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Fast Analysis and Optimization of Sparsely
Distributed Partial Modification Problems

Xiaoxing Fang , Member, IEEE, Alexander Heldring , Juan M. Rius , Senior Member, IEEE,

and Qunsheng Cao

Abstract— This article addresses the efficient numerical analy-
sis of sparsely distributed small modifications in a large structure,
that is, the sparsely distributed partial modification problem
(SDPMP). A hierarchical matrix (H-matrix)-based fast direct
solver is adopted to solve the SDPMP in a very short time for
each new set of modifications. The main idea of this method is
to reuse the parts of the compressed inverse matrix operator
that do not change and only recompute the modified parts.
In contrast with already existing algorithms designed to tackle a
single localized modification, this new approach is still very fast
for sparsely distributed small modifications, so it becomes a very
attractive option to solve optimization problems efficiently, due to
the very cheap analysis of the modified structure at each iteration
of the optimization procedure. The efficiency of the solution of
SDPMP is demonstrated for several cases involving passive and
active metasurfaces and a reconfigurable antenna. As a practical
example, a programmable metasurface reflector is optimized with
particle swarm optimization to obtain a prescribed reflection
pattern.

Index Terms— Fast direct solver, hierarchical matrix
(H-matrix), method of moments (MoM), optimization problem,
sparsely distributed partial modification problems (SDPMPs).

I. INTRODUCTION

COMPUTER aided design of electromagnetic devices
using global optimization algorithms has always been
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Fig. 1. Representation of the partial geometry modification problem.
The modification structure S is much smaller than the main structure M.
(a) Traditional PMP. (b) SDPMP, in which the partial modification structure
S consists of a set of small modifications.

a key objective of computational electromagnetics. In such
optimization problems, it is often necessary to repeatedly
analyze a given geometry including only small modifications
introduced to the original object. The numerical analysis of the
modified structure at each iteration of the optimizer is called
a partial modification problem (PMP) [1].

The PMP is often solved using integral equations discretized
by the method of moments (MoM) [2]. Since it is necessary to
solve the PMP many times, direct or iterative fast solvers can
be used to accelerate the solution time. Examples of fast iter-
ative solvers include the fast multipole-based methods [3], the
multilevel matrix decomposition algorithm [4], [5], and mul-
tilevel adaptive cross-approximation-based methods [6], [7].

The main drawback of iterative methods in this context,
however, is that they need to be applied repeatedly, starting
from zero, with every modification of the geometry. Alterna-
tively, the PMP can be addressed by direct solvers, such as the
partitioned-inverse formula-based methods [1], [8]–[11]. With
these methods, when the problem geometry consists of a large
main structure M and a much smaller “modification structure”
S to be optimized, as illustrated in Fig. 1(a), only the part of
the inverted matrix that represents the modification structure
needs to be adapted with every modification. Nevertheless, the
fact that the full MoM impedance matrix must be computed
and inverted makes this approach inefficient in general.
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In recent years, several fast direct solvers have been pro-
posed to accelerate the inverse process, such as hierarchical
matrix (H-matrix) [12], [13], hierarchical off diagonal low-
rank (HODLR) matrix [14], H2 matrix [15], and hierarchi-
cally semiseparable (HSS) matrix [16]-based methods. These
solvers can speed up the inverse of both the main structure M
and the modification structure S, as long as the off-diagonal
blocks are low-rank and therefore compressible.

In this article, the H-matrix format is adopted, and the mul-
tiscale compressed block decomposition (MSCBD) [13], [17]
is used to accelerate the inverse process. This H-matrix-based
fast direct solver is essentially a nested implementation of the
partitioned inverse formulas. It can be applied to solve the
PMP very efficiently as long as the modification structure is
small with respect to the main one and concentrated in a small
part of the object.

