
Some open problems on
geometric separability

Project Memory

Nicolau Oliver Burwitz

Bachelor Degree in Informatics Engineering

Major in Computing

Factultat d’Informàtica de Barcelona

Universitat Politècninca de Catalunya

Director: Carlos Seara

Department of Mathematics

23 June 2022

Abstract

Català
En aquest projecte hem considerat dos problemes oberts de separació de

punts vermells i blaus en el pla, contextualitzats en el camp de la geometria
computacional. Partint de resultats ja coneguts, hem estès i millorat els algo-
ritmes, concretament per la separabilitat emprant 4 rectes paral·leles en tires
monocromàtiques. I hem analitzat condicions suficients per a aquests criteris
de separabilitat.

Castellano
En este trabajo hemos considerado dos problemas abiertos de separación de

puntos rojos y azules en el plano, contextualizados en el campo de la geometŕıa
computacional. Partiendo de resultados ya conocidos, hemos extendido y
mejorado los algoritmos, concretamente para la separabilidad por 4 rectas
paralelas en tiras monocromáticas. I hemos analizado condiciones suficientes
para estos criterios de separabilidad.

English
In this project, we have tackled two open questions regarding the separa-

bility of red and blue points in the plane, from the framework of computational
geometry. Building on existing results, we have extended and improved al-
gorithms, specifically for the separability using 4 parallel lines that define
monochromatic strips. Also, sufficient conditions to meet these separability
criteria have been studied.

1

Contents

1 Introduction 5
1.1 Context . 5

1.1.1 Academic context . 5
1.1.2 Computational Geometry & Geometric separability 5

1.2 Justification . 6
1.2.1 Results of the source material 6
1.2.2 Open problem & goals . 7
1.2.3 Research implications . 7
1.2.4 Why are those problems important? 8

1.3 Scope & Risks . 8
1.3.1 Stakeholders & scope . 8
1.3.2 Risks . 9

1.4 Methodology . 9

2 Temporal planning 10
2.1 Definition of tasks . 11

2.1.1 Project Planing . 11
2.1.2 Study of the source material 12
2.1.3 Demonstrations . 13

2.2 Time estimations and dependencies 14
2.3 Timetable deviations . 15
2.4 Resources . 15

2.4.1 Human resources . 15
2.4.2 Intellectual resources . 16
2.4.3 Software . 16
2.4.4 Hardware . 16
2.4.5 Infrastructure . 16

2.5 Gantt . 16
2.6 Risk management . 18

2.6.1 Inconclusive results . 18
2.6.2 Incompatible evaluation . 18
2.6.3 Deadline . 18
2.6.4 Inexperience . 18

3 Budget 19
3.1 Staff costs . 19
3.2 Generic costs . 19

3.2.1 Intellectual material . 19
3.2.2 Office material . 20
3.2.3 Facilities & Indirect costs . 21
3.2.4 Summary . 21

3.3 Management Control . 22

2

4 Sustainability report 22
4.1 Self assessment . 23
4.2 Environmental impact . 23
4.3 Economic impact . 24
4.4 Social impact . 24

5 The original algorithms 25
5.1 Notation & preliminaries . 25
5.2 Single strip separability, k = 2 . 27
5.3 Multiple strip separability . 29

5.3.1 k = 3 . 29
5.3.2 k = 4 . 34

6 The new algorithm for k = 4 39
6.1 Algorithm pseudocode . 42
6.2 Linear size counterexamples . 43

7 Sufficient conditions for a constant size G with k = 4 44
7.1 Triangle of guards . 44
7.2 Star-shaped guards . 45
7.3 Further work with guard polygons . 47

8 Finding the constant size G for the new k = 4 algorithm 49
8.1 Alternative visualizations . 50
8.2 Domination of guards . 51

8.2.1 Pruning algorithm pseudocode 52
8.3 Greedy heuristic . 54

8.3.1 Revisiting the intersection graph 55
8.3.2 Greedy algorithm pseudocode 56
8.3.3 Further work with greedy algorithms 59

9 The second open question 59

10 Conclusions 61

3

List of Figures

1 Gannt. 17
2 Rotating caliper around CH(B). 28
3 Rotating calipers around CH(R) and CH(B). 30
4 CH(R) containing CH(B). 31
5 General separability by 4 lines. 35
6 Separability by 4 lines with a guard. 36
7 The guard g inside CH(B) given the bipartition of the point set B. . 36
8 The Angles Θ1, Θ2, Θ3, and Θ4 defined by the interior supporting

lines between consecutive monochromatic subsets. 37
9 The guard gi and the orientations of the blue points of B with respect

to gi, defining a vector of orientations to be sorted later. 40
10 Example of each red point ri being outside a caliper for some direction

d ∈ [0, π]. 41
11 A set of 8 blue points, and a set of 8 red points which are the (mini-

mum number of) guards covering exactly the [0, π] interval. 41
12 Visual proof that it is impossible for B or C to be in R1, and analo-

gously in R3 because the segment joining them wouldn’t cross CH(B). 45
13 Visual proof that two guards fall in the same subset, the edge doesn’t

intersect the CH(B) . 46
14 Left: The pentagram {5/2}. Right: The heptagram {7/3}. 46
15 Sequence of guards covering the entire rotation, but not tracing a star

polygon. 47
16 A pair of guards g and g′ that are equivalent. 48
17 Left: Red guards for the sets R and B. Right: Angular intervals of

the red guards on the unit circle. Note that their union dosent cover
the interval [0, 2π], but using the equivalent guard g′ instead of guard
g they cover an [0, π] interval. 50

18 Intersection graph of angular intervals. 51
19 Directed intersection graph of angular intervals. 51
20 Domination of intervals of guards: gi dominates gj. 52
21 Separability with 6 lines. 60

List of Tables

1 Summary of tasks. 15
2 Hourly cost of each Role. 19
3 Estimated hours per task. 20
4 Amortization of books. 20
5 Expenses in consumables. 21
6 CG summary. 21
7 Total cost summary. 22

4

1 Introduction

This project is a Bachelor Thesis written by Nicolau Oliver, student of the FIB at
UPC Barcelona. It belongs to the GEI degree, within the computation branch. This
section will describe the context for the project, why it has been developed, and the
roles of the different actors involved.

1.1 Context

The project is inscribed in the broader field of Theoretical Informatics, but because
this field is vast, a further taxonomy of the project is needed.

1.1.1 Academic context

The main objective of this project is to answer some open problems in the topic
of geometrical separability, within the field of Computational Geometry. This will
entail the modification of an existing algorithm and demonstrations about the prop-
erties these modifications achieve. The problem was initially proposed in the PhD
thesis of my director Carlos Seara, published as part of the DCCG research group.
Some brief introductions of the thesis and the field are needed in order to understand
the context of this project.

Belonging to the department of mathematics and also the FIB, the UPC Research
Group on Discrete, Combinatorial and Computational Geometry (DCCG) has active
research in the field of computational geometry (as the name suggests). As a member
of DCCG, my director’s PhD [11] presents a solid foundation, and is a necessary
element, for the contribution of this project to be possible. As an undergraduate
student at the FIB, this project is a small addition to the work already published.

1.1.2 Computational Geometry & Geometric separability

The field that the project is framed in is computational geometry. In a narrow sense,
computational geometry is concerned with computing geometric properties of sets
of geometric objects. In a broader sense, it is concerned with the design and analysis
of algorithms for solving geometric problems. In a deeper sense, it is the study of
the inherent computational complexity of geometric problems under various models
of computation.

As the core element of this project, the PhD thesis “On Geometric Separabil-
ity” [11] is a compendium of problems and algorithms with general goal of separating
a set of objects with colours into monochromatic subsets. A more formal definition
is that geometrical separability is a topic that centres in finding “geometric separa-
tors”: a finite set S of surfaces is a separator for coloured object sets in Rd if the
connected components in Rd − S are monochromatic.

Let’s consider the following generic problem: we are given two disjoint sets of
objects in the space (polygons, points. . .), classified as red objects and blue objects.
Does a surface of some specific type exists that separates the red objects from the
blue objects?

5

This question can be asked for different kinds of objects and separators in spaces
of any dimension, and even for more than 2 colours. This family of problems is what
is understood as the topic of geometrical separability.

For the open problems that concern us, objects will be points in R2, and the
separator of objects will be a line (hyperplane) also in R2. Some basic results on
this basic notion of separability are that two object sets are line separable if and
only if their convex hulls do not intersect [12]. It is also well known that the decision
problem of linear separability (i.e., the separability by a line) for two disjoint sets
of points, segments, polygons, or circles can be solved in linear time [7]. So our
contributions need a final expansion of this natural notion of separability.

Our separability criteria will involve a set of separators instead of only one. We
will allow more than one line as separators, but they must all be parallel. The
number of lines will be denoted by the variable k ∈ N.

The problems can easily be formulated slightly differently to change the format
of the answer. One could ask for the direction that yield the minimum amount of
lines, or instead ask for the intervals of orientations in S1 (the unit circle defining
the set of all the orientations in the plane) such that the objects can be separated
for a fixed number k of lines. Even transform into a decisional problem by asking if
there exist some orientation in S1 s.t. the objects can be separated with a fixed k
number of lines.

1.2 Justification

Because of the close relationship with the source material, justification for the project
needs of a deeper review of the already existing results.

1.2.1 Results of the source material

As already mentioned, there are lots of other families of problems if we choose
different definitions for our objects sets and our separator sets. And just as numerous
are the findings contained in the source material. Because the open problem builds
on the findings of the thesis, those must be discussed before enunciating the open
problem in its full context.

The first result is a sweep line algorithm, that takes advantage of the dual repre-
sentation of the problem. Without going into details, the result is that the minimum
amount of lines necessary to separate the sets can be determined by an algorithm
which uses O(n2 log n) time and O(n2) space, also yielding the corresponding slope
intervals (Theorem 5.8 of [11]). So, any further improvements must be at least better
than this generic algorithm. This result is used as a complexity to beat, the project
won’t build upon it. Reading the source material is recommended to understand
the motivation of the project in more detail, but the dual algorithm will not be
described or discussed.

The second relevant finding aims to prove that faster algorithms exists for par-
ticular cases. If k ≤ 4, then there exists an algorithm that solves the problem in
O(n log n) time and O(n) space. But only under a certain constraint on the points
sets.

6

This algorithm uses the rotating calipers technique and some properties of the
points to dynamically rotate across all orientations, checking efficiently if the sets
are separable. Because this project builds on this algorithm, it will be described in
detail in further sections.

1.2.2 Open problem & goals

Now that we have a brief overview of the topic, we can finally specify the open
problem:

Open problem 1. Let B (blue) and R (red) be two disjoint point sets in the plane.
Can it be decided whether the sets are red/blue/red/blue/red separable by four (non-
oriented) parallel lines in O(n log n) time and O(n) space, if the convex hull of the
blue points does not contain any red point?

As the open problem reveals, the original algorithm described in the PhD achieves
the stated complexity, but at the cost of needing the stated constraint over the
points.

Our main goal is to expand the capabilities of the already existing algorithm
for the k = 4 problem, attempting to generalize it so that it can solve the problem
without the constraint. As this hasn’t been possible, we would at least desire to
relax as much as possible the constraint. But always remain below the O(n2 log n)
time complexity, as any slower results are irrelevant.

This expansion of the algorithm is performed by some natural extensions to the
original work. The main focus of the project is demonstrating that those extensions
are worthwhile because they preserve the correctness and other properties of the
original algorithm, plus relaxing the constraint over the input1.

1.2.3 Research implications

To finally conclude the enunciation of the open problem, it is adequate to consider
the implications that justify it as a worthy project.

A second open problem is posed in the PhD following the one enunciated:

Open problem 2. Let B and R be two disjoint point sets in the plane. Can it be
decided in O(kn log n) time whether the sets B and R are separable with at most k
parallel lines for k ≥ 5?

As it is revealed in this second open problem, the aim is to step by step gen-
eralize the algorithm. If a general algorithm for k = 4 is found, maybe the task
of generalizing it for any k is more feasible. This could be further work for other
projects, and in general a positive impact to the research stakeholders.

1The constraint is that there must exist a red point inside the blue convex hull

7

1.2.4 Why are those problems important?

As for why those two open problems are relevant, the main reason is that they belong
to already existing literature. In general geometric separability is a very theoretical
topic, but as always, industrial applications are endless. Separating objects might
mean separating data points of all kinds. From segmenting maps into districts or
terrains into parcels, to the separation of the smallest chemical compounds, including
all kind of optimization problems involving classification.

A second reason is the intertwined nature of both questions. Advances in relaxing
the input constraint for the first problem could be very useful in attempting to build
recursive algorithms to solve the second question. Any advances on the first question
could be compounded as breakthroughs in the second question. This alone is enough
to motivate this project.

A last but very persuasive reason is that having the chance of working with the
author of the source material is a great opportunity. Not embarking in this project
would be missing a very valuable learning experience.

1.3 Scope & Risks

My vision is that this project attempts to produce results similar in form to an article
by a member of a research group, although with much more humble results. The
publication of the results is not the end goal of this project, due to the uncertain
nature of obtaining relevant results. But as a bachelor thesis in research, it is
imperative that non-trivial results are formalized up to the expected quality and
elegance. In order to provide a more adequate focus to the project, and make it
possible to follow the evaluation guidelines, this project could be understood to be
contextualized as theoretical research within a fictional institution/company.

1.3.1 Stakeholders & scope

As an official thesis from a student of the FIB, the UPC “acts” as the journal the
article will be published in. So a primary stakeholder is the several actors within
the FIB that will be supervising the correctness and formality of my proofs. This
includes my director, who is evidently interested in the resolution and study of the
open questions posed. It also includes the rest of the research group, who could use
these advancements as stepping stones in further research.

Other actors are the rest of the research community, who would be the main
beneficiaries of this project. No direct tangible and quantifiable benefits to specific
corporations, state institutions or social communities are expected to arise from this
project. But other future articles or more efficient implementations of the algorithm
might build upon my contributions, thus having a secondary impact.

This environment of actors opens the opportunity for this to be a pedagogical
environment, expanding the scope of the project to include the development of my
formal writing and research skills. Skills involving problem-solving have manifested
and developed, but also skills used in the adequate presentation of the results. To
accomplish this second half of the pedagogical scope, the project has also consisted
of external work on building the necessary background on several adjacent topics.

8

1.3.2 Risks

All projects have risks. Some threatening this one are:

Inconclusive results
As already explained, the main risk of this project is not finding relevant results.

Incompatible evaluation
This second risk has appeared during the execution of the Project Planning family of
tasks. It is possible that the evaluation method of the bachelor thesis is incompatible
with the format of the project. This problem points to a general complication that
arises from the evaluation of the general competences of the TFG. Due to the non-
industrial nature of the project, it is very difficult and time-consuming to adapt it
to fit the evaluation rubrics.

Deadline
Another risk is the deadline of the project. This is a double edge risk because
the speed at which breakthroughs are expected to be done is always uncertain.
This means that it is very difficult to select an exposition turn for the project. If
all breakthroughs had happened very fast, spare time would have appeared at the
end of the project. Conversely, if demonstrations had been much more difficult to
formalize than expected, maybe the project would have suffered delays, pushing the
deadline dangerously.

