not include tests for them. Adding tests into
the suite for the new features would be interesting. However, since the amount of work
required is considerable, we decided to prioritize performing small tests and focusing on
the implementation side, so that remains as future work.

Figure 3.4: CI/CD pipeline.

23

Chapter 4

Implementation

The role-shifting threads implementation consists of all the necessary structures and al-
gorithms to allow threads to change roles and the integration of free agent threads as a
new role. It has been donewith the LLVMOpenMP runtime (version 14.0.0), and the code
is publicly available online [2].

4.1 Role-shifting

The runtime has a custom struct to maintain all the relevant information of the threads
called kmp_base_info_t. For role-shifting purposes, I have added the variables shown in
Listing 4.1.

1 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2 . . . //Some var i ab l e s
3 omp_role_t t h _po t en t i a l _ r o l e s ; //Enum with a l l the ro l e s t h i s thread can

have
4 std : : atomic<omp_role_t > th_a c t i v e_ ro l e ; //Current ro l e of t h i s thread
5 omp_role_t th_pending_role ;
6 std : : atomic<bool> th_change_role ; // Ind i c a t e s the thread to change the

ro l e to th_pending_role ASAP
7 . . . //Other va r i ab l e s
8 } kmp_base_info_t ;

Listing 4.1: Additional variables for role-shifting purposes

The initial thread and the other threads operate in a producer-consumer fashion. In
each role-shifting point, the primary thread will prepare all the structures and variables
needed for the new role and add or remove threads to the free agent list when that role
is involved. After that, it sets the th_pending_role with the appropriate role the thread
must take, and then the atomic variable th_change_role to indicate that everything is
ready for a role-shift. Listing 4.2 shows a snippet of code from __kmp_join_call and a
helper routine, where the primary thread transforms team members into free agents.

1 static void __kmp_transform_team_threads_to_FA (int gt id) {
2 kmp_info_t ∗new_thr ;
3 kmp_team_t ∗ team = __kmp_threads [g t id]−>th . th_team ;
4 int i ;
5 for (i =team_size −1; i >=0 && ac t ive_ f r ee_agen t <= al lowed_free_agent ; i−−) {
6 new_thr = team−>t . t_ threads [i] ;
7 //Master thread doesn ’ t change i t s ro l e
8 if (new_thr == th i s _ t h r) continue ;
9 //Only consider threads with the f r e e agent ro l e ava i l ab l e

24

Chapter 4. Implementation Joel Criado Ledesma

10 if (! (new_thr−>th . t h _po t en t i a l _ r o l e s & OMP_ROLE_FREE_AGENT)) continue ;
11

12 . . . //Preparat ion of thread s t ru c tu r e s fo r the f r e e agent ro l e
13

14 . . . //Placement of the thread in to the f r e e agent l i s t
15

16 new_thr−>th . th_pending_role = OMP_ROLE_FREE_AGENT;
17 KMP_ATOMIC_INC(&__kmp_free_agent_act ive_nth) ;
18 KMP_ATOMIC_ST_RLX(&new_thr−>th . th_change_role , true) ;
19 }
20 }
21

22 void __kmp_join_cal l (. . .) {
23 . . . //Some code
24 __kmp_transform_team_threads_to_FA (gt id) ;
25 __kmp_free_team (root , team USE_NESTED_HOT_ARG(master_th)) ;
26 . . . //More code
27 }

Listing 4.2: Transform a member of the team into a free agent.

On the consumer side, the threads will be waiting in the fork barrier, on their way to
it, or executing tasks if they are free agents. Listing 4.3 shows a snippet of code from the
main wait spin loop in the __kmp_wait_template function. The threads shift their active
role to the one indicated in th_pending_role and emit the role-shifting callback.

1 __kmp_lock_suspend_mx (t h i s _ t h r) ;
2 if (t h i s _ th r−>th . th_change_role) {
3 omp_role_t prv_role = KMP_ATOMIC_LD_RLX(& th i s_ th r−>th . t h_a c t i v e_ ro l e) ;
4 omp_role_t nx t_ ro le = th i s _ th r−>th . th_pending_role ;
5 if (prv_role == OMP_ROLE_FREE_AGENT && nxt_ro le == OMP_ROLE_NONE) {
6 t h i s _ th r−>th . th_cur ren t_ task = th i s _ th r−>th . th_next_ task ;
7 t h i s _ th r−>th . th_next_ task = NULL;
8 }
9 KMP_ATOMIC_ST_RLX(& th i s_ th r−>th . th_change_role , false) ;

10 KMP_ATOMIC_ST_RLX(& th i s_ th r−>th . th_ac t ive_ ro l e , nx t_ ro le) ;
11 __kmp_unlock_suspend_mx (t h i s _ t h r) ;
12 #if OMPT_SUPPORT
13 . . . //OMPT r o l e _ s h i f t c a l l back here
14 #endif
15 continue ;
16 }
17 __kmp_unlock_suspend_mx (t h i s _ t h r) ;

Listing 4.3: Example of role-shifting operation.

Listing 4.3 also shows how a thread that shifts from free agent to worker sets its own
current task. When a free agent is executing an explicit task, the value of th_current_task
cannot be modified. Therefore, the primary thread of a new parallel region must prepare
all the implicit tasks of the team and store the address on another variable (shown in
Listing 4.4). After that, when the free agent reaches the role-shifting point, it changes the
current task and can proceed to execute it.

1 void __kmp_push_current_task_to_thread (kmp_info_t ∗ t h i s _ th r , kmp_team_t ∗ team ,
2 int t i d) {
3 if (t i d == 0) {
4 //Master thread th ings .
5 }
6 else {
7 team−>t . t _ imp l i c i t _ t a sk_ t a skda t a [t i d] . td_parent =

25

Chapter 4. Implementation Joel Criado Ledesma

8 team−>t . t _ imp l i c i t _ t a sk_ t a skda t a [0] . td_parent ;
9 if (KMP_ATOMIC_LD_ACQ(& th i s _ th r−>th . t h_a c t i v e_ ro l e) ==

10 OMP_ROLE_FREE_AGENT) {
11 t h i s _ th r−>th . th_next_ task =
12 &team−>t . t _ imp l i c i t _ t a sk_ t a skda t a [t i d] ;
13 }
14 else {
15 t h i s _ th r−>th . th_cur ren t_ task = &
16 team−>t . t _ imp l i c i t _ t a sk_ t a skda t a [t i d] ;
17 }
18 }
19 }

Listing 4.4: Implicit task push to the threads of the team.

4.2 Free agent management

The number of free agents is managedwith two global variables (see Listing 4.5). The first
one determines the maximum number of threads that can simultaneously have the free
agent role. It can be set with an environment variable and the API, with the default value
of 0. The second variable indicates the number of active threads with the role at the time.
The runtime ensures that it is always between 0 and __kmp_free_agent_num_threads.

1 extern int __kmp_free_agent_num_threads ; //Max number of FA allowed
2 extern std : : atomic<int> __kmp_free_agent_act ive_nth ; //Actual number of FA

ac t i v e

Listing 4.5: Number of free agents’ global variables.

In the double-pool implementation, free agent threads were created at the runtime
initialization and placed in the root structure. However, that strategy did not align with
the role-shifting idea. Therefore, this had changed in the new implementation. Now,
as free agent is just a role, the threads are placed in the kmp_info_t **__kmp_threads
structure with all the threads in the system.

Free agents are managed with a list. The pointer to the list’s beginning is a global vari-
able, and each thread has a variable in its structure pointing to the next element in the list
(see Listing 4.6). The runtime keeps the list ordered by global thread id, typically inserting
elements at the end of the list, which is pointed by __kmp_free_agent_list_insert_pt.
On some occasions (e.g., when API calls are involved or there is nested parallelism), a
thread may need to be inserted in the middle. In that case, the runtime scans the list from
the beginning until finding the proper position.

The threads are removed from the beginning of the list most of the time. When API
calls are involved, a thread may be removed from the middle of the list. Therefore, the
impact on the performance of insertions and deletions to the list should be low, making
the role-shift operation as fast as possible.

1 extern volatile kmp_info_t ∗ __kmp_free_agent_ l i s t ;
2 extern kmp_info_t ∗ __kmp_f ree_agent_ l i s t _ inse r t_p t ;
3

4 typedef struct KMP_ALIGN_CACHE kmp_base_info {
5 . . . //Some var i ab l e s
6 kmp_info_p ∗ th_next_ f ree_agent ;
7 . . . //Other va r i ab l e s
8 } kmp_base_info_t ;

Listing 4.6: Free agent list variables.

26

Chapter 4. Implementation Joel Criado Ledesma

Most of the time, the list and the other variables are operated exclusively by the pri-
mary thread. However, when there is nested parallelism or the user uses the API setter
functions, two or more threads may try to read/write the structures concurrently. There-
fore, they are protected with a lock (__kmp_forkjoin_lock) for reading and writing. This
lock existed previously in the runtime and was used to protect certain structures (e.g.,
__kmp_threads and __kmp_thread_pool) in the fork/join regions, where several threads
may access them simultaneously under nested parallelism. The lock is acquired in the
API calls when needed. Since it was already acquired in the other scenarios, only a few
changes were required for that.

I also contemplated adding an entirely new lock for those variables. However, I de-
tected a situation when this lock could be crossed with the __kmp_forkjoin_lock and
cause a deadlock. Also, since the fork-join lock was already acquired for most situations,
reusing it for free agent management should help keep the overhead minimum.

4.2.1 Allowed task teams management

The allowed_teams (see Listing 4.7) is a per-thread structure indicating the task teams
from where a free agent can grab tasks. When a task team is created, it is added to
the list and removed when it ends. In the double-pool implementation, since all the free
agents were created from the start and accessible during the entire execution, these lists
were always up to date with the alive task teams. However, now a thread may not hold
the role of free agent when a task team is created/removed, or a new free agent may be
created in the middle of the run. Therefore, the allowed_teams needed some changes to
accommodate them to the role-shifting threads model.

1 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2 . . . //Some var i ab l e s
3 //L i s t of teams we can enter as a f r e e agent thread
4 kmp_bootstrap_lock_t allowed_teams_lock ;
5 int al lowed_teams_capacity ;
6 int allowed_teams_length ;
7 kmp_task_team_t ∗∗ allowed_teams ;
8 . . . //Other va r i ab l e s
9 } kmp_base_info_t ;

Listing 4.7: Per thread allowed teams variables.

For that purpose, the runtime now has a global list of allowed teams (see Listing 4.8).
The length variable indicates the number of elements and the first empty position in the
array, and the capacity is the number of positions currently allocated in the array. It has
a lock to perform any operation on the array, both read and write.

1 extern kmp_bootstrap_lock_t __kmp_free_agent_allowed_teams_lock ;
2 extern int __kmp_free_agent_allowed_teams_capacity ;
3 extern int __kmp_free_agent_allowed_teams_length ;
4 extern kmp_task_team_t ∗∗ __kmp_free_agent_allowed_teams ;

Listing 4.8: Global allowed teams variables.