In H-matrix, the mutual-impedance matrix between
M and S is compressed into a low rank matrix. However,
unlike the case of Fig. 1(a), the rank of this mutual-impedance
matrix will become very high when the modifications are
sparsely distributed, as illustrated in Fig. 1(b). If this is
the case, it will be very expensive to obtain and store
the mutual-impedance matrix and the decomposition matrix.
In this article, we propose a modified MSCBD process to
address this sparsely distributed PMP (SDPMP) efficiently.
After this, we present a general process to analyze struc-
tures loaded with sparsely distributed active devices. Finally,
this process is combined with particle swarm optimization
(PSO) [18] in order to optimize the active device loading of
metasurfaces in a highly efficient manner.

This article is organized as follows. Section II first illus-
trates the PMP and its accelerated solution by the H-matrix.
Then, the SDPMP and sparsely distributed active device
loaded problem are introduced and solved with the improved
H-matrix-based direct solver (MSCBD). Finally, the PSO is
proposed in combination with SDPMP-H-matrix to accel-
erate the optimization problem. Some numerical results in
Section III illustrate the performance of this algorithm. Finally,
Section IV presents some conclusions.

II. PARTIAL MODIFICATION PROBLEMS

A. Partitioned Impedance Matrix Equation Formula

Electromagnetic problems modeled with integral equations
discretized with the MoM lead to a linear system of the
form [2]

ZI = E (1)

where Z, I, and E are the impedance matrix, the unknown
current vector, and the field excitation vector, respectively.

As shown in Fig. 1(a), in PMPs, the object is divided into
two parts: main structure M and modification structure S. The
impedance matrix equation (1) for the object can be partitioned
as follows: [

ZM M ZM S

ZSM ZSS

][
IM

IS

]
=

[
EM

ES

]
(2)

where ZM M and ZSS are the self-impedance matrices of
the main structure M and the modification structure S,

Fig. 2. Impedance matrix representation of SDPMP. (a) Conventional
MSCBD. (b) SDPMP-MSCBD. (c) H-matrix type of ZSS , ZM S , and ZSM .

respectively. ZM S and ZSM are the mutual-impedance matrices
between M and S. EM and ES are the corresponding excitation
vectors. IM and IS are the unknown vectors corresponding to
structures M and S.

The inverse of ZM M is calculated only once, since ZM M

does not change when the structure is modified

Z̃M M = Z−1
M M . (3)

The three, much smaller remaining parts of Z, ZM S , ZSM ,
and ZSS are recalculated with every modification of S. Then,
the unknowns can be updated by the following equations:

Z̃SS = (
ZSS − ZSM Z̃M M ZM S

)−1
(4)

IS = Z̃SS
(
ES − ZSM Z̃M M EM

)
(5)

IM = Z̃M M (EM − ZM SIS). (6)

B. Accelerated PMP/SDPMP With
H-Matrix-Based Direct Solver

Even though the inversion in (3) needs to be done only
once, it quickly becomes prohibitively expensive for large
problems. Therefore, in this section, we invoke the H-matrix
format for the entire problem and compute the inverse of ZM M

using the H-matrix-based direct solvers [12], [13]. Here, the
MSCBD [13] is chosen.

In the conventional MSCBD, the impedance matrix is con-
structed, as shown in Fig. 2(a). In each modification, we need
to calculate the impedance matrix Z and its factorization
matrix B repeatedly. B is also stored into H-matrix format
after the factorization with MSCBD. If MSCBD process is
combined with the partitioned impedance matrix in (2), this
matrix will be changed into the structure shown in Fig. 2(b)
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to solve PMPs. In this case, (3)–(6) can be rewritten as

ZM M
MSCBD−−−−−−→ BM M (7)

I�
M = BM M EM (8)

BM S = BM M ZM S (9)

BSS = (ZSS − ZSMBM S)
−1 (10)

IS = BSS
(
ES − ZSMI�

M

)
(11)

IM = I�
M − BM SIS (12)

where BM M , BM S , and BSS are the compressed block factor-
ization matrices of ZM M , ZM S , and ZSS, respectively.