Inexperience
As the first project of this scope I perform, most skills involved in the proper formal-
ization of proof remain to be improved. Even if I knew how to execute the project,
for some micromanagement decisions I still needed supervision.

1.4 Methodology

The ongoing work in this problem started before it was constituted as a bachelor
thesis project. And it is one among several of the problems I was working in par-
allel, all in the context of building a background in several topics of computational
geometry. This means that the planning of the project concerns only the proper
writing and formalization, as the “design phase” of the solutions happened outside
the scope of the timetable. Unfortunately I am forced to include a speculative list
of tasks that act as the ones I performed in the design of the algorithm, take them
with a grain of salt.

With this consideration, the project already started from a draft of the demon-
strations of the results, that needed to be formalized further. This gave a complete
guideline of all the work to do, providing a road-map that was to be completed
sequentially. This is because all demonstrations must rely on the previous one being
completely proven. And due to the highly specialized requirements of each demon-
stration, it is most efficient to achieve a full proof instead of gradually formalizing
simultaneously several demonstrations.

The methodology consisted of a single sequential list of demonstrations to for-
malize from intuition (notes), and a posterior work of harmonizing and editing the
layout of the document.

9

This could be understood as a waterfall methodology under some interpretations.
Automatic version control was performed by online repositories like Google Drive
and Overleaf.

The task management has been autonomous on my side, and it was performed
using a paper calendar and checklist. The decision was made to not use online task
managers like Trello, because other task managing systems were already in place.
Namely, a wall of sticker notes with the tasks, sorted by the sequential order to
carry them out.

Completed proofs were shared almost weekly with the director to check the
formality and correctness, but only in a need to know basis. This means that even if
meetings were performed, they were of a spontaneous nature, to accommodate the
schedule of the director and to avoid unnecessary supervision. This was decided on
the principle that it would encourage creative problem-solving critically needed to
complete the project. It has also been the fruit of the understandably busy schedule
of my director, who has nevertheless been very understanding and available.

Regarding the rigour of the methodology of the project, it is very hard to quan-
tify, if not impossible. The veracity of the results of this project rely entirely on the
veracity of the lemmas and theorems that will be exposed. They are meant to be
scrutinized up to the level required of a bachelor thesis, but just how rigorous that
level is, falls totally outside my methodological capabilities.

In summary, even if the strategies I’ve followed to try and design correct proofs
end up yielding the correct result, the statistical veracity of this project is hard
to assess. A conclusion will be either true and substantiated by the work done, or
ambiguous and found to be insufficiently correct. No statistical analysis of the errors
made is really possible.

2 Temporal planning

The project started well before the planning of the project, so it is hard to account
for all past tasks already performed. The start date was roughly the 01/01/2022
when I first started reading the PhD, and the selected deadline for evaluation is
17/06/2022.

So the workload distribution is theoretically about 450 hours in roughly 138 total
working days, meaning an approximate average workload of 3h and 30 minutes. But
this ended up not being the real most frequent time slot per day. Work was more
frequently performed in 2 slots of 2h in a pomodoro like fashion. This is because
one day a week I was able to work for only 30 min, indeed Sundays.

Other time factors included the Easter holidays and other special occasions that
restructured the work around the week. Even with these factors included, the task
management was mildly overestimated.

10

2.1 Definition of tasks

Here follows a brief definition of each task by family. The Project Planing tasks run
in parallel to the actual project, that consists of the Study of the source material
group of tasks, and the Demonstrations group. The only temporal dependency
among task groups is those last two, so it was a requisite to finish the Study group
to start the Demonstrations group.

The following list describes the tasks belonging to the project planing family.
These were heavily based on the assignments to deliver, that in turn had very well-
defined sub objectives by virtue of the rubrics used to evaluate them. The rubrics
also provided the material needed to read in order to perform each task, meaning
that all tasks incorporated reading the suggested material for the assignment.

2.1.1 Project Planing

1. Scope of the project :
First delivery. It includes scope, objectives, justification, methodology and
risks.

2. Time planning :
Second delivery. Task and temporal planing of the project, including the Gantt
diagram.

3. Ecological budget report :
Third delivery. Analysis of the economical and costs of the project. Including
the materials used to prove the theorems, the ecological impacts of the math-
ematical research, and the budget of drawing images as support material.

4. Final document :
Formatting of all previous tasks into a single document, integrating the GEP
tutor feedback.

The next task family is the Study tasks. This family contains all the tasks that
consisted of: building background knowledge about the topic, reading the research
done over similar open questions, exploring possible modifications of existing solu-
tions & designing new ways of understanding the problem. In summary, this is the
design stage of the project, a design that was build on existing work that needed to
be heavily researched.

Just as a small reminder, this creative stage was wildly unpredictable, full of
uninspired days followed by frustration and maybe, if lucky, eureka. Attempting
to divide in tasks this section was specially difficult, so take them as a guideline
to how the creative process unfolded (these tasks were executed before the project
management started).

11

2.1.2 Study of the source material

1. First reading of the PhD :
A first autonomous reading of the paper, done to map the different chapters
of the material that are relevant to the open questions. This includes selecting
the open questions of interest, but also the surrounding chapters about similar
problems.

2. Correctness of the original algorithm :
Further reading on the original algorithm, up to the comprehension level that
allows for me to demonstrate its correctness without aid of the original mate-
rial.

3. Second read of the PhD :
A second read to start expanding from the relevant chapters into the whole
body of the document, once again delving into similar problems to see what
techniques can be used to solve this kind of problems. With a special focus on
dynamic convex hull algorithms.

4. Investigation into the dual algorithm :
Research of the point-line dual algorithm, that provides the open question
ceiling complexity, and other material relating to the point-line dual. Informal
consultations with other Computational Geometry teachers on the point-line
dual (namely Rodrigo Silveira).

5. Further reading of auxiliary material :
Research of other material of undefined theme, characterized by a more in-
spirational reading of auxiliary material. This tasks also includes the above-
mentioned days of probing the open question. A healthy dose of the work hours
was shared with activities like sport (ping pong) or cultural events (chess, bal-
let, cinema) to stimulate the creative process.

6. First session with the project director :
First in person session. A general background of the topic is done, with special
attention to how to navigate the source material. This acted as supervision
of all previous tasks of research. Eureka intuitions were shared in several late
evening meetings after the lectures and classes, possibly overextending the
already long schedule of my director.

Finally, the Demonstration’s family of tasks. These are the main group of tasks
that concerned this project management. As explained before, they had a depen-
dency with the design/research phase of the project. The tasks of this family are
the most tangible because they constitute the creation of the actual document that
results of the project.

From the initial tasks, undistinguishable from the design phase, to the final docu-
ment, the expected progression was that first ideas are sorted in a very abstract way.
The mental formalization of ideas gave birth to an initial, equally abstract, draft
proof. From there the usual formalization process materialized the demonstration,
each version of the document more precise and elegant than the last one.

12

This unfolded more or less as described, although some tasks proved to be harder
than expected.

2.1.3 Demonstrations

1. Initial draft of proofs :
A first mental survey of the ideas elaborated on the research phase. New ideas
might still be considered. No formalization is done.

2. Initial correctness of the extended algorithm :
An intuitive exploration of the new properties the extended algorithm retains,
and which other properties it incorporates. The main goal is to find relevant
properties that have been added by the extension.

3. Second draft of proofs :
First document that actually contains a written step by step demonstration.
Formalization must be enough for it to be read by the director, and remain
tight enough correctness wise.

4. Correctness of the extended algorithm :
Written demonstration of the properties that the extended algorithm exhibits,
relevant to the previous proofs.

5. Second session with the project director :
In person, overhaul of the second draft. Re-scoping of the project and refram-
ing of the results.

6. Explanatory material :
Creation of the images used to illustrate the demonstrations and correctness
of the algorithm.

7. Definitive document :
Elaboration of the final document. Containing all images needed to exemplify
the proofs, all theorems properly enumerated, the academic layout of a research
article, and all the requisites of the memory. Possibly overhauling the support
media of the project (images or even animations of the algorithm).

As it may be obvious, the Demonstration tasks closely followed the draft of
proofs to be formalized. The following list is just a summary enumeration to give
some perspective on the amount of work that was planned to be performed and in
what order. Bigger demonstrations have ended up having more sub-demonstrations,
reflecting the complexity found along the way.

Even if changes weren’t expected to happen, as mentioned in the risks, this
list was designed to be subject to change. It mainly expanded to include more
results that arose along the way, some substituting some results that ended up
being irrelevant. This list is not immutable and was never meant to be.

13

List of demonstrations:

1. Extended algorithm

1.1 Correctness

1.2 Complexity

2. Visibility of star polygon’s family

3. Upper bound on guards

3.1 Minimizing guards optimal algorithm

3.2 Convex hull to circle reduction

3.3 Point set to circle reduction

3.4 Outline of the two circles problem family

3.5 Two circles problem as upper bound

3.6 Upper bound of the two circles problem

i. Covering angle α of a guard is a function of the circle’s radius

ii. Number of guards if a function of α

As it can be clearly seen, the most fundamental ideas for the project were ex-
plored very early on. On the other hand, it is also evident that some re-scoping of
the project happened towards the end. This is discussed in later sections.

One task done implicitly during the whole thesis was documentation. This means
documenting the progress of the project weekly in order to perform a review of it
at the end. Also, a last task added was the preparation of the oral defence. If it is
true that the visual material of the oral presentation is included in the Explanatory
material task, an extra time slot for the task of preparing the oral defence was
awarded as an overestimation.

2.2 Time estimations and dependencies

Project Planing : This first family of tasks were to be performed in accordance
with the timetables set by the Atenea calendar. This renders all the tasks sequential
in dependence. The span of the whole family was 4 weeks, roughly one per task.
Because this family of tasks started after the main family of tasks, the workload
was somewhat reduced to accommodate the ongoing execution of the main family
of tasks. A total of 40h were assigned, in 5 slots of 2h a week.

Main workload : The second & third family of tasks was scheduled to meet the
deadline of the second defence turn, unless a critical eureka was achieved. This
means that the deadline for the evaluation of the project by the director was the
17/06/2022, a whole week before the real deadline. And the presentation and defence
of the project in the 27/06/2022 - 01/07/2022 range. The draft tasks were and have
proven to be impossible to estimate in time, so a very rough minimum time was
proposed. But in no way this represents the real time spend in the tasks, that is
much more than declared.

14

Code Name Time Dependencies
A1 Scope of the project 10 -
A2 Time planning 10 A1
A3 Ecological budget report 10 A2
A4 Final document 10 A3
A Project Planing 40 -
B1 First reading of the PhD 30 -
B2 Correctness of the original algorithm 45 -
B3 Second read of the PhD 30 B1 B2
B4 Investigation into the dual algorithm 35 B3
B5 Further reading of auxiliary material 30 B4
B6 First session with the project director 40 B5
B Study of the source material 210 A
C1 Initial draft of proofs 35 -
C2 Correctness of the extended algorithm 35 C1
C3 Second draft of proofs 35 C2
C4 Second session with the project director 35 C3
C5 Explanatory material 35 C4
C6 Definitive document 35 C5
C Demonstrations 210 B
D Documentation 20 -
E Oral exposition 10 C

T Total 490 -

Table 1: Summary of tasks.

This concludes the overview of the initial planing of the tasks. But as the project
developed, some minor changes affected the temporal planning of the project.

2.3 Timetable deviations

Concerning the deviations that have affected the timetable of this project, they
only amount to minor expected changes. The project ended up being awarded the
01/07/2022 date to perform the presentation. This added an extra 4 days to the
project that were not accounted for. They were spent refining the quality of the
project overall, and are just an extension of task C6.

2.4 Resources

Although very few, some resources have been needed to carry out the project. They
are classified in the following groups.

2.4.1 Human resources

The main resource of the project, it constituted most of the (fictitious) expenses.
Both the director and author of the project are fundamental to the development.

15

Other human resources include a lot of roles, most of them auxiliary or secondary
actors like teachers, friends and support & other professionals at the university
(PDI/PAS). Although they are (appropriately) not included into the monetary bud-
get, they are an invaluable resource that is mostly free at the point of use.

2.4.2 Intellectual resources

Because the intellectual resource, the PhD thesis, on which this project is based is
open access, no cost will be accounted by direct use of intellectual rights. But lots
of the auxiliary research material used in the design of the algorithm is not free. All
this non-free material that has been accessed has been free at point of use. This is
because most have been books and intellectual material, accessible to me through
the different institutions of the UPC. They will be included as costs, but heavily
amortized.

2.4.3 Software

Other resources have been the software used. This includes free office suites like
Overleaf for LATEXcompilation. And supporting latex software like Ipe, used in for
the creation of images. And finally, but not less important, the UPC suit of software,
from its webmail, to Atenea or Raco. These costs will not be included, as they are
free in relation to the scope of the project.

2.4.4 Hardware

Finally, hardware resources have been the less consumed in this project. Only basic
office material consisting of:

• pens

• pencils

• erasers

• official UPC paper

• official UPC folder

2.4.5 Infrastructure

Infrastructures used include UPC facilities for the digital access to Overleaf and all
the software resources mentioned above. No personal computer was used in this
project, instead using the ones belonging to the UPC facilities. These facilities only
include the ones freely accessible to the students. All the above-mentioned material
is also at the disposal of students free of charge by the UPC.