Listings 4.9 and 4.10 show an example of add and remove operations to the
structure. It can be noted that the add/remove operations are also performed on
the active free agent threads. When a free agent steals a task, it needs to read
the allowed_teams, so maintaining the local copy updated prevents the threads
from accessing the __kmp_free_agent_allowed_teams_lock in a more critical re-

27

Chapter 4. Implementation Joel Criado Ledesma

gion. The entire functions, including __kmp_add_global_allowed_task_team and
__kmp_remove_global_allowed_task_team can be found in kmp_tasking.cpp source file.

1 void __kmp_task_team_setup (kmp_info_t ∗ thr , kmp_team_t ∗ team , int always) {
2 . . . //Some code
3 __kmp_acquire_bootstrap_lock (&__kmp_forkjoin_lock) ;
4 __kmp_acquire_bootstrap_lock (&__kmp_free_agent_allowed_teams_lock) ;
5 kmp_task_team_t∗ task_team = team−>t . t_task_team [thr−>th . t h_ t a sk_ s t a t e] ;
6 __kmp_add_global_allowed_task_team (task_team) ;
7 if (KMP_ATOMIC_LD_RLX(&__kmp_free_agent_act ive_nth) > 0) {
8 //Add the task team to the a c t i v e f r e e agents .
9 }

10 __kmp_release_bootstrap_lock (&__kmp_free_agent_allowed_teams_lock) ;
11 __kmp_release_bootstrap_lock (&__kmp_forkjoin_lock) ;
12 }

Listing 4.9: Adding a task team to the global structure.

1 void __kmp_task_team_wait (kmp_info_t ∗ thr , kmp_team_t ∗ team , int wait) {
2 kmp_task_team_t ∗ task_team = team−>t . t_task_team [thr−>th . t h_ t a sk_ s t a t e] ;
3 . . . //Some code
4 __kmp_acquire_bootstrap_lock (&__kmp_free_agent_allowed_teams_lock) ;
5 __kmp_remove_global_allowed_task_team (task_team) ;
6 if (KMP_ATOMIC_LD_RLX(&__kmp_free_agent_act ive_nth) > 0) {
7 //Remove the task team from the ac t i v e f r e e agents .
8 }
9 __kmp_release_bootstrap_lock (&__kmp_free_agent_allowed_teams_lock) ;

10 }

Listing 4.10: Removing a task team from the global structure.

The last relevant operation with the global allowed teams is the copy one. When a
thread shifts from worker to free agent, the global structure is copied to the thread struc-
ture. Listing 4.11 shows an example from the function transform_thread_to_FA, which
is invoked by the API calls. The same thing occurs when a thread is created with the free
agent role. When a shift from free agent toworker happens, the runtime only sets thr->th
.allowed_teams_length to 0, indicating that the array is empty (not shown in the listing
for simplicity).

1 static void transform_thread_to_FA (kmp_info_t ∗ th) {
2 . . . //Some code
3 __kmp_acquire_bootstrap_lock (&__kmp_free_agent_allowed_teams_lock) ;
4 if (th−>th . allowed_teams == NULL) {
5 __kmp_ini t_boots trap_lock (&th−>th . allowed_teams_lock) ;
6 th−>th . al lowed_teams_capacity =
7 (__kmp_free_agent_allowed_teams_length > 0)
8 ? __kmp_free_agent_allowed_teams_length ∗2
9 : 4 ;

10 th−>th . allowed_teams = (kmp_task_team_t ∗∗) __kmp_allocate (sizeof (
kmp_task−team_t ∗) ∗ th−>th . al lowed_teams_capacity) ;

11 }
12 else if (th . th_al lowed_teams_capacity <=
13 __kmp−free_agent_al lowed_teams_length) {
14 __kmp_realloc_thread_allowed_task_team (th ,

__kmp_free_agent_allowed_teams_length ∗2 , FALSE) ;
15 }
16 th−>th . allowed_teams_length = __kmp_free_agent_allowed_teams_length ;
17 __kmp_copy_global_allowed_teams_to_thread (th) ;
18 __kmp_release_bootstrap_lock (&__kmp_free_agent_allowed_teams_lock) ;
19 KMP_MB() ;

28

Chapter 4. Implementation Joel Criado Ledesma

20 }

Listing 4.11: Example of a copy of the global allowed teams to a thread when the API is
used.

4.2.2 Task creation by free agents

During the execution of a task, a free agent may encounter a task or taskloop construct.
In that situation, the taskmust bemanaged as if the free agent was part of the team. When
the task is undeferred (i.e., it has to be executed by the encountering thread), the free
agent must execute it immediately after creating it. Otherwise, the task must be pushed
to a thread dequeue. The team has a dequeue per thread so that each one can push tasks
to its dequeue, but free agents must choose one to push the task.

In the double-pool implementation, all free agents pushed the tasks to the thread 0 of
the team, which could lead to a high contention in that dequeue and provoke a significant
overhead. To avoid that, I opted to push the tasks to all the different threads in the team.
When a free agent thread steals a task from a thread (see Listing 4.12), it stores the thread
identifier in its own structure. Later, when pushing the task, it will read that identifier
and push the task to that dequeue (see Listing 4.13).

1 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2 . . . //Some var i ab l e s
3 int v i c t im_ t id ; //Id of the owner thread of the l a s t s to l en task
4 } kmp_base_info_t ;
5

6 static inline int __kmp_execute_tasks_template (. . .) {
7 kmp_task_t ∗ task ;
8 . . . //Some code
9 while (1) {

10 while (1) {
11 handleServices () ;
12 task = NULL;
13 if (use_own_tasks) {
14 if (thread−>th . t h_a c t i v e_ ro l e == OMP_ROLE_FREE_AGENT) {
15 if (KMP_ATOMIC_LD_ACQ(&thread−>th . th_change_role))
16 return false ;
17 task = __kmp_steal_task (threads_data [t i d] . td . td_thr , . . .) ;
18 if (task) thread−>th . v i c t im_ t id = t id ;
19 }
20 }
21 . . . //Loop body
22 }
23 . . . //Loop body
24 }
25 }

Listing 4.12: Stealing of tasks by a free agent in __kmp_execute_tasks_template.

1 static kmp_int32 __kmp_push_task (kmp_int32 gtid , kmp_task_t ∗ task) {
2 . . . //Some code
3 kmp_int32 t id ;
4 if (thread−>th . t h_a c t i v e_ ro l e == OMP_ROLE_FREE_AGENT)
5 t i d = thread−>th . v i c t im_ t id ;
6 else t i d = __kmp_tid_from_gtid (g t id) ;
7 . . . //Some code
8 //Find task ing deque s p e c i f i c to encountering thread
9 thread_data = &task_team−>t t . t t _ th reads_da ta [t i d] ;

29

Chapter 4. Implementation Joel Criado Ledesma

10 . . . //Rest of the funct ion
11 }

Listing 4.13: Pushing of tasks by a free agent in __kmp_push_task.

4.3 Thread creation at initialization

All previous versions of the LLVM runtime created all the threads on demand when en-
countering a new parallel region. The first time, it created all the necessary threads for
the region. After that, the threads were placed in the __kmp_thread_pool structure. In
subsequent parallel regions, the runtime always reused the threads from the pool and
only created new ones when the region required more threads than the existing ones.

One of free agents’ many advantages is the OpenMP syntax’s simplification. List-
ings 4.14 and 4.15 show an example of this. On the left is a code with the classical
OpenMP structure, indicating the parallelismwith a parallel construct, the taskification
of a loopwith taskloop, and the single construct to ensure that the tasks are created only
once. The role-shifting threads and the role of free agent allow dropping the usage of the
parallel and single constructs as shown on the right side, simplifying the syntax.

1 int main (int argc , char ∗argv []) {
2 . . . //Some code
3 #pragma omp pa ra l l e l
4 #pragma omp single
5 {
6 #pragma omp taskloop
7 for (i = 0 ; i < n ; i ++) {
8 . . . //Loop body
9 }

10 }
11 . . . //Some code
12 }

Listing 4.14: Example of a functional code
with a parallel construct.

1 int main (int argc , char ∗argv []) {
2 . . . //Some code
3 #pragma omp taskloop
4 for (i = 0 ; i < n ; i ++) {
5 . . . //Loop body
6 }
7 . . . //Some code
8 }

Listing 4.15: Example of a functional code
without a parallel construct.

To support that, the creation of the threadsmust bemoved to the runtime initialization
instead of doing it only when encountering a parallel construct. Now, the first thread
creation point is moved to the initialization of the runtime, calledmiddle_init in the LLVM
runtime. At that point, the runtime reads the environment variables OMP_NUM_THREADS
and KMP_NUM_FREE_AGENTS and creates the indicated amount of threads. When the first
one is strictly greater, the threads without a role are placed in the thread pool. Otherwise,
all the threads start with the free agent role as their active role. Listing 4.16 shows the part
of the code where threads are created.

1 int num_workers = __kmp_dflt_team_nth − __kmp_free_agent_num_threads ;
2 int num_fa = (num_workers < 0) ?
3 __kmp_free_agent_num_threads : __kmp_dflt_team_nth ;
4 kmp_root_t ∗ root = __kmp_threads[0]−> th . th_root ;
5 for (i = 1 ; i < num_workers ; i ++) {
6 __kmp_al locate_thread_middle_ini t (root , OMP_ROLE_NONE, i) ;
7 }
8 for (; i < num_fa ; i ++) {
9 __kmp_al l locate_thread_middle_ in i t (root , OMP_ROLE_FREE_AGENT, i) ;

10 }

Listing 4.16: Initial thread creation in __kmp_do_middle_initialize().

30

Chapter 4. Implementation Joel Criado Ledesma

4.4 Global thread ID

As explained in Section 3.2, the OpenMP runtime now has the concept of global thread id
to uniquely identify each thread, which is used by the API calls. The identifier is placed in
the kmp_desc_base_t struct (see Listing 4.17), which can be accessed from the thread’s
th_info variable.

1 typedef struct kmp_desc_base {
2 . . . //Some var i ab l e s
3 int ds_gt id ;
4 int ds_thread_id ; //Global thread id from 0 to n−1.
5 . . . //More va r i ab l e s
6 } kmp_desc_base_t ;

Listing 4.17: Global thread identifier declaration.

In the same structure, there is also an integer called gtid, uniquely identifying a
thread in the runtime and corresponding to the thread’s position in the __kmp_threads
array. When the Hidden Helper Threads were added to the runtime, the developers
decided to give them gtids from 1 to n. Therefore, since all the standard threads must
have consecutive identifiers, this new variable is added. The initialization is done in the
__kmp_create_worker() routine, as shown in Listing 4.18.

1 void __kmp_create_worker (int gtid , kmp_info_t ∗ th , s i z e _ t s t a ck_ s i z e) {
2 . . . //Some code
3 th−>th . th_ in fo . ds . ds_gt id = gt id ;
4 if (g t id != 0) {
5 th−>th . th_ in fo . ds . ds_thread_id = TCR_4 (__kmp_init_hidden_helper_threads)
6 ? gt id
7 : g t id − __kmp_hhiden_helper_threads_num ;
8 }
9 }

Listing 4.18: Global thread identifier initialization.