As the number of unknowns in M is much larger than
that in S, the operation in (7) will be the most expensive in
solving PMPs, but (7) and (8) need to be calculated only once.
Equations (9)–(12) will be computed repeatedly depending
on the number of modifications. In the most common case
of optimization problems, the modification structure S is not
separated well with the main structure M . Furthermore, the
modification structure S is not always concentrated in just one
block. The modifications in S are sometimes sparsely distrib-
uted on the object, as seen in Fig. 1(b). This kind of PMP is
called an SDPMP. We can extract these sparsely distributed
modified matrices or basis functions together, as shown in
Fig. 2(b). With an increasing number of unknowns in S and
a poor separation between M and S, ZSS , ZM S , and ZSM will
be exceedingly large. Accordingly, it will be very expensive
to compute and save BSS , BM S , and BSM when (9) and (10)
are applied directly.

To solve this problem, the main structure M and mod-
ification structure S are subdivided using binary trees into
2L M and 2L S blocks, respectively. ZM M is compressed into
an L M -level H-matrix, as shown in Fig. 2(b). Likewise, the
modified matrices ZSS, ZM S , and ZSM will be compressed into
H-matrices according to the L M and Ls binary tree subdivision,
as seen in Fig. 3. Subsequently, the process of SDPMP-
MSCBD can be divided into several steps, as shown in Fig. 3.

Step 1: Compress the partitioned impedance matrices ZM M ,
ZSS , ZM S , and ZSM into H-matrix after the L M and Ls binary
tree subdivision, which can be seen in Fig. 3(a).

Step 2: As shown in Fig. 3(b), the factorization matrix BM M

is obtained with (7) by using the conventional H-matrix-based
direct solver MSCBD. After that, I�

M can be calculated by (8).
In SDPMP, BM M and I�

M just need to be calculated once. Since
ZSS , ZM S , and ZSM change with each modification, we need
to repeatedly recalculate their factorization matrices.

Step 3: Before factorization of ZM S , BM M is partitioned into
2L M−L S submatrices according to the L M and Ls binary tree
subdividing, as shown in Fig. 3(c)

BM M =
[

B(1)
M M · · · B(i)

M M · · · B(2L M −L S )
M M

]T
. (13)

Step 4: After partitioning of BM M , BM S obtained by (9) can
be rewritten as

BM S = BM M ZM S

=
[

B(1)
M M · · · B(i)

M M · · · B(2L M −L S

M M

) ]T
ZM S . (14)

Fig. 3. Several steps of MSCBD-SDPMP. (a) H-matrix compression of
ZM M , ZSS , ZM S , and ZSM . (b) Factorization of ZM M with conventional
MSCBD. (c) Factorization matrix BM M partitioning. (d) Factorization matrix
BM S calculation. (e) Factorization matrix BSS calculation with conventional
MSCBD.

ZM S is partitioned into 2L M−L S submatrices

ZM S =
[

Z(1)
M S · · · Z(i)

M S · · · Z(2L M −L S

M S

) ]T
. (15)

The i th submatrix of BM S can be calculated by

B(i)
M S

= B(i)
M M ZM S

= B(i)
M M

[
Z(1)

M S · · · Z(i)
M S · · · Z(2L M −L S )

M S

]T

= B(i,1)
M M Z(1)

M S + · · · + B(i,i)
M M Z(i)

M S + · · · + B(i,2L M −L S )
M M Z(2L M −L S )

M S

=
2L M −L S∑

j=1

B(i, j)
M M Z( j)

M S (16)

where B(i, j)
M M is the j th submatrix of B(i)

M M . After the calculation
of each submatrix, BM S follows as:

BM S =
[

B(1)
M S · · · B(i)

M S · · · B(2L M −L S )
M S

]T
. (17)

Step 5: BSS is calculated with ZSS , BM S , and ZSM by
conventional MSCBD

ZSS − ZSMBM S
MSCBD−−−−−−→ BSS . (18)

Step 6: Finally, (11) and (12) are applied to calculate the
unknown vectors for the different modifications. The differ-
ence is that (11) should be replaced by