2.5 Gantt

16

7
10

17
24

31
7

14
21

28
7

14
21

28
4

11
18

25
2

9
16

23
30

Ja
n

'2
2

Fe
b

'2
2

M
ar

 '2
2

Ap
r

'2
2

M
ay

 '2
2

TF
G

 P
ro

je
ct

 P
la

ni
ng

Sc
op

e
of

 th
e

pr
oj

ec
t

Ti
m

e
pl

an
ni

ng

Ec

ol
og

ic
al

 b
ud

ge
t r

ep
or

t

Fi

na
l d

oc
um

en
t

En
d

of
 p

ro
je

ct
 m

an
ag

em
en

t

 S
tu

dy
 o

f
th

e
so

ur
ce

 m
at

er
ia

l

Fi

rs
t r

ea
di

ng

Co

rr
ec

tn
es

s
of

 th
e

or
ig

in
al

 a
lg

or
ith

m

Se

co
nd

 re
ad

in
g

In
ve

st
ig

at
io

n
in

to
 th

e
du

al
 a

lg
or

ith
m

Re
ad

in
g

au
xi

lia
ry

 m
at

er
ia

l

Fi

sr
st

 s
es

si
on

 w
ith

 d
ire

ct
or

In
iti

al
 s

ur
ve

y
of

 th
e

pr
oj

ec
t s

co
pe

 D
em

on
st

ra
ti

on
s

In
iti

al
 d

ra
ft

Co
rr

ec
tn

es
s

of
 e

xt
en

de
d

al
go

rit
hm

Se
co

nd
 d

ra
ft

Se
co

nd
 s

es
si

on
 w

ith
 d

ire
ct

or

Ex

pl
an

ar
ot

y
m

at
er

ia
l

D
ef

in
iti

ve
 d

oc
um

en
t

D
el

iv
er

y
of

 th
e

pr
oj

ec
t

Re
al

 d
ea

dl
in

e

 D
oc

um
en

ta
ti

on

D

oc
um

en
ta

tio
n

 O
ra

l e
xp

os
it

io
n

O
ra

l e
xp

os
iti

on

TF
G P

ro
je

ct
 P

la
ni

ng
Sc

op
e

of
 th

e
pr

oj
ec

t :
: J

un
io

r R
es

ea
rc

he
r

Ti
m

e
pl

an
ni

ng
 ::

 Ju
ni

or
 R

es
ea

rc
he

r
Ec

ol
og

ic
al

 b
ud

ge
t r

ep
or

t :
: J

un
io

r R
es

ea
rc

he
r

Fi
na

l d
oc

um
en

t :
: J

un
io

r
Re

se
ar

ch
er

En
d

of
 p

ro
je

ct
 m

an
ag

em
en

t :
: J

un
io

r R
es

ea
rc

he
r,

Pr
oj

ec
t M

an
ag

er

St
ud

y
of

 t
he

 s
ou

rc
e

m
at

er
ia

l
Fi

rs
t r

ea
di

ng
 ::

 Ju
ni

or
 R

es
ea

rc
he

r
Co

rr
ec

tn
es

s
of

 th
e

or
ig

in
al

 a
lg

or
ith

m
 ::

 Ju
ni

or
 R

es
ea

rc
he

r
Se

co
nd

 re
ad

in
g

::
Ju

ni
or

 R
es

ea
rc

he
r

In
ve

st
ig

at
io

n
in

to
 th

e
du

al
 a

lg
or

ith
m

 ::
 Ju

ni
or

 R
es

ea
rc

he
r

Re
ad

in
g

au
xi

lia
ry

 m
at

er
ia

l :
: J

un
io

r R
es

ea
rc

he
r

Fi
sr

st
 s

es
si

on
 w

ith
 d

ire
ct

or
 ::

 Ju
ni

or
 R

es
ea

rc
he

r,
Pr

oj
ec

t M
an

ag
er

In
iti

al
 s

ur
ve

y
of

 th
e

pr
oj

ec
t s

co
pe

 ::
 Ju

ni
or

 R
es

ea
rc

he
r,

Pr
oj

ec
t M

an
ag

er

D
em

on
st

ra
ti

on
s

In
iti

al
 d

ra
ft

 ::
 Ju

ni
or

 R
es

ea
rc

he
r

Co
rr

ec
tn

es
s

of
 e

xt
en

de
d

al
go

rit
hm

 ::
 Ju

ni
or

 R
es

ea
rc

he
r

Se
co

nd
 d

ra
ft

 ::
 Ju

ni
or

 R
es

ea
rc

he
r

Se
co

nd
 s

es
si

on
 w

ith
 d

ire
ct

or
 ::

 Ju
ni

or
 R

es
ea

rc
he

r,
Pr

oj
ec

t M
an

ag
er

Ex
pl

an
ar

ot
y

m
at

er
ia

l :
: J

un
io

r R
es

ea
rc

he
r

D
ef

in
iti

ve
 d

oc
um

en
t :

: J
un

io
r

Re
se

ar
ch

er
D

el
iv

er
y

of
 th

e
pr

oj
ec

t :
: J

un
io

r
Re

se
ar

ch
er

, P
ro

je
ct

 M
an

ag
er

Re
al

 d
ea

dl
in

e
::

Ju
ni

or
 R

es
ea

rc
he

r,
Pr

oj
ec

t M
an

ag
er

D
oc

um
en

ta
ti

on
D

oc
um

en
ta

tio
n

::
Ju

ni
or

 R
es

ea
rc

he
r

O
ra

l e
xp

os
it

io
n

O
ra

l e
xp

os
iti

on
 ::

 Ju
ni

or
 R

es
ea

rc
he

r

P
ow

er
ed

 b
y

T
C

P
D

F
 (

w
w

w
.tc

pd
f.o

rg
)

Figure 1:
Gannt.

2.6 Risk management

As already mentioned, there have been potential risks threatening the completion
of this project. A detailed analysis of these is presented below.

2.6.1 Inconclusive results

Impact : Low
Counter-measures :
This has been already partially mitigated by the measures explained in previous
chapters, namely performing an intuitive exploration of what demonstrations could
yield interesting results. This mitigation measures were effectuated as part of the
first meeting task and the first draft task. As the project advanced and fewer
demonstrations remained to be proved, the space for critical failure of the project
decreased. Fortunately, this risk was totally mitigated

2.6.2 Incompatible evaluation

Impact : High
Counter-measures :
The only possible mitigation was to consult with the GEP director about the eval-
uation rubric for the First Event, and reformat adequately the documentation. But
as mentioned, the research format of the project was proving very difficult to comply
with the rubrics. This risk is unassailable and will continue to exist until the final
grade of the project is awarded.

2.6.3 Deadline

Impact : Low
Counter-measures :
Mitigation measures consisted in overestimating the hardness of the tasks. A second
measure has been proposing follow-up work, and the creation of support material for
the presentation, like animations of the algorithm. Animations and similar content
can easily take an undetermined amount of time that in case the project finishes
early. A secondary alternate objective also discussed, is the coding of the algorithm
for demonstration purposes, although this has been considered very undesirable in
comparison to the previous extra work, it ended up being the best option.

2.6.4 Inexperience

Impact : Medium
Counter-measures :
This risk was to be expected, and is part of the learning process. It is important
to work on gaining experience, but as the first project of this kind, no mitigation
measures could have been proposed beyond more supervision by the director. But
too much supervision is also not a good measure, threatening to stifle the learning
process.

18

3 Budget

This section describes the elements of the expected budget, including staff costs,
generic costs & indirect costs. The control measures enacted, and unexpected ex-
penses are listed at the end.

3.1 Staff costs

The salaries are defined as cost per hour multiplied by the number of hours dedicated
to tasks. The roles needed for the project are:
Project Manager(P.M.): Carlos Seara & Paola Lorenza.
Junior Researcher(J.R.): Nicolau Oliver.
The tasks of the Project Manager are to supervise the progress and soundness of
the results generated by the Junior Researcher. Both roles assist in the meeting and
review tasks, but only the Junior Researcher participates in all the other tasks.

The salaries have been calculated and rounded with a SS of 130%. The annual
salaries have been extracted from the web Glassdoor [3, 4]. A slightly lower salary
than the median is due to the inexperience of the Junior Researcher, and the low
stakes of the Project Manager. The average hours per year used has been 1850.

Role Annual Salary(e) Including SS(e) Cost(e)/h
P.M. 35570 [4] 46250 25
J.R. 21350 [3] 27750 15

Table 2: Hourly cost of each Role.

The P.M. must assist to both sessions with the J.R., meaning that for group B
and C of tasks he is awarded 35h of work, a little less than the J.R. And he is also
responsible for group A of tasks that total another 40h. The Junior Researcher must
perform all tasks except the group A tasks. See Table 3 for a complete breakdown
of the working hours.

3.2 Generic costs

Three basic sections of resources are described in the budget. Intellectual material
provided by the UPC, the office material also provided by the UPC, and the use
made of the UPC facilities.

3.2.1 Intellectual material

Several textbooks about computational geometry have been used as study material
to design the algorithm. Because no particular data is available on these book’s
half-life at the BRGF (Biblioteca Rector Gabriel Ferraté), an average of 30 years
of useful life-span for the books is assumed. This is because the books consulted
belong to a very low circulation category. For simplicity, assume that the use made
of them was of 4 weeks for all of them. See Table 4.

Amortization = Capital expenditure× 1

life expectancy
× 1

days per year
× days used

19

ID Task h P.M. J.R. Cost(e)
A Project Planning 40 40 0 1000
A1 Scope of the project 10 10 0 250
A2 Time planning 10 10 0 250
A3 Ecological budget report 10 10 0 250
A4 Final document 10 10 0 250
B Study of the source material 210 35 210 4025
B1 First reading of the PhD 30 0 30 450
B2 Correctness of the original algorithm 45 0 45 675
B3 Second read of the PhD 30 0 30 450
B4 Investigation into the dual algorithm 35 0 35 525
B5 Further reading of auxiliary material 30 0 30 450
B6 First session with the project director 40 35 40 1475
C Demonstrations 210 35 210 4025
C1 Initial draft of proofs 35 0 35 525
C2 Correctness of the extended algorithm 35 0 35 525
C3 Second draft of proofs 35 0 35 525
C4 Second session with the project director 35 35 35 1400
C5 Explanatory material 35 0 35 525
C6 Definitive document 35 0 35 525
D Documentation 20 0 20 300
E Oral exposition 10 0 10 150

T Total 490 110h 450h 9500e

Table 3: Estimated hours per task.

Books C (e) L (years) A (e)
Computational Geometry (Springer) 51.99 30 0.14
Computational Geometry: An introduction 75.10 30 0.20
Introduction to Algorithms 66.86 30 0.18

Total 0.52e

Table 4: Amortization of books.
C=Cost, L= Life expectancy, A= Amortization.

3.2.2 Office material

The office material was entirely provided for free by the UPC, but it will be included
as consumables for this project.

20

Item Cost(e)/unit Units Cost(e)
Paper 0.04 200 8
Pen 0.29 2 0.58
Pencil 0.39 2 0.78
Rubber 0.34 2 0.68

Total 10.04 e

Table 5: Expenses in consumables.

3.2.3 Facilities & Indirect costs

In order to approximate better the budget of the project, we will include some
costs indirectly externalized to the UPC facilities. The BRGF is used as the main
building, although the meetings took place in Carlos office, at the Omega building.
The most recent and available official report of 2020, states that the final figure
allocated to running costs of all the libraries under the UPC is of, 118500e [1].
The total amount of potential users is 52.726 [1]. Because the use made of internet
resources might be much more than the average, the average cost per user per year
will be multiplied by 10. This will yield the share of the library budged consumed
in the year 2020 due to the project’s use of the facilities.

118500 euro/year× 1

52726 users
× 10 = 22.48 euro

This again shows how making use of shared, semi-public, community resources
can greatly reduce the running costs of a project.

Other indirect costs like travel costs have not been included, as they are ac-
counted as expenses externalized on the employees. So, they are paid indirectly
though the salary of both roles.

3.2.4 Summary

Because no service or commodity is produced in the project, no tax needs to be
applied as sale tax. All the costs included have been calculated after tax.

Description Cost(e)
Books Amortization 0.52
Consumables 10.04
Facilities Amortization 22.48

Total 33.04

Table 6: CG summary.

Because of the high amount of risk present in the project, it is necessary to do a
provision of some extra costs that might appear during the project.

Incidental costs
The impact of most of the risks assessed translate into an increase of hours

needed to complete the project. To account for this, an emergency budged sized at

21

15% of the original PCA cost is included. This will be allocated in case that extra
hours are needed to finish the project.

The general costs of the project are very amortized, so it is not expected that
unforeseen expenses will appear. But due to the increasing energy prices that are
having a severe impact across all infrastructure, an extra 40% of CG costs will be
included as contingency.

Final budget
Finally, aggregating all the previous sections:

Activity Cost(e)
PCA 9500
Contingency 1425
CG 33.04
Contingency 13.22

Total 10971.07e

Table 7: Total cost summary.

3.3 Management Control

Following the motorization of changes on the costs of the project, several indicators
are computed.

• Estimated cost by task: the estimation provided above.

• Real cost by task: the real amount of time spend per task. This was to be
used to recalculate the cost of staff. Also monitoring the specific kind of task
that generated the deviation, forecasting future deviations of similar tasks.

• Deviation: the dynamic deviation as the project advances, monitoring the
impact of the risks as it manifests as expenses, or lack of expenses.

The deviation is the one used to review the management of the project. As all
the expenses incorporated into the budged have never materialized, no deviation
has been detected.

In summary, the project hasn’t had any deviations with respect to the
budged presented above.

4 Sustainability report

This section consists of two subsections. One pertinent to my assessment on the
value of generating the sustainability report. A second one reviewing the sustain-
ability of the execution of the project.

22

4.1 Self assessment

It’s easier to imagine the end of the world, than a modest but irreversible reform
to the fundamentals of our extractive based economies. Sustainability and ecology
concern our present, and the apparent impossibility to change it. The impossibility
of the continuation of our current understanding of things. The impossibility of our
current way of living, remarkable as it is that we have achieved such an apparent
impossibility.

This might inspire lots of fear, anguish and horror. Mental illness, fruit of the
“slow cancellation of the future”. Because it is easier to imagine that the utopian
film of “our future” has been cancelled, than to imagine the cancellation of the next
TCU blockbuster.

So it is critical that our reaction, anger, and answers to those fears is appropriate.
With this in mind, assessing the sustainability of my Bachelor Thesis is the perfect
place to start learning how to tackle these environmental responsibilities. And it is
of vital importance to take part in activities like the environmental questioner, to
inspire us, the future generations, with vitality and tools to fight for their (now in
question) future.

The self assessment consisted of several discrete quantitative answers that ab-
stracted and captured in a numerical slider the environmental dimension of my
project. This reflects perfectly the systematic, rigid, and well-organized way
in which the ecological report must be generated and submitted. It is imperative
for the advancement of our common needs, as one of the species on earth, to elabo-
rate with no hesitation these itemized and rubric based environmental evaluations.

Practising these environmental analysis exercises has greatly improved my ability
to perform environmental reports, giving me a guideline to follow step by step and
in an analytical optic.

It has also improved my critical skills as much as they are mentioned.

4.2 Environmental impact

¿Have you quantified the environmental impact of the execution of the
project? ¿What measures have you taken to reduce the impact? ¿Have
you quantified the reduction? The environmental impact of the project has
been absolutely minimal. The only secondary impacts one could argue can even
be attempted to be measured are the footprints of the workers. But no product
or service has been produced that consumes resources in a primary manner. So
no quantifications, reductions, and obviously quantifications of the reductions have
been performed.

If you executed the project again, ¿Could you perform it with less
resources? No, all resources were strictly necessary.

¿What resources do you estimate the project will use over its life
span? ¿What will be the environmental impact of these resources? It
could be argued that, in the unlikely case that this bachelor thesis is stored in a
digital archive, the lifetime impact would be the one produced by this storage. Even
with this in consideration, no meaningful resources will be used, so the impact is
null.

23

¿Will this project allow reducing the consumption of other resources?
¿In a global assessment, does the project improve or deteriorate the en-
vironmental footprint? No impact on resource consumption is expected. If the
algorithms were to be implemented, they would be more efficient. But as there is no
current implementation as far as I know, there is no improvement to be done. In any
case, implementation is totally outside the scope of the project, and it shouldn’t be
accounted. So it neither helps nor aggravates the current footprint of any relevant
processes.

¿What scenarios could increase the ecological footprint of the project?
None specific to this project.

4.3 Economic impact

¿Have you quantified the cost of executing the project? ¿What decisions
have you taken to reduce the cost? ¿Have you quantified the reduction?
This first two questions are specifically answered in Section 3. No quantification
on the reduction has been performed, as none of the expenses has materialized, as
exposed in the pertinent section.

¿Has the cost been the same as expected? ¿Are the deviations justi-
fied? This is also specifically answered in Section 3. No deviations have happened.

¿What cost will the project generate over its lifespan? ¿Could these
be reduced to increase viability? None that are relevant to the scope of the
project. No reductions are possible.

¿Have the cost of updates/repairs been included? Fortunately, the cost
of “updating/repairing” ideas is still quantified by the effort invested in thinking,
not an economic indicator.