4.5 OMPT Callback

I have added a new OMPT callback to the runtime to notify when a thread performs
a role-shift operation. Listing 4.19 displays the callback signature. Any first-party tool
(e.g., DLB) can register a routine with this signature, and the runtime will invoke it every
time the event happens. Listing 4.20 shows how the runtime invokes the callback from
the kmp_wait_release.h source file.

1 typedef void (∗ ompt_ca l lback_ thread_ro l e_sh i f t _ t) (
2 ompt_data_t ∗ thread_data ,
3 ompt_role_t pr io r_ ro le ,
4 ompt_role_t nex t_ ro le
5) ;

Listing 4.19: OMPT role-shift callback signature.

1 #if OMPT_SUPPORT
2 ompt_data_t ∗ thread_data = nu l lp t r ;
3 if (ompt_enabled . enabled) {
4 thread_data = &(th i s _ th r−>th . ompt_thread_info . thread_data) ;
5 if (ompt_enabled . ompt_ca l lback_ thread_ro le_sh i f t) {

31

Chapter 4. Implementation Joel Criado Ledesma

6 ompt_cal lbacks . ompt_callback (ompt_ca l lback_ thread_ro le_sh i f t) (
7 thread_data , (ompt_role_t) prv_role , (ompt_role_t) nx t_ ro le) ;
8 }
9 }

10 #endif

Listing 4.20: OMPT role-shift callback invocation from the runtime.

4.6 API

4.6.1 Individual threads

This API operates on a specific OpenMP thread using its global thread identifier. The
function headers are displayed in Listing 4.21; their code can be found in the kmp_runtime
.cpp source file. The get function obtains the number of potential roles of thread tid and
the value of the potential roles in r.

1 /∗ Returns the number of r o l e s of the thread with thread_id==t id ,
2 r holds the ac tua l po t en t i a l r o l e s of the thread . ∗/
3 int __kmp_get_thread_roles (int t id , omp_role_t ∗ r)
4 /∗ Gives the ro l e s r to the thread with thread_id== t id .
5 I t overr ides the previous ro l e s of the thread . ∗/
6 void __kmp_set_thread_roles (int t id , omp_role_t r)
7 /∗ Returns the (g loba l) thread id of the c a l l i n g thread .
8 Doesn ’ t correspond to the gt id of the runtime . ∗/
9 int __kmp_get_thread_id () ;

Listing 4.21: Individual threads API calls.

Regarding the setter, the user can query for several roles at the time. The thread tid
will get all of them as potential roles and lose any other potential role that had previously.
When the active role is removed from the potential roles, the thread is signaled to change
to OMP_ROLE_NONE and placed in the thread pool. With this mechanism, a user can stop a
free agentwhen desired. When the tid used is greater than the number of threads created
(i.e., any thread has that ID), the function will create a new thread with the potential roles
specified. The thread id assigned to that thread will be the next consecutive identifier
(as explained in Section 4.4), independently of the value given to tid.

Finally, the __kmp_get_thread_id() routine can be used to obtain the identifier of the
calling thread.

4.6.2 Bulk of threads

This API operates on a group of threads. The function headers are displayed in List-
ing 4.22; their code can be found in the kmp_runtime.cpp source file. The get function
obtains the number of threads with the potential role r. The API expects a single role in
r, not a combination of different roles. If the user desires to query for more than one role,
it must make separate calls to the API.

1 /∗ Returns the number of threads with the ro l e r . ∗/
2 int __kmp_get_num_threads_role (omp_role_t r)
3 /∗ Gives the ro l e s r to how_many threads .
4 I t overr ides the previous ro l e s of the thread . ∗/
5 void __kmp_set_thread_roles (int how_many , omp_role_t r)

Listing 4.22: Bulk of threads API calls.

32

Chapter 4. Implementation Joel Criado Ledesma

In contrast, the user can query for several roles in the setter function and give the
potential roles to exactly how_many threads. When the how_many value is less than the
number of existing threads, the threads selected are those with thread_id from n − 1 −
how_many to n − 1, where n is the current number of threads. If the number is greater,
the function creates as many threads as necessary (if the thread-limit-var allows it) and
gives the potential roles r to all of them. If the threads affected had any previous role, they
will be removed. When the active role is removed from the potential roles, the threads
are signaled to change to OMP_ROLE_NONE and placed in the thread pool.

4.7 Environment variables

As explained in Section 3.3, two new environment variables have been introduced
in the model. The first one is KMP_FREE_AGENT_CLAUSE_DEFAULT, which is analogous
to OMP_FREE_AGENT_CLAUSE_DEFAULT and accepts a boolean value. The second one is
KMP_FREE_AGENT_NUM_THREADS, which serves as a replacement for OMP_ROLES for the mo-
ment. Since there is only one valid role in the model, I decided to simplify this variable
for the time being. This variable accepts any positive integer or zero.

1 static kmp_sett ing_t __kmp_stg_table [] = {
2 . . . //Parsing of env va r i ab l e s
3 //Free agent threads
4 { "KMP_FREE_AGENT_NUM_THREADS" , __kmp_stg_parse_num_free_agent_threads ,
5 __kmp_stg_print_num_free_agent_threads , NULL, 0 , 0 } ,
6 { "KMP_FREE_AGENT_CLAUSE_DEFAULT" , __kmp_stg_parse_free_agent_c lause_defaul t ,
7 __kmp_stg_pr int_ free_agent_c lause_defaul t , NULL, 0 , 0 } ,
8

9 { "" , NULL, NULL, NULL, 0 , 0 } } ; // s e t t i n g s

Listing 4.23: Parsing of the environment variables related to free agents.

Listing 4.23 shows a snippet of code from kmp_settings.cpp where the two environ-
ment variables are parsed and stored into the global runtime variables of Listing 4.24.
This code is called at runtime initialization.

1 extern int __kmp_free_agent_num_threads ; /∗Max number of f r e e agents allowed .
2 I n i t i a l i z e d with env var i ab l e KMP_FREE_AGENT_NUM_THREADS ∗/
3 extern int __kmp_free_agent_c lause_df l t ; /∗ Value obtained fom env var i ab l e
4 KMP_FREE_AGENT_CLAUSE_DEFAULT ∗/

Listing 4.24: Global variables obtained from environment variables.

4.8 Task clause

The implementation of the free_agent clause is divided into two parts. First, the com-
piler must interpret it correctly and create appropriate structures that the runtime can
understand. Then, the runtime must check each time a free agent executes a task if it is
allowed or not.

4.8.1 Runtime

Each task in the runtime has the kmp_tasking_flags_t td_flags variable, where it stores
the value of its flags; the struct is displayed in Listing 4.25. This structure must have 32
bits exactly, with 16 bits for the compiler and 16 for libraries. At the start of the project,
only eight compiler bits were used, so there were enough bits for the free_agent clause.

33

Chapter 4. Implementation Joel Criado Ledesma

1 typedef enum f a_c l ause {
2 FREE_AGENT_CLAUSE_UNSET = 0 ,
3 FREE_AGENT_CLAUSE_FALSE = 1 ,
4 FREE_AGENT_CLAUSE_TRUE = 2 ,
5 } f a _ c l au se_ t ;
6

7 typedef struct kmp_tasking_flags { //Tota l s t r u c t mus be exac t l y 32 b i t s
8 /∗ Compiler f l a g s ∗/ /∗ Tota l compiler f l a g s must be 16 b i t s ∗/
9 . . . //Some f l ag s

10 unsigned f ree_agent : 2 ; /∗ 0 == unspec i f i ed in the task cons t ruc t
11 ∗ 1 == cannot be executed by f r e e agent
12 ∗ 2 == can be executed by f r e e agent
13 ∗ 3 == not used cur ren t ly ∗/
14 unsigned reserved : 6 ; //Reserved for compiler use ∗/
15

16 /∗Library f l a g s ∗/ /∗ Tota l l i b r a r y f l a g s must be exac t l y 16 b i t s ∗/
17 . . . //Library f l a g s
18 } kmp_tasking_f lags_t ;

Listing 4.25: Tasking flags structure.

The compiler is in charge of setting the flag with the appropriate value, indicating if
the clause was present or not and its value (if it was), and the runtime only has to consult
it. When the threads grab tasks to execute, they call the function __kmp_task_is_allowed
to know if they can execute that tasks. Listing 4.26 shows the part of the function where
this is checked. Note that when the clause is not present in the task construct, the value
of the environment variable is checked (__kmp_free_agent_clause_dflt).

1 static bool __kmp_task_is_allowed (int gtid , . . .) {
2 //Tied tasks check
3 if () {
4 . . . //
5 }
6 //When the thread i s f r e e agent , the task must have the fa c lause .
7 if (__kmp_threads [g t id]−>th . t h _a c t i v e_ ro l e == OMP_ROLE_FREE_AGENT) {
8 if ((task−>td_ f l ag s . f ree_agent == FREE_AGENT_CLAUSE_FALSE) ||
9 (task−>td_ f l ag s . f ree_agent == FREE_AGENT_CLAUSE UNSET &&

10 ! __kmp_free_agent_c lause_df l t))
11 return false ;
12 }
13 //Check for mutexinoutset dependencies
14 if () {
15 . . . //
16 }
17 return true ;
18 }

Listing 4.26: Free agent clause value check at runtime.

4.8.2 Clang

The clang compiler must evaluate the boolean in the free_agent clause when present
or detect that the clause was not used, and set the values according to the enum in List-
ing 4.25. This must be done for both task and taskloop constructs.

The first step is to create a class in clang for the clause. The OMPFreeAgentClause can
be found in the clang/include/clang/AST/OpenMPClause.h. The functions and variables of
the class will be used in all the steps involved in the compilation of the clause. Then, the

34

Chapter 4. Implementation Joel Criado Ledesma

OpenMP tablegen (llvm/include/llvm/Frontend/OpenMP/OMP.td) has been modified to let
LLVM know which class is in charge of the clause and which constructs use the clause.
Listing 4.27 shows the relevant part of the tablegen (the task construct is not shown since
it is similar to taskloop).

1 def OMPC_FreeAgent : Clause<"free_agent"> {
2 l e t c langClass = "OMPFreeAgentClause" ;
3 l e t f l angClass = "ScalarLogicalExpr" ;
4 }
5 def OMP_TaskLoop : Direc t ive <"taskloop">{
6 l e t allowedClauses = [
7 . . . //Some allowed c lauses
8] ;
9 l e t allowedOnceClauses = [

10 . . . //Some allowed only once c lauses
11 VersionedClause <OMPC_Priority > ,
12 VersionedClause <OMPC_FreeAgent>
13] ;
14 l e t a l lowedExclusiveClauses = [
15 . . . //GrainSize and NumTasks c lauses
16] ;
17 }

Listing 4.27: Free agent clause in the LLVM OpenMP tablegen.

