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Summary

Novel architectures leveraging long and variable vector lengths like the NEC

SX-Aurora or the vector extension of RISCV are appearing as promising solutions on

the supercomputing market. These architectures often require re-coding of scientific

kernels. For example, traditional implementations of algorithms for computing the fast

Fourier transform (FFT) cannot take full advantage of vector architectures. In this arti-

cle, we present the implementation of FFT algorithms able to leverage these novel

architectures. We evaluate these codes on NEC SX-Aurora , comparing them with the

optimized NEC libraries; and in a prototype of a RISC-V core with a vector processing

unit. We present the benefits and limitations of two approaches of RADIX-2 FFT vector

implementations. We show that our approach makes better use of the vector unit of the

NEC SX-Aurora , reaching higher or equal performance than the optimized NEC library.

More generally, we prove the importance of maximizing the vector length usage of the

algorithm, taking advantage of the FFT properties to reduce long-latency vector oper-

ations, and reordering the instructions according to the specific hardware features to

boost the performance of FFT-like computational kernels.
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1 INTRODUCTION

Accelerated computing is becoming more and more relevant in high-performance computing (HPC). The limitation to the performance improve-

ments imposed by the slow-down of Moore’s law applied to general purpose CPUs has made HPC architects looking for solutions that can

complement the computational power delivered by standard CPUs (i.e., accelerators). The most visible example of this are GP-GPU based systems,

that populate 3 places within the first 5 most powerful supercomputers in the world (Top500).

GP-GPUs, however are not the only approach to acceleration: the use of vector or SIMD extensions is becoming more and more relevant in

HPC systems. Beside the AVX-512 SIMD extension by Intel, we detect appearing on the market the first CPU implementing the Arm SVE extension

(Fujitsu A64FX, ranked first in the Top500) and the NEC SX-Aurora vector engine, a discrete accelerator leveraging vector CPUs able to operate

with registers of up to 256 double precision elements. On top of this market movements, we cannot ignore the RISC-V architecture which recently

ratified v1.0 of the V-extension, boosting vector computation from the academic world and the open-source community.

The efficient use of vector accelerators often require to adapt or rewrite classical algorithms to exploit their full computing power. In most

cases, vendor specific libraries coupled with optimized compilers allow to port large HPC codes to vector accelerators in a relatively smooth way.
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For portability reasons however, scientists often look for open-source libraries including kernels already optimized for specific architectures. The

computation of the Fourier transformation using the FFT algorithms is an example of a relevant HPC kernel extremely used by the HPC community.

For this reason we focused this article on the design and the evaluation of non-parallel vectorized FFT implementations.

The main contributions of this article are: (i) we developed four implementations of the FFT algorithms targeting large vector architectures; (ii)

we evaluate our FFT codes on the NEC SX-Aurora accelerator and a RISC-V core leveraging a vector extension, analyzing benefits and limitations of

each architecture with an in depth study of the single-core performance; (iii) we compare our performance results with the vendor library distributed

by NEC; (vi) we extend the scheduling capabilities of the RISC-V compiler so to optimally leverage the underlying hardware.

This article is an extension of Reference 1: we include new algorithmic improvements of our FFT implementations, a more comprehensive

evaluation on vector architectures (including a RISC-V based vector system), and the development of scheduling policies oriented to improve the

performance of the code generated by the LLVM compiler employed on both vector architectures.

The remaining part of the article is structured as follows: Section 2 compiles the related work in the field of FFT implementations for HPC

systems; Section 3 briefly presents the NEC SX-Aurora accelerator and the RISC-V system employed in our evaluation; Section 4 analyzes the opti-

mizations targeting large vector architectures; Section 5 includes the measurements gathered on NEC SX-Aurora and the RISC-V architecture;

Section 6 closes the article with general remarks and conclusions.

2 RELATED WORK

FFT is a kernel of paramount importance in several algorithms of scientific computing. Therefore, a large body of research about FFT optimization

on many architectures has been published in the last decades. The key reference publications used as background for our implementations are the

book of Chu et al.2 the article of Pease,3 and the article of Swarztrauber.4

More recently, the research community is focusing on developing efficient FFT implementations targeting emerging architectures with different

degrees of parallelism, for example, high number of cores and long SIMD or vector units. Chow et al.5 report their effort in taking advantage of the

IBM Cell BE for the computation of large FFTs; Anderson et al.6 make use of FPGAs for accelerating 3D FFTs; Wang et al.7 present an FFT optimization

for Armv8 architectures; Malkovsky et al.8 evaluate FFTs on heterogeneous HPC compute nodes including GP-GPUs. Most of those studies are

limited to up to 8-elements SIMD units in CPUs or high thread-level parallelism in GPUs while the implementations proposed in our article are

targeting wider vector units.