¿What scenarios could alter the economic viability of the project?
None specific to this project.

4.4 Social impact

¿Has the execution of the project included introspection at a personal,
professional, or ethical level for the people implicated? Yes, on all three
levels for all the people implicated.

¿Who benefits from the use of the project? ¿Is there a collective that
could be affected by the project? ¿In what capacity?This is discussed in
Section 1.3.1.

¿Does the project solve the problem initially identified? To the fullest
capacity it can.

¿What scenarios could entail a negative social impact for the project
with respect to a specific collective? None specific to this project.

¿Could the project generate addictions or over-reliance on the users
that could leave them at a disadvantage? Unfortunately, unless a passion-
ate addiction predisposition for geometry is present, most users are safe from this
project.

24

5 The original algorithms

In Chapter 5 of the PhD thesis [11], the geometric separability problem using several
strips is discussed, amongst other versions of the problem. Our focus will be in
Sections 5.1 and 5.2 (pp. 150–165), where the algorithm is introduced and described.
The following summary of the original text is meant to serve as a rephrasing, it is
recommended to follow the source material for a better more accurate explanation.

5.1 Notation & preliminaries

Let B and R be two finite disjoint sets of n points in R2, namely B the blue points
and R red ones. Let the convex hulls be noted as CH(B) and CH(R) respectively.
As R and B are the inputs to our algorithms |R| = |B| = n. The solutions that
the algorithms report are a list of angle intervals in the range [0, π], representing
(angles) orientations that are separable2. Finally, the variable k ∈ N is the number
of separators (parallel lines) used to separate R and B.

Before constructing the algorithm for separability with k = 4 (using 4 parallel
lines), a simple algorithm for solving the k = 3 problems in O(n log n) time and O(n)
space is described. This in turn also needs of describing and executing a simpler
algorithm for k = 2 with the same time and space complexity. This is because
before attempting to find separability using more lines, it simplifies the algorithm
to somehow discard orientations that are separable using fewer lines, as those will
obviously be separable using more lines.

For all k, separability will place separators between subsets of R and B, ’/’ will
notate those parallel lines. When referring to a red/blue/red/ . . . the notation for
the subsets will be R1/B1/R2/B2/ . . . And the separators will also be named in this
order, being s1 the first parallel line from left to right, followed by the rest of the
separators s2, s3 . . .

Some basic equations over the subsets are:

− They are disjoint. A point can only belong to one of them at any given time
(i.e., orientation).

∀i ∀j, i ̸= j, Ri ∩Rj = ∅ ∀i ∀j, i ̸= j, Bi ∩Bj = ∅. (1)

− The union of all red subsets equals R, and the union of the blue subsets equals
B, i.e.,

⌈ k+1
2

⌉⋃
i=1

Ri = R

⌊ k+1
2

⌋⋃
i=1

Bi = B. (2)

2The angle intervals can also be given in [0, 2π]. If the usual range [0, π] is used, it implies that
the [π, 2π] orientations have the same separability as their equivalent in [0, π].

25

Now focusing on consolidating the red/blue/red/ . . . the notation, we show how
it simplifies the separability problem.

Assuming a minimal k, for any direction d ∈ S1 only two possible orderings of
the subsets are possible; red/blue/red/ . . . the first subset from left to right is red,
or blue/red/blue/ . . . the first subset is blue.

By a strip we denote the region in the plane between two parallel lines or the
(infinite) half-plane defined by a line. We can use either strips or lines to define
monochromatic regions in the plane, i.e., the separability by k lines or k-line sepa-
rability corresponds to the separability by (k+1) strips or (k+1)-strip separability

Lemma 1. The k-line separability (or the (k + 1)-strip separability) has the same
asymptotic computational time complexity for the red/blue/red/ . . . separability as
for the blue/red/blue/ . . . separability.

Proof. If an algorithm A computes the red/blue/red/ . . . separability for a given R
and B with time complexity O(τ), then by renaming and swapping R and B, it can
also compute in O(τ) the blue/red/blue/ . . . separability. Merging the two results
using the union of angle intervals, it yields the separability of the sets R and B
independent of the order of the subsets.

The cost incurred has been: executing the algorithm twice, renaming the inputs
(linear time) and merging the angle intervals. Because the angle lists are sorted,
they can be merged in linear time. So the total cost is O(τ +n), and assuming that
the algorithm has τ ≥ n, this reduces to O(τ) time.

With this reduction in mind, only the red/blue/red/ . . . separability will be
considered, as to simplify the problem.

A very useful technique will be the use of rotating calipers. As the caliper lines
will often be used as separators, it is convenient to address the caliper by the convex
polygon or a convex hull (of a set of points) it rotates over, or the separators it
constitutes. In this last case, notation such as si − sj is used.

Another recurring use of the calipers is the orientations in which a red point is
inside a caliper, so some notation is needed. All calipers used will rotate over convex
polygons clockwise from 0 radians to π radians3. So, all points outside the polygon
enter and leave the caliper only once4. And all points inside the polygon are always
inside.

After computing the supporting lines from a red point with respect to a convex
polygon (or the convex hull of a set of points), the slope of those lines indicates an
interval of directions for the caliper such that the red point lays inside it. When a
red point is inside the caliper, it will be said to be “alive”, entering being its “birth”
and leaving its “death”. One of the supporting lines corresponds to the birth, the
other to its death. See Figure 2.

The slopes of these supporting lines are calculated with respect to the horizontal,
also clockwise. As if following the orientations of the caliper.

3The rotation can also be over [0, 2π] respectively.
4Or twice in a [0, 2π] turn, in summary a constant number.

26

This means that if the angle of a slope was bigger or smaller than the [0, π]
interval, it can be transposed it back into it. We can capture this with the following
equation:

∀j ∈ Z, ∀α ∈ [0, π] α ≡ α + 180j (3)

Defining these slopes is important, as we will use these angles to compare support
lines. Further clarification is done in following sections, specially if when using the
[0, 2π] interval instead of the usual one.

5.2 Single strip separability, k = 2

The Lemma 1 applied to the specific case of k = 2 yields a red/blue/red separation.
Using, Equation (2) it is clear that because B1 is the only blue subset, it must be
equal to B. With this in mind, the separator lines s1 and s2 must separate the
CH(B) form R1 and R2. In order to do so, the rotating caliper on CH(B) will be
used as s1 and s2. The caliper is formed by two parallel lines tangent to CH(B) (or
parallel supporting lines of CH(B)) with a given direction. These lines are minimal
in width in each direction, because if they were moved slightly closer to the CH(B)
at least a blue point would lay on a red strip.

The following proposition is straightforward.

Proposition 1. The sets R and B are 2-line separable (or 3-strip separable) for a
given a direction d (i.e., k = 2) if and only if they are separable using a strip of
minimum width.

So, by rotating the caliper over CH(B), which corresponds to checking for the
minimum width strip, the algorithm finds all the directions in which the sets are
separable.

While rotating the direction in which to calculate the caliper lines, the tangent
vertex to the CH(B) (or supporting vertex of CH(B)) changes. These pair of
vertexes are known as antipodal vertices of CH(B), and it is a well known result that
there are a linear number (in the number of vertices of CH(B)) of such antipodal
pairs. The article by Toussaint [15] also explains in more detail how the rotating
caliper technique is used to solve this geometric problem.

Expanding the tool of the rotating caliper, the next step is to check if for a given
direction the strip is empty of red points, i.e., the strip is monochromatic. For this,
we use the support lines of the red points as introduced in the Section 5.1. The
lines that are tangent to CH(B) and contains the red point ri are called supporting
lines of ri with respect to CH(B). It is a well known result that computing the
supporting line of a point exterior to CH(B) can be done in O(log n) time [10].

27

CH(B)

Death

Birth

Figure 2: Rotating caliper around CH(B).

Recall, there are two of such lines, a birth one and a death one. See Figure 2.
And each of this line has a slope, α and β respectively, clockwise with respect to the
horizontal. Using Equation (3), we find the equivalent slope angles of these lines
belonging to [0, π]. These angles define an interval [α, β] of directions in which the
point ri lays inside the caliper. But because of the cyclical nature of the directions in
S1 , some red points have β < α. In this case, the interval [α, β] will be a shorthand
of [0, β] ∪ [α, π]. All these intervals will be referred to as the living angle interval
of ri.

As there are n red points in R, the complexity of computing all supporting lines
will be O(n log n) time. From the support lines, the living angle intervals are build,
resulting in all the intervals where there will be a red point in the caliper.

After computing the union of these intervals, the complementary set of the union
of these intervals with respect to [0, π] (also a set of intervals), will indicate the set
of directions such that no point is inside the caliper. If no point is inside the caliper
they will all be either in R1 or R2, so R and B are 2-line separable.

The algorithm exposed has to deal with some extra caveats:

− The first detail hidden in the code is that the order of the supporting lines
obtained at line 9. They must be ordered by slope such that the interval [α, β]
truly represents the interval of directions in which the red point r is inside
the caliper. For simplicity, it is assumed that the function SupportingLines()
uses the same format as the one exposed at the end of Section 5.1. So the
supporting lines are ordered first the birth one as l1, then l2 as the death
supporting line.

− A second detail omitted has been how to compute the union of intervals at
line 10. Supposing that the variable intervals maintains an ordered list of the
intervals already merged, this is trivial. More sophisticated data structures
for intervals can be considered, like segment trees, but are not necessary for
this algorithm.

28

Algorithm 1 Separability red/blue/red, k = 2

Input: R, B
Output: intervals

1: CH(B)← ConvexHull(B)
2: L← { } ▷ Empty list
3: for r ∈ R do
4: if r is inside CH(B) then
5: return ∅
6: else
7: (l1, l2)← SupportingLines(r, CH(B))
8: αr ← slope(l1)
9: βr ← slope(l2)

10: if β < α then
11: L.append([0, βr])
12: L.append([αr, π])
13: else
14: L.append([αr, βr])
15: end if
16: end if
17: end for
18: interval ←

⋃|L|
i=1[αi, βi] ▷ Union of all elements of the list L

19: intervals ← [0, π] \ intervals ▷ Complementary interval
20: return intervals ▷ List of intervals that are 2-line separable

In a more detailed inspection of the code, it follows that the algorithm correctly
separates the sets R and B even in strange edge cases, such as R1 = ∅ and/or
R2 = ∅. The only edge case not covered is B = ∅, that we consider a degenerate
case not worthy of consideration.

As shown previously, the total cost of the algorithm is O(n log n) time. This
concludes the algorithm for k = 2.

5.3 Multiple strip separability

Let’s now consider separability for higher values of k, i.e., k ≥ 3, so using multiple
parallel strips.

5.3.1 k = 3

Let’s increment k to 3 and explain the approach for the odd values of k. In this case
the separation will be red/blue/red/blue, so the subsets are R1/B1/R2/B2, and the
separators s1, s2 and s3 by virtue of Lemma 1.

The first change is to notice that our first and last subsets are now of different
colour (R1, B2). Recall that it does not matter the colour we assume the left-most
set to be, in this case red. By virtue of Lemma 1, we will check the case with
blue/red/blue/red separability by re-executing the algorithm with swapped colours.

29

The caliper now used to define s1 and s3 will rotate over CH(R) and CH(B),
instead of just CH(B). Thus, s1 must separate R1 to its left and B1 to its right, so
it must be rotating over CH(B).

Similarly, s3 must be rotating over CH(R). This rotation over different polygons
is also described in more detail in the article by Toussaint [15]. See Figure 3.

s1 s3
s2

R1 B1

R2 B2

Figure 3: Rotating calipers around CH(R) and CH(B).

This difference has implications over what ranges must be considered for the
rotation. Before, the caliper was confined to the range [0, π], because the other
half of the complete rotation was a symmetric repetition of the first. As this is no
longer the case, a complete range [0, 2π] for the directions must be traversed. This
means that now the solution will be a list of intervals, all belonging to [0, 2π]. The
direction of the supporting lines will also be considered from [0, 2π], so we don’t
apply the Equation (3) for this algorithm. Instead, the angles of a supporting line
will again be the angle defined by the horizontal clockwise, but now allowing the
full range.

The first step of are now defined also the algorithm is to include as solution all
directions that are separable using only 2 lines (k = 2) executing Algorithm 1. This
simplifies the cases to be treated, as now only consider orientations that need at
least 3 lines to be separated. Because the strategy of calling the algorithm for k− 1
will be used again, some considerations are worth explaining. The strategy used to
merge the solutions of Algorithm 1 with Algorithm 2 has been to perform the union
of the two outputs. Because the Algorithm 1 is guaranteed to find all directions that
are separable using k ≤ 2, the only directions that are left to be found are the ones
separable by exactly 3 lines. When searching for those, the algorithm is allowed to
mislabel the orientations separable by less than 3 lines as non-separable. It does not
matter, as any mistakes will be “overwritten” when the union with the Algorithm 1
output is performed.

Now that we have this strategy in place, a new property is introduced to simplify
the algorithm. The following proposition states that some separators are “worth-
less”. A separator is referred to as worthless, precisely if in a direction d it can
be removed and R and B remain separable. If some separator is worthless when
attempting to k-separate R and B in the direction d, it means that R and B are
at least (k − 1)-separable. And as just shown, those directions can be ignored and
assumed to not exist, as the algorithm isn’t required to be correct in those directions.

30

Proposition 2. In attempting to separate R and B in a direction d using k lines,
we can have the following cases:

1. If k is odd then:

If R1 = ∅, s1 is worthless.

If B k+1
2

= ∅, sk is worthless.

2. If k is even:

If R1 = ∅, s1 is worthless.

If R k+2
2

= ∅, sk is worthless.

3. If any si is worthless, R and B are (k − 1)-separable at direction d.

Where sk is the right-most separator, and B k+1
2

is the rightmost blue subset. The

same for the R k+2
2

subset.

Here we show a very graphical example of Proposition 2: One can clearly observe
that CH(R) contains CH(B), so if we are attempting to find orientations with
red/blue/red/blue separation, we shall never succeed, or B2 must be empty. See
Figure 4. If B2 is empty then s3 is worthless, and what was really found is a k = 2
separation, not really an interesting k = 3 separation. This is why we don’t bother
with orientations detected as k = 2 separable, and reduce the case analysis.

s1 s2

Figure 4: CH(R) containing CH(B).

Use the caliper described above as s1 and s3, again, computing the “alive” inter-
vals of the relevant points. This time, there are red and blue points inside the caliper
s1 − s3. What is needed is a way of partitioning the red (blue) points that belong
to R1 (and B1 respectively) from the ones in R2 (B2). Recall that by Equation (1)
they are disjoint, so if one of the two subsets is known, the other is immediately
follows. In this case, being “alive” for a red point will mean belonging to R2, and
for a blue point belonging to B1. “Dead” meaning they belong to the other subsets,
the ones outside the caliper. See Figure 3.

31

This again can be computed by obtaining the angle of the supporting lines. As
expected, the supporting lines from the blue points are calculated with respect of
CH(R), vice versa for the red points as in the Algorithm 1. Again, obtain a “birth”
and “death” events associated to a supporting line as the caliper rotates clockwise.
Sorting all these events by the angle they happen, yields a “chronology” of a linear
number of insertions or births and deletions or deaths of red and blue points into
R2 and B1. The insertions and deletions, referred to as events, use the notation ei.
The list of these events is denoted as E.