The next step is to make the Parser understand the clause. The free_agent clause can
only appear once andmust have a unique expression inside, the same as the final clause.
Since Clang was already parsing this type of clauses, only one new case was necessary,
as shown in Listing 4.28.

1 OMPClause ∗Parser : : ParseOpenMPClause (. . .) {
2 . . . //Some code
3 switch (CKind) {
4 case OMPC_final :
5 case OMPC_free_agent :
6 case . . . //More c lauses
7 . . . //Parsing of s ing l e value c lauses tha t only appear once
8 . . . //Rest of the c lauses
9 }

10 }

Listing 4.28: Free agent clause parsing.

Once the Parser is handled, it is time to modify the Semantic Analyzer (clang/lib/Se-
ma/SemaOpenMP.cpp). First, Sema needs a function to call on well-formed clauses. The
function declaration is shown in Listing 4.29. The routine code can be found in the source
file and is copied from the final clause since their behavior must be the same. In the end,
it generates an OMPFreeAgentClause object.

1 /// Called on well−formed ’ f ree−agent ’ c lause
2 OMPClause ∗ActOnOpenMPFreeAgentClause (Expr ∗FreeAgent , SourceLocation StartLoc ,
3 SourceLocation LParenLoc ,
4 SourceLocation EndLoc) ;

Listing 4.29: Free agent clause Semantic Analyzer ActOnOpenMPFreeAgentClause routine.

The Sema has different functions for each kind of directive. The next step is to specify
what should happen when encountering the free_agent clause in that directives. For
the directives that accept the clause, the ActOnOpenMPFreeAgentClause routine is called
(Listing 4.31), and an error message is produced for the others (Listing 4.31).

35

Chapter 4. Implementation Joel Criado Ledesma

1 OMPClause ∗Sema : : ActOnOpenMPSingleExprClause (OpenMPClauseKind Kind , . . .) {
2 OMPClause ∗Res = nu l lp t r ;
3 switch (Kind) {
4 case OMPC_final :
5 Res = ActOnOpenMPFinalClause (Expr , Star tLoc , LParenLoc , EndLoc) ;
6 break ;
7 . . . //Some val id cases
8 case OMPC_free_agent :
9 Res = ActOnOpenMPFreeAgentClause (Expr , Star tLoc , LParenLoc , EndLoc) ;

10 break ;
11 . . . //Some not va l id cases
12 default :
13 l lvm_unreachable ("Clause is not allowed") ;
14 }
15 return Res ;
16 }

Listing 4.30: Free agent clause allowed example in Sema.

1 OMPClause ∗Sema : : ActOnOpenMPClause (OpenMPClauseKind Kind , . . .) {
2 switch (Kind) {
3 . . . //Some used cases and t h e i r a c t i ons
4 case OMPC_if :
5 case OMPC_final :
6 . . . //More s im i l a r cases
7 case OMPC_free_agent :
8 default :
9 l lvm_unreachable ("Clause is not allowed") ;

10 }
11 return Res ;
12 }

Listing 4.31: Free agent clause not allowed example in Sema.

The last step is to modify the CodeGen section of Clang to generate the tasks with
the flag properly. First, CodeGen uses the OMPTaskDataTy struct to store the values of
task construct clauses. Listing 4.32 shows the addition to that struct to accommodate the
free_agent clause.

1 struct OMPTaskDataTy f i n a l {
2 . . . //Some task va r i ab l e s
3 llvm : : Value ∗FreeAgent = nu l lp t r ;
4 . . . //More va r i ab l e s
5 } ;

Listing 4.32: Free agent clause OMPTaskDataTy struct from CodeGen.

The next relevant part of CodeGen is the one in charge of evaluating the clauses:
EmitOMPTaskBasedDirective. Here, it gets the OMPFreeAgentClause from the Sema step
and evaluates the condition. The evaluation has two modes: when the expression is con-
stant, the value is evaluated in the front-end; otherwise (e.g., the value of the expression
depends on a runtime variable), it emits code to compute the value of the boolean expres-
sion at runtime. The values 0x200 and 0x100 are used to set the expected bits from the
runtime structure (see Listing 4.25). No bit is set when the clause is not present. Since
Clang does not set any bit and the runtime initializes the free_agent bits to 0, the effect
of unspecified in the task construct is achieved.

36

Chapter 4. Implementation Joel Criado Ledesma

1 void CodeGenFunction : : EmitOMPTaskBasedDirective (const OMPExecutableDirective
2 &S , const OpenMPDirectiveKind CapturedRegion ,
3 const RegionCodegenTy &BodyGen ,
4 const TaskFGenTy &TaskGen , OMPTaskDataTy &Data) {
5 . . . //Check for other c lauses
6 //Check i f the task has ’ f ree_agent ’ c lause .
7 if (const auto ∗Clause = S . getSingleClause <OMPFreeAgentClause > ()) {
8 enum {FREE_AGENT_CLAUSE_TRUE = 0x200 , FREE_AGENT_CLAUSE = 0x100 } ;
9 const Expr ∗FreeAgent = Clause−>getFreeAgent () ;

10 bool CondConstant ;
11 if (ConstantFoldsToSimpleInteger (FreeAgent , CondConstant)) {
12 Data . FreeAgent = CondConstant
13 ? Bui lder . ge t In t32 (FREE_AGENT_CLAUSE_TRUE)
14 : Bui lder . ge t In t32 (FREE_AGENT_CLAUSE_FALSE) ;
15 } else {
16 llvm : : Value ∗B EvaluateExprAsBool (FreeAgent) l
17 Data . FreeAgent = Bui lder . Crea t eSe l e c t (
18 B , Bui lder . ge t In t32 (FREE_AGENT_CLAUSE_TRUE) ,
19 Bui lder . ge t In t32 (FREE_AGENT_CLAUSE_FALSE)) ;
20 }
21 }
22 . . . //Other c lauses checks
23 }

Listing 4.33: Evaluation of the free_agent clause in CodeGen.

Finally, the function emitTaskInit generates the task. Here, the tasking flags
are added one by one into the TaskFlags variable, which serves to set the
kmp_tasking_flags_t on the runtime side. Since the Data.FreeAgent variable has
the correct value (either 0x200, 0x100, or no value represented by nullptr) from
EmitOMPTaskBasedDirective, CodeGen only needs to perform an or operation of that
variable with TaskFlags. The relevant code is displayed in Listing 4.34.

1 CGOpenMPRuntime : : emi tTaskIn i t (CodeGenFunction &CGF, SourceLocation Loc ,
2 const OMPExecutableDirective &D,
3 llvm : : Function ∗TaskFunction , QualType SharedsTy ,
4 Address Shareds , const OMPTaslDataTy &Data) {
5 . . . // Generation of some task va r i ab l e s
6 llvm : : Value ∗TaskFlags =
7 Data . F ina l . ge tPo in te r ()
8 ? CGF. Bui lder . Crea t eSe l e c t (Data . F ina l . ge tPo in te r () ,
9 CGF. Bui lder . ge t In t32 (F ina lF lag) ,

10 CGF. Bui lder . ge t In t32 (/∗C=∗/0))
11 : CGF. Bui lder . ge t In t32 (Data . F ina l . g e t I n t () ? F ina lF lag : 0) ;
12 TaskFlags = CGF. Bui lder . CreateOr (TaskFlags , CGF. Bui lder . ge t In t32 (Flags)) ;
13 if (Data . FreeAgent) {
14 TaskFlags = CGF. Bui lder . CreateOr (TaskFlags , Data . FreeAgent) ;
15 }
16 . . . //Generation of the other task ing f l a g s and the r e s t of the va r i ab l e s .
17 }

Listing 4.34: Construction of a task in CodeGen.

37

Chapter 5

DLB Integration

This chapter covers the integration of the OpenMP role-shifting threads with the LeWI
(see Section 2.4.1) module of DLB. The source code is publicly available online [1].

LeWI is designed to perform load balance operations of applications with both dis-
tributed and shared memory programming models. MPI is the programming model of
choice for distributed memory in the HPC community, and DLB is totally integrated with
it.

Regarding the sharedmemory programmingmodels, DLB is capable of working with
OmpSs and OpenMP. Before the addition of OMPT, the user had to modify its application
with some calls to the DLBAPI; otherwise, LeWI could not act. The addition of the OMPT
interface offered the possibility to capture the use of OpenMP constructs in the user code
and perform the balancing of resources transparently. It has been integrated with DLB
since its release in OpenMP 5.0.

The role-shifting threads have been included in LeWI as a new OMPT thread man-
ager. With that, DLB has three different OpenMP thread managers: vanilla OMPT, the
double-pool implementation of free agents, and the role-shifting threads. The user can
select which to use with the DLB_ARGS environment variables and the flag --ompt-thread
-manager.

5.1 LeWI general concepts

LeWI (see Section 2.4.1) is a resource manager aiming to optimize applications’ load bal-
ance. LeWI is in charge of managing the CPUs inside a node with shared memory. It
relies on a shared memory programming model (e.g., OpenMP) to manage the threads
and has several mechanisms (e.g., APIs, callbacks) to interact with the runtime and take
profit from the threads.

The available CPUs are owned uniquely by a single process with all the rights over
them. It can keep the CPUs when needed and claim them back whenever necessary. The
owner does not change during the execution. When the owner is not using the CPU, other
processes may use it.

Figure 5.1 explains the states a CPU has from the DLB point of view. It also displays
the actions that the processes can perform to interact with DLB and the CPUs.

When the execution starts, all the CPUs transition fromDisable (i.e., not in the system)
to Busy. While the owner uses them, they will remain in that state. At some point, the
process may lend a CPU and become Idle. When a CPU is not in use, other processes
can acquire it, and the CPU becomes Borrowed. A borrowed CPU can be released by the

38

Chapter 5. DLB Integration Joel Criado Ledesma

process that acquired it and transition to Idle; in addition, the owner can claim it back,
and the CPU goes to Claimed. When a CPU is Claimed, the process that borrowed it must
return it as soon as possible, and the CPU becomes Busy again.

Figure 5.1: DLB CPU states and actions.

5.2 Thread manager implementation

When the role-shift manager is selected, LeWI calls the init function
omptm_role_shift__init. Here, all the global variables are properly initialized
and allocated if needed. The first part of the function is shown in Listing 5.1. Here, the
node size where the process runs is consulted, along with the CPU affinity mask of the
process. It also reads the values from the environment variables OMP_NUM_THREADS and
KMP_NUM_FREE_AGENT_THREADS. Finally, it detects if the LeWI module is active.

1 static int system_size ;
2 static bool lewi = false ;
3 static atomic_ int num_free_agents = 0 ;
4 static cpu_set_ t process_mask ;
5 static int default_num_threads .
6

7 void omptm_ro le_sh i f t__ in i t (pid_t process_id , const opt ions_ t ∗ options) {
8 /∗ I n i t i a l i z e s t a t i c va r i ab l e s ∗/
9 system_size = mu_get_system_size () ;

10 lewi = options−>lewi ;
11 . . . //Some var i ab l e s
12 num_free_agents = __kmp_get_num_threads_role (OMP_ROLE_FREE_AGENT) ;
13 shmem_procinfo_getprocessmask (pid , &process_mask , 0) ;
14 //omp_get_max_threads cannot be ca l l ed here , t ry using the env . var .
15 const char ∗env_omp_num_threads = getenv ("OMP_NUM_THREADS") ;
16 default_num_threads = env_omp_num_threads
17 ? a t o i (env_omp_num_threads) ;
18 : CPU_COUNT(&process_mask) ;
19 }

Listing 5.1: Initialization of global variables.