IS = BSS
(
ES − ZSMI�

M

)
. (19)

In the steps above, the low rank characteristics of the
submatrices are conserved by using the H-matrix additions
and multiplications. If we consider n different configurations
of the modification structure S, BM S and BSS will be calculated
for each configuration. The unknown current vector of each
configuration can be obtained by the following function.
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TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON
OF MSCBD AND SDPMP-MSCBD

Function I = SDPMP (ZM M , EM , Es)
1 BM M = MSCBD (ZM M );
2 I�

M = BM M EM ;
3 for i = 1:n
4 H-matrix compression: ZM S , ZSM , and ZSS;
5 BM S = BM M ZM S ;
6 BSS = MSCBD (ZSS − ZSMBM S)
7 I(i)

S = BSS (Es − ZSMI�
M )

8 I(i)
M = I�

M − BM SI(i)
S

9 I (i) = [I(i)
M ; I(i)

S ]
10 end
End
The output I of the function SDPMP contains the vectors

I(1), I(2), . . . , I(i), . . . , I(n) for the n different modifications.
Let N , NM , and NS be the number of the unknowns in the

whole structure, the main structure (M), and the modification
structure (S), respectively. Since the modification part is small,
NS � NM , NM = N − NS ≈ N . The computational
complexity of SDPMP-MSCBD for each step is listed in
Table I and compared with that of conventional MSCBD.

The complexity of the MSCBD algorithm is O(N2),
as shown in [13] and [19]. With SDPMP-MSCBD, the compu-
tational complexity for n different configurations is O(N2) +
(n − 1) × O(N1.5), where the first term O(N2) is the initial
solution of the whole problem and O(N1.5) is the complexity
of the (n − 1) additional solutions of the modified problems.
For large n, the total operation count of SDPMP-MSCBD is
much less than the n×O(N2) operations required by repeating
the whole analysis with MSCBD.

C. Sparsely Distributed Active Device Loaded Problems

A type of problem of practical interest for which the
proposed method allows a further radical simplification and
accelerated solution is that of active device loaded structures.
Active metamaterials are a classic example of structures loaded
with sparsely distributed active devices. The active metamate-
rial shown in Fig. 4 consists of a large number of unit cells,
each of them including a perfect electric conductor (PEC)
structure and an active device. The most used active devices

Fig. 4. Active metamaterial model and its unit cell.

Fig. 5. Impedance matrix representation of sparsely distributed active device
loaded problem.

are p-i-n diodes and varactor diodes. Since the impedance of
these devices depends on the bias voltage applied to them,
they are modeled as finite-width lumped loads [20].

Here, the PEC structures form the main structure M and
the active devices are the modification structure S. Because
in this case shown in Fig. 5, the only modification takes
places in the self-impedance elements on the diagonal of ZSS ,
not in the mutual impedance blocks ZM S and ZSM , we only
need to calculate Bss repeatedly. That means in (7)–(12), only
(10)–(12) need to be recomputed for each modification and
some intermediary matrices and vectors can be precomputed

Z�
SS = ZSM BM S (20)

I�
S = ES − ZSMI�

M . (21)

This leads to a simplified version of the SDPMP function
for problems involving only active loads.

Function I = SDPMP_ActiveLoad (ZM M , ZM S , ZSM , EM ,
Es)

1 BM M = MSCBD (ZM M);
2 I�

M = BM M EM ;
3 BM S = BM M ZM S ;
4 Z�

SS = ZSMBM S ;
5 I�

S = Es − ZSM I�
M ;

6 H-matrix compression of ZSS without added impedance;
7 for i = 1:n
8 add the impedance of active devices to update ZSS ;
9 BSS = MSCBD (ZSS − Z�

SS);
10 I(i)

S = BSSI�
S ;

11 I(i)
M = I�

M − BM SI(i)
S

12 I(i) = [I(i)
M ;I(i)

S ]
13 end
End
The complexity for n different modifications using the

approach proposed here is reduced from n × O(N2) to
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TABLE II

COMPUTATIONAL COMPLEXITY COMPARISON OF MSCBD AND
SDPMP-MSCBD FOR ACTIVE DEVICE LOADED PROBLEMS

Fig. 6. Flowchart of the optimization with SDPMP-MSCBD and PSO.