This list E defines the insertions and deletions of the points into the sets R1

and B2. A deletion from one of the previous two sets, corresponds with an insertion
into the corresponding sets (R2, B1), another result stemming from Equation (1)
and Equation (2). This sequence of insertions is the Ccso (Counterclockwise Sweeping
Order) list in the original thesis by Carlos, the only substantial difference being the
clockwise order.

From this list of insertion/deletion events, using the results from Brodal and
Jacob [2, 5] the planar dynamic convex hull of all subsets can be maintained. The
dynamic convex hull of a set X is the several convex hulls CH(X) of the points as
the insertions/deletions are applied sequentially in the given order. The notation
used for the dynamic convex hull of a set X will be DCH(X).

Recall, an event is a “birth” or “death” with an angle associated to it. Given
two consecutive events ei and ei+1 that correspond to a certain angle α and β, the
dynamic convex hulls don’t change in the range of directions [α, β]. The state of the
dynamic convex hulls are denoted by DCH(B1)[ei,ei+1] and DCH(R2)[ei,ei+1].

The interesting result of Brodal and Jacob [2, 5] is that this dynamic convex
hull can be computed in O(n log n) time: the initial convex hull is computed in
O(n log n), and updating it is performed in optimal O(log n) time. This optimal
updating complexity is crucial to remain in the target O(n log n) time. As the event
list has order O(n) elements, so computing the convex hull after each event would
result in O(n2 log n) complexity.

Maintaining the CH(B1) and CH(R2) using this dynamic convex hull will imme-
diately allow solving the problem. The only separator left to place is s2, that must
separate DCH(B1)[ei,ei+1] and DCH(R2)[ei,ei+1] for any i. Compute the directions
in which the two dynamic convex hulls are separable. To obtain this, compute the
supporting lines between the two convex hull in O(log n) time, yielding an interval
of directions in which it is possible to separate them [9].

Because the DCH(B1)[ei,ei+1] and DCH(R2)[ei,ei+1] are guaranteed to exist only
in the interval of directions [α, β], we must intersect the interval of all directions that
DCH(B1)[ei,ei+1] andDCH(R2)[ei,ei+1] are separable with [α, β]. It could happen that
DCH(B1)[ei,ei+1] and DCH(R2)[ei,ei+1] were not separable in any direction, correctly
meaning that the intersection with [α, β] would be null.

For each consecutive pair of events, it has yielded an interval in which B1 and R2

are separable. Because of how the separators s1 and s3 are defined by the caliper,
it is guaranteed that R1 and B1 are separated. The same is true for R2 and B2.
So the union of the separability interval of B1 and R2 for each pair of consecutive
events yields the solution.

32

The following is a pseudocode implementation of the code for k = 3.

Algorithm 2 Separability red/blue/red/blue k = 3

Input: R, B
Output: intervals

1: CH(R)← ConvexHull(R)
2: CH(B)← ConvexHull(B)
3: events← [] ▷ Creation of the event list
4: for r ∈ R do
5: (l1, l2)← SupportingLines(r, CH(B))
6: α← slope(l1)
7: event← {angle : α, point : r, type : birth}
8: events.append(event)
9: β ← slope(l2)

10: event← {angle : β, point : r, type : death}
11: events.append(event)
12: end for
13: for b ∈ B do
14: (l1, l2)← SupportingLines(b, CH(R))
15: α← slope(l1)
16: event← {angle : α, point : b, type : birth}
17: events.append(event)
18: β ← slope(l2)
19: event← {angle : β, point : b, type : death}
20: events.append(event)
21: end for
22: d← 0 ▷ The initial direction is arbitrary
23: events← SortByAngle(events, d) ▷ Sorting from initial direction
24: (rleft, rright)← ExtremalPoints(CH(R), d)
25: (bleft, bright)← ExtremalPoints(CH(B), d)
26: s1 ← LineFromPointSlope(bleft, d) ▷ Initial s1 & s3
27: s3 ← LineFromPointSlope(rright, d) ▷ Used to initialize R1 & B2

28: R1 ← {r ∈ R | r is to the left of s1} ▷ Initalization of all subsets
29: R2 ← R \R1

30: B2 ← {b ∈ B | b is to the right of s3}
31: B1 ← B \B2

32: DCH(R1)← DynamicConvexHull(R1)
33: DCH(B1)← DynamicConvexHull(B1)
34: DCH(R2)← DynamicConvexHull(R2)
35: DCH(B2)← DynamicConvexHull(B2)

33

36: intervals← ∅
37: presentEvent← events[0]
38: for i = 1 to events.size() do
39: nextEvent← events[i]
40: if presentEvent.point ∈ R then ▷ Update dynamic convex hull
41: (DCH(R1)[ei,ei+1], DCH(R2)[ei,ei+1])← UpdateDCH(presentEvent)
42: else if presentEvent.point ∈ B then
43: (DCH(B1)[ei,ei+1], DCH(B2)[ei,ei+1])← UpdateDCH(presentEvent)
44: end if ▷ Births add it to B2 and remove it from B1, viceversa for death
45: (l1, l2)← SupportingLines(DCH(B1), DCH(R2))
46: α← slope(l1)
47: β ← slope(l2) ▷ Separability angle interval
48: Λ← presentEvent.angle
49: Ω← nextEvent.angle ▷ Consecutive events angle interval
50: intervals← intervals ∪ ([Λ,Ω] ∩ [α, β])
51: presentEvent← nextEvent
52: end for
53: return intervals

5.3.2 k = 4

Finally, we reach the main star of the original work. This is the last algorithm from
the original work left to explain, and the one Section 6 builds upon. The approach
will be similar to the one used for k = 2 in Section 5.2, as we are again studying
an even value for k, but will incorporate the dynamic convex hulls used for k = 3
in Section 5.3.1.

As it is already customary, before the algorithm starts, it quickly checks what
directions are separable using 3 or fewer lines, by executing Algorithm 2.

Once computed the angle intervals that at least need 4 lines to separate the sets,
the original algorithm starts by constructing a caliper that rotates around CH(B).
This caliper represents the separators s1 and s4. See Figure 5. Again, it computes
the support lines of the red points with respect to the CH(B) and builds the list
of birth and death events in O(n log n) time. The slopes of the support lines here
belong again to the [0, π] interval, using Equation (3).

With this event list, the caliper can be pivoted as it rotates over CH(B), main-
taining the sets R1,R2,R3 with their respective dynamic convex hulls. The difference
with the previous algorithms is that inside the caliper there are two blue sets, B1

and B2, and it must be determined if they are separable from R2 using the two
remaining separators s2 and s3. See Figure 5.

Before proceeding, it must be pointed out that a similar argument to Proposi-
tion 2 justifies the 2 separators already used. If either of the lines of the caliper over
CH(B), say s1 and s4, was not necessary to separate the sets in a given direction,
then it would mean that one of the blue points that was supporting the caliper has
no red points on the outer side of the caliper in that direction.

34

s1 s2 s3 s4

R1 B1 R2 B2
R3

Figure 5: General separability by 4 lines.

This would render the separator indeed unnecessary, but it would mean that in
this orientation you wouldn’t have a red/blue/red/blue/red separation. You would
need less than 4 lines. But this is a contradiction with the first step of the algorithm,
that guarantees that at least 4 are needed, for the directions we are considering.

So far, we have just restated some steps used in previous algorithms, and the
cost of all previous steps has already been discussed. To proceed with the separation
of the blue points into B1 and B2, a very important lemma is used.

Lemma 2. The caliper over CH(B) is never empty of red points.

Proof. By Proposition 2, R1 and R3 are never empty. By a similar demonstration
R2 is also never empty.

If for a given orientation R2 was empty, one could separate the sets using only
two lines to separate R1 from B1, and B2 from R3. This could be notated as
R1/B1 ∪B2/R3, where B1 ∪B2 = B, meaning that less than 4 separators would be
needed. Again, a contradiction with the first step of the algorithm.

This guarantees that there is always some point in R2 for any considered direc-
tion. Here the algorithm takes further advantage of the points inside the CH(B),
that by definition must always be inside the caliper and belong to R2 for all direc-
tions. Pick one of them to be the guard with nomenclature g = r ∈ R such that r
lays inside CH(B). It must be that the separators s2 and s3 at least separate this
point g from B1 and B2 for any direction.

In a more general way: given an orientation d and a point in R2 for that orien-
tation, a line with that slope d (same orientation as the caliper separators) passing
through the red point must classify the blue points. The ones left of this line will
belong to B1, the rest to B2. This line can be understood as applying a k = 1
separability algorithm to the blue points with respect to the “guard”. Or it can also
be meant as an arbitrarily thin caliper rotating over the red point. The slopes of
the lines here belong again to the [0, π] interval, using Equation (3).

35

Because g is inside CH(B), the classification is always possible if done with
respect to g. See Figure 6.

R1 B1 B2
R3

s1 s4

g

Figure 6: Separability by 4 lines with a guard.

The blue points will change from belonging to B1 or B2, as they change from
laying to the left or right of the (oriented) line that goes through g with the same
direction as the caliper. These will be referred to as jump events, with their associ-
ated angle given by the slope of the line. This slope is again inside the [0, π] interval,
using Equation (3).

Because the caliper s1 − s4 is always clockwise rotating around and supporting
CH(B) then, the (guard) red point g will be always inside the rotating caliper.

To compute the list of jump events, calculate the angle of the line that goes
through the red guard and each blue point. After computing all the angles, sort
them. Computing the lines, their angles and then sorting them takes O(n log n)
time, yielding a list with O(n) angles. See Figure 7. This list is referred to as the
bi-partition list of a “guard” with respect to the points of opposite colour. Or its
list of jump events.

R1 B1 B2 R3g

Figure 7: The guard g inside CH(B) given the bipartition of the point set B.

36

Given this list, it is possible to perform the following query: Given an orientation
d, what blue points lay to the right half plane that has orientation d and goes through
g? This bi-partitions the set of blue points in B1 and B2. The computation of this
query is linear the first time performed, but as the algorithm increases d by traversing
from one event to the next, calculating the next B1 and B2 will be a constant time
update.

Merging the events of the bi-partition list, with the birth and death events calcu-
lated previously, we can keep track of all the subsets R1/B1/R2/B2/R3 as we rotate
the caliper. The birth and death events tell us when a red point enters R2 (the
caliper) or when it exits, and to what subset (R1 or R3). And the jump events tell
us if a point belongs to B1 or B2. See Figure 7.

Once the subsets can be updated dynamically as we rotate, again compute the
dynamic convex hull [5].

During an event interval [ei, ei+1] the dynamic convex hulls, DCH, don’t change.
Just as we did for k = 3, we must check the separability of adjacent subsets,
that now are B1 with R2, and R2 with B2. Checking the linear separability be-
tween DCH(R2)[ei,ei+1] and DCH(B1)[ei,ei+1] and the linear separability between
DCH(R2)[ei,ei+1] and DCH(B2)[ei,ei+1] for all consecutive events, will yield the solu-
tion.

Compute the supporting lines between the adjacent pairs of dynamic convex
hulls (B1/R2, R2/B2). The slopes of the supporting lines define an angular interval
where there exists a line that separates the two adjacent convex hulls.

If the hulls overlap, the interval is null. Intersect these intervals with [ei, ei+1].
Repeat for each consecutive pair of events, merge the results by calculating the
union. Just as done in Algorithm 2. See Figure 8.

Θ1 Θ2
Θ3 Θ4

Figure 8: The Angles Θ1, Θ2, Θ3, and Θ4 defined by the interior supporting lines
between consecutive monochromatic subsets.

The complexity of these dynamic convex hulls is again O(n log n) time, and
updating them is O(log n) time. The cost of calculating supporting lines between
them is, also again, O(log n) time. The events here consisted of all births and deaths,
and all jumps of blue points between B1 and B2. This results in a linear number of
events, so there is a linear number of updates to the dynamic convex hulls.

37

Meaning that the cost of updating the dynamic convex hull is O(n log n) in total,
and the total cost of calculating supporting lines between convex hulls is O(n log n)
time.

Algorithm 3 Separability red/blue/red/blue/red, k = 4

Input: R, B (at least one red point is inside CH(B))
Output: intervals

1: CH(R)← ConvexHull(R)
2: CH(B)← ConvexHull(B)
3: events← [] ▷ Creation of the event list
4: for r ∈ R do
5: if r is inside CH(B) then
6: g ← r ▷ The guard is the red point inside CH(B)
7: end if
8: (l1, l2)← SupportingLines(r, CH(B))
9: α← slope(l1)

10: event← {angle : α, point : r, type : birth}
11: events.append(event)
12: β ← slope(l2)
13: event← {angle : β, point : r, type : death}
14: events.append(event)
15: end for
16: for b ∈ B do
17: lr ← lineFrom2Points(b, g)
18: γ ← slope(lr) ▷ Jump event from B1 to B2

19: jumpEvent← {angle : γ, point : b, type : jump}
20: events.append(event)
21: end for
22: d← 0
23: events← SortByAngle(events, d)
24: (rleft, rright)← ExtremalPoints(CH(R), d)
25: s1 ← LineFromPointSlope(bleft, d) ▷ Initial s1 & s4 caliper
26: s4 ← LineFromPointSlope(rright, d)
27: R1 ← {r ∈ R | r is to the left of s1} ▷ Initalization of all subsets
28: R3 ← {r ∈ R | r is to the right of s4}
29: R2 ← R \ (R1 ∪R3)
30: lblue ← LineFromPointSlope(g, d) ▷ Auxiliary line that partitions B1 from B2

31: B1 ← {b ∈ B | b is to the left of lblue}
32: B2 ← B \B1

33: DCH(R1)← DynamicConvexHull(R1)
34: DCH(B1)← DynamicConvexHull(B1)
35: DCH(R2)← DynamicConvexHull(R2)
36: DCH(B2)← DynamicConvexHull(B2)
37: DCH(R3)← DynamicConvexHull(R3)

38

38: intervals← ∅
39: presentEvent← events[0]
40: for i = 1 to events.size() do
41: nextEvent← events[i]
42: if presentEvent.point ∈ R then ▷ Update dynamic convex hull
43: (DCH(R1)[ei,ei+1], DCH(R2)[ei,ei+1], DCH(R3)[ei,ei+1]) ←

UpdateDCH(presentEvent)
44: else if presentEvent.point ∈ B then
45: (DCH(B1)[ei,ei+1], DCH(B2)[ei,ei+1])← UpdateDCH(presentEvent)
46: end if ▷ Jump events move points from one set to the other
47: (l1, l2)← SupportingLines(DCHB1 , DCHR2)
48: α← slope(l1)
49: β ← slope(l2)
50: sepInterv1 ← [α, β] ▷ Interval where B1 is separable from R2

51: (l3, l4)← SupportingLines(DCHR2 , DCHB2)
52: γ ← slope(l3)
53: δ ← slope(l4)
54: sepInterv2 ← [γ, δ] ▷ Interval where R2 is separable from B2

55: Λ← presentEvent.angle
56: Ω← nextEvent.angle ▷ Consecutive events angle interval
57: intervals← intervals ∪ ([Λ,Ω] ∩ sepInterv1 ∩ sepInterv2)
58: presentEvent← nextEvent
59: end for
60: return intervals

As all steps have an aggregated time complexity of O(n log n), that is the final
complexity of the algorithm for k = 4. This concludes the overview of the original
algorithms, and all the original work. All further sections are new contributions.