The initialization continues in Listing 5.2. The cpu_data and cpu_by_id are allocated
and the second one is initialized to -1. The former holds the status of all the system cores
and if a thread with the free agent role uses that CPU, while the latter maps each CPU to

39

Chapter 5. DLB Integration Joel Criado Ledesma

the specific thread running in it. In addition, the mask of the primary thread is initialized
to zero, and the initial number of threads is calculated.

1 typedef enum CPUStatus {
2 OWN = 0
3 UNKNOWN = 1 << 0 ,
4 LENT = 1 << 1 ,
5 BORROWED = 1 << 2
6 } cpu_s ta tus_ t
7 typedef struct CPU_Data {
8 cpu_s ta tus_ t ownership ;
9 bool fa ;

10 } cpu_data_t ;
11 static cpu_data_t ∗ cpu_data = NULL;
12 static int ∗ cpu_by_id = NULL;
13 static cpu_set_ t primary_thread_mask ;
14 static atomic_ int r eg i s t e r ed_ threads = 0 ;
15

16 void omptm_ro le_sh i f t__ in i t (pid_t process_id , const opt ions_ t ∗ options) {
17 . . . //
18 cpu_data = malloc (sizeof (cpu_data_t) ∗ system_size) ;
19 cpu_by_id = malloc (sizeof (int) ∗ system_size) ;
20 CPU_ZERO(&primary_thread_mask) ;
21 r eg i s t e r ed_ threads = (default_num_threads > num_free_agents)
22 ? default_num_threads
23 : num_free_agents ;
24 int i ;
25 for (i = 0 ; i < system_size ; i ++) cpu_by_id [i] = −1;
26 }

Listing 5.2: Allocation of global structures for CPU management.

Following that, the cpu_data array is initialized. The CPUs that appear in the
process_mask are marked as OWN, while the others are UNKNOWN. It also assigns CPUs to
the threads that are created at initialization. Finally, the active_mask is initialized with
the CPU of the primary thread since it is the only one active at the moment.

1 static int primary_thread_cpu ;
2 static cpu_set_ t active_mask ;
3 void omptm_ro le_sh i f t__ in i t (pid_t process_id , const opt ions_ t ∗ options) {
4 . . . //
5 int encountered_cpus = 0 ;
6 for (i = 0 ; i < system_size ; i ++) {
7 if (CPU_ISSET (i , &process_mask)) {
8 if (++encountered_cpus == 1) {
9 primary_thread_cpu = i ;

10 CPU_SET(i , &primary_thread_mask) ;
11 cpu_by_id [encountered_cpus − 1] = i ;
12 } else if (encountered_cpus <= default_num_threads) {
13 cpu_by_id [encountered_cpus − 1] = i ;
14 }
15 cpu_data [i] . ownership = OWN;
16 } else {
17 cpu_data [i] . ownership = UNKNOWN;
18 }
19 cpu_data [i] . fa = false ;
20 }
21 memcpy(&active_mask , &primary_thread_mask , sizeof (cpu_set_ t)) ;
22 }

Listing 5.3: Initialization of cpu_data and assignation of CPUs to threads.

40

Chapter 5. DLB Integration Joel Criado Ledesma

The last step done at initialization is setting the DLB callbacks. This are functions
called by LeWIwhen a CPU is given (cb_enable_cpu) or removed (cb_disable_cpu) from
the process. An example for the first callback is given in Listing 5.4.

1 void omptm_ro le_sh i f t__ in i t (pid_t process_id , const opt ions_ t ∗ options) {
2 . . . //
3 if (lewi) {
4 int e r r ;
5 e r r = DLB_CallbackSet (dlb_cal lback_enable_cpu ,
6 (d lb_ca l l back_ t) cb_enable_cpu , NULL) ;
7 if (e r r != DLB_SUCCESS) {
8 warning ("DLB_CallbackSet enable_cpu: %s" , DLB_Strerror (e r r)) ;
9 }

10 . . . //Two more ca l l ba ck s s e t t i n g
11 }
12 }

Listing 5.4: LeWI cb_enable_cpu callback setting.

The thread manager has three different parts that work together: the DLB callbacks
to activate/deactivate cores, the DLB callbacks for blocking functions (e.g., MPI_Barrier,
MPI_Allgather), and the OMPT callbacks.

5.2.1 Enable and disable CPUs

The thread manager has two callbacks to enable and disable the CPUs of the process.
The callbacks may be called from the thread manager itself or triggered by DLB when a
certain action occurs (e.g., the process receives a CPU from another rank). Listing 5.5 has
the cb_disable_cpu code. The cpuid argument identifies the logical CPU to deactivate.
First, the status of the CPU is updated. After that, if a free agent is using the CPU, the
thread manager removes the role from it. That way, the thread will probably go to sleep
and leave the CPU entirely for the process that acquires it.

1 static void cb_disable_cpu (int cpuid , void ∗ arg) {
2 if (cpu_data [cpuid] . ownership == BORROWED)
3 cpu_data [cpuid] . ownership = UNKNOWN;
4 else if (cpu_data [cpuid] . ownership = OWN)
5 cpu_data [cpuid] . ownership = LENT;
6 if (cpu_data [cpuid] . fa) {
7 int t i d = get_id_from_cpuid (cpuid) ;
8 if (t i d >= 0) {
9 ATOMIC_DEC(&num_free_agents) ;

10 __kmp_set_thread_roles (t id , OMP_ROLE_NONE) ;
11 }
12 }
13 }

Listing 5.5: Disable cpu.

The cb_enable_cpu (see Listing 5.6) starts also updating the CPU’s state. Then, it gets
the global id of the thread that was running previously on that CPU. If the value is -1, it
means that it is the first time that this process has received this CPU and that any thread
was running there before. In that case, it uses the API to create a new thread with the free
agent role and assigns the CPU to the thread. A thread used the CPU previously when
the value is 0 or greater. The thread manager wakes it up using the runtime API if it was
a free agent.

41

Chapter 5. DLB Integration Joel Criado Ledesma

1 static void cb_enable_cpu (int cpuid , void ∗ arg) {
2 if (cpu_data [cpuid] . ownership == LENT) {
3 cpu_data [cpuid] . ownership = OWN;
4 return ;
5 }
6 else if (cpu_data [cpuid] . ownership == UNKNOWN)
7 cpu_data [cpuid] . ownership = BORROWED;
8 int pos = get_id_from_cpu (cpuid) ;
9 if (pos >= 0) {//A thread was running here previously

10 if (cpu_data [cpuid] . fa) {
11 ATOMIC_INC(&num_free_agents) ;
12 __kmp_set_thread_roles (pos , OMP_ROLE_FRE_AGENT) ;
13 }
14 }
15 else if (pos == −1) {
16 cpu_data [cpuid] . fa = false ;
17 ATOMIC_INC(&num_free_agents) ;
18 __kmp_set_thread_roles (system_size , OMP_ROLE_FREE_AGENT) ;
19 cpu_by_id [ATOMIC_INC(& reg i s t e r ed_ th reads)] = cpuid ;
20 }
21 }

Listing 5.6: Enable cpu.

5.2.2 MPI interception

The thread manager performs actions when going in and out of an MPI blocking call.
When entering, the CPUs from the process are lent to DLB so that other processes may
acquire them. Listing 5.7 shows the relevant part of the IntoBlockingCall function. The
status of the CPUs is consulted and updated to LENT or UNKNOWN, depending on who is the
original owner. Finally, all the CPUs are lent with the DLB_LendCpuMask call.

1 void omptm_role_shi f t__IntoBlockingCal l (void) {
2 if (lewi) {
3 cpu_set_ t cpus_to_lend ;
4 CPU_ZERO(&cpus_to_lend) ;
5 int i ;
6 for (i = 0 ; i < system_size ; i ++) {
7 if (cpu_data [i] . ownership == OWN) {
8 cpu_data [i] . ownership == LENT;
9 CPU_SET(i , &cpus_to_lend) ;

10 }
11 else if (cpu_data [i] . ownership == BORROWED &&
12 CPU_ISSET (i , &process_mask)) {
13 cpu_data [i] . ownership == UNKNOWN;
14 CPU_SET(i , &cpus_to_lend) ;
15 }
16 }
17 DLB_LendCpuMask(&cpus_to_lend) ;
18 }
19 }

Listing 5.7: LeWI IntoBlockingCall function.

After finalizing the MPI call, each process has to get back its own CPUs. The
OutOfBlockingCall code is shown in Listing 5.8. First, it updates the status of the pri-
mary thread and then reclaims to DLB all its own CPUs. The DLB_Reclaim function will
end up calling cb_enable_cpu for each CPU, so the state is properly updated.

42

Chapter 5. DLB Integration Joel Criado Ledesma

1 void omptm_role_shift__OutOfBlockingCall (void) {
2 if (lewi) {
3 cb_enable_cpu (cpu_by_id [g loba l _ t id] , NULL) ;
4 DLB_Reclaim () ;
5 }
6 }

Listing 5.8: LeWI OutOfBlockingCall function.

5.2.3 OMPT Callbacks

The OMPT callbacks are DLB functions called by the OpenMP runtime each time a spe-
cific action occurs, depending on the callback’s type. Listing 5.9 shows the code for the
thread_begin callback, called each time a thread is created. The thread_type argument
indicates the type of thread created, and a value of ompt_thread_other indicates that the
thread has been created with the active role of free agent.

The first action that the thread performs is to register its global thread id, inde-
pendently of the type of thread. Then, those that started as free agents from the
cb_enable_cpu are bound to their assigned CPU. They will only run in this CPU for the
rest of the execution. After that, if the CPU has been reclaimed, it is returned to DLB.
Finally, if the pending tasks have been exhausted, the CPU is disabled and lent to DLB so
that other processes may use it.

1 void omptm_role_shif t__thread_begin (ompt_thread_t thread_type ,
2 ompt_data_t ∗ thread_data) {
3 g loba l _ t id = __kmp_get_thread_id () ;
4 int cpuid = cpu_by_id [g loba l _ t id] ;
5 if (thread_type == ompt_thread_other && cpu_data [cpuid] . ownership != OWN) {
6 cpu_set_ t thread_mask ;
7 cpu_data [cpuid] . fa = true ;
8 CPU_ZERO(&thread_mask) ;
9 CPU_SET(cpuid , &thread_mask) ;

10 pthread_se ta f f in i ty_np (p thread_se l f () , sizeof (cpu_set_ t) ,&thread_mask) ;
11 if (DLB_CheckCpuAvailability (cpuid) == DLB_ERR_PERM) {
12 if (DLB_ReturnCpu (cpuid) == DLB_ERR_PERM) {
13 cb_disable_cpu (cpuid , NULL) ;
14 }
15 }
16 else if (ATOMIC_LD(&pending_tasks) == 0) {
17 cb_disable_cpu (cpuid , NULL) ;
18 if (! CPU_ISSET (cpuid , &process_mask))
19 DLB_LendCpu(cpuid) ;
20 }
21 }
22 }

Listing 5.9: Thread begin callback.