Bailey9 and Swarztrauber4 studied various FFT algorithms, including Pease’s and Stockham’s, for the firsts vector computers which were limited

by their inefficiency accessing non continuous data. The algorithms they propose have a minimum vector length of
√

N at best, which is lower than

our algorithm’s N
8

. Moreover, our implementations propose an exploitation of the data locality in the many vector registers that the SX-Aurora has,

reducing the accesses to the main memory. Furthermore, our method extends the approach of Franchetti et al.10 since we explore larger FFT sizes

as well as double precision data types.

Promising results for acceleration with the NEC SX-Aurora accelerator have been shown for SpMV in Reference 11 and for spectral element

method for fluid dynamics in Reference 12. We extend those evaluation efforts of NEC’ accelerator with FFT. This article continues the work done

in the thesis from Pablo Vizcaino Serrano.13

3 HARDWARE PLATFORMS

We evaluate our implementations on two systems capable of using long vectors: the NEC SX-Aurora and a RISC-V core that uses the RISC-V Vector

extension (RISC-V V).

3.1 The NEC SX-Aurora

We implemented and evaluated our FFT codes targeting the NEC SX-Aurora VE (VE), the latest NEC’s long vector architecture which combines SIMD

and pipelining. Vector units and vector registers use a 32 × 64-bit wide SIMD front in an 8-cycles deep pipeline resulting in a maximum vector length

of 256 × 64-bit elements or 512 × 32-bit elements. The VE10B processor used for this publication was presented at the IEEE HotChips 2018,14 and

the first performance evaluation was described in the same year.15

Each of the 8 VE cores consists of a scalar processing unit (SPU) and a vector processing unit (VPU) and is connected to a shared last level cache

(LLC) of 16 MB. Three fused multiply-add vector units deliver a peak performance of 269 GLFOPS (double precision) per core at 1.4 GHz. The peak

performance of the used VE variant is 2.15 TFLOPS delivering a byte/FLOP ratio of 0.56.

Vector engines are integrated as PCIe cards into their host machines. Programmers can use languages like C, C++, Fortran, and parallelize with

MPI as well as OpenMP, while accelerator code can still use almost any Linux system call transparently. The proprietary compilers from NEC support
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automatic vectorization aided by directives. They are capable of using most features of the extensive vector engine ISA* from high-level languages

loop constructs. For the work presented in this article, we employed the open-source LLVM-VE project†, which supports intrinsics allowing tight

control over VE features to operate with complex numbers, control vector registers, and LLC cache affinity.

3.2 RISC-V core with vector processing unit (VPU)

We use an experimental setup for the evaluation of the RISC-V Vector extension (RISC-V “V”) which is a platform composed by an FPGA and a

host-x86 server. The server is a commodity server used to program the FPGA and to communicate with it, without any effect in the evaluation of

our implementation. The FPGA board is the Virtex UltraScale+HBM VCU128 FPGA Evaluation Kit ‡, powered by a VU37P FPGA §.

Within the FPGA logic are mapped a RISC-V core tightly coupled with a VPU. The VPU has eight lanes, each having a floating point unit (FPU) con-

nected to the RISC-V scalar core. Each vector register has a width of up to 16,384 bits per vector (256 double precision elements). The computational

throughput of the system is 16 double precision FLOPs/cycle and it runs at a frequency of 50 MHz.

The scalar core is called Avispado and has been developed by Semidynamics¶. The VPU is called Vitruvius and has been developed by the

Barcelona Supercomputing Center#. The interconnection of the different RTL components as well as the L2 cache has been developed by the

Foundation for Research and Technology-Hellas||.

The system supports a lightweight Linux kernel based on busybox providing basic functional operations. We leverage an LLVM-based compiler

developed at the Barcelona Supercomputing Center which supports builtins for vector instructions**. As with the compiler for the NEC SX-Aurora ,

autovectorization is also supported, but our implementations look to exploit the vector instructions directly via builtins.

4 IMPLEMENTATION

Our implementations are centered around 1-Dimensional FFTs, as our work serves as a starting point in vectorizing the FFT kernel for these new

architectures. All implementation ideas from this article can be later applied to an FFT with more dimensions.

There exist multiple algorithms for the computation of the FFT, each with its benefits and disadvantages from the computational point of view.

In this article, we focus on a subset of algorithms, those that are denominated RADIX-2. Considering an FFT with N being the number of transformed

elements, a RADIX-2 FFT requires N to be a power of two and divides the required computation into log2(N) phases. With a higher RADIX, the num-

ber of complex multiplications needed to do the transform is reduced, but the memory access patterns’ complexity increase. Since one of the biggest

challenges when vectorizing for large vector lengths are memory access, we decided to stick with the relative simplicity of RADIX-2. FFT algorithms

are also split into in-place and out-of-place, with the latest requiring an additional buffer alongside the input and output arrays. All implementations

proposed in this article are out-of-place since our objective is an efficient vectorization and not a reduced memory footprint. Moreover, some FFT

algorithms require a permutation of the resulting elements and others are self-sorting. In this article, we study both approaches.