6 The new algorithm for k = 4

This section expands the original algorithm for k = 4, building on it. Here start
the extensions of the original algorithms. All further sections describe new ideas to
answer the open questions.

In order to solve configurations of points that lack any red point inside the
CH(B), the new algorithm makes use of several red points as guards, instead of
only one. In the original algorithm we had a single guard called g, in this extension
of the algorithm we will have a set of guards G = {g1, g2, . . . , gm}. From now on,
assume that there are no red points (guards) inside CH(B). If there was any, the
configuration can be solved using the old algorithm as part of a pre-processing.

For each gi ∈ G, compute the bi-partition list computed for g in the original
algorithm. This entails computing the slopes of the lines going from each guard to
each blue point. Each list of angles, that recall all belong to [0, π], is then sorted in
O(n log n) time. See Figure 9.

39

gi

Figure 9: The guard gi and the orientations of the blue points of B with respect to
gi, defining a vector of orientations to be sorted later.

Because we need a way of dividing the blue points into the two sets, we need at
least one guard in G at any direction inside the caliper. This was guaranteed before
because the guard was inside the CH(B). As the caliper rotates, every red point is
at least outside the caliper for some direction interval, the complement of its living
angle interval. But it still is true by Lemma 2 that there is at least one red point
inside the caliper for all orientations, so there has to exist the set G, G ⊆ R, such
that for all orientations there is a guard inside the caliper. In other words, G = R
always yields a valid set of guards.

Convert G into the sequence < g1, g2, . . . , gm >. The order in which the guards
are used to bi-partition the blue points, i.e., the order they become alive as the
caliper rotates, is what determines the order of the sequence. If for a direction d
more than one guard is alive (inside the caliper), consider only as “genuinely” alive
the one with the smallest birth angle, that is the first to enter the caliper i.e., the
first to appear in the sequence.

For each orientation, use the alive guard to partition the blue points into B1

and B2, as with the original guard in the old algorithm. And once this guard dies,
another takes its place.

The variable m will denote the cardinality of guards (|G| = m). If the compu-
tational cost was O(n log n) for the original case with only one guard, now it will
be O(m · n log n). This is because we had to compute the bi-partition event list for
each guard. This means that the number of guards must be minimized, and indeed
try to make it into a constant factor. So G = R might be a valid set of guards, but
it is not an option due to the computational complexity it entails.

As the guards are red points, they have a birth and death event associated,
forming the living angle interval. Before the genuinely alive guard dies, the next
must already be alive. Let the living angle interval of a guard be referred to as the
angle that is “guarded” or “covered” by that guard. See Figure 10. Those intervals
must overlap in a cyclical manner, totally covering the [0, π] interval.

40

ri d

birth death
living angle

Figure 10: Example of each red point ri being outside a caliper for some direction
d ∈ [0, π].

This lets us reformulate the problem of minimizing guards as minimizing the sets
to cover the [0, π] interval. See Figure 11.

r1

r2

r3

r4

r5

r6

r7

r8

0 2π

r1 r2 r3 r4 r5 r6 r7 r8

Figure 11: A set of 8 blue points, and a set of 8 red points which are the (minimum
number of) guards covering exactly the [0, π] interval.

41

6.1 Algorithm pseudocode

For this section, it will be assumed that the set G is provided as input. But in
Section 8 it is discussed how to compute the set G given R and B. It’s also where
this notion of the minimizing of guards as minimizing of intervals to cover [0, π] is
developed.

Algorithm 4 Separability red/blue/red/blue/red, k = 4 New version

Input: R, G, B
Output: intervals

1: CH(R)← ConvexHull(R)
2: CH(B)← ConvexHull(B)
3: events← [] ▷ Creation of the event list
4: for r ∈ R do
5: (l1, l2)← SupportingLines(r, CH(B))
6: α← slope(l1)
7: event← {angle : α, point : r, type : birth}
8: events.append(event)
9: β ← slope(l2)

10: event← {angle : β, point : r, type : death}
11: events.append(event)
12: end for
13: sequence G← sortByBirthAngle(G) ▷ From the set G to a list sequence
14: (, prev g)← SuportingLines(sequence.last, CH(B))
15: prev g ← slope(prev g) ▷ Death angle of previous guard in sequence
16: for g ∈ sequence do
17: jumpAllBlue← {angle : prev g, points : B, type : jump} ▷ All blue points
18: events.append(jumpAllBlue) ▷ When guard changes, all blue points jump
19: for b ∈ B do
20: lr ← lineFrom2Points(b, g)
21: γ ← max(slope(lr), prev g)
22: jumpEvent← {angle : γ, point : b, type : jump}
23: events.append(event) ▷ Jump event from B1 to B2

24: end for
25: (, prev g)← SuportingLines(g, CH(B))
26: prev g ← slope(prev g)
27: end for
28: d← 0
29: events← SortByAngle(events, d)
30: (rleft, rright)← ExtremalPoints(CH(R), d)
31: s1 ← LineFromPointSlope(bleft, d) ▷ Initial s1 & s4 caliper
32: s4 ← LineFromPointSlope(rright, d)
33: R1 ← {r ∈ R | r is to the left of s1} ▷ Initalization of all subsets
34: R3 ← {r ∈ R | r is to the right of s4}
35: R2 ← R \ (R1 ∪R3)

42

36: lblue ← LineFromPointSlope(sequence.first, d)
37: B1 ← {b ∈ B | b is to the left of lblue}
38: B2 ← B \B1

39: DCH(R1)← DynamicConvexHull(R1)
40: DCH(B1)← DynamicConvexHull(B1)
41: DCH(R2)← DynamicConvexHull(R2)
42: DCH(B2)← DynamicConvexHull(B2)
43: DCH(R3)← DynamicConvexHull(R3)
44: intervals← ∅
45: presentEvent← events[0]
46: for i = 1 to events.size() do
47: nextEvent← events[i]
48: if presentEvent.point ∈ R then ▷ Update dynamic convex hull
49: (DCH(R1)[ei,ei+1], DCH(R2)[ei,ei+1], DCH(R3)[ei,ei+1]) ←

UpdateDCH(presentEvent)
50: else if presentEvent.point ∈ B then
51: (DCH(B1)[ei,ei+1], DCH(B2)[ei,ei+1])← UpdateDCH(presentEvent)
52: end if ▷ Jump events move points from one set to the other
53: (l1, l2)← SupportingLines(DCHB1 , DCHR2)
54: α← slope(l1)
55: β ← slope(l2)
56: sepInterv1 ← [α, β] ▷ Interval where B1 is separable from R2

57: (l3, l4)← SupportingLines(DCHR2 , DCHB2)
58: γ ← slope(l3)
59: δ ← slope(l4)
60: sepInterv2 ← [γ, δ] ▷ Interval where R2 is separable from B2

61: Λ← presentEvent.angle
62: Ω← nextEvent.angle ▷ Consecutive events angle interval
63: intervals← intervals ∪ ([Λ,Ω] ∩ sepInterv1 ∩ sepInterv2)
64: presentEvent← nextEvent
65: end for
66: return intervals

The changes to the pseudocode has been the introduction of the new input G,
that is traversed in a for loop at line 16. This traversal is done over the variable
sequence, that represents the < g1, g2, . . . , gm > mentioned before. A new event
jumpAllBlue is used to swap all blue points from B2 to B1 when one guard dies
and the next takes the role of active guard. This bookkeeping with the death of
guards is aided by the variable prev g that stores the death angle of the last guard.
All events of the current guard must happen at a bigger/later angle than this prev g.

6.2 Linear size counterexamples

As a final remark of this extension, in Figure 11 we illustrate the worst case scenario
where m is linear with n, concretely, m = n, i.e., each red point is a guard.

43

As we can see, for some particular configurations of points so that the number of
guards is linear (O(m) = O(n)). Meaning that the cost would grow to O(nn log n) =
O(n2 log n). See again Figure 11. This was the same cost as the algorithm that swept
the dual. Meaning that unless we can find a better upper bound for the number of
guards, the new algorithm will not be an improvement.

7 Sufficient conditions for a constant size G with

k = 4

As shown in the previous section, Algorithm 4 has the set G as input, and it has
been shown that its size m could be linear with respect to n. This begs the question
of finding conditions over R and B that guarantee that m is constant with respect
to n. A very similar approach to the one used in the original algorithm.

Other than the configurations that have a red point inside the CH(B) (i.e, the
ones treated in the original algorithm), thanks to the new version of the algorithm
there is a second family of configurations with a constant number of guards. We
will explore it by introducing first a special case of this family.

7.1 Triangle of guards

Condition 1. There are 3 red guards, denoted by A, B and C, such that all the

sides of the triangle ÏABC cross the CH(B).

Proposition 3. If A,B,C satisfies Condition 1, then G = {A,B,C} is a guard set
of size 3 that covers the entire rotation of the caliper.

Proof. Let’s study into what set R1, R2, or R3 these red points {A,B,C} would fall
into. Assume that there exists a given orientation such that none of these 3 points is
inside R2. Then they must be in R1 and/or R3. Without loss of generality, assume
that point A is inside R1. Then it is impossible for points B or C to also be in R1,
because the segment joining them wouldn’t cross CH(B). See Figure 12.

So B and C can’t be in R1, and it is assumed that R2 is empty, so they must
both be in R3. But this is a contradiction, because if both are in the same set, the
straight segment CB can’t cross the CH(B). See Figure 12. A contradiction, so the
assumption was false.

Thus, R2 can’t be empty for any direction with respect to {A,B,C}, so the set
of guards defined by them is valid and has the stated size of 3.

This means that all configurations that satisfy the Condition 1 always have a
set G = {A,B,C} such that the whole rotation of the caliper can be guarded. And
most importantly that the size of this G is always 3, in other words it is constant.
This yields a O(n log n) time complexity.

This is a first condition over R and B that makes them treatable by the Algo-
rithm 4. In the next section, we relax it more to allow more configurations of points
to be treated by the algorithm.

44

A

B

C

R2

R3

R1

B

C

Figure 12: Visual proof that it is impossible for B or C to be in R1, and analogously
in R3 because the segment joining them wouldn’t cross CH(B).

7.2 Star-shaped guards

The specific property of this guard set has a close relationship with the triangle it
formed. So, we extend this geometrical analysis to other guard sets. Recall that a
sequence of guards was generated from G by sorting the guards according to birth
angle. This sequence of guards will be understood to trace a polygonal line, closed
by adding an edge from the last to the first guard.

Condition 2. There is a guard sequence < g1, g2, . . . , gm > such that all the edges
of the closed polygonal line traced by the sequence of guards cross the CH(B), and
m is odd.

Proposition 4. If < g1, g2, . . . , gm > satisfies Condition 2, then G = {g1, g2, . . . , gm}
is a size m guard set that covers the entire rotation of the caliper.

Proof. As before, we prove by contradiction that R2 is not empty for any direction.
So assume R2 is empty, and without loss of generality, g1 belongs to R1.

As in Proposition 3, g2 can’t be in R1 or R2, so by pigeonhole principle it must
be in R3. Repeat for g3, that can’t be in either R2 or R3, so it again belongs to R1.
Alternate until only the last guard remains to be assigned.

Because of Condition 2 there are an odd number of guards, and we started
assigning guards to R1. Therefore, gm−1 must belong to R3. So the last guard gm
can’t be in R3, because its predecessor belong to it. But it can neither be in R1,
because the first guard is there, and the edge from the last guard back to the first
one wouldn’t intersect the CH(B). See Figure 13. This means that the last guard
has to be in R2, completing the proof by contradiction.

45

g1

R1

R2

R3

Figure 13: Visual proof that two guards fall in the same subset, the edge doesn’t
intersect the CH(B)

This extended family of closed polygonal lines can be considered for a constant
value of m. If m = 3 yielded the triangle, what do higher odd values of m yield? A
priori, a very large and diverse variety of shapes.

The polygons that result of Condition 2 include from convex to self intersecting.
It also includes the particular family of star polygons, with special interest in the
ones with maximum density. Such as for m = 5 the pentagram {5/2}, for m = 7
the heptagram {7/3}, . . . , in general {m/⌊m/2⌋}. See Figure 14.

Figure 14: Left: The pentagram {5/2}. Right: The heptagram {7/3}.

Those specially starred polygons with high turning number are a very good
example of how configurations that might have a very small (diameter) CH(B), or
equivalently, whose red points are very distant to the CH(B), are still tractable if an
adequately large but constant value for m is chosen. The problem remains that as
these configurations could have smaller and smaller (diameter) CH(B), the variable
m would need to grow to allow them to be treated by the algorithm. Eventually m
would become linear with respect to n.

This allows for a refinement of Proposition 4 to use this more appealing family
of star polygons.

46

Proposition 5. If < g1, g2, . . . , gm > traces an odd star polygon, whose segments
all intersect CH(B), then G = {g1, g2, . . . , gm} is a size m guard set that covers the
entire rotation of the caliper.

As these star polygons satisfy Condition 2, the demonstration is the same.
The beautiful family of star polygons shows that the new additions made in Sec-

tion 6 do indeed allow for solving much more general configurations. Although it
must be stressed, that Proposition 4 is not biconditional. In other words, Condi-
tion 2 is a sufficient but not necessary condition for an input R and B to have a
constant size set of guards. See Figure 15.

g1

g2
g3

g4

g5

Figure 15: Sequence of guards covering the entire rotation, but not tracing a star
polygon.

Further study is needed to find even more relaxed conditions that ensure a con-
stant number of guards, or to prove that no such conditions exist. In the second
case, a new better (faster, stronger) version of the algorithm would need to be de-
signed. It would also be interesting in further work to explore more in depth the
family of polygons that satisfy Condition 2.

7.3 Further work with guard polygons

Because of the interest arisen in studying the shapes defined by guards, it has been
useful to define a new relation of equivalence over the guards. Recall that the use
we make of guards is directly tied to the angle interval they cover, in turn defined by
their living angle, i.e., their supporting lines with respect to CH(B). If two guards
had the same living angle, they would receive identical use by the algorithm. So the
equivalence relation among guards follows:

47

Proposition 6. Two guards are said to be equivalent if the interval they cover5 is
identical, i.e., the support lines of both guards are pairwise6 parallel. This defines
an equivalence relation.

Proof. The proposition describes an equivalence relation denoted by ≡, because it
is a binary relation that satisfies reflexivity, symmetry, and transitivity:

- ∀g, g ≡ g: because the support lines of a guard are parallel to themselves.

- ∀g1, g2, g1 ≡ g2 ⇔ g2 ≡ g1: because two pairs of parallel lines are pairwise
parallel even under commutation. As long as the comparison of the supporting
lines is done, birth line against birth line, and death line against death line.

- ∀g1, g2, g3, g1 ≡ g2 ∧ g2 ≡ g3 ⇒ g1 ≡ g3: because all parallel lines to a given
line (e.g., g2 birth) are parallel amongst themselves.

Recall also the use made of Equation (3) when comparing the covered interval of
guards. Meaning that guards in the half turn [0, π] have equivalent guards in the
remaining turn [π, 2π], as defined in the equation.