O(N2) + (n − 1) × O(N). Table II shows the complexity
of the different steps of the algorithm.

D. Optimization With SDPMP-MSCBD and PSO

The SDPMP-MSCBD algorithm described in Sections II-B
and II-C can be combined with a stochastic optimization
technique, such as genetic algorithms, simulated annealing,
or PSO, to solve many electromagnetic optimization problems
efficiently, such as the design of reconfigurable antennas and
frequency selective surfaces (FSSs).

To obtain the results presented in this article, a fitness
function is defined to optimize the electromagnetic parameters,
the SDPMP-MSCBD is used to efficiently solve the SDPMP
and evaluate the fitness function, and the PSO algorithm to
search a large region in the solution space, as shown in the
flowchart of Fig. 6.

III. NUMERICAL RESULTS

All the numerical experiments are performed on a PC
with 64 GB of RAM and Intel1 Xeon1 CPU E5-2620 V4

1Registered Trademark.

Fig. 7. FSS model. (a) Finite FSS consisting of 30 × 30 cells. (b) Unit cell
of original model. (c) Unit cell of modified model.

processor at 2.10 GHz. The relative error in our radar cross
section (RCS) computations is defined as

τ = |σ − σref|
|σref| (22)

where σ and σref are the bistatic RCS in m2 calculated by the
proposed method and a reference method, respectively.

A. Frequency Selective Surface

FSSs are another kind of metamaterial. First, we consider
the FSS shown in Fig. 7 as an example. This FSS con-
sists of 30 × 30 cells, and each unit cell has a size of
200 mm × 200 mm. It is located in the xy plane and centered
at the origin. The main structure of the unit cell is shown in
Fig. 7(b). The modified model has an additional structure at
the center, as shown in Fig. 7(c). The incident x-polarized
plane wave at 11.5 GHz impinges normally in the direction
(θ , ϕ) = (0◦, 0◦). The original model and the modified one
are discretized into 82 800 and 90 000 Rao- Wilton- Glisson
(RWG) basis functions, respectively. That means there are
seven 200 RWG basis functions added in the modifications.

In order to assess both the accuracy and the efficiency of the
proposed SDPMP-MSCBD method, we compare the computed
RCS with that of a straightforward MSCBD implementation
that solves the original structure and the modified structure
independently. The RCS results are shown in Fig. 8. The
results are practically identical between the two approaches,
demonstrating that the proposed approach does not deteriorate
the accuracy.

The computation times and memory requirements are sum-
marized in Table III. For the original structure, the two
approaches are identical. However, by taking advantage of
the work done for the original model, the proposed method
reduces the computation time for the modified model by
a factor 3.5. The proposed method does need some extra
memory. This is inevitable when the modification structure
is as sparsely distributed as in this example: all 900 unit cells
are modified.
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Fig. 8. Bistatic RCS of the FSS of Section III-A. (a) RCS comparison.
(b) Relative RCS error.

TABLE III

TIME AND MEMORY COST COMPARISON

OF MSCBD AND SDPMP-MSCBD

B. Active Frequency Selective Surface

In Fig. 9, an active FSS (AFSS) model [21] is taken as the
example. This AFSS has 20 × 20 cells, and it is discretized
into 56 480 RWG basis functions: 55 680 RWGs for the main
structure and 800 for the active devices (two p-i-n diodes per
cell). When the p-i-n diodes are switched ON, their resistance
is about 2 �. When, on the contrary, no bias is provided to the
p-i-n diodes, the configuration switches to a high resistance
(2 k�). As in the previous example, there is an incident
x-polarized plane wave at 3.4 GHz propagating in the direction
(θ , ϕ) = (0◦, 0◦).