All implementations in this article are designed for complex double-precision data. The visual representations of the algorithms shown in this

article are simplified, presenting only the real component because the computation of the imaginary component is conceptually equivalent to its

real counterpart.

For the FFT calculation, we often refer to twiddle factors. W is the set of the twiddle factors, which are complex exponents computed as

tf(k,N)=e
−2𝜋ik

N , with k ∈ {0,N − 1}.

4.1 Pease FFT

4.1.1 Description

The first vectorized implementation is the FFT algorithm developed by Pease.3 In terms of arithmetic operations, each phase of a naive Pease’s FFT

implementation requires N∕2 additions, N∕2 subtractions, and N∕2 multiplications. One critical downside of Pease’s algorithm is the permutation

requirement at the end of the last phase. Modern vector ISAs offer instructions to load and store scattered data, but they are typically less efficient

than those that operate on contiguous or constant-strided data.

Pease’s algorithms is characterized by a constant geometry, that means that the same elements are operated in each of the log2(N)phases. More

specifically, the first half of the N elements operate with the second half of each phase. This leads to a potential N∕2 elements that can be operated

simultaneously (i.e., vector length of N∕2). Once a phase has been calculated, the vector registers no longer hold the first and second half of the N

elements, so they must be shuffled. Not all vector architectures have an in-register shuffle instruction (RISC-V has vrgather.vv), in this case it must

be emulated using memory scatter and gather instructions.

 15320634, 2023, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7424 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [15/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 14 VIZCAINO ET AL.

F I G U R E 1 8-Pease vectorization for N = 16.

4.1.2 Vectorization

To mitigate the slowdown introduced by the need of accessing the memory in each phase, we propose an implementation of the Pease algorithm

that distributes the N elements in eight registers instead of two. Sacrificing some potential vector length and using a precise distribution, this allows

us to compute three phases before having to reorder the elements in memory.

A visualization of this technique is shown on the right of Figure 1. This implementation is named 8-Pease in the rest of the article. It uses a

potential vector length of N∕8 and only accesses memory every three phases, while still needing the data permutation at the final stage of the

algorithm. The downside of having an upper limit on the vector length of N∕8 instead of N∕2 is suppressed for large FFT sizes where N∕8 is larger

than the maximum vector length (256).

In Figure 1, we also show that the twiddle factors are different in each phase; therefore, our first approach is to pre-compute them for each

phase and to load them as the algorithm advances. The reason for not computing the twiddle factors during the execution is that they require the

cosine operation, which is not present in the vector instruction set. Therefore, one needs to scalar compute them, store them in memory, and load

them in vector registers.

The pseudocode of the 8-Pease implementation is given in Algorithm 1.

Note that unlike Figure 1, the pseudocode shows the operation of the real and imaginary parts. The vector loads, the PairOperations, and the

stores have been grouped for simplicity. The dark red elements from Figure 1 are loaded in reg1, the light reds in reg2 and so forth. The function

3×4_PairOperation is equivalent to executing the function in Algorithm 2 for 3 phases with 4 PairOperations each. All vector instructions operate on

N/8 vector elements. In reality, both NEC and our RISC-V system limit the vector length to 256 double precision elements, requiring our code to

compute the phases in various iterations.

4.1.3 Optimizations

The function PairOperation() in Algorithm 2 takes advantage of fused operations to calculate the complex multiplication. Remember that the multi-

plication of two complex numbers, (a + b ⋅ i) ⋅ (c + d ⋅ i) = (e + f ⋅ i) normally requires 7 operations: e = a ⋅ c − b ⋅ d, and f = a ⋅ d + b ⋅ c. We can group

operations to have 2 multiplications and 2 fused operations (operations calculated with a single instruction are encapsulated using parenthesis):

t1 = (a ⋅ c), and t2 = (a ⋅ d), so that e = (t1 − b ⋅ d) and f = (t2 + b ⋅ c).
We can apply some optimizations to the loading of twiddle factors. Considering a large enough vector length, each phase of the FFT requires

four vector registers holding twiddle factors, one for each PairOperation described in Algorithm 2. In the proposed implementation of 8-Pease we

grouped three phases together to spare memory accesses, so we can say that each group of three phases needs to load 12 vectors of twiddle factors.