The thread_begin callback is the only function where the pthreads are given a new
CPU affinity mask with a unique CPU. Therefore, the thread will only be reused if that
CPU is received again. Otherwise, a new thread is created. Initially, the thread manager
dynamically changed the CPU affinity mask of idle threads to the new CPUs, but that
strategy delivered less performance. It was common that the process received the original
CPU of a thread that had justmigrated to another CPU. Therefore, the strategy of a unique
call to pthread_setaffinity_np is used.

43

Chapter 5. DLB Integration Joel Criado Ledesma

Listing 5.10 has the pseudocode of the parallel_begin and parallel_end callbacks,
which work in conjunction. The parallel_begin marks that the runtime is inside an ex-
plicit parallel region and the number of threads it uses. At that point, the thread manager
knows that the threads requested will shift to workers if they were free agents. When the
region ends, the parallel_end is called and the in_paralell variable is updated to reflect
that the region has ended.

1 void omptm_role_sh i f t__para l le l_begin (. . .) {
2 if (oute rmos t_para l l e l) {
3 i n _p a r a l l e l = true ;
4 cu r r en t _pa r a l l e l _ s i z e = nthreads ;
5 }
6 }
7 void omptm_role_shi f t__paral le l_end (. . .) {
8 if (oute rmos t_para l l e l) {
9 i n _p a r a l l e l = false ;

10 }
11 }

Listing 5.10: Parallel begin and end callbacks.

The task_create (see Listing 5.11) is executed each time the runtime creates a task,
independently of its type. The thread manager is only interested in explicit tasks since free
agents can execute them. For the explicit tasks, the pending_tasks counter is increased and
a call to DLB_AcquireCpus is done. This function tries to get a CPU that another process
has lent to DLB. If the call is successful (i.e., DLB had one idle CPU, and this process was
the first to claim it), the DLB_AcquireCpuswill end up calling the cb_enable_cpu function
and waking up or creating a thread with the free agent role.

1 void omptm_role_shi f t__ task_create (. . . , int f l ags , . . .) {
2 if (f l a g s & ompt_ task_expl i c i t) {
3 ATOMIC_INC(&pending_tasks) ;
4 DLB_AcquireCpus (1) ;
5 }
6 }

Listing 5.11: Task create callback.

The task_schedule callback (see Listing 5.12) is emitted each time a task performs
a scheduling event, identifying the type of event with the prior_task_status argument.
There are two relevant events: the ompt_task_switch (i.e., when a task starts its execution)
and ompt_task_complete. On the first one, the pending_tasks counter is decremented,
and when more tasks are pending to be executed, the thread manager tries to acquire a
CPU. When the task finishes, the thread manager checks if the CPU has been reclaimed
and the number of pending tasks in the same way as in the thread_begin callback and
performs the same actions when that happens.

1 void omptm_role_shif t__task_schedule (ompt_task_sta tus_t pr io r_ t a sk_s t a tus , . . .) {
2 if (p r i o r _ t a sk_ s t a tu s == ompt_task_switch) {
3 if (ATOMIC_DEC(&pending_tasks) > 1) {
4 DLB_AcquireCpus (1) ;
5 }
6 }
7 else if (p r i o r _ t a sk_ s t a tu s == ompt_task_complete) {
8 /∗Return CPU i f reclaimed ∗/
9 if (cpu_reclaimed) {

10 . . . //Return cpu
11 }

44

Chapter 5. DLB Integration Joel Criado Ledesma

12 /∗Lend CPU i f no more tasks ∗/
13 else if (pending_tasks == 0) {
14 . . . //Lend cpu
15 }
16 }
17 }

Listing 5.12: Task schedule callback.

Both task_begin and task_schedule follow a greedy strategy, trying to acquire a new
CPU for the process continuously. This strategy has delivered the best performance for
LeWI with previous thread managers, so it has been kept like that for the role-shifting
threads. Nevertheless, exploring other heuristics as future work could be interesting and
see if another increases the performance.

The last callback is the thread_role_shift, the new addition of the runtime. The
relevant part of the code is shown in Listing 5.13. When the thread shifts from worker to
free agent, it checks if the CPU has been reclaimed or if there are no more pending tasks,
as in thread_begin and task_schedule callbacks.

1 void omptm_ro le_sh i f t__ thread_ro le_sh i f t (. . . , ompt_role_t pr io r_ ro le ,
2 ompt_role_t nex t_ ro le) {
3 if (p r i o r _ ro l e == OMP_ROLE_NONE) {
4 if (nex t_ ro le == OMP_ROLE_FREE_AGENT) {
5 /∗Return CPU i f reclaimed ∗/
6 if (cpu_reclaimed) {
7 . . . //Return cpu
8 }
9 /∗Lend CPU i f no more tasks ∗/

10 else if (pending_tasks == 0) {
11 . . . //Lend cpu
12 }
13 }
14 }
15 }

Listing 5.13: Role shifting callback.

The time that it takes a thread to reach the thread_role_shift callback since the API
call is used to change its role is undetermined. It cannot be assumed that the CPU is still
available. Therefore, the thread must be deactivated as soon as possible. Otherwise, it
could interferewith the execution of another process anddegrade the global performance.

5.3 Thread manager selection

As the chapter’s introduction explains, three different thread managers coexist together.
To allow that, DLB has a selection of the active thread manager when initializing. The
function setup_omp_fn_ptrs registers the functions of the selected threadmanager in the
omptm_funcs global variable. Then, in the function omptool_initialize all the OMPT
callbacks are set if they have been defined. Listing 5.14 shows the relevant part of the
code. In that example, the thread_begin callback is set for the role-shift thread manager,
but no the thread_end one. Finally, the DLB callbacks (e.g., when entering an MPI call)
are called as shown in the omptool__into_blocking_call routine. This way, DLB can use
the same functions independently of the thread manager selected.

45

Chapter 5. DLB Integration Joel Criado Ledesma

1 typedef struct {
2 . . . // I n i t & F ina l i z e func t ions
3 /∗MPI c a l l s ∗/
4 void (∗ into_mpi) (void) ;
5 void (∗ outof_mpi) (void) ;
6 /∗OMPT_Callbacks ∗/
7 omptm_callback_thread_begin_t thread_begin ;
8 omptm_callback_thread_end_t thread_end ;
9 . . . //Other OMPT ca l l ba ck s

10 } openmp_thread_manager_funcs_t ;
11 static openmp_thread_manager_funcs_t omptm_funcs = { 0 } ;
12

13 static void setup_omp_fn_ptrs (omptm_version_omptm_version) {
14 if (omptm_version == OMPTM_OMP5) {
15 . . . //Se t t i ng for regular OpenMP 5 .X
16 }
17 else if (omptm_version == OMPTM_FREE_AGENTS) {
18 . . . //Se t t i ng for the double pool implementation
19 }
20 else if (omptm_version == OMPTM_ROLE_SHIFT) {
21 omptm_funcs . into_mpi = omptm_role_shi f__IntoBlockingCal l ;
22 omptm_funcs . thread_begin = omptm_role_shif t__thread_begin ;
23 omptm_funcs . thread_end = NULL;
24 . . . //Rest of the func t ions fo r role−s h i f t i n g threads .
25 }
26 }
27

28 static int omptoo l _ in i t i a l i z e (. . .) {
29 . . . //Some i n i t i a l i z a t i o n code
30 if (omptm_funcs . thread_begin) {
31 e r r += set_ompt_cal lback (ompt_callback_thread_begin ,
32 (ompt_cal lback_t) omptm_funcs . thread_begin) ;
33 }
34 . . . //Rest of the i n i t i a l i z a t i o n
35 }
36

37 void omptool__ into_block ing_ca l l (void) {
38 if (omptm_funcs . into_mpi)
39 omptm_funcs . outof_mpi () ;
40 }

Listing 5.14: Thread manager selection.

46

Chapter 6

Evaluation

The runtime and the DLB integration have been evaluated with three HPC applications:
DMRG++ [3], ParMmg [6], and Alya [15]. While benchmarks are a good tool to evaluate
the performance of runtimes and systems, demonstrating that state-of-the-art HPC pro-
duction codes can benefit from them is better. In the end, the final users of the advances
made in theHPC computer science field are the developers and users of such applications.

Three versions of the applications have been evaluated:

• Vanilla: The original application executed with the compiler’s runtime.

• Double pool: The application with the previous free agent runtime [20].

• Role-shifting: The application with the runtime developed in this project.

6.1 Environment

All the experiments have been done in the Marenostrum 4 supercomputer, hosted at
Barcelona Supercomputing Center. It has 3456 nodes based on Intel processors and does
not have GPUs. Each node has two sockets with Xeon Platinum 8160 @ 2.10 GHz pro-
cessors, with 24 cores per CPU. The RAM per node is 96 GB, divided into 12 DIMMs
at 2667 MHz. In addition, there are a few nodes with a total of 384 GB. The nodes are
interconnected with Intel Omni-Path at 100 Gbit/s.

The runtime, DLB, ParMmg, andAlya have been compiled using the Intel 2017.4 suite.
DMRG++ has been compiled with the Intel 2020.1 suite since it needed some OpenMP
features unavailable in the 2017.4 suite. The MPI library used is Intel MPI 2017.4 in all
cases. Extrae [17] 3.8.3 and Paraver [23] are used to generate traces and visualize them.

Alya and ParMmg have been evaluated with DLB. In that case, the codes have been
slightly modified to include calls to DLB_Barrier. This call performs a barrier similar to
MPI_Barrier, but only with the processes of the same node, and it is placed just before
the MPI calls where the load imbalance happens. After that, the interception of MPI is
turned off, and the only entry points of IntoBlockingCall and OutOfBlockingCall are
the DLB_Barrier calls. This way, DLB is used only in the regions of interest and does not
interfere in regions where lots of MPI calls are done in a short time since that could lead
to performance losses.

Alya and ParMmg experiments were done in the middle of the project for publication
in the HPCMALL workshop [9]; DMRG++ experiments were performed at the end of
the project. Therefore, the versions of the runtime used are not the same. Nevertheless,

47

Chapter 6. Evaluation Joel Criado Ledesma

some partial performance tests have been done with ParMmg and Alya to check if the
performance has changed, finding variations below 1%.

6.2 DMRG++

DMRG++ is an HPC application developed by ORNL. It implements the Density Ma-
trix Renormalization Group (DMRG) algorithm, which is used to obtain the low-energy
physics of quantum many-body systems. The application is written in C/C++ and was
launched back in 2009.