Fig. 9. AFSS model (similar to the model in [21]). (a) 20 × 20 finite AFSS.
(b) Top view of its unit cell. (c) 3-D view of the unit cell.

Fig. 10. Bistatic RCSs of the AFSS.

TABLE IV

TIME COST COMPARISON OF MSCBD AND SDPMP-MSCBD
IN THE AFSS EXAMPLE

Fig. 10 shows the bistatic RCS of the AFSS when all the
p-i-n diodes are ON and when they are OFF. The results of
our method compare well with the MSCBD. The computation
times are shown in Table IV. Our method reduces the time for
the modified (p-i-n OFF) state by a factor of 9660 after the
calculation of the p-i-n ON-state.

Subsequently, we study the effect on the RCS of the AFSS
when several p-i-n diodes are damaged. The results when 20%,
40%, 60%, and 80% of the p-i-n diodes at random positions are
damaged are shown in Fig. 11(a)–(d), respectively. A damage
of 20% means, for instance, that 160 (800 × 20%) randomly
chosen p-i-n diodes are modeled with a high resistance (2 k�)
regardless if bias voltage is provided to them or not. In each
figure of Fig. 11, the results are shown for ten different random
configurations of the damaged p-i-n diodes. With our method,
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Fig. 11. Bistatic RCS of the AFSS with the p-i-n diodes damaged. (a) 20%
p-i-n diodes damaged. (b) 40% p-i-n diodes damaged. (c) 60% p-i-n diodes
damaged. (d) 80% p-i-n diodes damaged. The blue curves show the RCS with
different random configurations of damaged p-i-n diodes. The red curves show
their boundary.

Fig. 12. Model of reconfigurable antenna. The details of the geometry can
be found in [22].

the entire calculation takes only 318.9 s. With the conventional
MSCBD, it takes 3.2 h.

C. Reconfigurable Antenna

The reconfigurable antenna designed and measured in [22]
has been analyzed with SDPMP-MSCBD. It consists of a
set of switchable patches, as shown in Fig. 12. The patches
feeding is controlled by 12 p-i-n diodes for radiation pattern
reconfiguration. The switch ON-state of each p-i-n diode is
modeled as a serial resistance (RON = 3.5 �) and the
OFF-state is modeled as an R–C shunt circuit (ROFF = 2.6 k�
and COFF = 0.17 pF). The operating frequency is 2.45 GHz.

The antenna has been modeled with the volume inte-
gral equation (VIE)–surface integral equation (SIE) formula-
tion [23]. The patches’ surface is discretized into 3346 RWG
and the substrate volume into 9868 Schaubert-Wilton-Glisson
(SWG) basis functions. The active p-i-n diodes have 24 RWG
basis functions, for a total of 3370 RWG.

Fig. 13. Gain pattern of the configurations with maximum gain at angular
directions θ = −60◦, −30◦, 0◦ , 30◦ , and 60◦ . (a) Simulated by SDPMP-
MSCBD. (b) Measured results from [22].

TABLE V

TIME COST OF MSCBD AND SDPMP-MSCBD
FOR DIFFERENT CONFIGURATIONS

Fig. 13 compares the simulated and measured radiation
pattern gain for different configurations, in which the direction
of the main lobe is θmax = −60◦, −30◦, 0◦, 30◦, and 60◦.
The simulated results have been obtained with the SDPMP-
MSCBD solver. The different patch configurations are coded
as [s1, s2, . . . , s12], where 1’s and 0’s, respectively, represent
the diode ON- and OFF-states.

Simulated and measured results corresponding to the same
configuration code have the same pattern maximum direction
and gain. There are minor differences due to the usual discrep-
ancies between the numerical model and the measured setup.

The computation time of the SDPMP-MSCBD and the
conventional MSCBD for different configurations is shown
in Table V. SDPMP-MSCBD takes about 20% longer for the
analysis of the first configuration (θmax = 0◦) but is extremely
fast for the remaining ones, while MSCBD must repeat the
whole computation.