Looking at Figure 1, it can be noted that there are only N∕2 different twiddle factors (W0,W1, … WN∕2−1). More precisely, the number of different

twiddle factors to be used in each phase is exactly half of the previous one.
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Algorithm 1. 8-Pease pseudocode

1: procedure FFT_8Pease(Arr)
2: for p ∈ [1 ∶ 3 ∶ log2(N)] do

3: reg_{0, 1, … 7}_r ← v_ld(&real(Arr[{0, 1N∕8, … 7N∕8}]))
4: reg_{0, 1, … 7}_i ← v_ld(&imag(Arr[{0, 1N∕8, … 7N∕8}]))
5: 3 × 4_PairOperation()
6: if p < log2(N) then

7: v_st_strideds(res_{0, 1, … 7}_r, &real(Arr[{0, 1, … 7}], stride = 8)])
8: v_st_strideds(res_{0, 1, … 7}_i, &imag(Arr[{0, 1, … 7}], stride = 8)])
9: else

10: vindex ← v_load(&indexes[0])
11: v_st_scatters(res_{0, 1, … 7}_r, base = real(Arr), index = vindex + {0, 1N∕8, … 7N∕8})
12: v_st_scatters(res_{0, 1, … 7}_i, base = imag(Arr), index = vindex + {0, 1N∕8, … 7N∕8})
13: end if

14: end for

15: end procedure

Algorithm 2. PairOperation pseudocode

1: procedure PairOperation(reg1_r, reg1_i, reg2_r, reg2_i)
2: res1_{r, i}← reg1_{r, i} + reg2_{r, i}
3: res2_{r, i}← (reg1_{r, i} − reg2_{r, i}) ∗ W_{r, i}
4: return res1_{r, i}, res2_{r, i}
5: end procedure

F I G U R E 2 Example of the proposed accesses to twiddle factors using gather operations

The repetition of the twiddle factors across the FFT brings four important observations: (i) we are wasting memory since we were storing all of

them for each phase; (ii) we are missing potential cache locality; (iii) for advanced phases, we could access a single twiddle factor per register and

then replicate it; (iv) we could reuse the identical twiddle factors instead of loading them again.

Considering the first two observations, another implementation of the Pease algorithm is proposed. As the phases advance, some twiddle fac-

tors inside each vector have the same value, so we do not need to load them from replicated positions in memory. To implement this optimization,

we use gather vector instructions to load the twiddle factors. In reality, gather instructions offer a more general functionality than what we require

since they are meant to load sparse data, while we need strided chunks of data. However, since no ad hoc instructions exist for either RISC-V “V” nor

the NEC architecture, we implemented this version using gather instructions. In NEC architecture, gather operations require a vector with absolute

addresses to index the memory. We use two registers, one holding the constant relative indexes that are reused during the execution and another

temporarily holding the absolute indexes after adding the offset. A graphical representation of the use of gather operation is provided in Figure 2,

with its code equivalent in Algorithm 3. In the case of RISC-V “V”, the gather operations can work with a base address and a vector with relative

offsets to it, so the adding instruction in line 4 of Algorithm 3 can be omitted. This implementation is named 8-Pease-gt in the rest of the article.
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Algorithm 3. Gather access to twiddle factors pictured on Figure 2

1: _vr indexes = _vel_vseq_vl(VL); ⊳ 0,1,2,3,…

2: indexes = _vel_vand_vsvl(∼ (0x1), indexes,VL); ⊳ 0,0,2,2,…

3: indexes = _vel_vsll_vvsl(indexes,3,VL); ⊳ 0,0,8,8,…

4: indexes = _vel_vaddul_vsvl(addr, indexes,VL); ⊳ 0xA000,0xA000,0xA008,…

5: _vr W = _vel_vgt_vvssvl(index,N∕8,VL);

We apply another optimization to the loading of twiddle factors, present in both 8-Pease and 8-Pease-gt. This one follows the observation that

for each group of three phases, half of the vector registers have the same twiddle factors (e.g., in Figure 1, the dark blue register and the light red

register of the second phase both hold W[0] and W[2] as their first and second element). In the third phase, the elements are identical for all registers.

This means that for each group of three phases, we load 4 vector registers in the first one, 2 in the second one and 1 in the last one, only needing to

load 7 twiddle factor registers instead of 12.

The loading of the twiddle factors can be optimized even further, taking advantage of trigonometric symmetries. Remember that they are com-

puted as a complex exponent, so the real part is computed as tf(k,N)=cos( −2𝜋ik
N
) and the imaginary part as tf(k,N)=sin( −2𝜋ik

N
), with k ∈ {0,N − 1}.

Given k and k′ such that k′ = k + N
4

, the real component of the twiddle factor tf(k′,N) is equal to the imaginary component of tf(k,N), and the imaginary

component is equal to the real component of the other twiddle factor but with opposite sign.

Coincidentally, the 4 vector registers with twiddle factors of each first phase are separated from one another by N
8

degrees, so the previously

described symmetry property can be applied to two of them, reducing the 4 accesses to just 2. In each second phase, the two vectors are separated

by N
4

degrees, so the 2 accesses can be reduced to just 1.

In summary, we started with 12 twiddle factors accesses per group of three phases, and thanks to trigonometric properties and a precise

distribution of twiddle factor in the vector registers, we reduced the number of accesses to 4.