The version used for the tests is theDMRG++mini-app [8,12], which captures themost
computational intense kernel of the application. In that part, the app performs Kronecker
products on matrices. The operation is a generalization of the outer product of matrices,
and although it may resemble the matrix multiplication, it must not be confused with it.

Listing 6.1 shows the structure of the code. The program has a main matrix that has
several sub-matrices per cell. Figure 6.1 shows the density of the matrix. The central cells
have bigger matrices, resulting in more computations and load imbalances among the
iterations. The i and j loops traverse the main matrix and are parallelized with parallel
for. Then, the k loop accesses the cell’s sub-matrices and is taskified via the taskloop

construct. Originally, the k loop also had a parallel for, but it was changed so the free
agents could execute the tasks.

1 for (int i t s = 0 ; i t s < NITS ; i t s ++) {
2 #pragma omp pa ra l l e l for schedule (static)
3 for (int i = 0 ; i < n ; i ++) {
4 #pragma omp pa ra l l e l for schedule (dynamic , 1)
5 for (int j = 0 ; j < n ; j ++) {
6 int s ize_k = Matrix [i] [j]−>A. s i z e () ;
7 #pragma omp taskloop default (shared)
8 for (int k = 0 ; k < s ize_k ; k++) {
9 . . . //Task body

10 }
11 }
12 }
13 }

Listing 6.1: DMRG++ miniapp structure.

Figure 6.2 shows two paraver traces of an executionwith 2 threads in the outer parallel
and 24 in the inner one. In all paraver traces, thex-axis displays the execution time, and the
y-axis has a row per thread used in the execution. The information in the middle are the
events, and the user has a considerable variety of them available. In this case, the Useful
duration is selected, showing the periods when a thread is doing valuable computations.
The colors are a gradient to determine the duration of the burst; green means low values
and blue high values of the event.

The top trace corresponds to a vanilla execution using the Intel OpenMP runtime,
while the bottom trace uses the role-shifting LLVM runtime. Both traces are in the same
time scale, meaning they have the same duration from start to end. Having the same time
scale in two traces serves to visualize the differences between them easily. In this case,
both runtimes take the same time to solve the problem.

The top trace shows how all the threads work from start to end, with no apparent load
imbalance. Dividing the rows matrix from Figure 6.1 in 2 (the outer level of parallelism)
results in the same amount of work, so no imbalances are expected in this scenario.

48

Chapter 6. Evaluation Joel Criado Ledesma

Figure 6.1: DMRG++ main matrix density distribution.

Figure 6.2: DMRG++ traces using 48 OpenMP threads. Top: vanilla version. Bottom:
execution with role-shifting threads. Both traces use 2 threads in the outer parallel and
24 in the inner one.

Figure 6.3 shows two paraver traces of an executionwith 4 threads in the outer parallel
and 12 in the inner one. The top trace uses the Intel OpenMP runtime, and the bottom
one uses the role-shifting LLVM runtime. Both traces are in the same time scale. The
problem solved is the same as in Figure 6.2, but it is partitioned differently since 4 threads
are used in the outer level, causing load imbalances. This is reflected in the top trace, with
half of the threads working only for a reduced time at the start. On the bottom trace, the
threads shift from worker to free agent and start executing tasks, balancing the execution
and speeding it up.

The experiments with DMRG++ have been done in a full node of MareNostrum 4,

49

Chapter 6. Evaluation Joel Criado Ledesma

Figure 6.3: DMRG++ traces using 48 OpenMP threads. Top: vanilla version. Bottom:
execution with role-shifting threads. Both traces use 4 threads in the outer parallel and
12 in the inner one.

testing different thread configurations for the two parallels. The results are shown in Fig-
ure 6.4. The y-axis displays the execution time, and the x-axis the parallel configurations.
The first value is the number of threads used for the outer parallel, and the second is the
threads of the inner parallel. The double-pool implementation is not evaluated here since
it produced segmentation fault for all the configurations but 2x24.

0

1

2

3

4

2x24 4x12 6x8 8x6 12x4 24x2

E
xe

cu
ti

on
 t

im
e[

s]

Nesting configuration

Original Role-shifting threads

Figure 6.4: DMRG++ execution time with different parallel configurations.

Both implementations achieve a similar execution time with the 2x24 configuration,
which presents almost no load imbalance. That proves the low overhead of the role-
shifting implementation, even under nested parallelism. The other configurations present

50

Chapter 6. Evaluation Joel Criado Ledesma

several load balance problems, reflected in the execution time of the vanilla application.
Nevertheless, the role-shifting threads leverage that problem and present execution times
near the 2x24 execution. When using the 24x2 configuration, the role-shifting runtime
achieves a speedup of 2.44x compared to the same execution with the Intel runtime.

6.3 ParMmg

ParMmg is an HPC application for parallel mesh adaptation of 3D volume meshes, based
on top of the sequential Mmg remesher, both developed by INRIA. Remeshing is a tech-
nique widely used in the computational solid mechanics (CSM) and computational fluid
dynamics (CFD) fields, aiming to improve the mesh quality and, therefore, the final solu-
tion. The application is written in C and was originally parallelized only with MPI.

Listing 6.2 shows the structure of the main loop where the computations occur.
OpenMP tasks have been added to generate work for the free agent threads. After that,
the programgoes into a communication-intensive phasewithout anyOpenMP constructs.
Therefore, a call to DLB_Barrier is used here to use DLB only in that part of the code.

1 for (int i t s ; i t s < s i z e ; i t s ++) {
2 for (int i = 0 ; i < s i z e ; i ++) {
3 . . . //Some code
4 #pragma omp task
5 {
6 . . . //Task body
7 }
8 }
9 DLB_Barrier () ;

10 MPI_Barrier () ;
11 }

Listing 6.2: ParMmg main loop structure.

Figure 6.5 has two paraver traces using the same input and 32 MPI processes. The
first one is the original code with the compiler runtime. The second one uses the role-
shifting threads runtime and LeWI. Both traces are in the same time scale. Here, the
event represented is the MPI rank, meaning that each color represents a different process.
White spacesmean that theMPI process is not doing useful computation (e.g., it is waiting
in an MPI blocking call).

Iterations three to five are displayed. The load imbalance at the end of the big compu-
tation can be seen on the top trace (and also in the bottom one, but it is easier to look at the
top one since it has few lines). It is interesting to see how the load of the ranks evolves as
the execution progress. The black line marks the same point in the execution. Thanks to
the usage of DLB, additional threads with the free agent role are activated in idle CPUs,
and the execution progress faster. The bottom trace also has a zoom at the end of the last
iteration to view more clearly how the additional threads are used.

Figure 6.6 shows the speedup of the two runtimes in conjunction with DLB compared
to the vanilla version. The number of MPI ranks is 32 for all the runs. The double-pool
implementation has been tested with several number of free agent threads to find the
optimal since the value must be set at the start of the execution. For the double-pool, the
best speedup is 1.192x, achievedwith 20 free agent threads. The same speedup is reached
with the role-shifting threads runtime but without the need to test several configurations.

In addition, a weak-scaling experiment has been done. The results are displayed in
Figure 6.7. For the double-pool implementation, 20 free agent threads have been used for

51

Chapter 6. Evaluation Joel Criado Ledesma

Figure 6.5: Paraver traces of three iterations using 32 MPI ranks. Top: vanilla version.
Bottom: execution with role-shifting threads and DLB.

1,098

1,163
1,175

1,188 1,192 1,185 1,192

1

1,1

1,2

1 4 8 13 20 41 x

S
p

e
e
d

u
p

 w
rt

 O
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

Figure 6.6: ParMmg speedup with DLB, compared to the vanilla code.

all the runes with more than 20 MPI ranks. Otherwise, the number of free agents is set to
the number of MPI processes. In a weak-scaling test, the execution time should ideally be
constant, but in this case, it keeps increasing as more processes are added. Nevertheless,
using DLB with both versions, the execution time is always reduced, without any signifi-
cant difference between double-pool and role-shifting. At 256 MPI ranks, both runtimes
reduce the execution time by 260 seconds, achieving a speedup of 1.19x.

6.4 Alya

Alya is a high-performance CFD application designed to solve engineering coupledmulti-
physics problems. It incorporates several physics solvers, such as chemistry, non-linear
solid mechanics, and incompressible flows. The program is written in Fortran and is par-
allelized withMPI and OpenMP, and has support for GPUs and SIMD. The multi-physics
coupling is achieved by having different instances of Alya running concurrently. Each one

52

Chapter 6. Evaluation Joel Criado Ledesma

500

700

900

1.100

1.300

1.500

1.700

2 4 8 16 32 64 128 256

E
xe

cu
ti

on
 t

im
e

(s
)

MPI ranks

Vanilla Double-pool Role-shifting

Figure 6.7: ParMmg weak-scaling experiment execution time.

solves one of the problem’s physics and communicates with other instances when needed
via MPI.

For this study, the application is launched with one core per MPI rank, and the
OpenMP parallelization is used only for load balance purposes. Alya’s OpenMP paral-
lelization is not exhaustive; therefore, it is preferred to add more MPI ranks rather than
more cores per rank. Nevertheless, the OpenMP parallelization will be helpful when run-
ning with DLB.

The input used is a production combustion problem. It is a coupled use case with two
different physics: fluid simulation and chemical reactions [5, 25]. An execution trace is
shown in Figure 6.8. The trace has 768 MPI ranks; the first 96 are dedicated to the fluid,
and the others are used for the chemical reaction. TheMPI calls are displayed in the trace,
and the legend is depicted on the right. The trace has two iterations, and the two physics
can be clearly identified since they follow completely different patterns. The most time-
consuming part is located in the chemical solver, just before an MPI_Barrier, and has a
poor load balance.

Figure 6.8: Paraver trace of 2 Alya’s iterations using 768 MPI processes. The first 96 ranks
solve the fluid and the other 672 solve the chemical simulation.

Figure 6.9 shows the speedup of the two runtimes compared with a vanilla run. Fig-
ure 6.9a uses 768 MPI ranks, Figure 6.9b 1152, and Figure 6.9c 1536. The application is
tested with a different number of free agent threads for the double-pool implementation,
following the same strategy as with ParMmg. The best speedup is achieved with 35 free

53

Chapter 6. Evaluation Joel Criado Ledesma

agent threads in the three versions, ranging from 1.576x to 1.277, with 768 and 1536 MPI
ranks, respectively. The role-shifting implementation delivers a speedup of 1.616x with
768 processes and 1.304 with 1536, surpassing the previous implementation without the
need to tune the number of free agent threads.

1,314
1,369

1,428

1,549 1,572 1,576 1,576
1,616

1

1,1

1,2

1,3

1,4

1,5

1,6

1 3 7 15 23 35 47 X

S
p

e
e
d

u
p

 w
rt

 o
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

(a) 768 MPI ranks.

1,098
1,123

1,169

1,205
1,229 1,234 1,234

1,272

1

1,1

1,2

1,3

1 3 7 15 23 35 47 X

S
p

e
e
d

u
p

 w
rt

 o
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

(b) 1152 MPI ranks.