D. Programmable Metasurface

As a final example, we consider a similar programmable
metasurface from [24], shown in Fig. 14. It contains 16 ×
16 cells, and it is discretized into 127 964 RWG basis
functions: 127 708 for the main structure and 256 for the
p-i-n diodes. The p-i-n diodes used here are the same as those
in Section III-B. Fig. 14(b) and (c) shows the structure of a
unit cell. Three kinds of programmed states are considered,
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Fig. 14. Programmable metasurface model (similar to the model in [24]).
(a) 16 × 16 finite programmable metasurface. (b) Top view of its unit cell.
(c) 3-D view of the unit cell. (d) Three kinds of programmed states.

Fig. 15. Bistatic RCS comparison of the MSCBD and SDPMP-MSCBD, for
the diodes in state 1.

as shown in Fig. 14(d). All of them are illuminated by an
impinging x-polarized plane wave at 23 GHz with an incident
direction of (θ , ϕ) = (0◦, 0◦). State 1 in Fig. 14(d) is chosen as
the example to compare the results of MSCBD and SDPMP-
MSCBD. The bistatic RCS, shown in Fig. 15, corresponds very
well between the two approaches. Table VI summarizes the
computation times for all three states. Although the proposed
method costs a bit more time for state 1, the subsequent
computation times for the other states are practically negli-
gible. Fig. 16 shows how the reflected beam angles of the
programmable metasurface are controlled by the different
states.

Next, we consider the optimization of the reflected beam
angle. The aim is to obtain the diode states that approximate
as best as possible the desired reflected beam shown in Fig. 17
(black line). The fitness function of this optimization problem

Fig. 16. Bistatic RCSs of the three states in Fig. 14(d).

TABLE VI

TIME COST COMPARISON OF MSCBD AND SDPMP-MSCBD

Fig. 17. Bistatic RCS optimized with the BPSO algorithm (red dashed line)
compared to the desired RCS (black line).

is defined as

Fitness =
Nsample∑

i=1

|σ(i) − σdes(i)| (23)

where σ is the calculated bistatic RCS and σdes are the desired
RCS. Nsample is the total number of scattering angle samples,
set to 181 in our example.

We chose the binary tree PSO (BPSO) algorithm [18]
combined with our SDPMP-MSCBD method. Its learning
factors are all set to 1.2. The inertia weight is 0.8 and the
number of initial swarm particles is 10.

The optimized RCS is shown in Fig. 17 (red dashed line).
The goal of the desired RCS is to obtain two beams toward
−10◦ and 10◦. It can be found that the optimized RCS has
realized the goal of the desired RCS. The fitness function of
the BPSO calculated with (23) and the final programmable
metasurface state are shown in Fig. 18. The first iteration step
costs about 33.3 min. The total time for the next 49 iteration
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Fig. 18. (a) Evolution of the BPSO fitness function and (b) final state of the
programmable metamaterial.

steps is 428.7 s. Every step takes only 8.75 s, while they would
cost about 29.0 min with the conventional MSCBD.

IV. CONCLUSION

In this article, we have introduced the SDPMP and we
have improved the H-matrix-based direct solver MSCBD to
solve the SDPMP in a very short time for each new set of
modifications. The improved version of MSCBD presented
here is able to efficiently solve the problem when there is
a large set of sparsely distributed small modifications.

The numerical results that we have obtained for active and
passive metasurfaces and a reconfigurable antenna show that
the combination of the SDPMP and the improved MSCBD
leads to a great improvement in computation time, espe-
cially for metasurfaces loaded with sparsely distributed active
devices.

We have also shown that the application of SDPMP-
MSCBD with a global optimization algorithm like PSO
becomes a very powerful tool for the design of reconfigurable
reflective metasurfaces, improving the computation time by a
factor 200 compared with standard MSCBD. Similar results
are expected for other interesting electromagnetic optimization
problems, such as the design of reconfigurable antennas.
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