4.2 Stockham FFT

4.2.1 Description

The other algorithm that has been studied for vectorization is Stockham’s algorithm.4 While the algorithm is still RADIX-2 and out-of-place, it has

two main differences from Pease’s algorithm. The first one is that it is a self-sorting algorithm, so it does not require a permutation at the last

phase. The second difference is that Stockham’s algorithm does not have constant geometry like Pease’s. This complicates the algorithm and its

vectorization, limiting the maximum vector length depending on the phase.

4.2.2 Vectorization

Using the same approach as with 8-Pease, we can divide the N elements of each phase into eight vector registers to compute three phases before

rearranging the elements in memory.

Due to the self-sorting nature of the algorithm, the process of storing and loading the elements changes for every three phases. With p being

the phase where the loads occurs, the stores on p + 3 consist of vector length
2p groups of 2p consecutive elements. Since an instruction that writes several

consecutive elements before jumping a fixed stride does not exist in NEC’s architecture, we have two options in the implementation. We can limit

the vector length of the problematic phases to be equal to the size of the groups, 2p. Since all the twiddle factors have the same value inside a group,

we could use a broadcast operation to load them. The downside of this option is that for phases 3–5 and 6–8 this means limiting the vector length

to 8 and 64. With SX-Aurora ’s maximum vector length of 256, this limit implies not taking full advantage of the vectorization potential.

If we do not want to limit the vector length, we can store values with a scatter operation and load twiddle factors with a gather. The initial interest

in using the Stockham algorithm was removing this type of memory operations, so adding them again may seem counterproductive, even though

the pattern of Stockham’s scatter operations contains consecutive elements while Pease’s is sparser. This difference is represented in a simplified

example diagram in Figure 3.

Regardless, using these long-latency instructions at the end of these particular phases outperforms having up to 32 times more instructions

during three phases when limiting the vector length to 8, so the final implementation uses scatters.

A simplified pseudocode of this alternative is shown in Algorithm 4. We call this algorithm 8-Stockham. Concerning the optimizations of this

implementation, we applied the same improvements to complex operations and twiddle factor loading as with the Pease implementation.

 15320634, 2023, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7424 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [15/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VIZCAINO ET AL. 7 of 14

F I G U R E 3 Simplified example of the scatter operations used in Pease and Stockham’s algorithms, with a vector length of 8 elements.

Algorithm 4. 8-Stockham pseudocode

1: procedure FFT_8Stockham(Arr)
2: reg_{0, 1, … 7}_r ← v_ld(&real(Arr[{0, 1N∕8, … 7N∕8}]))
3: reg_{0, 1, … 7}_i ← v_ld(&imag(Arr[{0, 1N∕8, … 7N∕8}]))
4: 3 × 4_PairOperation()
5: v_st_strideds(res_{0, 1, … 7}_r, &real(Arr[{0, 1, … 7}]), stride = 8)
6: v_st_strideds(res_{0, 1, … 7}_i, &imag(Arr[{0, 1, … 7}]), stride = 8)
7: gsize = 8

8: for p ∈ [4 ∶ 3 ∶ log2(N)] do

9: reg_{0, 1, … 7}_r ← v_ld(&real(Arr[{0, 1N∕8, … 7N∕8}]))
10: reg_{0, 1, … 7}_i ← v_ld(&imag(Arr[{0, 1N∕8, … 7N∕8}]))
11: if gsize < VL then

12: gatherW()
13: 3 × 4_PairOperation()
14: vindex ← v_load(&indexes[0])
15: v_st_scatter(res_{0, 1, … 7}_r, base = real(Arr), index = vindex + {0, 1gsize, … 7gsize})
16: v_st_scatter(res_{0, 1, … 7}_i, base = imag(Arr), index = vindex + {0, 1gsize, … 7gsize})
17: else

18: broadcastW()
19: 3 × 4_PairOperation()
20: v_st(res_{0, 1, … 7}_r, &real(Arr[{0, 1N∕8, … 7N∕8}]))
21: v_st(res_{0, 1, … 7}_i, &imag(Arr[{0, 1N∕8, … 7N∕8}]))
22: end if

23: gsize = gsize ∗ 8

24: end for

25: end procedure

5 EVALUATION

In this section, we study the performance of our implementations in the vector accelerator from NEC, the SX-Aurora , and in an experimental setup

that uses a RISC-V core named Avispado alongside a VPU implementing the RISCV. We measure the real-time used to compute the FFT, including

the communication to the accelerator or the vector unit and other system interferences. The pre-computation is disregarded because it can be used

for multiple FFT of the same size.

5.1 Evaluation of NEC SX-Aurora

NEC has optimized math libraries called NEC library collection (NLC)††. Our usage of NLC is limited to aslfftw, a vectorized FFT whose interface is

compatible with fftw. First, we have compared the performance of the proposed implementations in Section 4 with aslfftw, computing it as a speedup

to a scalar (i.e., without vector instructions) fftw, compiled with NEC’s compiler ncc.