For each red point exterior to CH(B), there is precisely only one other point that
satisfies this equivalence. The construction of the equivalent point can be described
from the definition made. First, find the support lines of the original point. Then
trace the two parallel lines to both support lines, but that are tangent to CH(B)
on the antipodal points respectively. The intersection of these two parallel support
lines yields only one equivalent guard. See Figure 16.

g

g′

Figure 16: A pair of guards g and g′ that are equivalent.

The use for this equivalence relation is that it adequately reflects the indifference
our algorithm has when considering points. Both points are indistinguishable from
the standpoint of their living angle interval. So it is now possible to swap a guard
with its equivalent one, without it affecting the execution of the algorithm.

5Their living interval, i.e., the interval in which they lay inside the caliper.
6Birth with birth, death with death.

48

Because it lays outside the scope of this project, and not enough time is available
to accommodate such task, it remains as future work to formalize a demonstration
for the following open question:

Open problem 3. For any G =< g1, g2, . . . , gm > that satisfies Condition 2, there
exists a set G′ whose guards have an equivalent in G, and its sequence traces a star
polygon.

ThisG′ would be a pruned version ofG that had some guards inverted to lay them
in a star shape. Some assumptions are that this G′ would have an odd number of
vertices, although this can be accommodated with some relaxation on the definition
of star polygons. In fact, there are similar conditions to Condition 2 defined for even
number of guards.

Another interesting open question is finding equivalent reformulations of Condi-
tion 2. It is easy to see that if we restrict R and B to be close together, then the
proposition is true. Just like shown in Section 6.2, if R and B where not so sparse,
then a constant size G could be found. One can formalize this in a lot of interesting
drawing conditions, that end up ensuring a constant m. The following is just an
example:

Open problem 4. Assume that R and B lay inside a circle of fixed radius x, and
that the CH(B) is bigger than/contains a circle of radius y. Does an upper bound
for the number of guards m exist in terms of x and y?

These conditions could be very useful in real world applications, as in most cases
where real data is used for R and B such bounds do normally exist.

8 Finding the constant size G for the new k = 4

algorithm

As pointed out before, Algorithm 4 has as input a set G of guards. And because
the size of this set determines the computational complexity of the algorithm, it is
a central question to find a constant size G.

It is such a central concern that the entirety of the above Section 7 is dedicated
to show that those solutions even exist.
A brief run-through of all pertinent properties about the possible sets G:

- There is at least always a valid set G = R that correctly covers the entire
rotation, otherwise R and B aren’t separable using exactly k = 4 lines 7.

- Smaller sets that still cover the entire rotation exist for the most common
configurations of points (see example in Section 7).

- For some specially sparse instances, no smaller set exists (see counter-example
in Section 6.2).

7The non-separable directions can be ignored, and the algorithm executed for the remaining
directions.

49

With this in focus, the goal to reach is:

Given a set R and a set B, find a set G of guards
that covers the entire rotation, and has minimal size.

This allows to reframe the finding of guards as a minimization problem. To
further reinforce this strategy, different visualizations are proposed.

8.1 Alternative visualizations

The guards can be understood not only as points, but as the interval of the caliper
rotation they cover. As shown in Proposition 6, the algorithm only cares about
the interval of direction a guard covers. This suggests representing the guards as
intervals in the unit circle of directions. Each guard being their covering interval.
See Figure 17.

g

g′

Figure 17: Left: Red guards for the sets R and B. Right: Angular intervals of the
red guards on the unit circle. Note that their union dosent cover the interval [0, 2π],
but using the equivalent guard g′ instead of guard g they cover an [0, π] interval.

This yields a visualization that makes it easy to draw parallelisms with similar
minimization interval cover problems. One could easily imagine that instead of the
set of cyclical directions, we just had an interval in R called [a, b]. And the equivalent
problem would be to find, amongst a set of intervals, the minimum amount such
that the union covers the entirety of [a, b]. This is a well known problem [8] that can
be solved via a greedy algorithm in O(n log n) time with respect to the number of
intervals in the set. This indeed inspires the proposed solution to find a minimal G.

A second visualization, to further abstract the problem, is to generate the inter-
section graph from these intervals [6].

50

The intersection graph has as vertices the intervals, one per guard. Two vertices
will have an edge connecting them if the intersection of the corresponding intervals
is not empty. This graph then represents pairs of guards that are both alive for
some direction, meaning that they are possible consecutive guards in some sequence
< g1, g2, . . . , gm >. See Figure 18.

1

2

3

4

5
6

7
8

9

10

1
2

3

4

56

7

8

9

10

Figure 18: Intersection graph of angular intervals.

Refining further this graph, as the rotation of the caliper was set to be clockwise,
direction is given to the edges of the graph. The direction of edges in the intersection
graph will satisfy that the origin interval dies before than the destination interval.
In this way, the direction of the edge captures how the sequence < g1, g2, . . . , gm >
jumps from one guard to the next, always in clockwise order. See Figure 19.

1

2

3

4

5
6

7
8

9

10

1
2

3

4

5
6

7

8

9

10

Figure 19: Directed intersection graph of angular intervals.

The computational cost of building this graph is O(n2) with respect to the ver-
tices, as all intervals could have intersection (complete graph), and because the
number of vertices is equal to the number of red points.

Both representations lead to uncovering interesting properties about G and the
corresponding < g1, g2, . . . , gm >.

8.2 Domination of guards

The first important property uncovered by the interval representation is domination
amongst guards.

51

Proposition 7. A guard gi dominates gj if all directions covered by gj are also
covered by gi.

This is a very visual concept in the interval visualization. If an interval contains
another one, then it dominates it. See Figure 20.

gi

gj

gi

gj

Figure 20: Domination of intervals of guards: gi dominates gj.

Tracing back this property to the original visualization of guards as points, an
alternative easy way of understanding domination arises. If we draw their support
lines of gi and gj with respect to CH(B), that remember are what define the covering
interval angles, then the property is clear to see. See again Figure 20 Center and
Right.

The region contained by the supporting lines of a gi
8 and sides of the CH(B)

is where guards like gj are located. See Figure 20 Left. If a guard gj is inside this
region, its birth support line has less angle, and the death support line has more
angle. In other words, gj must have an “earlier” birth than gi, and a “later” death.
This means that gj will cover all the directions covered by gi, so gj will dominate gi.

8.2.1 Pruning algorithm pseudocode

This domination property allows for an immediate pruning of potential guards for
the set G. Given all the points in R, only the ones that are not dominated by other
red points are considered as candidates9. This can easily be done in O(n log n) time,
instead of O(n2) that would take comparing all potential pairings of guards.

Sort and traverse birth and death of the intervals in increasing angle. This sorting
has O(n log n) time complexity. As birth events are processed, keep an ordered list
of the intervals that are being traversed, and drop them as their death events are
processed. This list is called “OpenIntervals”. When processing the death event of
an interval named gi, all intervals that were birthed before gi birth, will also have
a later death than gi. So gi is dominated by all the intervals that precede it in the
list.

This check can be reformulated as: “When an interval dies, if it is not the first
element of the OpenIntervals list, then it is dominated by at least one other interval”.

8Or its inverse, with the corresponding parallel support lines. See Figure 16.
9If a guard was inside CH(B), it would dominate all other guards.

52

So OpenIntervals must allow for: appending always at the last position, checking
if an element is the first of the list, deletions of arbitrary elements. Recall that the
list is sorted by the interval’s birth, not by its identifier, and as deleting arbitrary
elements requires finding the element, a data structure more complex than a linked-
list is required.

A natural choice is to build a BST (balanced search tree) over the linked-list.
This allows for finding an interval in the list given its identifier in O(log n) time. A
very common implementation for BST are AVL-trees.

With this two data structures in place, we can support the three operations
mentioned:

- Check if an interval identifier corresponds to the first element of the linked-list.
With constant time complexity.

- Appending an element to the end of OpenIntervals. Now with O(log n) time
complexity as we need to update the balanced tree.

- Deleting an element from OpenIntervals. With O(log n) time complexity, as we
need to first find it in O(log n) time, delete it, and finally update (re-balance)
the BST also in O(log n) time.

All this results in the algorithm having a O(n log n) time complexity, and O(n)
space complexity. The output Rpruned still has O(n) size.

Algorithm 5 Domination pruning
Input: R, B
Output: Rpruned

1: CH(B)← ConvexHull(B)
2: CovrIntr ← coverIntervals(R,CH(B)) ▷ Computing supporting lines
3: TruncatedIntervals← ∅ ▷ Intervals that contain the direction 0 or π
4: for interval ∈ CovrIntr do
5: if interval.birthAngle > interval.deathAngle then
6: TruncatedIntervals← TruncatedIntervals ∪ interval
7: CovrIntr ← CovrIntr \ interval
8: end if
9: end for

10: for interval ∈ TruncatedIntervals do
11: CovrIntr ← CovrIntr ∪ [interval.birthAngle− π, interval.deathAngle]
12: end for
13: for interval ∈ TruncatedIntervals do
14: CovrIntr ← CovrIntr ∪ [interval.birthAngle, interval.deathAngle+ π]
15: end for
16: ▷ Now all intervals have smaller birthAngle than deathAngle

53

17: CovrIntr ← SortByBithAngle(CovrIntr) ▷ From set to event list
18: OpenIntervals← [] ▷ Empty list
19: for event ∈ CovrIntr do
20: if event is birth then
21: OpenIntervals.append(event.point)
22: else if event is death then
23: if OpenIntervals.isNOTFirstElement(event.point) then
24: Rpruned ← Rpruned \ event.point ▷ The point is dominated
25: end if
26: OpenIntervals.delete(event.point)
27: end if
28: end for
29: return Rpruned ▷ Non dominated guards

The only detail to mention on the pseudocode is the coverIntervals(R,CH(B))
function in line 2, and the bookkeeping must be done with the truncated intervals.

The function coverIntervals(R,CH(B)) is just a warp over the previously used
function SupportingLines(r, CH(B)). Instead of returning the supporting lines
of a single point, it computes them for all red points belonging to the input ar-
gument, that is the set R. This has a O(n log n) time complexity. And then it
returns them in interval format, with a birthAngle and deathAngle attribute, and a
point attribute with the identifier of the point the interval represents. In summary,
coverIntervals(R,CH(B)) has the expected behaviour.

The bookkeeping consists in simply “extending” the truncated intervals. This
is accomplished by finding the equivalent angle with respect to Equation (3). The
extension must be done in both directions, as this truncated sets could dominate
intervals that start and end very close to the 0 angle, i.e., in an interval [ϵ, ϵ′], or to
the π angle, i.e., in an interval [π − ϵ′, π − ϵ]. These extensions correspond to the
for loops of declared in lines 10 and 13.

8.3 Greedy heuristic

Now that dominated red points have been pruned, let’s proceed to find the smallest
size set of guards. This optimal guard setGopt will generate an also optimal sequence,
denoted by < g1, g2, . . . , gm >opt. A local optimality can be found among consecutive
guards of the sequence.

Given a guard that belongs to the optimal sequence, let it be named gopti , there
are several guards that cover the angle (direction) of gopti death. These guards
remain inside the caliper once gopti it leaves it, so one of them must be the next
element of the optimal sequence. This set of guards that could succeed an gopti are
the candidates of gopti . The candidates of any gi are denoted as candidates(gi), being
a set of guards.

These candidates can be understood more easily as the adjacent vertices of gi in
the intersection graph. This visualization is very relevant.

54

Remember that the edges are directed to ensure that they always advance clock-
wise when jumping from gi to any of its candidates. See Figure 19.

From these candidates, a greedy heuristic would be to choose the one that dies
the last, i.e., with the largest death angle10. The candidate selected by this heuristic
will be alive at least for all directions covered by any guard in candidates(gopti),
clockwise from gopti death. The candidate chosen by the greedy heuristic is labelled
ggreedyi+1 . The corresponding representation in the intersection graph is to select one
edge from the outgoing ones.

Lemma 3. For any gopti then, ggreedyi+1 = gopti+1.

Proof. A proof by contradiction demonstrates that this greedy heuristic is globally
optimal. Given gopti , assume that gopti+1 ̸= ggreedyi+1 . The way ggreedyi+1 is chosen means

that its death angle is greater than gopti+1. (It can’t be the same, as we consider it a
degenerate case. If we assume the points in R and B are in general position, this
never happens.) So both gopti+1 and ggreedyi+1 must die at a greater angle than the birth

of gopti+2. This means that even if gopti+1 ̸= ggreedyi+1 , the greedy choice can “reach/see”

gopti+2, or an even better candidate.

In terms of the intersection graph, gopti is adjacent (has as candidates) ggreedyi+1

and gopti+1. Then as gopti+1 is adjacent to gopti+2, the greedy heuristic ensures that ggreedyi+1

is adjacent to gopti+2.
Because this holds for any consecutive guards, there is no point in the sequence

< g1, g2, . . . , gm >opt were not choosing ggreedyi+1 as the next guard yields an advantage
further down the algorithm. In other words, all the decisions made by a greedy
algorithm based on the heuristic exposed are at least as optimal as decisions that
were globally optimal.

This is again the same greedy heuristic one would use to solve the classical
interval cover problem. The only assumption left is that an initial gopti is given.

8.3.1 Revisiting the intersection graph

To work around the fact the heuristic needs to start from a gopti , several techniques
can be used. First, some observations on how the greedy heuristic changes the
intersection graph.

Given this heuristic, instead of representing all the outgoing edges for each gi in
the graph, just draw the ones chosen by the greedy heuristic. Omitting degenerate
cases, all vertices now have at most one outgoing degree, i.e., ∀i, degout(gi) ≤ 1. If
we assume that R and B are separable using k = 4 lines, the whole rotation must be
covered, so there must always exist at least one candidate for any gi. This results in
a stricter degout(gi) = 1. This subgraph will be referred to as the greedy intersection
graph, noted as GIG = (V,E), where the vertices V = Rpruned.

Some important complexity differences between the GIG and the intersection
graph, is that the GIG can be commutated in O(n log n) time from the intervals.
This was not the case with the intersection graph.

10Here we are skipping some problems that arise from the cyclical nature of the angles in the
interval. This is solved by the same bookkeeping as in Algorithm 5

55

Proposition 8. If R and B are separable using k = 4 lines, all the vertices of the
greedy intersection graph have degout(gi) = 1. So, the number of edges of GIG is∑n

i degout(gi) = n.

With this bound on the number of edges, the kind of graph that GIG can be
deduced. First, GIG can’t be acyclic, as no valid < g1, g2, . . . , gm > would exist,
meaning that it is not possible to cover the entire rotation. So GIG has at least
a directed cycle of length 2 (we omit the case with a guard inside CH(B)), the
cycle corresponds to < g1, g2, . . . , gm >opt. This is corroborated by the fact that
the number of vertices and edges also forces the existence of at least one cycle11.
Other cycles might also exist. And because of how the edges were directed, any
path starting from any vertex eventually ends up in one of those cycles.