1,062

1,104

1,213

1,257
1,271 1,277 1,273

1,304

1

1,1

1,2

1,3

1 3 7 15 23 35 47 X

S
p

e
e
d

u
p

 w
rt

 o
ri

g
in

a
l

Num. free agent threads | version

Double-pool Role-shifting

(c) 1536 MPI ranks.

Figure 6.9: Alya speedup with DLB, compared to the vanilla code, and using different
number of MPI ranks.

4

6

8

10

12

14

768 1152 1536

T
im

e
(s

)

Num. MPI ranks

Original Double-pool Role-shifting

Figure 6.10: Alya strong-scaling experiment execution time.

A strong-scaling experiment has been performed with Alya, using 35 free agent

54

Chapter 6. Evaluation Joel Criado Ledesma

threads per MPI rank. The results are shown in Figure 6.10. The usage of DLB in con-
junction with free agent threads significantly improves the application’s performance in
all cases. The role-shifting runtime delivers better performance for all the MPI configu-
rations than the double-pool. Therefore, it should be the runtime of choice when using
Alya.

The results found in Alya do not align with the ones from ParMmg. Here, the role-
shifting implementation is better than the double-pool, while with ParMmg, they were
on equal terms. These differences come from overhead and task granularity. ParMmg’s
tasks have an average granularity of several seconds, while Alya’s tasks take only a few
microseconds. The double-pool implementation is more sensitive in that scenario since it
requires switching the active thread of the CPU. Avoiding that, the role-shifting runtime
can deliver better performance in fine-grain scenarios.

55

Chapter 7

Conclusions

This final master’s thesis presents and develops the idea of the role-shifting threads, an
extension of the LLVM OpenMP runtime. Free agent threads are now the first role of
the model. In addition, the Clang compiler has been extended with support for the
free_agent task clause. Finally, the runtime has been integrated with the Dynamic Load
Balance library.

The role-shifting runtime has been evaluated with a mini-app and two complete HPC
applications, one of them with a coupled execution. Comparisons with the vendor run-
time (i.e., Intel) and the double-pool LLVM runtime showed the same or better results. In
addition, the role-shifting runtime removes the need to decide the number of free agents
for the execution. It delivers the best performance directly, easing the tasks of the user.

The goals stated at the start of the project (see Section 1.2) have been fulfilled success-
fully. Currently, my research group has an ongoing proposal for the free agent threads
addition to the OpenMP standard, which the OpenMP committee is refining. Since the
feedback so far is positive, the addition is in the OpenMP roadmap [4], and the results
shown here are promising, we are confident about their addition to OpenMP 6.0 next
year.

A publication in the recent ISC2022 conference [9] originated from this project. There,
we present the role-shifting threads and focus on the DLB integration. In addition, the
project also contributed to the original free agent threads publication [20].

7.1 Future work

Like many other software developments, this project is an ongoing effort. From my re-
search group, we are planning to support the runtime and the integration with DLB for a
long time. This includes refining the algorithms, performing more tests, solving any bug
in the code, and answering any doubts from our users.

In this document, several points have been stated as future work. The following list
summarizes them:

• Solve some minor bugs in the runtime. So far, we are aware of a bug in the LLVM
master’s branch and would like to mend it.

• Perform more exhaustive tests and integrate them into the respective testing suites.

• Merge the main git branch into the role-shifting thread branch. Some new addi-
tion to the runtime could be missing at the moment, so that would make it more
appealing to new users.

56

Chapter 7. Conclusions Joel Criado Ledesma

• Explore ideas for new roles.

• Try different heuristics in DLB regarding when to ask for more CPUs, and evaluate
their performance.

• Continue pushing the free agent threads into the OpenMP 6.0 standard.

• Integrate DLB with the free agent threads of OpenMP 6.0 if that happens.

57

Bibliography

[1] DLB repository. https://github.com/bsc-pm/dlb/tree/free_agents - Last ac-
cessed June 2022

[2] LLVM repository. https://github.com/bsc-pm/llvm/tree/omp-role-shift - Last
accessed June 2022

[3] Alvarez, G.: The density matrix renormalization group for strongly correlated elec-
tron systems: A generic implementation. Computer Physics Communications 180(9),
1572–1578 (2009)

[4] Bronis R. de Supinski: Recent, Current and Future OpenMP Directions:
OpenMP 5.1 and More!, https://www.openmp.org/wp-content/uploads/OpenMP_
SC20-deSupinski.pdf, accessed: 2022-01-31

[5] Cavaliere, D.E., Kariuki, J., Mastorakos, E.: A comparison of the blow-off behaviour
of swirl-stabilized premixed, non-premixed and spray flames. Flow, Turbulence and
Combustion 91(2), 347–372 (Sep 2013). https://doi.org/10.1007/s10494-013-9470-z,
https://doi.org/10.1007/s10494-013-9470-z

[6] Cirrottola, L., Froehly, A.: Parallel unstructured mesh adaptation using iterative
remeshing and repartitioning. Research Report RR-9307, INRIA Bordeaux, équipe
CARDAMOM (Nov 2019), https://hal.inria.fr/hal-02386837

[7] Continuous Delivery Foundation: Jenkins. https://www.jenkins.io// - Last ac-
cessed June 2022

[8] Criado, J., Garcia-Gasulla, M., Labarta, J., Chatterjee, A., Hernandez, O., Sirvent, R.,
Alvarez, G.: Optimization of condensed matter physics application with OpenMP
taskingmodel. In: InternationalWorkshop onOpenMP. pp. 291–305. Springer (2019)

[9] Criado, J., Lopez, V., Vinyals-Ylla-Catala, J., Ramriez-Miranda, G., Teruel, X., Garcia-
Gasulla, M.: Exploiting OpenMP malleability with free agent threads and DLB. In:
International Conference on High Performance Computing. pp. In–press. Springer
(2022)

[10] D’Amico, M., Garcia-Gasulla, M., López, V., Jokanovic, A., Sirvent, R., Corbalan, J.:
Drom: Enabling efficient and effortless malleability for resource managers. In: Pro-
ceedings of the 47th International Conference on Parallel Processing Companion.
p. 41. ACM (2018)

[11] Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas,
J.: OmpSs: a proposal for programming heterogeneousmulti-core architectures. Par-
allel Processing Letters 21(02), 173–193 (2011)

58

https://github.com/bsc-pm/dlb/tree/free_agents
https://github.com/bsc-pm/llvm/tree/omp-role-shift
https://www.openmp.org/wp-content/uploads/OpenMP_SC20-deSupinski.pdf
https://www.openmp.org/wp-content/uploads/OpenMP_SC20-deSupinski.pdf
https://doi.org/10.1007/s10494-013-9470-z
https://hal.inria.fr/hal-02386837
https://www.jenkins.io//

Bibliography Joel Criado Ledesma

[12] Elwasif, W., D’azevedo, E., Chatterjee, A., Alvarez, G., Hernandez, O., Sarkar, V.:
MiniApp for Density Matrix Renormalization Group Hamiltonian Application Ker-
nel. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). pp.
590–597. IEEE (2018)

[13] Garcia, M., Corbalan, J., Labarta, J.: Lewi: A runtime balancing algorithm for nested
parallelism. In: Parallel Processing, 2009. ICPP ’09. International Conference on. pp.
526–533 (Sept 2009). https://doi.org/10.1109/ICPP.2009.56

[14] Garcia, M., Labarta, J., Corbalan, J.: Hints to improve automatic load balancing with
lewi for hybrid applications. Journal of Parallel and Distributed Computing 74(9),
2781–2794 (2014)

[15] Garcia-Gasulla, M., Houzeaux, G., Ferrer, R., Artigues, A., López, V., Labarta, J.,
Vázquez, M.: MPI+ X: task-based parallelisation and dynamic load balance of fi-
nite element assembly. International Journal of Computational FluidDynamics 33(3),
115–136 (2019)

[16] GitLab Inc.: GitLab. https://about.gitlab.com/// - Last accessed June 2022

[17] Llort, G., Servat, H., González, J., Giménez, J., Labarta, J.: On the Use-
fulness of Object Tracking Techniques in Performance Analysis. In: Proceed-
ings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis. pp. 29:1–29:11. SC ’13, ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2503210.2503267, http://doi.acm.org/10.1145/
2503210.2503267

[18] LLVM Foundation: Clang project webpage. https://clang.llvm.org/ - Last ac-
cessed June 2022

[19] LLVM Foundation: LLVMproject webpage. https://llvm.org/ - Last accessed June
2022

[20] Lopez, V., Criado, J., Peñacoba, R., Ferrer, R., Teruel, X., Garcia-Gasulla, M.: An
openmp free agent threads implementation. In: InternationalWorkshop onOpenMP.
pp. 211–225. Springer (2021)

[21] Lopez, V., Ramirez Miranda, G., Garcia-Gasulla, M.: Talp: A lightweight tool
to unveil parallel efficiency of large-scale executions. In: Proceedings of the 2021
on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy.
p. 3–10. PERMAVOST ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3452412.3462753, https://doi.org/10.1145/
3452412.3462753

[22] OpenMP Architecture Review Board: OpenMP 5.2 Specification. https://www.
openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf - Last ac-
cessed June 2022

[23] Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and analyze
parallel code. In: Proceedings of WoTUG-18: transputer and occam developments.
vol. 44, pp. 17–31 (1995)

59

https://about.gitlab.com///
http://doi.acm.org/10.1145/2503210.2503267
http://doi.acm.org/10.1145/2503210.2503267
https://clang.llvm.org/
https://llvm.org/
https://doi.org/10.1145/3452412.3462753
https://doi.org/10.1145/3452412.3462753
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

Bibliography Joel Criado Ledesma

[24] Tian, S., Doerfert, J., Chapman, B.: Concurrent execution of deferred openmp target
tasks with hidden helper threads. In: International Workshop on Languages and
Compilers for Parallel Computing. pp. 41–56. Springer (2020)

[25] Zhang, H., Garmory, A., Cavaliere, D.E., Mastorakos, E.: Large eddy simulation/-
conditional moment closure modeling of swirl-stabilized non-premixed flames with
local extinction. Proceedings of the Combustion Institute 35(2), 1167–1174 (2015)

60

	Introduction
	Motivation
	Goals
	Document organization

	State of the art
	OpenMP
	Threading
	Worksharings
	Tasks
	OMPT

	LLVM
	OpenMP runtime
	Clang compiler

	Free Agent Threads
	Double-pool implementation

	DLB
	LeWI
	DROM
	TALP

	Design
	Roles
	API
	Environment variables
	Task clause
	Methodology

	Implementation
	Role-shifting
	Free agent management
	Allowed task teams management
	Task creation by free agents

	Thread creation at initialization
	Global thread ID
	OMPT Callback
	API
	Individual threads
	Bulk of threads

	Environment variables
	Task clause
	Runtime
	Clang

	DLB Integration
	LeWI general concepts
	Thread manager implementation
	Enable and disable CPUs
	MPI interception
	OMPT Callbacks

	Thread manager selection

	Evaluation
	Environment
	DMRG++
	ParMmg
	Alya

	Conclusions
	Future work

	Bibliografia