We see in Figure 4 how our implementations outperform aslfftw until an FFT size of 65,536 elements. From that point on, aslfftw doubles the

performance of our Pease’s implementations, while 8-Stockham only underperforms aslffw by a small margin. It is also notable that while 8-Pease-gt

was designed to improve 8-Pease, it obtained a lower performance.
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8 of 14 VIZCAINO ET AL.

F I G U R E 4 Speedup in NEC of the proposed vectorized FFT implementations and aslfftw.

F I G U R E 5 Total instructions (top left), vectorization percentage (top right), scalar instructions (bottom left) and vector instructions (bottom
right) of the evaluated implementations.

In Figure 5, we show information about vector and scalar instructions of the implementations. The first clear observation is that NEC’s imple-

mentation executes many more instructions than our implementations for all sizes, especially for small to medium sizes. This difference is even

greater when looking just at scalar instructions.

In terms of vector instructions, our implementations execute approximately 20% more instructions than aslfftw for sizes bigger than 65,536.

This disparity suggests a core difference in the FFT algorithm between our implementation and NEC’s. The number of floating-point operations is

related to the used RADIX in the FFT computation. These results suggest that aslfftw is using a different (bigger) RADIX for larger transforms since

that would reduce the number of needed operations.

Second, our implementations accomplish a higher vectorization ratio than aslfftw, lingering at 40% for small to medium sizes and rising to 70%

in large sizes. Aslfftw vector instructions represent less than 20% of the total instructions for small and medium sizes and do not reach 50% in the

best case.

To better understand the difference in instructions, we have to consider the number of elements being operated with each vector instruction.

In Table 1 we display the average vector length used by the implementations, with greener colors indicating a higher vector length.

We show that our proposed implementations are able to use the maximum vector length, 256 64-bit elements, with smaller problem sizes than

aslfftw. This implies a better usage of the vector unit and a reduction in the number of instructions since each one is doing more operations.
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VIZCAINO ET AL. 9 of 14

TA B L E 1 Average vector length in elements for different FFT sizes and implementations.

F I G U R E 6 Vec arith (left) and load (right) cycles of our implementations wrto. aslfftw.

A pair of relevant counters to understand the performance of the implementations is vec_arith_cyc and vec_load_cyc, which count the cycles spent

in arithmetic vector instructions and load vector instructions respectively.

In Figure 6, we see the number of cycles used by arithmetic and load vector instructions with respect to aslfftw. Our implementations execute

approximately 25% more cycles doing vector arithmetic operations than aslfftw for larger FFT sizes. The finer grain of using a small vector length

of aslfftw can allow it to be more precise with arithmetic optimizations, but the significant disparity in large sizes strengthens the theory of aslfftw

using a higher FFT RADIX for large transforms.

A much larger difference is present in load vector cycles. We find a notable spike in the cycles spent by our Pease’s implementation in size

65,536, needing four times more cycles to load vector elements than aslfftw. On the following sizes, the Pease’s implementations are doubling the

cycles spent in this task. A smaller but still significant spike is also found at that size for the 8-Stockham implementation, but in the following sizes it

gets to aslfftw level again.

We would also like to study the vector cycles spent in-store operations, but these cycles are not mapped in any hardware counter present in the

architecture.

To study if the increment in vector load cycles of our Pease’s implementations is due to loading more elements or due to slower loads, in Figure 7

we show how many vector elements are being loaded per each cycle spent in vector load instructions, as a metric of “efficiency” of the vector loads.

We also show the implementations’ vector load cache hit ratio, since it can be related to slower loads.

The left plot of Figure 7 shows that the vector load cycles difference between 8-Stockham and aslfftw on size 65,536 is explained by our

implementation having a lower vector load efficiency than aslfftw at that specific point.

Moreover, there is a big difference between our Stockham and Pease’s implementations when looking at the load efficiency on the left of

Figure 7. Our Pease implementations start with a load efficiency greater than Stockham but it drops at FFT sizes of 8 k-elements and 64 k-elements.

8-Pease and 8-Stockham present a nearly identical cache hit ratio as seen on the left of Figure 7, and they load the same number of elements from

memory. Considering that the vector load efficiency is not strongly lowered for 8-Stockham at the size 65,536, we can suggest that the difference in

the efficiencies between implementations is caused by an unfavorable memory access pattern inherent to Pease’s algorithm, presumably related to

the scatter operations executed at the last phase of the implementation, since the address distance between each element in these scatters grows

as the FFT size increases.

We also note in the left plot of Figure 7 that the usage of the gather instruction in 8-Pease-gt does not accomplish its intended results since it

lowers the efficiency of vector load instructions with respect to 8-Pease instead of improving it. The theoretically better memory access of 8-Pease-gt

is reflected in the cache hit-ratio, when comparing it to 8-Pease.
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10 of 14 VIZCAINO ET AL.