Each connected component (or Cc.) of the GIG must-have one and only one
cycle, that is located at the end of all paths starting from a vertex in the connected
component12. A simple proof by contradiction suffices. If a Cc. were to have 2
cycles, a path from one to the other must exist, otherwise they are not in the same
Cc. But that means that one vertex of the origin cycle has 2 outgoing edges, one
that belongs to its cycle, and one that leads down the path to the second cycle.
This is a contradiction with Proposition 8. Because GIG has at least one cycle and
n edges, GIG has as many Cc. as cycles.13.

Now that the kind of graph that is GIG has been uncovered, a way of finding
< g1, g2 . . . gm >opt can be described in terms of executing search algorithms over
GIG. Here we can see how multiple algorithms could be used, from topological sorts
to other graph search algorithms studied in the undergraduate courses [13].

Returning to the algorithm, if before it assumed that a gopti was given, it can
instead start from all vertices, ensuring that it must at some point start from a gopti .
So for all vertices in GIG, follow the directed edges until detecting a cycle. Then
choose the cycle of shorter length, that must be < g1, g2 . . . gm >opt.

Because the length of a path starting from a gi (optimal or not) is O(n), if
the algorithm starts from all vertices the computational complexity would jump
to O(n2). This would be obviously undesirable. Fortunately, it is easy to find a
O(n log n) time complexity algorithm by using the properties mentioned above.

8.3.2 Greedy algorithm pseudocode

The trick to achieve linear time is to leave a mark as we traverse nodes of the graph,
allowing us to visit each vertex a constant number of times. Again, start from all
vertexes but maintain an auxiliary data structure. A Union Find Forest [14] to
detect if the next vertex in the path belongs to the Cc. of the current path. This
Union Find is where the mark is done.

11If there are n vertices and n edges, and all outgoing degrees are 1, it is a tree plus the extra
edge, or a forest plus extra edges.

12All paths lead to a cycle because there must always be a next candidate and GIG is finite.
13The demonstration follows from the fact that all paths end in cycles.

56

So the first path will find that all the vertices it visits aren’t yet in the union
find, because they haven’t yet been visited. Once the path closes on itself, it will
detect that the next guard to visit belongs to the same Cc. as itself. And because
the Cc. that the path belongs doesn’t have any cycle recorded. Store that a cycle
has been found for that Cc., storing its length and the sequence < g1, g2 . . . gm > it
generates.

The subsequent paths fall into the same mode if they belong to an “unmarked”
Cc. So they do the same, but once the cycle is found, compare its length to the
stored cycle, and keep the shortest one. But what happens if a path finds a vertex
that has already been visited? let’s say gi. Then it means that all the vertices so
far visited by the path belong to the same Cc. as the one of gi. Because the Cc.
of gi has already been explored, its cycle has already been recorded and there is no
need to traverse it again.

This schema allows us to start from all vertices, because a vertex is never visited
thrice.

The previous step of building the GIG had complexity O(n log n), that is the
final computational complexity of computing Gopt from R and B.

For clarity, the pseudocode has been segmented into building the GIG, and then
finding Gopt.

Algorithm 6 Building the Greedy Interval Graph
Input: Rpruned, B
Output: GIG

1: CH(B)← ConvexHull(B)
2: CovrIntr ← coverIntervals(Rpruned, CH(B)) ▷ Computing supporting lines
3: TruncatedIntervals← ∅ ▷ Intervals that contain the direction 0 or π
4: for interval ∈ CovrIntr do
5: if interval.birthAngle > interval.deathAngle then
6: TruncatedIntervals← TruncatedIntervals ∪ interval
7: CovrIntr ← CovrIntr \ interval
8: end if
9: end for

10: for interval ∈ TruncatedIntervals do
11: CovrIntr ← CovrIntr ∪ [interval.birthAngle− π, interval.deathAngle]
12: end for
13: for interval ∈ TruncatedIntervals do
14: CovrIntr ← CovrIntr ∪ [interval.birthAngle, interval.deathAngle+ π]
15: end for
16: ▷ Now all intervals have smaller birthAngle than deathAngle
17: CovrIntr ← SortByBirthAngle(CovrIntr) ▷ From set to event list
18: OpenIntervals← [] ▷ Empty list
19: GIG← graphFromV ertex(Rpruned) ▷ Graph initalization with no edges
20: lastToDie← null ▷ Interval with latest death

57

21: for event ∈ CovrIntr do
22: if event is birth then
23: OpenIntervals.append(event.point) ▷ event.point = point identificator
24: lastToDie← maxDeathAngle(lastToDie, event.point)
25: else if event is death then
26: GIG.addDirectedEdge(event.point, lastToDie) ▷ Greedy choice
27: OpenIntervals.delete(event.point)
28: end if
29: end for
30: return GIG

The code is basically the same scheme used for Algorithm 5. Now the sweep
is done maintaining who is the last interval in OpenIntervals to die. Using this,
generate the edges of the GIG as intervals drop from OpenIntervals. In fact because
now the input is Rprunned, we could omit this entirely as we are guaranteed that the
last birthed interval inside OpenIntervals will be the last to die. This is because the
intervals now can’t be dominated.

Algorithm 7 Finding an optimal G
Input: GIG
Output: G

1: UnionFind← DisjointSet() ▷ Empty Union Find Forest
2: ShortestCycle← null
3: for v ∈ GIG.V do
4: path v ← []
5: if not(UnionFind.has(v)) then ▷ If not already visited
6: currentCc← UnionFind.makeSet(v) ▷ Creates Cc. in with current v
7: next v ← GIG.adjacent(v) ▷ There is only one adjacent vertex in GIG
8: while not(UnionFind.has(next v)) do
9: path v.append(next v)

10: UnionFind.addToSet(next v, currentCc)
11: next v ← GIG.adjacent(next v)
12: end while
13: last v Cc← UnionFind.find(next v) ▷ Cc. identifier of last v
14: if last v Cc = currentCc then
15: cycle v ← cutCycle(path v) ▷ The path has self intersected
16: ShortestCycle← minLength(ShortestCycle, cycle v)
17: else ▷ The path intersected another Cc., so it belongs to that Cc.
18: UnionFind.union(last v Cc, currentCc) ▷ Merge the Cc. markers
19: end if
20: end if
21: end for
22: G← setFromCycle(ShortestCycle)
23: return G ▷ Optimal guard set

58

The union() and find() operations over the UnionFind data structure have cost
α(n), the inverse Ackermann function [14]. The space complexity is O(n). As we
execute a linear amount of them, the time complexity of Algorithm 7 is O(nα(n)).

Finally, we have an algorithm that finds the smallest set G of guards. Because
the sorting ends up being the dominating factor, the final cost for computing G is
O(n log n). Even if the input R and B are of the counterexample kind (Section 6.2)
so that m = n, the computational complexity is the same. This means that in
optimal time O(n log n) we can detect if the instance can be solved by Algorithm 4
in optimal time, a very nice collateral result.

8.3.3 Further work with greedy algorithms

Some proofs about the greedy algorithm that could not be formalized in time for
this bachelor thesis include the elegant:

Open problem 5. All cycles in the GIG representation have the same length.

This can intuitively be understood as: If various cycles exist, they are all “in-
terlinked”, forcing them to be of the same size. This is a hard to formalize proof,
but the best draft on it uses a convincing proof by contradiction. The problem
is that it is not sufficient to use the abstract GIG representation, to achieve the
contradiction a return to the interval representation is needed. This return to a less
abstract representation is what kept the more fine details of the proof pending of
formalization. It remains as further work.

If this was to be solved, then executing the algorithm from any arbitrary start-
ing point is allowed, as any cycle we find is the same length as the optimal one.
Unfortunately, this doesn’t reduce the complexity of the algorithm. But it makes it
more elegant, a noble enough pursuit.

With this, the design of Algorithm 4 is completed. It is now an algorithm that,
given R and B, can first generate G in O(n log n) time, check if the number of guards
found is small or large (that can be used to estimate the run time of the algorithm),
and solve the 4−separation in O(mn log n).

This concludes the advances done in answering the Open problem 1.

9 The second open question

Because the whole of this bachelor thesis has been centred in Open problem 1, it is
easy to forget that a second question was posed, Open problem 2.

Recall, the Open problem 2 was concerned with solving separability for higher
values of k, but achieving O(kn log n) time. This means finding some kind of re-
cursive algorithm, or extendable algorithm, to systematically solve the higher order
separations. Unfortunately, because of time constraints and the limited scope of
this thesis, only a description of the further work ahead to solve Open problem 2 is
included.

59

Comparing the Algorithm 1 with Algorithm 3 and Algorithm 4, a few ideas on
how to design a recursive algorithm arise. The main insight is that Algorithm 3
worked because it imposed a similar structure to Algorithm 1. The tool used has
been rotating calipers over CH(B). But it can be thought that Algorithm 3 rotated
a second caliper, this time over the CH(Rrec), where Rrec are the points inside
CH(B). So continue to impose that a few blue points lay inside CH(Rrec), call
them Brec, and rotate a third caliper over CH(Brec). These calipers would be used
in a very similar manner to how they were used in Algorithm 3. See Figure 21.

This nested convex hulls, each with a nested rotating caliper, is the proposal for
the recursive algorithm. The drawbacks are clear to see, we are assuming that such
nested convex hulls exist to begin with. And in lots of uniform random configurations
it might very well be, but this is only speculation.

R1
B1

R2 B2 R3

B3

R4

s1 s2 s3 s4 s5 s6

Figure 21: Separability with 6 lines.

So for this recursive algorithm, we are attempting to separate using a number k
of lines that is found from the input, not chosen. By similar results to Proposition 2,
all the calipers used in this recursive proposal are strictly necessary. In fact, recall
that the Proposition 2 was already enunciated for any value of k. Now instead of
applying it only once, we apply it recursively.

So the sets will need at least this found k number of lines to be separable. But
if the sets are not separable using these k lines, then the algorithm tell us nothing
about how many more lines could be needed to achieve separation.

The work ahead in this question is:

• Formalize properly the recursive algorithm.

• Demonstrate that the k lines that the algorithm uses are less or equal than
the minimal number k to achieve separation of R and B in all directions.

• Use the relaxed input conditions that the Algorithm 4 achieves over the Algo-
rithm 3, to also relax the input conditions for the nested convex hulls.

60

This last point is a really important one. Part of the effort of designing Algo-
rithm 4 was to allow for this relaxation. Because the recursive algorithm imposes the
condition as many times as it can, until it runs out of nested convex hulls, relaxing
this condition would further empower the algorithm by an important factor.

10 Conclusions

In this project, we have considered the problems related to the separability of biro-
mantic point sets, by a set of k parallel lines, classifying the points in alternating
monochromatic strips. Extending the results obtained in previous work, specifically
the separability using 2 or 3 lines, in order to study the case of 4 or more lines.

We have developed in great depth the 4 lines case, and studied the properties that
can be crucial for the design of algorithms to solve the general case of k lines. Trying
to understand how complexity emerges as the number of lines used increments.

In more detail, we have developed the use of guards to design the algorithm 4.
The strategy has been the use of guards, that have the potential to be a useful
approach for values of k greater than 4. The complexity for the 4 lines case has
resulted in O(mn log n) time, where m is the minimal number of guards.

As a general goal, we pretend to find algorithms to solve the general k case, with
O(f(k) · n log n) time complexity, where f(k) is a polynomial function in k.

61

References

[1] Memòria d’actuacions 2020: pla estratègic ENGINY 2020. Biblioteques, Univer-
sitat Politècnica de Catalunya Servei de Arxius, Publicacions i, 2021. Accepted:
2022-02-24T11:32:21Z.

[2] G. Brodal and R. Jacob. Dynamic planar convex hull. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
pages 617–626, 2002.

[3] Glassdoor. Sueldo: Junior Researcher en Barcelona, Spain. https://www.

glassdoor.es/Sueldos/barcelona-junior-researcher-sueldo-SRCH_IL.

0,9_IM1015_KO10,27.htm.

[4] Glassdoor. Sueldo: Project Manager en Barcelona, Spain. https://www.

glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,

9_IM1015_KO10,25.htm.

[5] R. Jacob and G. S. Brodal. Dynamic Planar Convex Hull. Technical Report
arXiv:1902.11169, arXiv, Feb. 2019. arXiv:1902.11169 [cs] type: article.

[6] J. Kratochvil and J. Matousek. Intersection graphs of segments. Journal of
Combinatorial Theory, Series B, 62(2):289–315, 1994.

[7] N. Megiddo. Linear-time algorithms for linear programming in R3 and related
problems. SIAM Journal on Computing, 12(4):759–776, 1983.

[8] V. Mäkinen, V. Staneva, A. Tomescu, D. Valenzuela, and S. Wilzbach. Inter-
val scheduling maximizing minimum coverage. Discrete Applied Mathematics,
225:130–135, 2017.

[9] F. P. Preparata and M. I. Shamos. Convex hulls: Basic algorithms. In Com-
putational Geometry, pages 95–149. Springer, 1985.

[10] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer Science & Business Media, 2012.

[11] C. Seara. On geometric separability. PhD thesis, Universidad Politecnica de
Catalunya, 2002.

[12] J. Stoer and C. Witzgall. Convexity and optimization in finite dimensions I,
volume 163. Springer Science & Business Media, 2012.

[13] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[14] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, apr 1975.

[15] G. Toussaint. Solving geometric problems with the rotating calipers. Proceed-
ings of IEEE MELECON’83, page 8, 1983.

62

https://www.glassdoor.es/Sueldos/barcelona-junior-researcher-sueldo-SRCH_IL.0,9_IM1015_KO10,27.htm
https://www.glassdoor.es/Sueldos/barcelona-junior-researcher-sueldo-SRCH_IL.0,9_IM1015_KO10,27.htm
https://www.glassdoor.es/Sueldos/barcelona-junior-researcher-sueldo-SRCH_IL.0,9_IM1015_KO10,27.htm
https://www.glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_IM1015_KO10,25.htm
https://www.glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_IM1015_KO10,25.htm
https://www.glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_IM1015_KO10,25.htm

	Introduction
	Context
	Academic context
	Computational Geometry & Geometric separability

	Justification
	Results of the source material
	Open problem & goals
	Research implications
	Why are those problems important?

	Scope & Risks
	Stakeholders & scope
	Risks

	Methodology

	Temporal planning
	Definition of tasks
	Project Planing
	Study of the source material
	Demonstrations

	Time estimations and dependencies
	Timetable deviations
	Resources
	Human resources
	Intellectual resources
	Software
	Hardware
	Infrastructure

	Gantt
	Risk management
	Inconclusive results
	Incompatible evaluation
	Deadline
	Inexperience

	Budget
	Staff costs
	Generic costs
	Intellectual material
	Office material
	Facilities & Indirect costs
	Summary

	Management Control

	Sustainability report
	Self assessment
	Environmental impact
	Economic impact
	Social impact

	The original algorithms
	Notation & preliminaries
	Single strip separability, k=2
	Multiple strip separability
	k=3
	k=4

	The new algorithm for k=4
	Algorithm pseudocode
	Linear size counterexamples

	Sufficient conditions for a constant size G with k=4
	Triangle of guards
	Star-shaped guards
	Further work with guard polygons

	Finding the constant size G for the new k=4 algorithm
	Alternative visualizations
	Domination of guards
	Pruning algorithm pseudocode

	Greedy heuristic
	Revisiting the intersection graph
	Greedy algorithm pseudocode
	Further work with greedy algorithms

	The second open question
	Conclusions