F I G U R E 7 Vec. load elements per vec. load cycle (left) and hit ratio (right)

F I G U R E 8 Port conflict cycles divided by total cycles of the Pease and aslfftw implementations

We also have access to another counter named Port Conflict cycles. While its documentation is scarce, it is related to conflicting accesses to

memory devices and gives more insight into the Pease algorithm’s vector load efficiency drop. In Figure 8, we show the proportion of cycles from

the total execution that are spent in these port conflicts. There are no lines for the Stockham implementations, since not a single cycle is counted

as a Port Conflict in their execution. At the first point where the performance of the Pease algorithm dropped, 8K elements, the Port Conflict cycle

proportion rises to 47% of the total cycles. Then, at 64K it rises again to 55%.

5.2 Evaluation of RISC-V “V”

In the case of RISC-V, we do not have an optimized FFT library to be taken as a reference as we had with NEC and the aslfftw. The comparison point that

we use is a scalar FFTW compiled with GCC for RISC-V. In the left plot of Figure 9 we show that the 8-Stockham implementation reaches a maximum

speedup of 16× compared to the scalar implementation. There are two behaviors that have not changed with respect to the evaluation in the NEC

architecture: (i) The gather instructions, even when using relative offsets in RISC-V “V”, do not improve the performance of our implementations (ii)

The Pease implementation suffers a pronounced drop in performance with FFT size of 64 k-elements, while the Stockham implementation does not.

Due to the experimental nature of our setup, we do not have access to as many hardware counters as we did in the NEC SX-Aurora . One very

relevant counter that we can read and that gives a key metric for vector computation is the cycles where the VPU is performing useful work, including

both arithmetic and memory operations. We can divide this value by the total cycles of the execution and obtain what proportion of the execution

cycles is vectorized.

In the right plot of Figure 9 we see how even for the smallest FFT sizes, the VPU is working during roughly 80% of the cycles. As the FFT size

increases, this percentage goes up to virtually 100%. This does not mean that there is no scalar work being done, but that all of it can be overlapped

with the vector work.

On larger sizes, the percentage of cycles where the VPU is active drops to 90%. While this is still a high value, the drop could be explained by

an ongoing issue with context switches affecting our experimental RISC-V platform (out of the scope of this article). The operating system context

switch happens on a fixed time interval. Since the FPGA is running at a significantly lower frequency than a real system, this context switch happens
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VIZCAINO ET AL. 11 of 14

F I G U R E 9 Speedup in the FPGA of the proposed vectorized FFT implementations against a scalar FFTW (left) and proportion of the
execution cycles where the VPU is active (right).

F I G U R E 10 Execution diagram of 8-Stockham with 2048 elements.

every few cycles. As the FFT size grows, so does the execution time and the number of context switches included in the measurements. These context

switches are not using the VPU, so the proportion of vector cycles lowers.

Although we do not have access to many hardware counters, we can use an integrated logic analyzer (ILA) to snoop the signals inside the FPGA.

This allows us to get an execution trace where we see what the VPU is doing at any moment. We analyzed the execution of the 8-Stockham algorithm

for sizes where the vector length is capped at 256 elements (so we are utilizing the VPU at its full potential).

In Figure 10, we can see a diagram of the types of instruction completed during the execution. We can see how the execution is heavily

differentiated between groups of load instructions, groups of arithmetic, and groups of stores, which agrees with the algorithm presented in

Algorithm 4.

While from a software perspective this distribution of the instructions is correct (i.e., load all data, operate it, store it), from a hardware point of

view, this can be improved since the VPU allows to execute some instructions simultaneously. More precisely:

(i) arithmetic operations can be fully overlapped with memory operations (given that they do not have data dependencies); (ii) two loads can be

executed at the same time, while only one simultaneous store is supported; (iii) loads and stores cannot be executed together.

Our goal is to leverage this property to hide the latency of some operations. The hardware is capable of some reordering, since it is an

out-of-order machine, but the VPU has a small window to do so. If we want to take full advantage of the hardware, we need to reorder the instructions

before the execution.

When studying the instructions of a program, there is a concept called the basic block, which is a sequence of instructions between two branch

operations. They have the property that if one instruction is executed, the rest is executed too, so within a basic block, the instructions can be

reordered without issues (given that the data dependencies are respected).

In our implementations, these basic blocks are constituted by approximately 130 consecutive vector instructions, which give us a large degree

of freedom to reorder them. Following the three above-stated characteristics of the VPU, we manually reordered our code and analyzed it again

with the ILA. This reordered implementation is called 8-Stockham-R from now on. In Figure 11, we portrait how virtually all the arithmetic operations

have been overlapped with the memory instructions; now only the loading and storing of data is affecting the execution time.

Figure 12 confirms that the performance of the reordered code, with and without gather instructions, improved by 20%–30% with respect to

our initial versions (with the variant without gathers still on top).

While this improvement is great, it is the fruit of a great programming effort requiring low-level knowledge of the platform’s architecture details.

In order to ease this procedure for future works, we adapted the LLVM machine scheduler, which is in charge of reordering the instructions in

compile-time to optimize the codes.
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12 of 14 VIZCAINO ET AL.

F I G U R E 11 Execution diagram of 8-Stockham-R with 2048 elements.

F I G U R E 12 Flops per cycle after reordering the instructions of the Stockham implementation.

F I G U R E 13 Flops per cycle after changing the compiler scheduler.

We differentiate the different types of vector instruction (e.g., Memory/ALU, strided/no-strided, etc.) and assign a resource and a latency to each

of them. This allows the LLVM machine scheduler to create a rough simulation of the code it compiles and reorders the instructions to minimize the

execution time.

In Figure 13, we show how the automatic reordering performs closely to the previous manual reordering version. We also applied the automatic

reordering to the 8-Pease algorithm to showcase its improvement without the need of any work from the programmer.

One important remark is that in our case the scheduler is not as good as the manual reorder, since the compiler has more constraints when it

reorders instructions. For example, the compiler does not raise a store before a previous load, since it cannot currently know at compile time if their

memory region overlaps and then the result of the load changes depending on their order.

5.3 Comparison of RISC-V “V” and the NEC SX-Aurora

Finally, we compared the results of both architectures. For this final study, we ported to NEC the manually reordered Stockham code described

in Section 5.2, which leads to a 10% performance improvement; thus, this type of scheduling benefits both long-vector architectures. In terms of
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VIZCAINO ET AL. 13 of 14

F I G U R E 14 Percentage of the peak flops/c (left) and bytes/c (right) of both architectures for the different implementations

speedup to scalar or raw flops per cycle, the NEC accelerator outperforms the RISC-V system by approximately a factor of 12×. This is no surprise,

since the vector engine of NEC has 12 times more functional units than the RISC-V VPU.

A good point of comparison for our implementations between two architectures with such a different scale is how efficiently they use their

resources. We consider the peak performance as the maximum flops/cycle that the architectures can provide (i.e., executing FMAs without depen-

dencies) to be 16 for the RISC-V architecture and 192 for the NEC SX-Aurora , in Figure 14. For the memory subsystem, using only unit-strided

vector memory accesses reaches a bandwidth of 870 Bytes/cycle on NEC and 64 Bytes/cycle on RISC-V. Considering these limits, we can compute

which percentage (i.e. efficiency) we are reaching.

We selected the best version of our Stockham and Pease implementations on each architecture. Considering flops/c, the Stockham code

achieves up to 25% of the peak performance on RISC-V platform and up to 20% on NEC’s. In terms of memory bandwidth, we reach 20% of the peak

in RISC-V and 15% on NEC. The Pease algorithm also performs better on RISC-V until bigger sizes, where it is more than twice as fast on NEC.

6 CONCLUSIONS

Our implementations of the FFT for the NEC SX-Aurora show an efficient usage of the vector engine, overtaking the highly optimized proprietary

vendor implementation found in NEC library collection for FFT sizes up to 65,536 elements. We achieve 20× speedup for sizes under 1024 compared

to NEC’s FFT, down to a 2× speedup with 32,768 elements. In terms of speedup to scalar, our implementation reaches a 50× for large transforms.

We also evaluated our implementations on an experimental RISC-V “V” system, reaching 16× speedup with respect to the scalar execution. We

discussed the performance of vector memory gather operations in our implementations, finding that the memory access optimization that they give

us does not pay off because of their long latency.

We compared two algorithms for the FFT computation, Pease’s and Stockham’s. We found that for vectorized codes, the complex permutations

needed by Pease’s impact negatively the performance, notably with large FFT sizes. We argue in favor of more specific register shuffling and memory

accessing vector instructions. We evinced the importance of avoiding memory instructions that FFT computation often requires, even if this implies

more vector registers or reducing the vector length.

We also highlight two weaknesses of our proposed implementations for larger FFT sizes when comparing them with NEC’s implementation: (i)

both Pease and Stockham implementations spend ∼25% more cycles executing floating-point operations, suggesting the need to explore different

RADIX FFT algorithms. (ii) Pease’s implementation has a lower vector load efficiency.

In the RISC-V study we emphasize the importance of a hardware-aware order of the instructions. While we show the potential of doing this work

manually, we present an automatic mechanism to do it with the compiler; which proved to be nearly as efficient as the manual instruction reordering.

We leave for future work the parallelization of our implementations and the exploration of different RADIX and higher dimension FFT

algorithms.
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ENDNOTES
∗https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
†https://sx-aurora-dev.github.io/velintrin.html
‡https://www.xilinx.com/products/boards-and-kits/vcu128.html
§Complete device name: XCVU37P-2FSVH2892E
¶https://semidynamics.com/
#https://riscvsummit2021.sched.com/event/nfGE
||https://www.ics.forth.gr/
∗∗https://repo.hca.bsc.es/gitlab/rferrer/llvm-epi
††https://www.hpc.nec/documents/sdk/SDK_NLC/UsersGuide/main/en/
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